有限元学习心得

合集下载

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。

正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。

弹性力学的研究对象:材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。

弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学研究方法:在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。

弹性力学的基本假设:1)连续性,假定物体是连续的。

连续性因此,各物理量可用连续函数表示。

2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不计,由此得到的弹性力学微分方程将是线性的。

4)完全弹性假设假设固体材料是完全弹性的。

5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所引起的。

有限元法的基本思想:有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。

及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组合体来加以分析。

有限元法课程总结12

有限元法课程总结12

有限元法课程总结摘要:阐述有限元发展的大致历程。

有限元法的基本思想,以及有限元在土木工程中的运用。

并以自己对有限单元法的了解,结合自己的所学、所悟,简述有限单元法的Matlab语言实现的一点体会。

关键词:有限元(FEM);Matlab程序;总结1有限元法的发展历程1960年,Clough[1]在求解平面弹性问题时,第一次提出了“有限单元法”的概念,从此,有限元诞生并成为一门新兴的学科。

有限元法(FEM)是计算力学中的一种重要的方法, 它是20 世纪50 年代末60 年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。

有限元法最初应用在工程科学技术中, 用于模拟并且解决工程力学、热学、电磁学等物理问题。

对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题, 有限元法则是一种有效的分析方法。

有限元法作为一种离散化的数值解法,也已成为应用数学的一个新的分支。

有限元法概念浅显,容易掌握,可以在不同的水平上建立起对该法的理解,既可以通过非常直观的物理解释,也可以建立基于严格的数学分析的理论。

它不仅对结构物的复杂几何形状有很强的适应性,也能应用于结构物的各种物理问题,如静力问题、动力问题、非线性问题、热应力问题等。

还能处理非均质材料、各向异性材料,以及复杂边界条件等难题。

因此,有限元法已经被公认为是工程分析的有效工具,受到普遍重视。

到目前为止,有一大批的有限元分析软件,如ANSYS,ABAQUS等。

现在这些大型有限元通用软件已经可以解决比较复杂的问题了。

2 有限元法的基本思想有限元方法(FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

模态分析有限元仿真分析学习心得

模态分析有限元仿真分析学习心得

有限元仿真分析学习心得1 有限元分析方法原理有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。

还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

有限元法是随着电子计算机发展而迅速发展起来的一种工程力学问题的数值求解方法。

20世纪50年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析之中,用以求得结构的变形、应力、固有频率以及阵型。

由于其方法的有效性,迅速被推广应用于机械结构分析中。

随着电子计算机的发展,有限元法从固体力学领域扩展到流体力学、传热学、电磁学、生物工程学、声学等。

随着计算机科学与应用技术的发展,有限元理论日益完善,随之涌现了一大批通用和专业的有限元计算软件。

其中,通用有限元软件以ANSYS,MSC公司旗下系列软件为杰出代表,专业软件以ABAQUS、LS-DYNA、Fluent、ADAMS 为代表。

ANSYS作为最著名通用和有效的商用有限元软件之一,集机构、传热、流体、电磁、碰撞爆破分析于一体,具有强大的前后处理及计算分析能力,能够进行多场耦合,结构-热、流体-结构、电-磁场的耦合处理求解等。

有限元分析一般由以下基本步骤组成:①建立求解域,并将之离散化成有限个单元,即将问题分解成单元和节点;②假定描述单元物理属性的形(shape)函数,即用一个近似的连续函数描述每个单元的解;③建立单元刚度方程;④组装单元,构造总刚度矩阵;⑤应用边界条件和初值条件,施加载荷;⑥求解线性或者非线性微分方程组得到节点值,如不同节点的位移;⑦通过后处理获得最大应力、应变等信息。

结构的离散化是有限元的基础。

所谓离散化就是将分析的结构分割成为有限个单元体,使相邻单元体仅在节点处相连接,而以此单元的结合体去代替原来的结构。

如果分析的对象是桁架或者是刚架,显然可以取每一根杆作为单元,因为这一类结构就是由每一杆件相互连接而成;如果分析二维或是三维的连续介质,就要根据实际物体的形状和对于计算结果所要求的精度来确定单元的形状和剖分方式。

有限元基础学习心得

有限元基础学习心得

有限元基础学习心得一、问题:1、在开始安装软件时无法正常安装。

2、一些输入符号上的错误,如2.1e11,习惯上输入成了2.1ell,说明对物理意义并不是很清楚。

3、只是按照步骤一步一步往下走,不应该单纯只追求结果,应该要弄懂每一步都是什么意思。

但是现在做完之后根本不知道错在哪一步。

4、老师在课堂上讲过的坝体的载荷分布问题,应该是水深处压力,F应该修改为10000(0.45-X),这样计算的结果会合理一些。

5、英文界面的问题。

6、在操作时要细心,不能丢三落四,尽量独自完成练习,但是可以与同学做学习心得上的交流。

7、操作时不记得要经常保存。

8、对于有限元基本思想的理解不深(为什么要划分网格,ANSYS不是有限元分析的唯一软件)。

9、在生成几何模型时提前划分网格的一处有哪些,局部坐标系的用处有哪些。

二、建议1、希望老师可以推荐几本好的教材,学习起来比较得心应手。

2、希望可以多安排一些上机练习,练习量比较少,进步不大。

(这样理论学习上应该会有很大提高。

)3、上机时指导更加详细一些,一些问题还是有一些难度的。

4、讲课的速度开始时有些快,示范操作时速度慢一些,有一些同学可能会跟不上。

5、上课时多讲解一些操作方面的知识(特别是网格划分和结果显示,以及选择合适的单元类型的方法),增加一些对实际问题的分析和解决实例。

6、希望老师可以将软件及课程中出现的重要单词罗列出来,具体操作步骤的意义可以挑典型例题加以讲解,适当做一些总结。

7、希望老师可以在重要章节可以多重复几遍,加深印象。

8、建议老师安排同学们分组进行一些没有操作步骤提示的问题。

9、上机作业可能会存在抄袭现象。

10、对于用矩阵表达的一些公式的意义多加以讲解。

11、希望可以增加一些弹性力学的讲解。

12、希望老师能在作业每个操作步骤里添加一些解释性的说明。

13、希望可以多讲解一些船舶建模的基本方法以及它与桥梁建模之间的区别。

三、经验\感受:1、建议同学们在遇到问题时最好能记下来,积累经验,避免犯同样的错误。

发动机连杆有限元分析总结心得体会

发动机连杆有限元分析总结心得体会

发动机连杆有限元分析总结心得体会
发动机连杆的有限元分析是一种常用的工程分析方法,它可以帮助工程师们了解连杆的强度和刚度等性能指标,在设计和优化连杆结构时提供技术支持。

在有限元分析中,我们可以对连杆进行静态和动态载荷分析,确定应力和变形分布,找出潜在的弱点和失效模式,在此基础上进行结构优化,提高连杆的可靠性和寿命。

在进行连杆有限元分析时,需要注意以下几点:
1. 应该选择合适的有限元模型,采用三维和四节点六面体单元可提高分析精度;
2. 确定载荷和边界条件,包括离心力、摩擦力、惯性力等,同时考虑各种工况下的载荷变化;
3. 设置材料模型和材料参数,包括弹性模量、泊松比、损伤指数等;
4. 分析应力应变分布情况,找出潜在的失效点,并对连杆进行优化改进;
5. 结果应该进行验证和修正,通过实验验证准确性和可靠性;
6. 结果应该进行优化和控制,保证满足设计标准和工作要求。

在连杆有限元分析中,需要使用专业的有限元分析软件,例如ANSYS、ABAQUS等。

同时,需要掌握有限元分析理论和技术,具备材料力学、结构力学和计算机编程等方面的知识和技能。

总之,连杆有限元分析是一种重要的工程分析方法,可以帮助工程师们优化连杆结构、提高产品质量、降低生产成本,是工程设计和制造过程中不可或缺的分析工具。

学习有限元ANSYS总结

学习有限元ANSYS总结

学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。

在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。

作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。

而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。

实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。

有限元分析学习心得4页

有限元分析学习心得4页

有限元分析学习心得4页有限元分析是一种非常重要的数值分析方法,应用广泛,用于对有限元几何体、材料特性下的力学问题进行分析。

本次学习课程对有限元分析进行了全面系统的介绍,总结如下:一、基本概念-(有限元几何和材料特性)有限元分析的基本概念是有限元几何、材料特性以及它们之间的关系。

有限元是通过将实体几何体划分合理的有限个单元网格对实体进行建模,每个单元都对应一个建模精度较高的小空间,这样可以大大减少建模量而不影响建模结果,从而提高计算效率。

材料特性通常指的是材料的弹性模量、刚度、网表等特性,这样可以精准地模拟几何体的变形和力学特性。

二、假设-(连续性和对称性)在进行有限元分析时,需要做出若干假设,为了提高计算效率,才能得到更准确的计算结果。

以连续性和对称性为例,连续性假设假设单元间不同位置上的物理性质之间具有连续性,从而削减计算量;而对称性假设假设单元间的非线性应力分布形态具有对称性,这样可以使计算的有效性更高。

三、节点-(节点的设定和支座的条件)节点是有限元分析中最重要也是最基本的一步,节点是建模和计算时首先进行的一步,它可以说是模型研究的基石。

所谓节点,指的是几何体在三维空间中不同位置所对应的单点,节点的设定条件可以分为硬支座和弹性支座。

硬支座是节点位置固定,运动角度和位移量都为零;弹性支座则是节点位置具有可变性,它的位移量和角度自由可变,通常用于研究弹性体的力学特性。

四、有限元分析方法-(有限元法和有限差分法)有限元分析可以分为有限元法和有限差分法两大类。

有限元法是建立在极限分析理论之上的,主要用于分析特定几何体的力学性能;有限差分法则是一种逐步积分的计算方法,用于分析广泛的物理场应用问题,如热流体流动以及电磁和声学仿真等等。

本次学习过程中,对有限元分析的基本概念、建模所需的假设、节点的设定以及有限元分析方法都有了深入的了解。

希望以后在工程实践中能够更好地应用有限元分析。

连续弹性体的有限元分析原理

连续弹性体的有限元分析原理

(3)单元应变场的表达,由弹性力学空间问题的几何方程可得:
参数单元的一般原理和数值积分这一小节中,针对的是由于实际问题的复杂性,需要 使用一些几何形状不太规整的单元来逼近原问题,特别是在一些复杂的边界上,有时只能 采用不规则单元。为了解决这类问题,就要涉及到几何形状的映射、坐标系的变换(等参 变换和非等参变换)等问题。 (1)坐标映射,假如有两个坐标系:基准坐标系和物理坐标系。其中基准坐标系用于标准 单元的描述,而工程问题中真实单元往往几何形状不太规则,但可以映射为规则的几何形 状,它是在物理坐标系中的。 (2)坐标的偏导数变换,由于在单元的几何矩阵的推导中会涉及偏导数的计算,所以坐标 系之间必须经过它们的偏导数变换。 以上为一学期以来对《有限元方法》这门课程部分内容的学习和体会,在学习这门课 程中,主要看的学习材料是曾攀讲义。一开始的学习过程中,总觉得很难,分析一个问题 时,所需要的考虑的问题很多。有限元的一个难点,我觉得是在推导单元刚度矩阵,推导 的过程中涉及复杂的物理和数学理论,而在所用学习材料中,在这方面讲的都不太深,都
(2)几何方程
(3)物理方程
在空间问题单元构造这节当中,主要内容为四节点四面体单元的构造。这种单元是由 四节点组成四面体单元,每个节点有三个位移,即三个自由度。 (1)单元的节点和几何的描述,节点位移和节点力为:
(2)单元位移场的表达 根据节点的个数以及确定位移模式的几个原则,选取这类单元的位移模式为:
有限元方法 《连续弹性体的有限元分析原理》学习总结
机械工程 2111306008 王健
初次接触有限元,是在大二的时候,那时候只是学了些皮毛,有关有限元方面的思想 可以说是一窍不通,只会照葫芦画瓢,勉强分析出的结果也是看不太懂。在研究生入学的 这个学期,我又选了《有限元方法》这门课,因为单纯的学软件操作而不去掌握有限元的 理论和分析方法,就算软件操作得再熟练也不能说会有限元,所以我觉得有关有限元方面 理论知识的学习对我们来说非常重要。本学期,给我们上《有限元方法》这门课程的是杨 老师,通过一个学期的学习,我也把我最感兴趣的一章《连续弹性体的有限元分析原理》 的学习心得作个肤浅的总结。 在《连续弹性体的有限元分析原理》的这一章当中,主要内容包括:连续体问题的特 征及有限元分析过程;平面问题的单元构造;轴对称问题及其单元构造;平面问题分析的 算例;空间问题的单元构造;参数单元的一般原理和数值积分。 学习连续体问题的特征及有限元分析过程这一节当中,首先我们必须要明白两个概 念:自然离散和逼近离散。所谓的自然离散指的是杆梁结构由于有自然的连接关系,可以 凭一种直觉将其进行自然的离散;而逼近性离散是指对于连续体,人为的在其内部和边界 上划分节点,以分片(单元)连续的形式来逼近原来复杂的几何形状。对于连续体的力学 分析,有限元分析的一般过程为: (1)原连续体(几何上)的逼近离散

有限元方法的80年读后感

有限元方法的80年读后感

有限元方法的80年读后感英文回答:Title: My Reflection on Finite Element Method after 80 Years.Introduction:The Finite Element Method (FEM) has been widely used in various fields of engineering and science for the past 80 years. As a student studying mechanical engineering, I have had the opportunity to learn and apply FEM in my academic projects. In this reflection, I would like to share my thoughts and experiences with FEM and how it has impacted my understanding of engineering analysis.Body:1. The Power of FEM:FEM is a numerical technique used to solve complex engineering problems by dividing them into smaller, more manageable elements. It allows for the analysis ofstructures and systems that would otherwise be impossibleor impractical to solve analytically. I was amazed by the power of FEM when I first used it to simulate the behaviorof a cantilever beam under different loading conditions.The accuracy and efficiency of the results obtained through FEM were impressive, and it opened up a whole new world of possibilities for me.2. Versatility and Adaptability:One of the key strengths of FEM is its versatility and adaptability. It can be applied to a wide range of problems, including structural analysis, heat transfer, fluid dynamics, and electromagnetics. This flexibility makes FEM an essential tool for engineers in various disciplines. For example, in a project where I had to analyze the heat distribution in an electronic component, FEM allowed me to accurately predict the temperature distribution andoptimize the design to prevent overheating issues.3. Challenges and Learning Opportunities:While FEM offers numerous benefits, it also presentsits fair share of challenges. Understanding the underlying theory and mathematical concepts behind FEM can be daunting, especially for beginners. However, overcoming these challenges provides valuable learning opportunities. Through trial and error, I learned the importance of mesh refinement, selecting appropriate element types, and choosing suitable boundary conditions. These experiencesnot only enhanced my technical skills but also taught methe importance of perseverance and problem-solving in engineering.4. The Future of FEM:As technology continues to advance, so does thepotential of FEM. With the advent of high-performance computing and cloud-based simulations, FEM has become more accessible and powerful than ever before. It is nowpossible to analyze larger and more complex systems withgreater accuracy and efficiency. This opens up new avenues for innovation and design optimization. For instance, in the automotive industry, FEM is used to simulate crashtests and optimize vehicle safety.Conclusion:In conclusion, my journey with FEM has been both challenging and rewarding. It has expanded my understanding of engineering analysis and equipped me with a powerfultool to solve real-world problems. The versatility, adaptability, and future potential of FEM make it an indispensable part of modern engineering. I look forward to further exploring and mastering FEM as I continue my career in mechanical engineering.中文回答:标题,80年有限元方法读后感。

有限元读书报告范文

有限元读书报告范文

有限元读书报告范文1.有限元的基本理论在目前的科学技术和工程技术的发展和研究中,有限元分析方法是使用最广泛的一种数值方法,Clough于20世纪60年代首次提出了“有限单元法”的概念,研究人员们以此为基础不断的探索与创新,经过40年的发展从有限元法的基本概念演化出了一种新的数值分析方法。

有限元分析法把连续体的全求解域看成是由许多个子域组成,对全求解域进行离散,再对各个子域单元上分片假定一个合适的近似解,最后推导全求解域的满足条件建立方程,解出方程即可。

在工程以及物理问题的数学模型确定后,用有限元对该模型进行数值计算,其基本思路可归纳为以下3点:1.把连续体的全求解域看成是由许多个子域组成的,并对其进行离散,一个连续体是通过各个单元边界上的节点互连组合成的。

2.在每一个单元上分片假设近似函数,再将求解域内的未知场变量用这些近似函数来表示。

通常是用未知场函数在单元各个节点上的数值以及其相对应的插值函数来表达每个单元内所假设的近似函数。

而我们知道在这些节点上,场函数的数值是相同的,因此可以用它们来作为数值求解中的基本未知量。

那么就可以将原待求场函数无穷多自由度的求解问题转化为场函数节点值的有限自由度的求解问题。

3.在原问题的数学模型基础上,采用与其等效的加权法或变分原理来建立有限元求解方程,并用数值方法求出方程的解得到原问题的解答。

从上面所述的有限元法的基本思路中可以得到其具有以下四个特性:1.适应性,表现在其适用于复杂几何模型中;2.可应用性,表现于其在各种物理问题中的使用;3.可靠性,表现为其建立于严格的理论基础上;4.高效性,表现为其特别适合计算机的编程和执行。

有限元方法成为使用最为广泛的一种数值方法也就归因于以上的四个特性。

2.有限元的发展趋势纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:2.1与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE 软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。

有限元分析基础的心得体会

有限元分析基础的心得体会

有限元分析基础的心得体会有限元分析是一种广泛应用于工程领域的数值分析方法,它通过将复杂的连续体问题转化为离散的网格问题,利用数值计算的手段求解出结构的应力、变形等物理量。

在我学习有限元分析的过程中,我深感其重要性和应用的广泛性,同时也有一些心得体会。

首先,深入理解基本原理是学习有限元分析的关键。

有限元分析涉及到许多数值计算和结构力学的理论知识,我发现只有对这些基本原理进行深入理解,才能更好地应用有限元分析方法去解决实际工程问题。

掌握有限元分析的数学模型,了解其假设和适用范围,能够更好地选择合适的网格划分和边界条件,并对分析结果进行正确的解释。

其次,熟练掌握有限元分析软件是必要的。

有限元分析软件作为一种工具,能够帮助我们快速建立结构模型、进行网格划分和求解。

熟练使用有限元分析软件不仅可以提高工作效率,还可以减少人为操作失误,得到更准确的分析结果。

在使用有限元分析软件的过程中,我发现学习软件的使用手册、参加培训课程和进行实际的案例分析对于掌握软件的功能和特点非常有帮助。

此外,建立合适的模型是有限元分析的关键。

在实际工程问题中,模型的准确性和合理性对于有限元分析的结果至关重要。

首先,需要对结构进行合理的简化和假设,以减少网格数量和计算复杂度。

其次,需要根据结构的特点选择合适的网格划分方法,以保证网格在结构中的分布均匀且能够充分考虑应力集中区域。

最后,根据实际工程问题的需要,确定边界条件和加载方式,确保分析结果符合实际情况。

最后,有限元分析需要结合实际工程问题进行应用。

虽然有限元分析是一种理论和计算方法,但其最终目的是为了解决实际工程问题。

在实际工程中,需要针对不同的材料性质、加载条件和约束要求,对结构进行合理的建模和分析。

对于复杂的工程问题,可以通过改变边界条件、加载方式和结构尺寸等参数,进行敏感性分析和优化设计,以找到最优的解决方案。

总结来说,学习有限元分析需要深入理解基本原理、熟练掌握分析软件、建立合适的模型和结合实际工程问题进行应用。

有限元方法及软件应用学习心得

有限元方法及软件应用学习心得

有限元方法及软件应用学习心得经过本学期学习有限元分析以及Patran的应用后,我对有限元分析以及该软件已经有了初步的认知,并能建议简单模型在patran上进行分析,并有以下学习心得:一、我对有限元分析的认识:1.1有限元分析的目的和应用通过学习,我了解了有限元分析是以克服传统设计方法的不足(精度和准确定不足等问题),评价设计,优化设计为目的的一门学科。

在现代机械工程、车辆工程、航空航天工程、土建工程中发挥着十分重要的作用,且应用日渐广泛。

1.2我了解到得有限元分析的基本概念通过学习有限元分析的学习,我了解到“离散化”,“结点”,“结点位移“等多个概念以及有限元分析的主要思想。

所谓离散化就是讲要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化,通常我们都是通过计算机进行网格的划分。

常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等。

通过学习,我了解到,选择的分割单元不同会影响分析得精度,以及分析文件的大小,所以选择一定要准确。

1.3有限元分析的基础知识和基本公式有限元分析需要材料力学,震动力学等各种基础知识,由于基础知识的匮乏,所以认识不深刻,但对于结构体的整体动力方程:[M]{δ}+[C]{δ}+[K]{δ}={F}已经有一定基本认识。

二、有限元分析基本过程,以及认识2.1有限元分析得基本过程1)连续体离散化。

2)单元分析。

所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。

3)整体分析。

整体分析是对各个单元组成的整体进行分析。

它的目的是要建立起一个线性方程组,来揭示结点外荷载与结点位移的关系,从而用来求解结点位移。

(添加约束使得矩阵正定)4)约束处理。

添加约束使得矩阵正定,是方程具有唯一解。

5)方程求解,计算单元应力。

2.2有限元分析过程的认识1.通过学习了解到,整体刚度矩阵的具有对称性,稀疏性,非零元素带状分布等特点。

有限元分析学习心得(大全5篇)

有限元分析学习心得(大全5篇)

有限元分析学习心得(大全5篇)第一篇:有限元分析学习心得有限单元法学习心得有限元分析学习心得土木0903马烨军11 有限单元法是20世纪50年代以来随着电子计算机的广泛应用而发展起来的有一种数值解法。

有限元分析(FEA,FiniteElementAnalysis)的基本概念是用较简单的问题代替复杂问题有限元分析后再求解。

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。

这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。

有限元求解问题的基本步骤通常为:有限单元法学习心得某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。

为保证问题求解的收敛性,单元推导有许多原则要遵循。

对工程应用而言,重要的是应注意每一种单元的解题性能与约束。

例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。

有限单元法学习心得端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。

因此,为了正确反映单元的位移形态,唯一模式必须能反映该单元的刚体位移。

(2)位移模式必须能反映单元的常量应变。

每个单元的应变一般总是包含着两个部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变。

另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。

而且,当单元的尺寸比较小时,单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

因此,为了正确的反映单元的形变状态,位移模式必须能反映该单元的常量应变。

(3)位移模式应当尽可能反映位移的连续性。

在连续弹性体中,位移是连续的,不会发生两相邻部分互相脱离或互相侵入的现象。

为了使得单元内部的位移保持连续,必须把坐标模式取为坐标的单值连续函数。

为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

有限元读书报告

有限元读书报告

有限元读书报告有限元读书报告1. 有限元的基本理论在目前的科学技术和工程技术的发展和研究中,有限元分析方法是使用最广泛的一种数值方法,Clough于20世纪60年代首次提出了“有限单元法”的概念,研究人员们以此为基础不断的探索与创新,经过40年的发展从有限元法的基本概念演化出了一种新的数值分析方法。

有限元分析法把连续体的全求解域看成是由许多个子域组成,对全求解域进行离散,再对各个子域单元上分片假定一个合适的近似解,最后推导全求解域的满足条件建立方程,解出方程即可。

在工程以及物理问题的数学模型确定后,用有限元对该模型进行数值计算,其基本思路可归纳为以下3点:1. 把连续体的全求解域看成是由许多个子域组成的,并对其进行离散,一个连续体是通过各个单元边界上的节点互连组合成的。

2. 在每一个单元上分片假设近似函数,再将求解域内的未知场变量用这些近似函数来表示。

通常是用未知场函数在单元各个节点上的数值以及其相对应的插值函数来表达每个单元内所假设的近似函数。

而我们知道在这些节点上,场函数的数值是相同的,因此可以用它们来作为数值求解中的基本未知量。

那么就可以将原待求场函数无穷多自由度的求解问题转化为场函数节点值的有限自由度的求解问题。

3. 在原问题的数学模型基础上,采用与其等效的加权法或变分原理来建立有限元求解方程,并用数值方法求出方程的解得到原问题的解答。

从上面所述的有限元法的基本思路中可以得到其具有以下四个特性: 1. 适应性,表现在其适用于复杂几何模型中; 2. 可应用性,表现于其在各种物理问题中的使用; 3. 可靠性,表现为其建立于严格的理论基础上; 4. 高效性,表现为其特别适合计算机的编程和执行。

有限元方法成为使用最为广泛的一种数值方法也就归因于以上的四个特性。

2. 有限元的发展趋势纵观当今国际上CAE软件的发展情况,可以看出有限元分析方法的一些发展趋势:2.1 与CAD软件的无缝集成当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。

有限元分析学习心得4页

有限元分析学习心得4页

有限元分析学习心得4页一说到有限元分析理论学习,我就觉得我上的那个是假大学,为啥随便来几个不是新手的人都是学过这么多课的,看过这么多书的,我上的大学不都是浪出来的么?我相信很多新手和我的感觉是一样一样的。

首先我以我目前的认知以及在网上很多人解答新手的问题来大致罗列下出镜率比较高的理论科目,并大致评估下学习需要的时间。

大学本科四年掌握:高等数学、线性代数、材料力学、理论力学、概率统计,到这里24岁,这一阶段大多数的步调基本一致,接下来开始:弹性力学(1年);数值方法(0.5年);有限单元法(1年);振动力学(1年);损伤力学(1年);张量分析(1年);线性空间(1年);软件应用(0.5年)。

把以上的内容相加,大概7年时间,WTF!这些学完已经30+了,这玩意我还是按照及其保守的时间,实际操作起来只会长不会短,有人说我可以一起学,有这种想法的人可以试试,或者去问问身边群里那些正在学习的人(这类人肯定不少,而且多数都是新手),听听他们学习之后的感受。

已经参加工作的朋友们肯定知道,过了大学本科之后的阶段,还要学相关的产品设计,产品标准一大堆的东西,读书的还要应对考试,工作的每天还说不定要加班,还要谈恋爱,到了27岁以后还有要考虑结婚生孩子,要照顾家里人,年纪大了记忆能力理解能力衰退,学这些玩意,确实想太多了,即使学个大概,估计30岁前能学完都谢天谢地了!所以这种学习方式适合那些精英群体(如果你不清楚自己是不是精英群体的,我想这样判断,反正高数、材料力学或者概率统计这些都是必修的,能够每本一个月内看完并且理解80%考试轻松过的,那可能可以步入精英群体行列了,如果做不到的,那肯定不是了),不适合一般的普通学习者,更加不适合在24岁之后就走上工作岗位的工程人员,所以我们这样的非精英群体该如何学习有限元分析的理论部分?我们多数人学习的目的是为了保证未来工作中的应用(这个是学习的核心一定要牢牢记住,如果家里有矿学着玩的,不用往下看)。

模态分析有限元仿真分析学习心得

模态分析有限元仿真分析学习心得

模态分析有限元仿真分析学习心得模态分析是有限元仿真分析的一个重要分支,主要用于研究结构的固有频率、振型和模态质量等相关问题。

在进行模态分析时,可以通过有限元方法模拟结构在不同频率下的振动特性,从而提供结构设计和优化的相关信息。

通过学习模态分析,我深刻体会到其在工程领域中的重要性和实用性。

在进行模态分析之前,首先需要构建结构的有限元模型。

对于复杂的结构,例如大型建筑、航空航天器或汽车等,通常需要将其简化为一组等效的有限元模型,以便进行数值计算。

在进行模型简化时,需要合理地选择节点和单元的个数和布置,以尽量减小误差并保持计算的合理性。

通过建立这一有限元模型,可以以较小的计算开销来预测结构的振动特性。

在进行模态分析时,一般会采用求解结构固有频率和振型的特征值问题的方法。

在求解特征值问题时,可以利用传统的迭代方法或者直接求解特征值和特征向量的算法来获得结构的固有频率和振型。

求解特征值问题是模态分析的核心内容,也是整个有限元仿真分析的关键步骤之一获得结构的固有频率和振型后,可以进一步分析结构的模态质量。

模态质量是指结构在各个模态下的能量分布情况,通常用于分析结构的动力响应和优化设计。

在进行模态质量分析时,需要计算结构各个节点和单元的质量或弹性能量,并将其与结构的总质量或总弹性能量进行比较。

通过分析模态质量,可以了解结构在不同频率下的振动特性,并为结构的动态响应和设计提供指导。

在学习模态分析的过程中,我发现其实际应用非常广泛。

无论是在机械工程、土木工程还是航空航天等领域,模态分析都有着重要的应用价值。

例如,在机械设计中,可以通过模态分析预测机械结构在运行过程中可能存在的共振问题,并通过优化设计来避免或减小运行过程中的振动和噪音。

在土木工程中,可以通过模态分析探测建筑物的可能敏感频率和振型,从而避免共振破坏等问题。

在航空航天领域,模态分析可以用于预测飞机或航天器在飞行中的动力响应,以及引起结构或设备失效的振动源。

有限元学习心得体会

有限元学习心得体会

有限元学习心得体会有限元学习心得体会篇一:有限元学习心得有限元学习心得吴清鸽车辆工程 50110802411短短八周的有限元课已经结束。

关于有限元,我一直停留在一个很模糊的概念。

我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。

总体来说,这是一门非常重要又有点难度的课程。

有限元方法或有限元分析必须能反映单元的刚体位移和常量应变。

6个参数 1 到 6 反映了三个刚体位移和三个常量应变。

必须保证相邻单元在公共边界处的位移连续性。

aa1.1.4 应变矩阵和应力矩阵利用几何方程、物理方程,实现用结点位移表示单元的应变和单元的应力。

用结点位移表示单元的应变的表达式为:??u????bi?x??v?1????????02A???y???ci??u??v???y?x?0cibibj0cj0cjbjbm0cm?ui??v?i?0????uj?cm???vj???bm??um????vm?{?}?{?}e?bi1??Bi???02A??ci0?ci??bi???B???BiBjBm?矩阵称为几何矩阵由物理方程,可以得到单元的应力表达式:为应力矩阵?S???D??B??????D??????D??B????e?S???SiSjSm??ci??1.1.5 单元刚度矩阵??biE??b?Si???D??Bi??i2?2A?tdxdy?ζ??x?***?εxεyγxy ?ζy? tdxdy?ηxy???根据虚功原理,得????*?eT?F?e??????*T???tdxdy这就是弹性平面问题的虚功方程,实质是外力与应力之间的平衡方程。

Teeεδ*?)T??δ*?T 虚应变可以由结点虚位移求出:? *??(?B??T代入虚功方程T???tdxdy?F?e???T?ζ?tdxdye接上式,将应力用结点位移表示出 ?ζ???D??B??δ?有 e?F?e???Ttdxdy?δ?令 ?K?e???Ttdxdy则 e?F?e??K?e?δ?e????F???????T*eT*e5e篇二:有限元学习总结有限元学习总结最近在看有限元这类问题,在这几天的时间里,我弄懂了有限元的一些基本知识,下面进行一些必要的总结。

学习有限元法的感想

学习有限元法的感想

学习有限元法的感想通过对这一章的学习,我了解到有限元法在我们许多的工程分析问题上运用的比较多,也比较重要。

我是从以下几个方面学习它。

它的基本思想:设法将实际上是无穷多自由度的连续介质问题近似的简化为由有限个“结点”构成的有限个自由度问题,并以这些结点的“自由度”为未知量,设法将控制方程近似的化为一组线性代数方程,然后用计算机求解。

它的原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。

从而使一个连续的无限自由度问题变成离散的有限自由度问题。

有限元法的运用基本步骤:步骤1:剖分:将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).步骤2:单元分析:进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数步骤3:求解近似变分方程用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。

有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。

每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。

根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。

有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。

有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。

结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

一种分析方法知道了它的原理、思想和运用基本步骤,关键是应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元学习心得吴清鸽车辆工程 50110802411短短八周的有限元课已经结束。

关于有限元,我一直停留在一个很模糊的概念。

我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。

总体来说,这是一门非常重要又有点难度的课程。

有限元方法(finite element method) 或有限元分析(finite element analysis),是求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要基础性原理。

将它用于在科学研究中,可成为探究物质客观规律的先进手段。

将它应用于工程技术中,可成为工程设计和分析的可靠工具。

本课程教学基本内容有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件的使用.通过有限元分析课程学习使我了解和掌握了一些有限元知识:1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。

2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。

掌握有限元分析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。

3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。

各种结构的实例研究。

4.了解并掌握建立高质量建模所涉及的各种关键技术。

包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。

以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。

掌握PATRAN软件的基本使用。

利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。

课程的具体学习内容:内容:1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度矩阵、载荷移置、方程求解;2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;3. 其他常用单元形函数、自由度。

1、三节点三角形单元 1.1. 单元分析1.1.1 分析步骤单元分析的任务是建立单元平衡方程,形成单元刚度矩阵。

不失一般性,从图1-1三角形离散结构中任取一个单元,设单元编号为e ,单元节点按右手法则顺序编号为 i,j,m,在定义的坐标系xOy 中,节点坐标分别为(xi+yi),(xj+yj),(xm+ym),节点位移和节点力表示如图1-1所示。

取结点位移作基本未知量。

由结点位移求结点力:其中,转换矩阵称为单元刚度矩阵。

单元分析的主要目的就是要求出单元刚度矩阵。

1.1.2 位移模式和形函数对于平面问题,单元任意一点的位移可用位移分量u, v 描述,他们是坐标x, y 的函数。

假定三节点单元的位移函数为x, y 的线性函数,六个节点位移只能确定六个多项式的系数,所以平面问题的3结点三角形单元的位移函数如下:所选用的这个位移函数,将单元内部任一点的位移定为座标的线性函数,位移模式很简单。

位移函数写成矩阵形式为:{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i ev u v u v u δ{}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m m j j i i eV U V U V U F {}[]{}ee e K F δ=结点位移内部各点位移应变应力结点力(1)单元分析(4)(3)(2)⎭⎬⎫++=++=y a x a a y a x a a u 654321v {}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=65432110000001a a a a a a y x y x v u f将水平位移分量和结点坐写成矩阵: 代入位移函数第一式:令则有A 为三角形单元[T]的伴随矩阵为令则有同样,将垂直位移分量与结点坐标代入位移插值公式:最终确定六个待定系数 :mm m j j j i i i y a x a a u y a x a a u y a x a a u 321321321++=++=++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧321111a a a y xy x y x u u u m m j j i im j i []T 111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡m mj j i i y x y xy x []⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-m j i u u u a a a 1321T A2T =[]T*T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------=i j ji i j j i m i i m mi i m j m m j jm m j x x y y y x y x x x y y y x y x x x y y y x y x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=m ji m ji m j i m mmj jji i ic c c b b b a a a c b a c b a c b a T*]T [⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j im ji u u u c c c b b b a a a A a a a 21321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m ji v v v c c c b b b a a a A a a a 21654⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j im ji u u u c c c b b b a a a A a a a 21321⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i v v v c c c b b b a a a A a a a 21654])()()[(21m m m m j j j j i i i i u y c x b a u y c x b a u y c x b a Au ++++++++=])()()[(21m m m m j j j j i i i i v y c x b a v y c x b a v y c x b a Av ++++++++={}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=m m j j i i m jim j iv u v u v u N N N N N N v u f 0000令(下标i ,j ,m 轮换)[N]称为形态矩阵, N i 称为位移的形态函数 1.1.3 位移函数的收敛性选择单元位移函数时,应当保证有限元法解答的收敛性,即当网格逐渐加密时,有限元法的解答应当收敛于问题的正确解答。

因此,选用的位移模式应当满足下列两方面的条件:(1) 必须能反映单元的刚体位移和常量应变。

6个参数 到 反映了三个刚体位移和三个常量应变。

(2) 必须保证相邻单元在公共边界处的位移连续性。

(线性函数的特性)1.1.4 应变矩阵和应力矩阵利用几何方程、物理方程,实现用结点位移表示单元的应变和单元的应力。

用结点位移表示单元的应变的表达式为:[B]矩阵称为几何矩阵由物理方程,可以得到单元的应力表达式: 为应力矩阵1.1.5 单元刚度矩阵)(21y c x b a AN i i i i ++={}⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=m m j j i i m j i ev u v u v u δδδδ1a6a{}⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=εm m j j i i m mjjiim j i m j i v u v u v u b c b c b c c 0c 0c 00b 0b 0b A 21x v y u y v x u eB }]{[}{δε=[][]mj iB B B B =[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=i i i i i b c c b A B 0021{}[]{}[][]{}eB D D δεσ==[][][]B D S =[][]mjiS S S S =[][][]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---==i i i i i ii i b c c b c b A E B D S 2121)1(22μμμμμ讨论单元内部的应力与单元的结点力的关系,导出用结点位移表示结点力的表达式。

由应力推算结点力,需要利用平衡方程。

用虚功方程表示出平衡方程。

考虑上图三角形单元的实际受力,任意虚设位移,节点位移结点力和内部应力为: 与内部应变为:微小矩形的内力虚功为根据虚功原理,得这就是弹性平面问题的虚功方程,实质是外力与应力之间的平衡方程。

虚应变可以由结点虚位移求出:代入虚功方程接上式,将应力用结点位移表示出有 令 则{}{}{}{} dxdydz σεF δT *T *⎰⎰⎰=⎪⎫⎪⎧i i V U ⎫⎧⎪⎫⎪⎧**i v u {}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧g εε=ε*xy *y *x *mm m m j j j j i i i *i V v U u V v U u V v U u +++++=T []⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨=m m j j i i *m *m *j *j *i *i V U V U V v u v u v u {}{}e eT*F δ=dy)(γtdx)(τdy)(εtdx)(σdx)(εtdy)(σdU *xy xy *y y *x x ⨯+⨯+⨯=)tdxdyτγσεσ(εxy *xy y *y x *x ++=[]tdxdy τσσ γεεxy y x *xy *y *x ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧={}{}{}{}⎰⎰σε=δtdxdyF T*eT e *{}[]{}{}T Te *T e*T *[B]δ)δB (ε=={}{}{}{}⎰⎰=tdxdy B F TTeeTeσδδ][**{}{}⎰⎰=tdxdy σ[B]F Te{}[][]{}e δB D σ={}{}⎰⎰=eT e δy [D][B]tdxd [B]F []⎰⎰=y[D][B]tdxd [B]K Te{}[]{}e e e δK F =[]eK建立了单元的结点力与结点位移之间的关系, 称为单元刚度矩阵。

相关文档
最新文档