离散数学第六章资料

合集下载

《离散数学》 第六章 集合的基数

《离散数学》 第六章  集合的基数
6.2.1 可数集
定理6.2.5 可数个可数集的并集仍然是一可数集。
在上面元素的排列中,由左上端开始,其每一斜线上的每一元素
的两足码之和都相同,依次为2,3,4,…,各斜线上元素的个
数依次为1,2,3,4,…,故A的排列为: a11,a21,a12,a31,a22,a13,… 故S是可数的,定理得证。
(3)card X = card Y。
6.3 基数的比较
定理6.3.3 设X、Y为任意两个集合, 如果cardX ≼· cardY,cardY ≼· cardX, 则cardX=cardY。
例6.3.1
证明[0,1]和(0,1)有相同的基数。
解 根据定理6.3.3,我们只需构造两个单射函数:
f:(0,1) → [0,1],f(x)=x
6.2 可数集和不可数集
6.2.1 可数集
定理6.2.5
证明 为:
可数个可数集的并集仍然是一可数集。
设S1,S2 , S3,……是可数个可数集,分别表示 S1={a11,a12,a13,…,a1n,…} S2={a21,a22,a23,…,a2n,…} S3={a31,a32,a33,…,a3n,…} …………
6.1 基数的概念
定义 6.1.3 设 X 为任意集合,称 card X 为集合 X 的基数,并作 以下规定: ( 1 )对于任意的集合 X 和 Y ,规定 card X = card Y ,当且仅当 X≈Y; (2)对于任意有限集合X,规定与X等势的那个唯一的自然数n为X 的基数,记作 card X = n (3)对于自然数集合N,规定 card N = (读作阿列夫零) (4)对于开区间(0,1),规定 card(0,1)= (读作阿列夫)
⑵ 若X≈Y,则X≼· Y且Y≼· X。

《离散数学》第六章 集合代数

《离散数学》第六章 集合代数
例2:某学校有12位教师,已知有8位老师可以教数学,6位 可教物理,5位可教化学.其中有5位教师既教数学又教 物理.4位老师兼教数学和化学,3位老师兼教物理和化 学,3位老师兼教这三门课. 1.求不教任何课的老师有几位? 2.只教一门课的老师有几位? 3.正好教其中两门课的老师有几位?
例3: 4个x ,3个y,2个z的全排列中,求不出现xxxx,yyy ,zz图象的排列。
设x不具有性质P1,P2,…,Pm ,那么x∉Ai,i= 1,2,…m。则它对等式左边计数的贡献为1,对 等式右边的计数的贡献也是1。
根据牛顿二项式定理不难得到上面式子的结果是0.而 由于x具有n个性质,它对等式左边的贡献也为0。
4.3 几个例子
例1:求1-1000之间(包括1和1000)不能被5,也不能被6, 还不能被8整除的整数有多少个?
总体上还是多采用命题逻辑中的等值式,但在叙述
上采用半形式化的方法。
例6.6 证明A-(B∪C)=(A-B)∩(A-C).
证明: 对于∀x
x ∈ A-(B∪C) Ù x ∈ A ∧ x ∉(B∪C) Ù x ∈ A ∧ ⎤ (x∈B ∨ x∈C) Ù x ∈ A ∧ (⎤x∈B ∧ ⎤x∈C) Ù x ∈ A ∧ (x ∉ B ∧ x ∉ C) Ù x∈A∧x∉B∧x∉C Ù (x ∈ A ∧ x ∉ B) ∧ (x ∈ A ∧ x ∉ C) Ù x ∈ A- B ∧ x ∈ A- C Ù x ∈( A- B) ∩(A- C)
全排列的个数为:9!/(4!3!2!)=1260; 所以要求的排列数为
1260-(60+105+280)+(12+20+30)-6 =871.
4.4 三个练习
练习1:求由a,b,c,d构成的n位符号串中,a,b,c,d都至 少出现一次的符号串的数目。

离散数学第六章 集合 自然数与自然数集

离散数学第六章 集合 自然数与自然数集

学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世
称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受
当n=0时,已经证明了结论成立。 对n作归纳假设,假设对任意自然数m, 有n∊m, 或者n=m,或者m∊n三者之一成立。 现在考察对于n+=n+1的情况。
n+=n∪{n},对于任意自然数m, 若n∊m, 则由对m用归纳法可以证明 n+∊m或者n+=m之一成立(见前页)。 若n=m,则m∊{m}={n},即m∊n∪{n}=n+。 若m∊n,则m∊n∪{n}=n+。
,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质
(1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
数学归纳法——皮亚诺公设的第5条

离散数学第六章---群论

离散数学第六章---群论
得Computer仍是字母串。
第6章 群论
定理6.1 一个半群(S,),如果它有一个子代 数 (M, ) ,则此子代数也是一个半群。
定义6.2 一个半群(S,)的子代数 (M, )也是 半群,称为(S,)的子半群。
第6章 群论
一个半群(S,)中的元素a ,可定义它的幂: a1=a , a2=a a , …,an+1=an a
第6章 群论
定理6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群。
定义6.5 一个单位半群(S,),如果存在一个
子代数 (M, ) ,且其单位元 e ∈M,则 (M, )
也是一个单位半群,称为(S,)的子单位半群 。
Hale Waihona Puke 第6章 群论定义6.5 :一个单位半群(S,)如果由它的一个 元素a 所生成,则称为由 a 所生成的循环单位半 群,元素 a 称为此单位半群的生成元素。
定理6.6 :一个循环单位半群是一个可换单位半 群。
第6章 群论
6.2 群
一、群与群的同构 1、群的有关定义
定义6.7 如果代数系统(G, )满足 (1) (G, )为一半群; (2) (G, )中有单位元e; (3) (G,)中每一元素a∈G都有逆元 a-1 则称代数系统(G, )为群。
第6章 群论
第六章 群论 6.1 半群与单元半群 6.2 群
第6章 群论
群在代码的查错、改错的研究,自动机理论等 方面都有应用。
第6章 群论
6.1 半群与单元半群
半群与群都是具有一个二元运算的代数系 统,群是半群的特殊例子。事实上,群是历史 上最早研究的代数系统,它比半群复杂一些, 而半群概念是在群的理论发展之后才引进的。 逻辑关系见图6.1.1。

离散数学_第06章代数结构概念及性质

离散数学_第06章代数结构概念及性质

【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。

离散数学第6章(屈)

离散数学第6章(屈)

例3 已知5阶有向图的度数列和出度列分别为3,3,2,3,3和 1,2,1,2,1, 求它的入度列 解 2,1,1,1,2
12
实例
例4 证明不存在具有奇数个面且每个面都具有奇数条棱 的多面体.
证 用反证法. 假设存在这样的多面体, 作无向图G=<V,E>,
其中 V={v | v为多面体的面}, E={(u,v) | u,vV u与v有公共的棱 uv}. 根据假设, |V|为奇数且vV, d(v)为奇数. 这与握手定理的 推论矛盾.
并且 (vi,vj) (<vi,vj>) 与 (f(vi),f(vj)) (<f(vi),f(vj)>)的重 数相同,
则称G1与G2是同构的,记作G1G2.
24
Hale Waihona Puke 实例25实例例6 画出4阶3条边的所有非同构的无向简单图 解 总度数为6, 分配给4个顶点, 最大度为3, 且奇度顶点 数为偶数, 有下述3个度数列: (1) 1,1,1,3;(2)1,1,2,2;(3)0,2,2,2.
e1
v1 e3
e2 v2 e4 v4 e5 v3 e6
v5
e7
4
有向图
定义6.2 有向图D=<V,E>, 其中V称为顶点集, 其元素称为 顶点或结点; E是VV的多重子集, 称为边集, 其元素称为有 向边,简称边. 有时用V(D)和E(D)分别表示V和E
例如, D=<V,E>如图所示, 其中V={a, b, c, d} E={<a,a>,<a,b>, <a,b>, <a,d>, <c,b>,<c,d>,<d,c>} 有限图: V, E都是有穷集合的图 n 阶图: n个顶点的图 零图: E=的图 平凡图: 1 阶零图

离散数学第六章 集合-自然数与自然数集

离散数学第六章 集合-自然数与自然数集

第二归纳法
若 n=0时命题成立, 假定当n 小于等于k 时命题成立,可以证明 n等于k+1 时命题也成立。
则对于一切自然数命题成立。
这种归纳方法又叫第二归纳法。
性质
①设n1,n2和n3是三个任意的自然数,若
n1∊n2,n2∊n3,则n1∊n3 。 ②设n1和n2是两个任意的自然数,则下述三个 式中有一个成立: n1∊n2, n1=n2, n2∊n1 ③设S是自然数集的任意非空子集,则存在 n0∊S ,使得n0∩S=Ø。
后继、前驱
对于任意两个自然数m和n, 如果m=n+,即 m=n∪{n}, 称m为n的后继,可以记为 m=n+1, 也称n为m的前驱,也可以记为 n=m-1。
自然数集 N
定义3 存在一个由所有自然数组成的集 合叫自然数集,记为
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N ,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质 (1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
证明:对m用归纳法。 若m=n+,则 n∊m成立, 此时有n+=m 。 归纳假设对任意的m, 若n∊m,则n+=m,或者n+∊m之一成立。 考察m+=m∪{m}, 若n ∊m+={m}∪m, n ∊{m}∪m
n =m n+ =m+

离散数学第六章

离散数学第六章

6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.

06离散数学课件资料

06离散数学课件资料

2024/7/3
离散数学
10
二、群的概念
群中的幂:设群<G, > ,则对 xG, x0 = e ,xn+1 = xn x,(n为非负整数) x-n= (x -1)n= (xn)-1,(n为正整数)
幂运算的性质: (1) xG,(x-1)-1 = x, (2) x, yG,(x y)-1 = y -1 x–1, (3) xG,xm xn = xm + n ,m, n为整数
(1)
(2)
(3)
代数系统
半群
独异点

2024/7/3
离散数学
6
二、群的概念
例1:设G= R-{1/2},对 x, yG,x * y = x + y – 2xy , 试证明<G, * >是否为群? 证明: (1) 若 x, yG,x * y = x + y – 2xy G,故* 运算
关于G满足封闭性。 (2) 若 x, y , zG ,
是<Z, +>的平凡子群;
设<G,*>是一个群,B是G的一个有限非空子
有限子群 判定定理
集。若运算*在集合B上封闭,则 <B,*>是
<G,*>的子群。
子群的 设<G, * >为群,H是G的非空子集,如果对 x, 判定定理 yH,x * y -1H,则<H,*>是<G, * >的子群。
2024/7/3
如:<Z+, +>和<N, +>是<Z, +>的子半群,且<N, +>是 <Z, +>的子独异点,但<Z+, +>却不是。

离散数学第六章

离散数学第六章

第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。

画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。

注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。

(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。

先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。

利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。

由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。

关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。

(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。

直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。

可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。

3.群在其它方面的应用:如编码理论、计算机等。

一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。

离散数学第6章

离散数学第6章

14
注: 此定义是由美国哈佛大学爱伦堡教授给出的; 此定义规定了严格的点、线之间的关系,适应面很广、特别 适合多重图(比如上节的七桥图);缺点是边表示比较复杂, 简单图一般不采用。 标号实际上是为了区别两点间的平行边而设的;标号集的大 小一般就是图中平行边的最大条数(图的重数,参见下面概念)。 当图的重数为1,即图无平行边时(简单图,参见下面概念), 有 ={1},各边标号一样,全为1 ,这时可取掉各边标号及标 号集,定义3就变成了定义2;所以定义3适合于图的一般情况, 特别是(有平行边的)多重图,而定义2适合于(无平行边的)简单 图。
(D,PSC) (PDSC,) (DC,PS)
(PDS,C)
(PDC,S)
(S,PDC)
(,PDSC)
(PS,DC)
(C,PDS) (PSC,D) 图4 注:上述问题统称“渡河问题”。 “三对忌妒的夫妇渡河问题”参见《离散数学基础》 [美]C.L.Liu著 刘振宏译 P162; “三个传教士与三个吃人肉的野人渡河问题”参见《Prolog高 级程序设计》[美]L.斯特林 E.夏皮罗著 刘家佺 邓佑译 郑守淇校 P197; 渡河问题的条件也是可变的。比如夫妇的对数可以是四对, 五对;渡河能力或渡河工具-小船的容量也是可变的。
(13)孤立点: (isolated vertex) 不与任何边相关联的结点称为孤立点。
(14)自环: (loop ) 两个端点相同的边称为自环。
18
(15)平行边: (parallel edges ) 有相同端点(相同的起点,相同的终点)的两条边称 为平行边。
(16)重数: (multiplicity) 两结点间平行边的条数称为平行边的重数。
注:此定义的优点是简单,规定了清楚的点、线之间 的关系,很适合简单图、特别是有向图(比如第二章的 关系图、哈斯图);缺点是无法表示平行边,因此不适 合多重图(比如上节的七桥图)。 例2. 有四个程序,它们之间存在如下的调用关系:P1 能调用P2 , P2能调用P3 ,P2能调用P4 。 上述事实也可用一图G = (V, E)来表示。图中结点集 V={v1 , v2 , v3 , v4} ,边集E={(v1, v2), (v2, v3), (v2, v4)} 。

离散数学第六章 集合-全集和集合的补

离散数学第六章 集合-全集和集合的补
第六章 集合
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
ห้องสมุดไป่ตู้
全集
定义: 我们在研究某一个具体问题时,往往 规定一个集合,使所涉及的集合都是它 的子集合,称这个集合为全集, 记为U (或E )。
全集是个有相对性的概念,不同的问题, 可以规定不同的全集。
任一集合的补集合是唯一的。
推论
设A是任意一个集合,则
A A
定理3 德· 摩根定律
(Augustus De Morgan, 1806-1871, 英國數學家)
A B A B
A B A B
证明:( A B) ( A B)
[ A ( A B)] [ B ( A B)] [( A A) B] [(B B) A] [ B] [ A]
补运算: Ā
定义:设A是一个集合,U 是全集合,我们 称集合U–A为A的补集,记为Ā,即有: Ā={ x│x∉A且x∊U }
Ā
A
U
定理1 A是一个任意集合,则
A∪Ā= U A∩Ā= Ø
定理2 Ā=B当且仅当A∪B=U且A∩B=Ø
证明: “” 由定理1结论成立。 “” 设A∪B=U 且A∩B=Ø ,则 B =B∩U =B∩(A∪Ā)=(B∩A)∪(B∩Ā) =Ø∪(B∩Ā) = (A∩Ā) ∪(B∩Ā) =(A∪B)∩Ā=U∩Ā=Ā
因而结论得证。
例 (p68)
证明:
(A–B)∩(A–C)=A– (B∪C)
( A B) ( A C ) ( A B) ( A C ) A (B C) A (B C) A (B C)

离散数学第六章

离散数学第六章

二. 格是代数系统
2.偏序集合的格、代数系统的格二者定义是等价 的
定理4.若<L, ,>是一个格(作为代数系统), 那么,L 中存在一偏序关系≤, 使a,bL ,有 ab=lub(a,b), ab=glb(a,b). 证:在集合L上定义的二元关系如下: a,bL,若a≤b ab=a 分三步: 1) 证明’≤’是L上的偏序关系 2)证明 a,bL, {a,b}的最大下界存在, 且 ab=glb(a,b)。 3)a,bL, {a,b}的最小上界存在,且 lub(a,b)=ab
6.3布尔代数
3.原子 设<A, ≤> 是一个格,且具有全下界0,若有a盖 住0,称a为原子。
例:1盖住d,e,b,则 a,b,c为原子
1 d a 0
b
e c
6.3布尔代数
定理: 若<A, ≤>为具有0的有限格,则
bA,b≠0,aA, a为原子,且a≤b
证明:
若b为原子,则b≤b 得证。
1.定义: 若<A,≤>是一个格,由它诱导的代数系统 <A, ,>,如果对于任意的a,b,c∈A,有 b≤a a(bc)=b(ac), 称<L, ≤>是模格。
例1:
1 a c b d
它是模格,但不是分配格 b≤a: a(cd)=a1=a (ac)(ad)=bb=b
6.2
但 a(bc)=a1=a
b(ac)=b0=b
分配格
1 a b 0 c
例2:它不是模格,b≤a,
3.分配格是模格
证:a(bc)=(ab)(ac) = b(ac)
6.3 有补格
1.全上界(全下界)定义 给定格<L,≤> , 若存在aL, 使bL,有b≤a (a≤b), 称a为<L,≤>的全上界(全下界)。 注:一个格的全上界(全下界)是唯一的。

离散数学 第六章的课件培训资料

离散数学 第六章的课件培训资料
第二部分 集合论
第六章 集合代数 主要内容 集合的基本概念
属于、包含 幂集、空集 文氏图等 集合的运算 有穷集的计数 集合恒等式 集合运算的算律、恒等式的证明方法
1
6.1 集合的基本概念
1. 集合定义 集合没有精确的数学定义 理解:由离散个体构成的整体称为集合,称这些个体为集 合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有 理数、实数、复数集合
A x (xxA) 1(恒真命题)
推论 是惟一的
证明:假设存在空集1 和 2 ,由定理6.1有:
1 2 和 2 1
根据集合相等的定义,有1 = 2
所以得出结论: 是惟一的 。
5
空集、全集和幂集
含有n个元素的集合简称n元集,它的含有m(m≤n)个元素 的子集叫做它的m元子集。任给一个n元集,怎样求出它的 全部子集呢?
相对补 AB = {x | xA xB}
例如:A={a,b,c},B={a},C={b,d}
AB= {a,b,c},
AB ={a},
AB={b,c} ,
B-A= ,
B C=
若两个集合的交集为 ,则称这两个集合是不交的
8
6.2 集合的运算
定义6.8 设A,B为集合,A与B的对称差集A B定义为: 对称差 AB = (AB)(BA)
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
广义交 A= { x | z ( zA xz )}
例6.1 A={1,2,3},将A的子集分类: 解:0元子集,也就是空集,只有一个: ; 1元子集,即单元集:{1},{2},{3}; 2元子集:{1,2},{1,3},{2,3}; 3元子集:{1,2,3}。

离散数学第六章集合代数

离散数学第六章集合代数
15
集合算律
6.3 集合恒等式
1.只涉及一个运算的算律:
交换律、结合律、幂等律
交换 结合
幂等
AB=BA (AB)C =A(BC) AA=A
AB=BA (AB)C= A(BC)
AA=A
AB=BA (AB)C =A(BC)
16
2.涉及两个不同运算的算集律合:算 律 分配律、吸收律

分配
A(BC)=
(AB)(AC)
A(BC)=
(AB)(AC)
吸收
A(AB)=A
A(AB)=A

A(BC) =(AB)(AC)
17
3.涉及补运算的算律: 集合算律 DM律,双重否定律
D.M律
双重否定
A(BC)=(AB)(A C)
A(BC)=(AB)(A C)
(BC)=BC (BC)=BC
A=A
18
4.涉及全集和空集的算律集:合 算 律 补元律、零律、同一律、否定律
解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.
28
(1) 判断元素a与集合A的隶属关系是否成立基本方法:
把 #2022 a 作为整体检查它在A中是否出现,注意这里的 a 可
能是集合表达式.
(2) 判断AB的四种方法
若A,B是用枚举方式定义的,依次检查A的每个元素是否 在B中出现.
(交换律)
八. = A E
(零律)
九. = A
(同一律)
22
例6 证明AB AB=B AB=A AB=
#2022




证明思路:
确定问题中含有的命题:本题含有命题 ①, ②, ③, ④
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如例2中的 Z, ,Q, ,R, , P(A), ,
Zn, 都是阿贝尔群。
例3、Klein四元群。
G e, a,b,c,运算o由下表给出:
3、群的阶。 群 有 无限 限群 群
有限群 G 的阶, 记 G 。 例如: Zn, 的阶为 n ,
Klein 四元群的阶为4。
4、群中元素的幂 xn 。 对于群 G ,定义:xn (x1)n 则可以把独异点中的关于 xn 的定义扩充为: x0 e xn1 xn ox ( n 为非负整数) xn (x1)n ( n 为正整数) 有关幂的两个公式:xm oxn xmn
(xm )n xmn (m, n Z )
5、群中元素 x 的阶 (或周期)。
群 G中元素 x 的阶x
的阶
有限,记 x k 无限(不存在以上的k
)
例如:Klein 四元群中,
a,b, c的阶都是2,记 a b c 2。
e 的阶为1,记 e 1 。
例如: Z , , N, 都是 Z, 的子半群,
且 N, 是 Z, 的子独异点。
二、群。 1、定义。
代数系统 G,o 满足:
①结合律, ②有幺元, ③任意元有逆元,
则称 G,o 为群。
例2、(1) Z, ,Q, , R, 都是群, 因任意元素 x 的逆元(x)存在, 而 Z , ,N, 不是群, Z , 没有幺元,
第六章 几个典型的代数系统 第一节 半群与群
内容:半群,群,子群。 重点:1、半群,可交换半群,独异点的定义,
2、群,交换群 (阿贝尔群)的定义及性质, 3、群的阶的定义, 4、循环群,生成元的定义及例子, 5、子群的定义及判定。
一、半群。
1、定义:满足结合律的代数系统 S,o 称为半群。 例1、(1) Z , ,N, ,Z, ,Q, ,
R, 都是半群。 (2) Mn (R),g 是半群。 (3) P(A), 是半群,其中 表示集合的对称
差运算。
一、半群。
1、定义:满足结合律的代数系统 S,o 称为半群。
(4) Zn, 是半群,其中 Zn 0,1, 2,L , n 1,
表示模 n 的加法。
可交换半群
2、独异点 (含幺半群): 记作 S,o, e 如例1中除了 Z , 不是独异点外,其余的均是 独异点,分别记作 N, ,0 , Z, ,0 , Q, ,0
N, 除0外,其余元素都没有逆元。 (2) Mn (R),g 不是群,
因不是所有的 n 阶矩阵都可逆。
(3) P(A), 是群, 为幺元, x P(A) ,x1 x (x x )
(4) Zn, 是群,0为幺元,
x Zn
,x1
n
0
x
x0 x0
2、交换群 (也称阿贝尔 ( Abel)群)。
例6、如果 G中的每一个元素 a都满足 a2 e, 则 G 是阿贝尔群。 证明:a,b G , 由题设知,a1 a ,b1 b,(ab)1 ab 从而 ab (ab)1 b1a1 ba , 所以 G是阿贝尔群。
例7、设群G不是阿贝尔群,则 G中存在两个 非幺元的元素a, b ,a b ,使得 ab ba 。 证明:(1) 先证存在 a G ,使 a1 a 。 事实上,若a G ,都有 a1 a,即 a2 e 由例6知,G 是阿贝尔群,与题设矛盾。
证明:设 G 为阿贝尔群, 则 a,b G ,有 ab ba , 故 (ab)2 (ab)(ab) a(ba)b
a(ab)b (aa)(bb) a2b2
例5、证明 G是阿贝尔群当且仅当对a,b G, (ab)2 a2b2 。
证明:反之,设 a,b G ,(ab)2 a2b2 , 即 (ab)(ab) (aa)(bb) , 即 a(ba)b a(ab)b , 由消去律,得 ba ab , 故 G 为阿贝尔群。
R, ,0 ,Mn (R),g, E ,P(A), , , Zn,,0 。
3、半群中元素幂 xn 。 定义运算的幂,x S ,xn 指的是: x1 x xn1 xn ox ( n 为正整数) x0 e xn oxm xnm (xn )m xnm (m、n为非负整数)
4、子半群。 半群的子代数叫子半群, 独异点的子代数叫子独异点。
(2) 再证结论成立。
设 a G,a1 a ,令 b a1 , 则 a, b非幺元,且 a b ,但 ab ba 。
三、子群。
1、定义: 设群 G, ,H 是 G 的非空子集, 若 H, 为群,则称H 为G的子群,记作 H G。 例8、(1) 群 Z, ,
令2Z 2z z Z,则 2Z, 是 Z, 的子群,
同样,0, 也是 Z, 的子群。
三、子群。
1、定义: 设群 G, ,H 是 G 的非空子集, 若 H, 为群,则称H 为G的子群,记作 H G。 例8、(2) Klein四元群,
G a,b,c,e有5个子群: e,e, a,e,b ,e,c,G
其中e和 G是平凡子群,其余均为真子群。
2、判定。
定理: 设 G 为群,H 是 G 的非空子集,若对任意 x, y H ,都有xy1 H ,则H 是 G 的子群。
若 ab ac ,则 b c , 若 ba ca,则 b c 。
6、群的性质。 (4) 幺元是群中唯一的幂等元。
(5) a,b G ,方程 ax b和 ya b 在 G
中有唯一解。 (6) 有限群的运算表中,每一行 (每一列)都是
G中元素的一个排列。
不同行 (列)的排列不同。
例5、证明 G是阿贝尔群当且仅当对a,b G, (ab)2 a2b2 。
例4、Z6 0,1, 2,3, 4,5,求模6的加群 Z6,
中各元素的阶。
解:因 2 2 2 0 ,即 23 0 , 所以 2 3 。
同理可得:1 6 ,3 2, 4 3
5 6 ,0 1。
6、群的性质。
(1) x, y G,(x1)1 x,(x o y)1 y1 o x1 。 (2) 若 G 1,则 G 中无零元。 (3) G中消去律成立,即
相关文档
最新文档