二次函数(附解析答案) 40页
初中二次函数习题及答案
初中二次函数习题及答案初中二次函数习题及答案二次函数是初中数学中一个重要的概念,它在数学中有着广泛的应用。
在初中阶段,学生需要通过大量的习题来巩固和提高对二次函数的理解和运用能力。
下面将介绍一些常见的初中二次函数习题,并给出相应的答案。
1. 习题一:求解二次函数的顶点坐标和对称轴方程。
已知二次函数y = ax^2 + bx + c,其中a ≠ 0。
求解该二次函数的顶点坐标和对称轴方程。
解答:对于二次函数y = ax^2 + bx + c,顶点的横坐标x = -b/2a,纵坐标y = -Δ/4a,其中Δ = b^2 - 4ac为判别式。
因此,顶点坐标为(-b/2a, -Δ/4a),对称轴方程为x = -b/2a。
2. 习题二:求解二次函数与x轴交点的个数。
已知二次函数y = ax^2 + bx + c,其中a ≠ 0。
求解该二次函数与x轴交点的个数。
解答:二次函数与x轴交点的个数取决于判别式Δ的值。
当Δ > 0时,二次函数与x轴有两个交点;当Δ = 0时,二次函数与x轴有一个交点;当Δ < 0时,二次函数与x轴没有交点。
3. 习题三:求解二次函数的图像开口方向。
已知二次函数y = ax^2 + bx + c,其中a ≠ 0。
求解该二次函数的图像开口方向。
解答:二次函数的图像开口方向取决于二次项系数a的正负。
当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下。
4. 习题四:求解二次函数的最值。
已知二次函数y = ax^2 + bx + c,其中a ≠ 0。
求解该二次函数的最值。
解答:对于二次函数y = ax^2 + bx + c,最值出现在顶点处。
当a > 0时,二次函数的最值为最小值,最小值为顶点的纵坐标;当a < 0时,二次函数的最值为最大值,最大值为顶点的纵坐标。
5. 习题五:求解二次函数的对称中心坐标。
已知二次函数y = ax^2 + bx + c,其中a ≠ 0。
二次函数详解(附习题、答案)
⑵ 沿轴平移:向左(右)平移 个单位, 变成 (或 )
四、二次函数 与 的比较
从解析式上看, 与 是两种不同的表达形式,后者通过配方可以得到前者,即 ,其中 .
五、二次函数 图象的画法
五点绘图法:利用配方法将二次函数 化为顶点式 ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与 轴的交点 、以及 关于对称轴对称的点 、与 轴的交点 , (若与 轴没有交点,则取两组关于对称轴对称的点).
七、二次函数解析式的表示方法
1.一般式: ( , , 为常数, );
2.顶点式: ( , , 为常数, );
3.两根式: ( , , 是抛物线与 轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与 轴有交点,即 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
4. 的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
向下
X=h
时, 随 的增大而减小; 时, 随 的增大而增大; 时, 有最大值 .
三、二次函数图象的平移
二、二次函数的基本形式
1.二次函数基本形式: 的性质:
a 的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时, 随 的增大而增大; 时, 随 的增大而减小; 时, 有最小值 .
二次函数经典例题及解答
二次函数经典例题及解答二次函数一、中考导航图1.二次函数的意义2.二次函数的图像3.二次函数的性质顶点对称轴开口方向增减性4.待定系数法确定二次函数解析式5.二次函数与一元二次方程的关系三、中考知识梳理1.二次函数的图像二次函数y=ax2+bx+c(a≠0)的图像可以通过配方法化简为y=a(x+(b/2a))2+(4ac-b2)/4a2的形式。
确定顶点坐标后,可以对称求点列表并画图,或者使用顶点公式来求得顶点坐标。
2.理解二次函数的性质抛物线的开口方向由a的符号来确定。
当a>0时,抛物线开口向上,对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大。
当a0)或左增右减(a<0)。
此时,当x=-b/2a时,y取最值,最小值或最大值的大小为|(4ac-b2)/4a|。
3.待定系数法是确定二次函数解析式的常用方法待定系数法是通过给定的条件来确定二次函数的解析式。
可以任意给定三个点或三组x,y的值来确定解析式,组成三元一次方程组来求解。
也可以在给定条件中已知顶点坐标、对称轴或最值时,设解析式为y=a(x-h)2+k。
在给定条件中已知抛物线与x轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴时,设解析式为y=a(x-x1)(x-x2)来求解。
4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c与x轴的交点可以转化为一元二次方程ax2+bx+c=0的解。
当抛物线与x轴有两个交点时,方程有两个不相等实根;当抛物线与x轴有一个交点时,方程有两个相等实根;当抛物线与x轴无交点时,方程无实根。
5.抛物线y=ax2+bx+c中a、b、c符号的确定抛物线y=ax2+bx+c的开口方向由a的符号来确定。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
b的符号可以表示抛物线与y轴的交点在y轴的上方或下方。
c的符号可以表示抛物线与x轴的交点在x轴的上方或下方。
四、中考题型例析1.确定二次函数解析式例1:求满足以下条件的二次函数的解析式:1)图像经过点A(-1,3)、B(1,3)、C(2,6);2)图像经过点A(-1,0)、B(3,0),函数有最小值-8;3)图像顶点坐标是(-1,9),与x轴两交点间的距离是6.分析:此题主要考查用待定系数法来确定二次函数解析式。
二次函数经典例题及答案
; (2)存在点Q1(-1,-4),Q2(2 -9,-
),Q3(-
,-
). 理由如下:∵抛物线顶点坐标为(-4,-), ∴点D的坐标为(-4,0), 令x=0,则y=-
, 令y=0,则
x2+4x-
=0, 整理得,x2+8x-9=0, 解得x1=1,x2=-9, ∴点A(-9,0),C(0,-
), ∴OA=9,OC=
=
,即AE=
,∵EO平分∠AED,∴∠AEO=∠DEO,∵AO∥ED,∴∠DEO=∠AOE, ∴∠AEO=∠AOE,∴AO=AE,即
,解得m=
. 6. 如图,二次函数y=
x2+bx+c的图象与x轴交于A(3,0),B(–1,0),与y轴交于点C.若 点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运 动,其中一点到达端点时,另一点也随之停止运动. (1)求该二次函数的解析式及点C的坐标; (2)当P,Q运动t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点
,即DQ2=OD•DA. ∴(﹣
x+2)2=x(3﹣x), 10x2﹣39x+36=0, ∴x1=
,x2=
, ∴y1=
×(
)2﹣
+2=
; y2=
2023年中考数学解答题专项复习:二次函数(附答案解析)
2023年中考数学解答题专项复习:二次函数1.(2021•牡丹江)抛物线y=﹣x2+bx+c经过点A(﹣3,0)和点C(0,3).(1)求此抛物线所对应的函数解析式,并直接写出顶点D的坐标;
(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,则点Q 的坐标为.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标(﹣)
2.(2021•嘉兴)已知二次函数y=﹣x2+6x﹣5.
(1)求二次函数图象的顶点坐标;
(2)当1≤x≤4时,函数的最大值和最小值分别为多少?
(3)当t≤x ≤t+3时,函数的最大值为m,最小值为n,若m﹣n =3,求t的值.3.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
(1)求二次函数解析式;
(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
第1 页共25 页。
二次函数真题及答案解析
二次函数真题及答案解析二次函数是高中数学中的重要知识点,也是大学数学及工科类专业课的基础。
掌握二次函数的概念、性质和解题方法对学生的数学学习有着重要的作用。
本文就为大家选取了一些经典的二次函数真题,并对其答案进行详细解析,希望对大家的学习有所帮助。
一、真题及解析1已知函数f(x)=ax²+bx+c,其中a>0。
若对于任意的x,f(x)≥0,且不等式f(x)-c<x成立,求证:b²-4ac≥0。
解析:首先,根据题目要求,对于任意的x,都有f(x)≥0。
这意味着函数图像上的所有点都在x轴或者x轴以上。
所以,二次函数的开口一定向上,即a>0。
其次,不等式f(x)-c<x成立。
我们可以将函数f(x)进行整理,得到ax²+bx+(c-x)>0。
进一步整理可得ax²+(b-1)x+(c)>0。
根据二次函数的性质,当a>0时,二次函数的图像与x轴有两个交点,或者与x轴有一个切点。
对于这道题来说,如果函数图像与x轴有两个交点,则不可能对于任意的x,f(x)≥0。
所以只能是与x轴有一个切点。
综上所述,我们可以得知b²-4ac≥0。
二、真题及解析2已知函数f(x)=x²-4bx+4b+1,其中b为常数。
若对于任意的x,不等式f(x)≥0成立,则b的取值范围为多少?解析:根据题目要求,对于任意的x,都有f(x)≥0。
这意味着函数图像上的所有点都在x轴或者x轴以上。
所以,二次函数的开口一定向上,即a>0。
由于题目给出了函数f(x)=x²-4bx+4b+1,我们可以根据二次函数的性质来分析。
首先,根据a>0,可以得知开口是向上的。
其次,由于f(x)≥0,即对于任意x,函数图像都在x轴或者x 轴以上,我们可以知道判别式∆=b²-4ac≤0。
带入题目给出的函数,我们可以得到b²-(4b+4)≤0。
初三数学二次函数试题答案及解析
初三数学二次函数试题答案及解析1.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【答案】A.【解析】根据图象左移加可得,将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选A.【考点】二次函数图象的平移变换.2.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.【答案】y=﹣x2+2x+3【解析】∵抛物线y=﹣x2+bx+c的对称轴为直线x=1,∴=1,解得b=2,∵与x轴的一个交点为(3,0),∴0=﹣9+6+c,解得c=3,故函数解析式为y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3【考点】待定系数法求二次函数解析式3.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O 出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.【答案】(1)1秒(2)(3)t 的值为(8﹣2)【解析】(1)△PQR 的边QR 经过点B 时,△ABQ 构成等腰直角三角形,则有AB=AQ ,由此列方程求出t 的值;(2)在图形运动的过程中,有三种情形,需要分类讨论,避免漏解;(3)由已知可得ABFE 为正方形;其次通过旋转,由三角形全等证明MN=EM+BN ;设EM=m ,BN=n ,在Rt △FMN 中,由勾股定理得到等式:mn+3(m+n )﹣9=0,由此等式列方程求出时间t 的值.试题解析:(1)△PQR 的边QR 经过点B 时,△ABQ 构成等腰直角三角形, ∴AB=AQ ,即3=4﹣t , ∴t=1.即当t=1秒时,△PQR 的边QR 经过点B .(2)①当0≤t≤1时,如答图1﹣1所示.设PR 交BC 于点G ,过点P 作PH ⊥BC 于点H ,则CH=OP=2t ,GH=PH=3. S=S 矩形OABC ﹣S 梯形OPGC =8×3﹣(2t+2t+3)×3 =﹣6t+;②当1<t≤2时,如答图1﹣2所示.设PR 交BC 于点G ,RQ 交BC 、AB 于点S 、T .过点P 作PH ⊥BC 于点H ,则CH=OP=2t ,GH=PH=3. QD=t ,则AQ=AT=4﹣t ,∴BT=BS=AB ﹣AQ=3﹣(4﹣t )=t ﹣1. S=S 矩形OABC ﹣S 梯形OPGC ﹣S △BST=8×3﹣(2t+2t+3)×3﹣(t ﹣1)2 =﹣t 2﹣5t+19;③当2<t≤4时,如答图1﹣3所示.设RQ 与AB 交于点T ,则AT=AQ=4﹣t . PQ=12﹣3t ,∴PR=RQ=(12﹣3t ).S=S △PQR ﹣S △AQT =PR 2﹣AQ 2=(12﹣3t )2﹣(4﹣t )2 =t 2﹣14t+28.综上所述,S 关于t 的函数关系式为:.(3)∵E (5,0),∴AE=AB=3, ∴四边形ABFE 是正方形.如答图2,将△AME 绕点A 顺时针旋转90°,得到△ABM′,其中AE 与AB 重合. ∵∠MAN=45°,∴∠EAM+∠NAB=45°, ∴∠BAM′+∠NAB=45°, ∴∠MAN=∠M′AN .连接MN .在△MAN 与△M′AN 中,∴△MAN ≌△M′AN (SAS ). ∴MN=M′N=M′B+BN∴MN=EM+BN .设EM=m ,BN=n ,则FM=3﹣m ,FN=3﹣n .在Rt △FMN 中,由勾股定理得:FM 2+FN 2=MN 2,即(3﹣m )2+(3﹣n )2=(m+n )2, 整理得:mn+3(m+n )﹣9=0. ①延长MR 交x 轴于点S ,则m=EM=RS=PQ=(12﹣3t ), ∵QS=PQ=(12﹣3t ),AQ=4﹣t ,∴n=BN=AS=QS ﹣AQ=(12﹣3t )﹣(4﹣t )=﹣t+2. ∴m=3n ,代入①式,化简得:n 2+4n ﹣3=0,解得n=﹣2+或n=﹣2﹣(舍去)∴2﹣t=﹣2+解得:t=8﹣2.∴若∠MAN=45°,则t的值为(8﹣2)秒.【考点】1、图形面积;2、全等三角形;3、勾股定理;4、正方形4.如图,抛物线交坐标轴于A、B、D三点,过点D作轴的平行线交抛物线于点C.直线l过点E(0,-),且平分梯形ABCD面积.⑴直接写出A、B、D三点的坐标;⑵直接写出直线l的解析式;⑶若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.【答案】⑴点A(-2,0),点B(8,0),点D(0,);⑵直线l:;⑶(7,7).【解析】⑴令,解之即可求得A,B的坐标;在中,令,解之即可求得D的坐标.⑵作CF⊥x轴,F为垂足.先求出矩形OFCD的中心坐标M(3,),则直线ME即为所求直线l.[⑶若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH=∠HGB=∠OPB;作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,因此点P的坐标为(7,7).⑴点A(-2,0),点B(8,0),点D(0,).⑵直线l:.⑶如图,若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH =∠HGB=∠OPB.∵OH=HB=4,tan∠OGH=tan∠HGB=tan∠OPB=,∴GH=3,GO=GB=GP=5,即⊙G的圆心G坐标为(4,3),半径r=5.将点G坐标代入直线l解析式发现,点G恰巧在直线l上.设直线l与x轴交于点Q,不难计算GH:QH=4:3.作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,因此点P的坐标为(7,7).【考点】1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.锐角三角函数定义.5.抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2) P坐标为(,)、(,);(,);(,).【解析】(1)设出抛物线的顶点形式为y=a(x-1)2+4,将A坐标代入求出a的值,即可确定出抛物线解析式;(2)存在,设出P(a,-a2+2a+3),直线AB解析式为y=kx+b,将A与B坐标代入求出k与b 的值,确定出直线AB解析式,根据三角形ABP面积为三角形ABC面积的一半,由两三角形都以AB为底边,得到C到直线AB的距离为P到直线AB距离的2倍,利用点到直线的距离公式列出关于a的方程,求出方程的解得到a的值,即可确定出满足题意P的坐标.试题解析:(1)设抛物线的顶点形式为y=a(x-1)2+4,将A(3,0)代入得:0=4a+4,即a=-1,则抛物线解析式为y=-(x-1)2+4=-x2+2x+3;(2)存在这样的P点,设P(a,-a2+2a+3),设直线AB解析式为y=kx+b,将A(3,0),B(0,3)代入得:,解得:,∴直线AB解析式为y=-x+3,∵S△ABP =S△ABC,且两三角形都以AB为底边,∴P到直线AB的距离等于C到直线AB距离的,∵C(1,4)到直线AB的距离d=,∴P到直线AB的距离d=,即|-a2+3a|=1,整理得:a2-3a-1=0或a2-3a+1=0,解得:a=或a=当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-.则满足题意的P坐标为(,)、(,);(,);(,).考点: 1.待定系数法求二次函数解析式;2.二次函数的性质.6.在二次函数中,函数y与自变量x的部分对应值如下表:x…-10123…(1)求这个二次函数的表达式;(2)当x的取值范围满足什么条件时,?【答案】(1) y=(x-1)(x-3)(或y=x2-4x+3);(2) 当1<x<3时,y<0.【解析】(1)根据表中的数据知,该函数与x轴的两个交点坐标是(1,0),(3,0),设y=a(x-1)(x-3)(a≠0),然后把点(0,3)代入求得a值;(2)根据二次函数的性质进行解答.试题解析:(1)∵函数与x轴的两个交点坐标是(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0).又∵该函数图象经过点(0,3),∴3=3a,解得,a=1.故该函数解析式为y=(x-1)(x-3)(或y=x2-4x+3);(2)由(1)知,该函数解析式为y=(x-1)(x-3),则该抛物线的开口方向向上.∵y<0,∴1<x<3.答:当1<x<3时,y<0.考点: 1.待定系数法求二次函数解析式,2.二次函数的性质.7.已知一个二次函数的图像经过点(4,1)和(,6).(1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴.【答案】(1);(2)顶点坐标是(2,-3),对称轴是直线.【解析】(1)利用待定系数法确定二次函数的解析式;(2)把(1)中得到的解析式配成顶点式,然后根据二次函数的性质确定顶点坐标和对称轴试题解析:(1)由题意,得解这个方程组,得∴所求二次函数的解析式是.(2)顶点坐标是(2,-3).对称轴是直线.【考点】1.待定系数法求二次函数解析式;2.二次函数的性质.8.如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.(1)求b,c的值.(2)结合函数的图象探索:当y>0时x的取值范围.【答案】(1),c=2;(2)-1<x<3.【解析】(1)根据正方形的性质得到B(2,2),C(0,2),然后把B点和C点坐标代入解析式得到关于b、c的方程组,再解方程组即可;(2)由(1)得到二次函数解析式为y=-x2+x+2,再求出抛物线与x轴的交点坐标,然后根据图象得到当y>0时x的取值范围.试题解析:(1)∵正方形OABC的边长为2,∴B(2,2),C(0,2),把B(2,2),C(0,2)代入y=-x2+bx+c得,解得;(2)二次函数解析式为y=-x2+x+2,当y=0时,-x2+x+2=0,解得x1=-1,x2=3,∴抛物线与x轴的交点坐标为(-1,0),(3,0),∴当-1<x<3时,y>0.考点: 1.待定系数法求二次函数解析式;2.二次函数与不等式(组).9.在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.【答案】(1)m="1,A(-2,0);" (2)①,②点E′的坐标是(1,1),③点E′的坐标是(,1).【解析】(1)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2 当n=1时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" BE" = 3.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(1)由题意可知4m=4,m=1.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,1),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=3.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–1)2+27.当n=1时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(1,1).③如图,过点A作AB′⊥x轴,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=,∴EE′=AA′=,∴点E′的坐标是(,1).【考点】1.二次函数综合题;2.平移.10.抛物线y=2(x-3)2+1的顶点坐标为_________.【答案】(3,1).【解析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.故答案是(3,1).【考点】二次函数的性质.11.二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a<0,②b<0,③c<0,④4a-2b+c<0,⑤b+2a=0其中正确的个数有()A.1个B.2个C.3个D.4个【答案】D.【解析】∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴①③正确;∵对称轴为,得2a-b,∴2a+b=0,∴a、b异号,即b>0,∴②错误,⑤正确;∵当x=-2时,y=4a-2b+c<0,∴④正确.综上所知①③④⑤正确.故选D.【考点】二次函数图象与系数的关系.12.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y =-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)【答案】(1)35;(2)30或40;(3)3600.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,根据利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据函数解析式,利用一次函数的性质求出最低成本即可.试题解析:(1)由题意得出:,∵,∴当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:,解这个方程得:x1=30,x2=40.∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵,∴抛物线开口向下. ∴当30≤x≤40时,W≥2000.∵x≤32,∴当30≤x≤32时,W≥2000.设成本为P(元),由题意,得:,∵k=200<0,∴P随x的增大而减小.∴当x=32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.【考点】二次函数的应用.13.如图,抛物线经过点A(6,0)、B(0,-4).(1)求该抛物线的解析式;(2)若抛物线对称轴与x轴交于点C,连接BC,点P在抛物线对称轴上,使△PBC为等腰三角形,请写出符合条件的所有点P坐标.(直接写出答案)【答案】(1)(2).【解析】(1)把点(6,0)、(0,-4)代入抛物线得,.可得.(2)点在抛物线对称轴上,当时;当以为圆心;以的长为半径画圆交直线点;当以为圆心,以的长为半径画圆交直线两点,试题解析:∵抛物线经过A(6,0)、B(0,-4)∴ 1分∴∴ 3分∴ 5分(2).【考点】1.待定系数法求二次函数的解析式.2.等腰三角形性质.14.将抛物线向左平移2个单位,再向下平移1个单位,所得抛物线为A.B.C.D.【答案】C【解析】根据图象平移变化的规律,左右平移时,左加右减。
二次函数习题及答案
二次函数习题及答案二次函数习题及答案二次函数是高中数学中的一个重要概念,也是数学建模中常用的数学工具之一。
它的形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
在解决实际问题时,我们经常需要运用二次函数来进行建模和分析。
下面,我将给大家提供一些常见的二次函数习题及其答案,供大家参考和练习。
1. 习题一:已知二次函数f(x) = 2x^2 - 3x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(3/4, 7/8)。
b) 函数的对称轴方程为x = 3/4。
c) 函数的图像开口向上。
d) 函数的零点为x = 1和x = 1/2。
2. 习题二:已知二次函数f(x) = -x^2 + 4x - 3,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向下?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(2, -3)。
b) 函数的对称轴方程为x = 2。
c) 函数的图像开口向下。
d) 函数的零点为x = 1和x = 3。
3. 习题三:已知二次函数f(x) = x^2 + 2x + 1,求解以下问题:a) 函数的顶点坐标是多少?b) 函数的对称轴方程是什么?c) 函数的图像是否开口向上?d) 函数的零点是多少?答案:a) 函数的顶点坐标为(-1, 0)。
b) 函数的对称轴方程为x = -1。
c) 函数的图像开口向上。
d) 函数的零点为x = -1。
通过以上三个习题的解答,我们可以看出,解决二次函数问题需要掌握一些基本的概念和技巧。
首先,顶点坐标可以通过求解二次函数的导数为0的点来得到。
其次,对称轴方程可以通过求解二次函数的x坐标的平均值来得到。
此外,通过判断二次函数的系数a的正负可以确定图像的开口方向,正数表示开口向上,负数表示开口向下。
二次函数解答题(含答案)
一、简答题1、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B 两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.2、如图,直线交x轴于点A,交y轴于点B,抛物线的顶点为A,且经过点B.⑴求该抛物线的解析式;⑵若点C(m,)在抛物线上,求m的值.3、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.(3) 若抛物线的顶点为D,在轴上是否存在一点P,使得⊿PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.4、已知二次函数的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3).(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点的坐标;(3)根据图象回答:当x取何值时,y<0?5、如图,抛物线与轴交于两点,与轴交于点.(1)求三点的坐标;(2)证明为直角三角形;(3)在抛物线上除点外,是否还存在另外一个点,使是直角三角形,若存在,请求出点的坐标,若不存在,请说明理由.6、已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)。
①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.7、如图,抛物线=与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1) 求抛物线的解析式. (2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线= -8、已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)若把图象沿轴向下平移5个单位,求该二次函数的图象的顶点坐标.9、如图,二次函数的图象与轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足≥的的取值范围.10、已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
二次函数练习题及答案(解析版)
二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
(完整版)二次函数解答题(含答案)
一、简答题1、已知抛物线y = ax2-x + c经过点Q(-2,),且它的顶点P的横坐标为-1.设抛物线与x轴相交于A、B 两点,如图.(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求△ABC的面积.2、如图,直线交x轴于点A,交y轴于点B,抛物线的顶点为A,且经过点B.⑴求该抛物线的解析式;⑵若点C(m,)在抛物线上,求m的值.3、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.(3) 若抛物线的顶点为D,在轴上是否存在一点P,使得⊿PAD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.4、已知二次函数的图象如图所示,它与x轴的一个交点的坐标为(-1,0),与y轴的交点坐标为(0,-3).(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点的坐标;(3)根据图象回答:当x取何值时,y<0?5、如图,抛物线与轴交于两点,与轴交于点.(1)求三点的坐标;(2)证明为直角三角形;(3)在抛物线上除点外,是否还存在另外一个点,使是直角三角形,若存在,请求出点的坐标,若不存在,请说明理由.6、已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)。
①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.7、如图,抛物线=与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1) 求抛物线的解析式. (2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.注:二次函数(≠0)的对称轴是直线= -8、已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)若把图象沿轴向下平移5个单位,求该二次函数的图象的顶点坐标.9、如图,二次函数的图象与轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足≥的的取值范围.10、已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
人教版初中数学九年级二次函数(经典例题含答案)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
初三数学二次函数试题答案及解析
初三数学二次函数试题答案及解析1.对于二次函数y=x2-3x+2和一次函数y=-2x+4,把函数y=t(x2-3x+2)+(1-t)(-2x+4)(t为常数)称为这两个函数的“衍生二次函数”.已知不论t取何常数,这个函数永远经过某些定点,则这个函数必经过的定点坐标为.【答案】(2,0)、(-1,6).【解析】将抛物线y展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标;试题解析:将抛物线y的解析式展开,得:y=t(x2-3x+2)+(1-t)(-2x+4)=t(x-2)(x+1)-2x+4∴抛物线E必过定点(2,0)、(-1,6).【考点】二次函数综合题.2.飞机着陆后滑行的距离S(单位:m)与滑行的时间t(单位:S)的函数关系式是,则飞机着陆后滑行米才能停下来。
【答案】20.【解析】飞机停下时,也就是滑行最远时,即在本题中需求出s最大时对应的t值.由题意,s=60t-1.5t2=-1.5t2+60t=-1.5(t2-40t+400-400)=-1.5(t-20)2+600,即当t=20秒时,飞机才能停下来.【考点】二次函数的应用.3.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为 ()A.a>b B.a<bC.a=b D.不能确定【答案】D【解析】∵二次函数y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵无论b为何值,此函数均有最小值,∴a、b大小无法确定.4.当k分别取-1,1,2时,函数y=(k-1)x2-4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.【答案】有最大值,8【解析】解:(1)当k=1时,函数为y=-4x+4,是一次函数(直线),无最值;(2)当k=2时,函数y=x2-4x+3,为二次函数,此函数开口向上,只有最小值而无最大值;(3)当k=-1时,函数为y=-2x2-4x+6,为二次函数,此函数开口向下,有最大值.因为y=-2x2-4x+6=-2(x+1)2+8,则当x=-1时,函数有最大值为8.5.某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。
二次函数江苏版含解析答案(word版,含答案)
二次函数的图像与性质考点3年考频 常考题型分析二次函数的图像和性质★★★选择、填空、解答三种题型均会出现,其中以选择题、填空题的形式出现时,直接运用性质即可解答,以解答题的形式出现时,需要计算与推理.确定二次函数的表达式★★以填空题的形式出现时,一般根据函数的定义和性质解答,在解答题中一般用待定系数法求解. 抛物线与一元二次方程的关系★★以选择题、填空题的形式出现时,直接运用概念即可解答,以解答题的形式出现时,需要计算与推理.梳理·考点清单 / KAO DIAN QING DAN考点一 二次函数的图像和性质一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,且a A 1)的函数叫做二次函数,其中,x 是自变量,a ,b ,c 分别是二次项系数、一次项系数和常数项.1. 顶点与对称轴:二次函数y =ax 2+bx +c (a ≠0)的图像的顶点坐标是 A 2,对称轴是经过点 A 3且与y 轴平行的直线.2. y =ax 2+bx +c 的系数a ,b ,c 和图像之间的关系: (1)二次项系数a 确定抛物线的开口方向:当a >0时,抛物线开口 A 4;当a <0时,抛物线开口 A 5,反过来也成立.(2)常数项c 确定抛物线与y 轴交点的位置:当c =0时,抛物线经过 A 6;当c >0时,抛物线与y 轴正半轴相交;当c <0时,抛物线与y 轴负半轴相交,反过来也成立. (3)确定抛物线对称轴的位置:当a ,b 同号时,抛物线的对称轴在y 轴左侧;当a ,b 异号时,抛物线的对称轴在y 轴右侧;当b =0时,抛物线的对称轴就是 A 7,反过来也成立.3. 增减性与最值:(1)a >0时:①当x <-b2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大.②抛物线有最低点,当x =-b 2a 时,y 有最 A 8值,y 最小值=4ac -b 24a.(2)a <0时:①当x <-b2a 时,y 随x 的增大而增大;当x >-b 2a 时,y 随x 的增大而减小.②抛物线有最高点,当x =-b 2a 时,y 有最 A 9值,y 最大值=4ac -b 24a.【拓展】二次函数图像平移的变化规律(1)上、下平移:当抛物线y =a (x -h )2+k 向上(或向下)平移m (m >0)个单位后,所得的抛物线的表达式为 A 10(或 A 11).(2)左、右平移:当抛物线y =a (x -h )2+k 向左(或向右)平移n (n >0)个单位后,所得的抛物线的表达式为 A 12(或 A 13).考点二 确定二次函数的表达式1. 二次函数的表达式有三种:(1)一般式:y =ax 2+bx +c (适用条件:一般仅已知三点坐标).(2)顶点式:y =a (x -m )2+n ,其中(m ,n )为顶点坐标(适用条件:一般已知顶点及另一个点坐标).(3)交点式:y =a (x -x 1)(x -x 2),其中(x 1,0),(x 2,0)为抛物线与 A 14轴的交点(适用条件:一般已知抛物线与x 轴的两个交点坐标及另一个点的坐标).2. 用待定系数法求函数表达式的步骤:(1)设出含有待定系数的表达式;(2)根据条件列出以待定系数为未知数的方程或方程组;(3)解方程(组),求出待定系数的值;(4)将求出的待定系数代入所设的表达式.考点三 抛物线与一元二次方程的关系抛物线y =ax 2+bx +c 与x 轴的公共点的个数可以由对应的一元二次方程ax 2+bx +c =0的 A 15确定: (1)有两个公共点2-4ac >方程有A 16;(2)有一个公共点(顶点在x 轴上) 2-4ac =A 17; (3)没有公共点2-4ac < A 18. 方程、不等式与二次函数的联系:已知y=ax2+bx+c(a≠0)分类当y=0时,得一元二次方程ax2+bx+c=0当y>0时,得一元二次不等式ax2+bx+c>0当y<0时,得一元二次不等式ax2+bx+c<0图形抛物线与x轴的交点图像位于x轴的上方图像位于x轴的下方解集方程的根不等式的解集不等式的解集当b2-4ac>0时,抛物线与x轴A19图像数形结合方程的两个根是抛物线与x轴的交点的横坐标,即:x1,2=A20不等式的解集是抛物线位于x轴上方的自变量的取值范围,即:当a>0时,x<x1或x>x2;当a<0时,A21不等式的解集是抛物线位于x轴下方的自变量的取值范围,即:当a>0时,x1<x<x2;当a<0时,A22当b2-4ac=0时,抛物线与x轴A23图像数形结合方程的根是抛物线与x轴的交点的横坐标,即:x1=x2=A24不等式的解集是抛物线位于x轴上方的自变量的取值范围,即:当a>0时,x≠-b2a;当a<0时,无解不等式的解集是抛物线位于x轴下方的自变量的取值范围,即:当a>0时,无解;当a<0时,x≠-b2a当b2-4ac<0时,抛物线与x轴A25图像数形结合方程无解当a>0时,x取一切实数;当a<0时,无解当a>0时,无解;当a<0时,x取一切实数突破·重点难点/ ZHONG DIAN NAN DIAN突破一同一坐标系下二次函数与其他函数图像的共存问题在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图像可能是()【点评】本题是对直线和二次函数图像形状及位置的判别,对m的值进行分类讨论,根据m的不同取值范围,利用一次函数图像的性质,结合二次函数图像的开口方向、对称轴或图像经过的特殊点对选项进行逐一判断.突破二 二次函数的图像的平移(2018·淮安模拟)在平面直角坐标系中,将表达式为y=2x 2的图像沿着x 轴方向向左平移4个单位,再沿着y 轴方向向下平移3个单位,此时图像的表达式为 . 【思路点拨】 抛物线平移与其表达式的变化规律可以概括为:左加右减,上加下减.左右平移表达式变化在二次项内部(括号内部),上下平移表达式变化在二次项外部(括号外部),根据该规律可得到平移后的函数表达式.突破三 二次函数的图像特征与系数的关系的应用(2018·毕节)已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b >0;③b 2-4ac >0;④a -b +c >0.其中正确的个数是( )A. 1B. 2C. 3D. 4【思路点拨】 由抛物线的对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断.【点评】 二次函数y =ax 2+bx +c 系数的符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.已知二次函数y =(m -1)x 2+(m -3)x -2(m 为常数,且m ≠1).(1)求证:不论m 为何值,该函数的图像与x 轴总有交点; (2)当函数图像的对称轴为直线x =1时,把抛物线向上平移,使得顶点落在x 轴上,求此时抛物线与y 轴的交点; (3)在(2)的情况下,直接写出两条抛物线、对称轴和y 轴围成的图形的面积.【思路点拨】 (1)二次函数的图像与x 轴的交点问题可以转化为一元二次方程的根的问题;(2)利用配方法求出抛物线顶点坐标,转化为顶点平移问题;(3)利用平移的性质,将围成的图形面积转化成四边形的面积.【点评】抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点和一元二次方程ax 2+bx +c =0的根之间的关系:b 2-4ac 决定抛物线与x 轴的交点个数. b 2-4ac >0时,抛物线与x 轴有2个交点;b 2-4ac =0时,抛物线与x 轴有1个交点;b 2-4ac <0时,抛物线与x 轴没有交点.突破四 二次函数与几何图形的综合运用如图,直线y =-3x +3与x 轴、y 轴分别交于点A ,B.抛物线y =a (x -2)2+k 经过点A ,B ,并与x 轴交于另一点C ,其顶点为P.(1)求a ,k 的值.(2)在图中求一点Q ,使以Q ,A ,B ,C 为顶点的四边形是平行四边形,请直接写出相应的点Q 的坐标.(3)抛物线的对称轴上是否存在一点M ,使△ABM 的周长最小?若存在,求△ABM 的周长;若不存在,请说明理由. (4)抛物线的对称轴上是否存在一点N ,使△ABN 是以AB 为斜边的直角三角形?若存在,求出N 点的坐标;若不存在,请说明理由.【思路点拨】 (1)由条件可先求得A ,B 两点的坐标,代入抛物线表达式可求得a ,k 的值;(2)过点B 作平行于x 轴的直线,在B 点两侧分别截取线段BQ 1=BQ 2=AC ;过点C 作平行于AB 的直线,在C 点两侧分别截取CQ 3=CQ 4=AB.则Q 1,Q 2,Q 3,Q 4四点到x 轴的距离都等于B 点到x 轴的距离,可分别求得满足条件的Q 点的坐标;(3)连接BC 交对称轴于点M ,根据“将军饮马”模型,可知点M 即为所求;(4)可设N 点坐标为(2,n ),可分别表示出AB 2,AN 2,BN 2,由勾股定理可得到关于n 的方程,可求得N 点的坐标.(2016·新疆)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,-4). (1)求抛物线表达式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.【思路点拨】(1)根据对称轴、A,B两点的坐标,可得方程组,解方程组可得表达式中的系数和常数项,配方成顶点式可得顶点坐标;(2)根据平行四边形的性质,S=S△AEO+S△AFO=2S△AEO,求出点E的纵坐标,易求关系式;(3)根据(2)中的关系式,可得面积为24时,E点的坐标,根据菱形的判定,可得答案.分类练习考点一二次函数的图像和性质1. (2017·连云港)已知抛物线y=ax2(a>0),过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A. y1>0>y2B. y2>0>y1C. y1>y2>0D. y2>y1>02. (2015·常州)已知二次函数y=x2+(m-1)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A. m=-1B. m=3C. m≤-1D. m≥-13. (2017·宿迁)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A. y=(x+2)2+1B. y=(x+2)2-1C. y=(x-2)2+1D. y=(x-2)2-14. (2017·盐城)如图,将函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新函数的图像,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′.若曲线段AB扫过的面积为9(图中的阴影部分),则新图像的函数表达式是()A. y=12(x-2)2-2B. y=12(x-2)2+7C. y=12(x-2)2-5D. y=12(x-2)2+45. (2017·扬州)如图,已知△ABC的顶点坐标分别为A(0,2),B(1,0),C(2,1),若二次函数y=x2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b的取值范围是()A. b≤-2 B. b<-2C. b≥-2D. b>-26. (2017·宿迁)如图,在Rt△ABC中,∠C=90°,AC=6 cm,BC=2 cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1 cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A. 20 cmB. 18 cmC. 2 5 cmD. 3 2 cm7. (2018·淮安)将二次函数y=x2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是.8. (2016·镇江)a,b,c是实数,点A(a+1,b),B(a+2,c)在二次函数y=x2-2ax+3的图像上,则b,c的大小关系是b c.(用“>”或“<”填空)9. (2016·泰州)二次函数y=x2-2x-3的图像如图所示,若线段AB在x轴上,且AB为23个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图像上,则点C的坐标为.10. (2018·宁波)已知抛物线y=-12x2+bx+c经过点(1,0),()0,32.(1)求该抛物线的函数表达式;(2)将抛物线y=-12x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.11. (2018·南通)在平面直角坐标系xOy中,已知抛物线y=x2-2(k-1)x+k2-52k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值-32,求k 的值考点二 确定二次函数的表达式12. (2018·宿迁)如图,在平面直角坐标系中,二次函数y =(x -a )(x -3)的图像与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD ,BC.(1)求点A ,B ,D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D ,O ,C ,B 能否在同一个圆上?若能,求出a 的值;若不能,请说明理由.13. (2018·盐城)如图①,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +3经过点A (-1,0),B (3,0)两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P ,Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP ,DQ.①若点P 的横坐标为-12,求△DPQ 面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.14. (2018·镇江)如图,二次函数y =x 2-3x 的图像经过O (0,0),A (4,4),B (3,0)三点,以点O 为位似中心,在y 轴的右侧将△OAB 按相似比2∶1放大,得到△OA′B′,二次函数y =ax 2+bx +c (a ≠0)的图像经过O ,A′,B′三点.(1)画出△OA′B′,试求二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)点P (m ,n )在二次函数y =x 2-3x 的图像上,m ≠0,直线OP 与二次函数y =ax 2+bx +c (a ≠0)的图像交于点Q (异于点O ).①求点Q 的坐标;(横、纵坐标均用含m 的代数式表示) ②连接AP ,若2AP >OQ ,求m 的取值范围;③当点Q 在第一象限内时,过点Q 作QQ′平行于x 轴,与二次函数y =ax 2+bx +c (a ≠0)的图像交于另一点Q′,与二次函数y =x 2-3x 的图像交于点M ,N (M 在N 的左侧),直线OQ′与二次函数y =x 2-3x 的图像交于点P′.△Q′P′M △QB′N ,则线段NQ 的长度等于.考点三 抛物线与一元二次方程的关系15. (2017·徐州)若函数y =x 2-2x +b 的图像与坐标轴有三个交点,则b 的取值范围是( ) A. b <1且b ≠0 B. b >1 C. 0<b <1 D. b <116. (2016·宿迁)若二次函数y =ax 2-2ax +c 的图像经过点(-1,0),则方程ax 2-2ax +c =0的解为( ) A. x 1=-3,x 2=-1 B. x 1=1,x 2=3 C. x 1=-1,x 2=3 D. x 1=-3,x 2=117. (2017·苏州)若二次函数y =ax 2+1的图像经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A. x 1=0,x 2=4 B. x 1=-2,x 2=6 C. x 1=32,x 2=52D. x 1=-4,x 2=018. (2017·镇江)若二次函数y =x 2-4x +n 的图像与x 轴只有一个公共点,则实数n = .19. (2018·南京)已知二次函数y=2(x-1)(x-m-3)(m 为常数).(1)求证:不论m为何值,该函数的图像与x轴总有公共点;(2)当m取什么值时,该函数的图像与y轴的交点在x轴的上方?20. (2017·南京)已知函数y=-x2+(m-1)x+m(m为常数). (1)该函数的图像与x轴公共点的个数是.A. 0B. 1C. 2D. 1或2(2)求证:不论m为何值,该函数的图像的顶点都在函数y =(x+1)2的图像上;(3)当-2≤m≤3时,求该函数的图像的顶点纵坐标的取值范围.二次函数的应用解读·考试说明/ KAO SHI SHUO MING考点3年考频常考题型分析二次函数的实际应用★★★多以解答题的形式出现,常与方程、不等式结合考查,综合性较强,难度稍大. 梳理·考点清单/ KAO DIAN QING DAN考点二次函数的实际应用1. 最大利润问题用二次函数解答的利润问题,涉及的主要关系式为“总利润=每件利润×销售量”,根据该关系式列出二次函数的表达式,然后结合实际意义求解.2. 拱桥问题关于拱桥问题,常用下面两种方法建立直角坐标系解答:一是以拱桥的跨度所在直线作为x轴,拱高所在直线作为y轴(如图①);二是以拱桥顶点作为坐标原点(如图②). 3. 抛物线高度问题把二次函数化为y=a(x-h)2+k的形式,一般地,顶点纵坐标的值就是物体能够达到的最大高度.如果根据实际意义顶点的横坐标x=h不在自变量的取值范围内,还需要根据实际意义结合图像确定物体的最大高度.4. 与几何图形有关的最大面积问题如果几何图形面积涉及两个变量,并且两个变量都可以用含有同一个未知数的式子表示,那么面积可以表示为这个未知数的二次函数,把所得函数表达式化为y=a(x-h)2+k的形式,并结合具体情境中自变量的取值进行求解.5. 以抛物线为载体判断图形形状和存在性问题这类问题涉及抛物线的内容主要是计算顶点坐标和抛物线与坐标轴或其他图形的交点坐标.解答这类问题,需要对所涉及的数学知识全面掌握.突破·重点难点/ ZHONG DIAN NAN DIAN突破一利用二次函数求最大利润九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.【思路点拨】(1)根据(售价-进价)×销量=利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的大小比较,可得答案;(3)根据二次函数值大于或等于4 800,一次函数值大于或等于4 800,可得不等式,解不等式组可得.突破二利用二次函数求最大面积为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【思路点拨】 (1)根据三个矩形面积相等,得到矩形AEFD 的面积是矩形BCFE 面积的2倍,可得出AE =2BE ,设BE =a ,则AE =2a ,从而AB =3a ,根据围网的总长是80 m ,可得2a +2×3a +2x =80,解得a =-14x +10,则3a =-34x +30,进而表示出y 与x 的关系式,并求出x 的范围即可;(2)利用二次函数的性质求出y 的最大值,以及此时x 的值即可.突破三 利用二次函数解决抛物线问题(2018·衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度. 【解答】【思路点拨】 (1)由题意知,抛物线的顶点为(3,5)且过(8,0),可先设二次函数的顶点式,再代入点(8,0)即可;(2)令y =1.8,求出符合题意的x 的值即可;(3)求出原抛物线与y 轴的交点坐标,由形状不变,可得二次函数表达式的二次项系数不变,直径扩大到32米,可知抛物线过点(16,0).然后用待定系数法求出抛物线的表达式,再利用配方法将所求出的二次函数表达式变形为顶点式,即可确定水柱的最大高度.分类练习考点二次函数的应用1. (2018·连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t+1.则下列说法中正确的是()A. 点火后9 s和点火后13 s的升空高度相同B. 点火后24 s火箭落于地面C. 点火后10 s的升空高度为139 mD. 火箭升空的最大高度为145 m2. (2018·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为元.3. (2016·扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为.4. (2018·绵阳)如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加m.5. (2018·淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.6. (2017·泰州)怡然美食店的A,B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1 120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降低0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?7. (2016·徐州)某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:x/元180 260 280 300y/间100 60 50 40(1)求y与x之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)8. (2016·宿迁)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元. (1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.9. (2016·南京)如图是抛物线形拱桥,P 处有一照明灯,水面OA 宽4 m ,从O ,A 两处观测P 处,仰角分别为α,β,且tan α=12,tan β=32,以O 为原点,OA 所在直线为x 轴建立直角坐标系.(1)求点P 的坐标;(2)水面上升1 m ,水面宽多少?(2取1.41,结果精确到0.1 m )10. (2017·扬州)农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x/(元/千克) 30 35404550日销售量p/千克600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2 430元,求a 的值.(日获利=日销售利润-日支出费用)11. (2018·荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10 000 kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166 000元,放养30天的总成本为178 000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =⎩⎨⎧10 000(0≤t ≤20),100t +8 000(20<t ≤50),y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)答案梳理·考点清单__/__KAO__DIAN__QING__DAN______ A1. ≠0A2. ⎝⎛⎭⎫- b 2a,4ac -b 24aA3.()- b 2a ,0(说明:填写(-b 2a ,4ac -b 24a)也可) A4. 向上 A5. 向下 A6. 原点 A7. y 轴 A8. 小A9. 大 A10. y =a(x -h)2+k +m A11. y =a(x -h)2+k -m A12. y =a(x -h +n)2+k A13. y =a(x -h -n)2+k A14. x A15. 根的判别式 A16. 两个不相等的实数根 A17. 方程有两个相等的实数根 A18. 方程没有实数根A19. 有两个交点 A20. -b±b 2-4ac2aA21. x 1<x <x 2 A22. x <x 1或x >x 2 A23. 有一个交点 A24.-b2aA25. 没有交点 突破·重点难点__/__ZHONG__DIAN__NAN__DIAN____例1. D 解析:当m >0时,直线y =mx +m 的图像经过第一、二、三象限,二次函数图像开口方向向下,C 错误;当m <0时,直线y =mx +m 的图像经过第二、三、四象限,二次函数图像开口方向向上,且对称轴x =1m<0,A ,B 错误,D 正确.例2. y =2(x +4)2-3例3. D 解析:①∵抛物线对称轴在y 轴的右侧,∴ab <0. ∵抛物线与y 轴交于负半轴,∴c <0,∴abc >0,故①正确;②∵a >0,x =-b2a<1,∴-b <2a ,∴2a +b >0,故②正确;③∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故③正确; ④当x =-1时,y >0,∴a -b +c >0,故④正确. 故选D.例4. (1)∵b 2-4ac =(m -3)2-4(m -1)×(-2)=(m +1)2≥0, ∴不论m 为何值,该函数的图像与x 轴总有交点.(2)∵-b 2a =3-m 2(m -1) =1,解得m =53,∴y =23x 2-43x -2=23(x -1)2-83.∴顶点M ()1,-83向上平移83个单位得Q(1,0).∴原抛物线与y 轴交点为N(0,-2),平移后得P ()0,23.(3)如图,围成的图形面积利用平移可转化成四边形PQMN 的面积,∴两条抛物线、对称轴和y 轴围成的图形的面积为1×83=83.例5. (1)在y =-3x +3中,令y =0,可求得x =1, 令x =0,可求得y =3,∴A (1,0),B (0,3).把A (1,0),B (0,3)分别代入y =a (x -2)2+k 中,得⎩⎨⎧a +k =0,4a +k =3,解得⎩⎨⎧a =1,k =-1.(2)由(1)可知抛物线的表达式为y =(x -2)2-1,令y =0,可求得x =1或x =3,∴C (3,0),∴AC =3-1=2,AB =10.过点B 作平行于x 轴的直线,在B 点两侧分别截取线段BQ 1=BQ 2=AC =2,如图①.∵B (0,3),∴Q 1(-2,3),Q2(2,3).过点C作AB的平行线,在C点两侧分别截取线段CQ3=CQ4=AB=10,如图②.∵B(0,3),∴Q3,Q4到x轴的距离都等于B点到x轴的距离,即为3,且到直线x=3的距离为1,∴Q3(2,3),Q4(4,-3).综上可知,满足条件的Q点的坐标为(-2,3)或(2,3)或(4,-3).(3)存在.连接BC交对称轴于点M,连接MA,如图③.由于AB长度不变,则MA+MB最小时,△MAB的周长最小.∵A,C两点关于对称轴直线x=2对称,∴AM=MC,∴BM+AM=BC时最小,△ABM的周长最小.设直线BC的表达式为y=kx+b.把B(0,3),C(3,0)代入,得⎩⎨⎧b=3,3k+b=0,解得⎩⎨⎧k=-1,b=3.∴直线BC的表达式为y=-x+3,当x=2时,可得y=1,∴M(2,1),∴存在满足条件的点M(2,1),使△ABM的周长最小,此时BM+AM=BC=32,且AB=10,∴△ABM的周长的最小值为32+10.(4)存在.由题意可设N点的坐标为(2,n),则NB2=22+(n-3)2=n2-6n+13,NA2=(2-1)2+n2=1+n2,且AB2=10,当△ABN是以AB为斜边的直角三角形时,由勾股定理可得NB2+NA2=AB2,∴n2-6n+13+1+n2=10,解得n=1或n=2,即N点的坐标为(2,1)或(2,2),综上可知,存在满足条件的N点,其坐标为(2,1)或(2,2).例6. (1)设抛物线的表达式为y=ax2+bx+c,∵对称轴为直线x=72的抛物线经过点A(6,0)和B(0,-4),∴⎩⎨⎧-b2a=72,36a+6b+c=0,c=-4,解得⎩⎪⎨⎪⎧a=-23,b=143,c=-4.∴抛物线的表达式为y=-23x2+143x-4,配方,得y=-23()x-722+256,∴抛物线的顶点坐标为()72,256.。
二次函数专题讲解含答案
二次函数专题专题必要性:高考中的很多题,往往最后都能转化为二次函数、一元二次方程和一元二次不等式问题,因此二次函数贯穿整个高考中,需深度掌握。
一、二次函数的定义:形如(a≠0,a,b,c为常数)的函数为二次函数.二、二次函数的性质:(1)二次函数y=ax2 (a≠0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a>0时,抛物线开口向上,顶点是最低点;当a<0时,抛物线开口向下,顶点是最高点;函数(2)二次函数的图象是一条抛物线.顶点为(-,),对称轴;函数抛物线开口向上,并向上无限延伸抛物线开口向下,并向下无限延伸三、二次函数的三种表现形式1)一般式:2)顶点式:;3)两根式: 其中、是二次函数的与轴的两个交点的横坐标,此时二次函数的对称轴为直线. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.四、二次函数根的由来——配方法 第一步:提公因式。
看二次项的系数是否为1,若系数不为1,则要先把系数提公因式,使二次项的系数变成1;若系数是1,就可以直接进行配方。
如:函数2246y x x =++的二次项2(0)y ax bx c a =++≠2()(0),)y a x h k a h k =-+≠此时二次函数的顶点坐标为(12()()y a x x x x =--1x 2x x 122x x x +=系数是2,因此不能直接配方,要先把2提出来,即:22(23)y x x =++。
第二步:配方。
配方的方法是:二次项以及一次项保持不变,在常数项上加上一次项系数一半的平方,同时,为了保持原式不变,加上了一个什么数,就要减去一个相同的数;如:222222[2()()3]22y x x =++-+第三步:整理配方的前三项可以组成一个完全平方式,再把常数项算出最后的结果即 可,如:22[(1)13]y x =+-+ , 即:22(1)4y x =++ 。
初三数学二次函数试题答案及解析
初三数学二次函数试题答案及解析1.如图,已知抛物线图象经过A(-1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.【答案】(1);(2)①证明见解析;②2.【解析】(1)根据待定系数法即可求得;(2)把C(m,m-1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD的值为2,所以EF的最小值是2;试题解析:(1)∵抛物线图象经过A(-1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m-1)代入得∴,解得:m=3或m=-2,∵C(m,m-1)位于第一象限,∴,∴m>1,∴m=-2舍去,∴m=3,∴点C坐标为(3,2),由A(-1,0)、B(3,0)、C(3,2)得 AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;【考点】二次函数综合题.2.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为()A.B.C.D.【答案】C.【解析】∵将△PCD沿直线PD折叠,使点C落下点C′处;∴∠CPD=∠C′PD=∠CPC′,∵PE平分∠BPC′,∴∠BPE=∠C′PE=∠BPC′,又∵∠BPC′+∠CPC′=180°,,∴∠BPE+∠CPD=90°,在△PCD中,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴,即,∴y=x(5﹣x)=﹣(x﹣)2+,只有C选项图象符合.故选C.【考点】动点问题的函数图象.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】(1)抛物线为y=-x2+x+4.(2)M的坐标为(6,4)或(3-,-4)或(3+,-4).(3)点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).【解析】(1)解析式已存在,y=ax2+bx+4,我们只需要根据特点描述求出a,b即可.由对称轴为-,又过点A(-2,0),所以函数表达式易得.(2)四边形为平行四边形,则必定对边平行且相等.因为已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平行4个单位,向右2个单位与N重合;②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.因为M在抛物线,可设坐标为(x,-x2+x+4),易得N坐标.由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.(3)使△PBD≌△PBC,易考虑∠CBD的平分线与抛物线的交点.确定平分线可因为BC=BD,可作等腰△BCD,利用三线合一,求其中线所在方程,进而与抛物线联立得方程组,解出P即可.试题解析:(1)∵抛物线y=ax2+bx+4交x轴于A(-2,0),∴0=4a-2b+4,∵对称轴是x=3,∴-=3,即6a+b=0,两关于a、b的方程联立解得 a=-,b=,∴抛物线为y=-x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,-x2+x+4),则N(x+2,-x2+x),∵N在x轴上,∴-x2+x=0,解得 x=0(M 与C 重合,舍去),或x=6, ∴x M =6,∴M (6,4).②M 点在N 右下方,即N 向下平行4个单位,向右2个单位与M 重合. 设M (x ,- x 2+x+4),则N (x-2,-x 2+x+8), ∵N 在x 轴上, ∴-x 2+x+8=0,解得 x=3-,或x=3+,∴x M =3-,或3+.∴M (3-,-4)或(3+,-4)综上所述,M 的坐标为(6,4)或(3-,-4)或(3+,-4).(3)∵OC=4,OB=3, ∴BC=5.如果△PBD ≌△PBC ,那么BD=BC=5, ∵D 在x 轴上,∴D 为(-2,0)或(8,0).①当D 为(-2,0)时,连接CD ,过B 作直线BE 平分∠DBC 交CD 于E ,交抛物线于P 1,P 2, 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2BD , ∵BC=BD ,∴E 为CD 的中点,即E (-1,2),设过E (-1,2),B (3,0)的直线为y=kx+b ,则,解得,∴BE :y=-x+. 设P (x ,y ),则有,解得 ,或,则P 1(4+,),P 2(4-,).②当D 为(8,0)时,连接CD ,过B 作直线BF 平分∠DBC 交CD 于F ,交抛物线于P 3,P 4, 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4BD , ∵BC=BD ,∴F 为CD 的中点,即E (4,2),设过E (4,2),B (3,0)的直线为y=kx+b ,则,解得,∴BF :y=2x-6. 设P (x ,y ),则有, 解得或,则P3(-1+,-8+2),P4(-1-,-8-2).综上所述,点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).【考点】二次函数综合题.4.将二次函数化为的形式,结果为()A.B.C.D.【答案】D.【解析】. 故选D.【考点】配方法的应用.5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:,,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元【答案】D.【解析】设在甲地销售x辆,则在乙地销售(15-x)量,根据题意得出:W=y1+y2=-x2+10x+2(15-x)=-x2+8x+30,∴最大利润为:(万元),故选D.【考点】二次函数的应用.6.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=-x2-2x+c经过点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB 的边界),求m的取值范围(直接写出答案即可).【答案】(1)4 (2)①c=4 ②1<m<3【解析】(1)根据点A的坐标是(-2,4),得出AB,BO的长度,即可得出△OAB的面积;(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标,根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.解:(1)∵点A的坐标是(-2,4),AB⊥y轴,∴AB=2,OB=4,∴△OAB的面积为:×AB×OB=×2×4=4,(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,-(-2)2-2×(-2)+c=4,∴c=4,②∵y=-x2-2x+4=-(x+1)2+5,∴抛物线顶点D的坐标是(-1,5),过点D作DE⊥AB于点E交AO于点F,AB的中点E的坐标是(-1,4),OA的中点F的坐标是(-1,2),∴m的取值范围是:1<m<3.7.如图所示,一个二次函数的图象经过点A,C,B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是________.【答案】y=-x2+x+5【解析】∵A(-1,0),B(4,0),∴AO=1, OB=4,即AB=AO+OB=1+4=5.∴OC=5,即点C的坐标为(0,5).设图象经过A,C,B三点的二次函数的解析式为y=a(x-4)(x+1),∵点C(0,5)在图象上.∴5=a(0-4)(0+1),即a=-.∴所求的二次函数解析式为y=- (x-4)(x+1).即y=-x2+x+5.8.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。
【浙教版】九年级数学下册期末高效复习专题1:二次函数 附参考答案解析
专题1 二次函数题型一 二次函数的图象和性质例 1 对于抛物线y =-x 2+2x +3,有下列四个结论:①它的对称轴为x =1; ②它的顶点坐标为(1,4);③它与y 轴的交点坐标为(0,3),与x 轴的交点坐标为(-1,0)和(3,0); ④当x >0时,y 随x 的增大而减小. 其中正确的个数为( C ) A .1 B .2 C .3D .4【解析】 ①对称轴为x =-b 2a =-22×(-1)=1,∴①正确;②y =-x 2+2x +3=-(x -1)2+4,∴它的顶点坐标为(1,4),∴②正确;③y =-x 2+2x +3,当x =0时,y =3,当y =0时,-x 2+2x +3=0,x 1=-1,x 2=3,∴y =-x 2+2x +3与y 轴的交点坐标为(0,3),与x 轴的交点坐标为(-1,0)和(3,0),∴③正确;④∵a =-1<0,∴当x >1时,y 随x 的增大而减小,∴④错误.故正确的选项有①②③三个. 【点悟】 二次函数的性质,常常从对称轴、顶点坐标、最大值(最小值),增减性等角度分析.变式跟进1.小张同学说出了二次函数的两个条件: (1)当x <1时,y 随x 的增大而增大; (2)函数图象经过点(-2,4).则符合条件的二次函数表达式可以是( D ) A .y =-(x -1)2-5 B .y =2(x -1)2-14 C .y =-(x +1)2+5D .y =-(x -2)2+202.求下列函数的图象的对称轴、顶点坐标及与x 轴的交点坐标. (1)y =4x 2+24x +35; (2)y =-3x 2+6x +2; (3)y =x 2-x +3; (4)y =2x 2+12x +18. 解:(1)∵y =4x 2+24x +35,∴对称轴是直线x =-3,顶点坐标是(-3,-1), 解方程4x 2+24x +35=0,得x 1=-52,x 2=-72,故它与x 轴交点坐标是⎝ ⎛⎭⎪⎫-52,0,⎝ ⎛⎭⎪⎫-72,0;(2)∵y =-3x 2+6x +2,∴对称轴是直线x =1,顶点坐标是(1,5), 解方程-3x 2+6x +2=0, 得x 1=1+153,x 2=1-153, 故它与x 轴的交点坐标是⎝ ⎛⎭⎪⎫1+153,0,⎝ ⎛⎭⎪⎫1-153,0; (3)∵y =x 2-x +3,∴对称轴是直线x =12,顶点坐标是⎝ ⎛⎭⎪⎫12,114,解方程x 2-x +3=0,无解,故它与x 轴没有交点; (4)∵y =2x 2+12x +18,∴对称轴是直线x =-3,顶点坐标是(-3,0), 当y =0时,2x 2+12x +18=0,∴x 1=x 2=-3, ∴它与x 轴的交点坐标是(-3,0).题型二 二次函数的平移例 2 将抛物线y =-2x 2+1向右平移1个单位长度,再向上平移1个单位长度所得的抛物线表达式为( C )A .y =-2(x +1)2B .y =-2(x +1)2+2 C .y =-2(x -1)2+2D .y =-2(x -1)2+1【点悟】 二次函数图象的平移实质上是顶点位置的变化,只要确定平移前、后的顶点坐标,就可以确定抛物线的平移规律.变式跟进3.将抛物线y =2x 2+4x -5的图象向左平移2个单位,再向上平移1个单位,所得抛物线表达式是( C ) A .y =2(x +1)2-7 B .y =2(x +1)2-6 C .y =2(x +3)2-6D .y =2(x -1)2-6题型三 二次函数与一元二次方程和不等式的关系例 3 [2016·宁夏]若二次函数y =x 2-2x +m 的图象与x 轴有两个交点,则m 的取值范围是__m <1__. 【解析】 ∵二次函数y =x 2-2x +m 的图象与x 轴有两个交点,∴Δ>0,∴4-4m >0,∴m <1.【点悟】 抛物线y =ax 2+bx +c (a ≠0)与x 轴的交点的横坐标x 1,x 2,就是方程ax 2+bx +c =0(a ≠0)的两个根,判断抛物线与x 轴是否有交点,只要判断b 2-4ac 与0的大小即可.变式跟进4.已知二次函数y =x 2-2x +m (m 为常数)的图象与x 轴的一个交点为(-1,0),则关于x 的一元二次方程x2-2x +m =0的两个实数根是( D ) A .x 1=1,x 2=2 B .x 1=1,x 2=3 C .x 1=-1,x 2=2D .x 1=-1,x 2=3【解析】 二次函数y =x 2-2x +m (m 为常数)的对称轴是x =1,(-1,0)关于x =1的对称点是(3,0).则一元二次方程x 2-2x +m =0的两个实数根是x 1=-1,x 2=3.5.[2017·高邮二模]如图1,二次函数y 1=ax 2+bx +c 与一次函数y 2=kx 的图象交于点A 和原点O ,点A 的横坐标为-4,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,则满足0<y 1<y 2的x 的取值范围是__-4<x <-3__.图1 第5题答图【解析】 如答图所示,∵点A 的横坐标为-4,点A 和点B 关于抛物线的对称轴对称,点B 的横坐标为1,∴抛物线的对称轴为x =-32,∵二次函数y 1=ax 2+bx +c 与一次函数y 2=kx 的图象交于点A 和原点O ,∴C 点坐标为(-3,0),则满足0<y 1<y 2的x 的取值范围是-4<x <-3.题型四 二次函数的图象与系数之间的关系例 4 如图2,已知二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1.下列结论: ①abc >0; ②4a +2b +c >0;③4ac -b 2<8a ; ④13<a <23; ⑤b >c .其中含所有正确结论的选项是( D )图2A .①③B .①③④C .②④⑤D .①③④⑤【解析】 ①∵函数开口方向向上,∴a >0,∵对称轴在原点右侧,∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x =1,∴图象与x 轴的另一个交点为(3,0), ∴当x =2时,y <0,∴4a +2b +c <0,故②错误;③∵图象与x 轴交于点A (-1,0),∴当x =-1时,y =(-1)2a +b ×(-1)+c =0,∴a -b +c =0,即a =b -c ,c =b -a ,∵对称轴为直线x =1,∴-b 2a=1,即b =-2a ,∴c =b -a =(-2a )-a =-3a ,∴4ac -b 2=4a (-3a )-(-2a )2=-16a 2<0.∵8a >0,∴4ac -b 2<8a ,故③正确;④∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1,∴-2<-3a <-1,∴23>a >13,故④正确;⑤∵a >0,∴b -c >0,即b >c ,故⑤正确.【点悟】 二次函数y =ax 2+bx +c (a ≠0),①二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;|a |还可以决定开口大小,|a |越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧(简称:左同右异).③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).变式跟进6.[2016·孝感]如图3是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a -b +c >0; ②3a +b =0; ③b 2=4a (c -n ); ④一元二次方程ax 2+bx +c =n -1有两个不相等的实数根. 其中正确结论的个数是( C )图3A .1B .2C .3D .4【解析】 ∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x =-1时,y >0,即a -b +c >0,∴①正确;∵抛物线的对称轴为直线x =-b2a =1,即b =-2a ,∴3a +b =3a -2a =a ,∴②错误;∵抛物线的顶点坐标为(1,n ),∴4ac -b 24a=n ,∴b 2=4ac -4an =4a (c -n ),∴③正确;∵抛物线与直线y =n 有一个公共点,∴抛物线与直线y =n -1有2个公共点,∴一元二次方程ax 2+bx +c =n -1有两个不相等的实数根,∴④正确.题型五 二次函数的实际应用例 5 [2016·潍坊]旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x (元)是5的倍数,发现每天的运营规律如下:当x 不超过100元时,观光车能全部租出;当x 超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆,已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少时,每天的净收入最多?解:(1)由题意知,若观光车能全部租出,则0≤x ≤100,由50x -1 100>0,解得x >22, ∵x 是5的倍数,∴每辆车的日租金至少为25元;(2)设每天的净收入为y 元,当0≤x ≤100时,y 1=50x -1 100,∵y 1随x 的增大而增大,∴当x =100时,y 1的最大值为50×100-1 100=3 900. 当x >100时,y 2=⎝⎛⎭⎪⎫50-x -1005x -1 100=-15x 2+70x -1 100=-15(x -175)2+5 025. 当x =175时,y 2的最大值是5 025,∵5 025>3 900,∴当每辆车的日租金为175元时,每天的净收入最多,最多收入是5 025元.【点悟】 应用二次函数解决实际问题中的最优化问题,实际上就是求函数的最大值(或最小值).解题时,要先根据题目提供的条件确定函数关系式,并将它配成顶点式,y =a (x -h )2+k ,再根据二次函数的性质确定最大值或最小值.变式跟进7.[2016·杭州]把一个足球垂直水平地面向上踢,时间t (s)与该足球距离地面的高度h (m)适用公式h =20t -5t 2(0≤t ≤4).(1)当t =3时,求足球距离地面的高度; (2)当足球距离地面的高度为10 m 时,求t 的值;(3)若存在实数t 1,t 2(t 1≠t 2),当t =t 1或t 2时,足球距离地面的高度都为m (m),求m 的取值范围. 解:(1)当t =3时,h =20t -5t 2=15(m), ∴此时足球离地面的高度为15 m ; (2)∵h =10,∴20t -5t 2=10,即t 2-4t +2=0,解得t =2+2或t =2-2,∴经过2+2或2- 2 s 时,足球距离地面的高度为10 m ;(3)∵m ≥0,由题意得t 1和t 2是方程20t -5t 2=m 的两个不相等的实数根, ∴b 2-4ac =202-20m >0,解得m <20, ∴m 的取值范围是0≤m <20.题型六 二次函数的综合题例 6 [2017·浙江月考]如图4,抛物线C 1:y =-3x 2+23x 的顶点为A ,与x 轴的正半轴交于点B . (1)将抛物线C 1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的表达式;(2)将抛物线C 1上的点(x ,y )变为(kx ,ky )(|k |>1),变换后得到的抛物线记作C 2,抛物线C 2的顶点为C ,求抛物线C 2的表达式(用k 表示);(3)在(2)条件下,点P 在抛物线C 2上,满足S △PAC =S △ABC ,且∠ACP =90°.当k >1时,求k 的值.图4 例6答图解:(1)∵y =-3x 2+23x =-3(x -1)2+3, ∴抛物线C 1经过原点O ,点A (1,3)和点B (2,0)三点, ∵将抛物线C 1上的点的横坐标和纵坐标都扩大到原来的2倍, ∴变换后的抛物线经过原点O ,(2,23)和(4,0)三点.设变换后抛物线的表达式为y =ax 2+bx ,将(2,23)和(4,0)代入, 得⎩⎨⎧4a +2b =23,16a +4b =0,解得⎩⎪⎨⎪⎧a =-32,b =23, ∴变换后抛物线的表达式为y =-32x 2+23x ; (2)∵抛物线C 1经过原点O ,点A (1,3)和点B (2,0)三点,将抛物线C 1上的点(x ,y )变为(kx ,ky )(|k |>1),变换后得到的抛物线记作C 2,则抛物线C 2过原点O ,(k ,3k ),(2k ,0)三点,∴抛物线C 2的表达式为y =-3kx 2+23x ;(3)∵y =-3kx 2+23x =-3k(x -k )2+3k ,∴O ,A ,C 三点共线,且顶点C 为(k ,3k ).如答图,∵S △PAC =S △ABC ,k >1,∴BP ∥AC , 过点P 作PD ⊥x 轴于D ,过点B 作BE ⊥AO 于E .由题意知△ABO 是边长为2的正三角形,四边形CEBP 是矩形, ∴OE =1,CE =BP =2k -1,∵∠PBD =60°, ∴BD =k -12,PD =32(2k -1),∴P ⎣⎢⎡⎦⎥⎤k +32,32(2k -1), ∴32(2k -1)=-3k ⎝ ⎛⎭⎪⎫k +322+23⎝ ⎛⎭⎪⎫k +32,解得k =92.变式跟进8.[2017·诸城校级月考]如图5,在矩形OABC 中,OA =5,AB =4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.图5(1)求OE 的长;(2)求经过O ,D ,C 三点的抛物线的表达式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t s ,当t 为何值时,DP =DQ .解:(1)∵CE =CB =5,CO =AB =4, ∴在Rt △COE 中,OE =CE 2-CO 2=52-42=3;(2)设AD =m ,则DE =BD =4-m , ∵OE =3,∴AE =5-3=2,在Rt △ADE 中,由勾股定理可得AD 2+AE 2=DE 2,即m 2+22=(4-m )2,解得m =32,∴D ⎝ ⎛⎭⎪⎫-32,-5,∵C (-4,0),O (0,0),∴设过O ,D ,C 三点的抛物线为y =ax (x +4), ∴-5=-32a ⎝ ⎛⎭⎪⎫-32+4,解得a =43,∴抛物线表达式为y =43x (x +4)=43x 2+163x ;(3)∵CP =2t ,∴BP =5-2t , 由折叠的性质,得BD =DE =52,在Rt △DBP 和Rt △DEQ 中,⎩⎪⎨⎪⎧DP =DQ ,BD =ED ,∴Rt △DBP ≌Rt △DEQ (HL ),∴BP =EQ ,∴5-2t =t ,∴t =53.过关训练1.已知,二次函数y =ax 2+bx +c (a ≠0)的图象如图1所示,则以下说法不正确的是( C )图1A .根据图象可得该函数y 有最小值B .当x =-2时,函数y 的值小于0C .根据图象可得a >0,b <0D .当x <-1时,函数值y 随着x 的增大而减小【解析】 由图象可知:A.抛物线开口向上,该函数y 有最小值,此选项正确;B.当x =-2时,图象在x 轴的下方,函数值小于0,此选项正确;C.对称轴为x =-1,a >0,则b >0,此选项错误;D.当x <-1时,y 随x 的增大而减小,此选项正确.2.抛物线y =(x +2)2-1可以由抛物线y =x 2平移得到,下列平移方法中正确的是( B ) A .先向左平移2个单位,再向上平移1个单位 B .先向左平移2个单位,再向下平移1个单位 C .先向右平移2个单位,再向上平移1个单位 D .先向右平移2个单位,再向下平移1个单位【解析】 ∵函数y =x 2的图象沿x 轴向左平移2个单位长度,得y =(x +2)2;然后y 轴向下平移1个单位长度,得y=(x+2)2-1,故选B.3.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( C )A B C D4.如图2,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),其对称轴为直线x=1,下列结论中正确的是( D )图2A.abc>0 B.2a-b=0C.4a+2b+c<0 D.9a+3b+c=0【解析】∵抛物线的开口向下,则a<0,对称轴在y轴的右侧,∴b>0,图象与y轴交于正半轴上,∴c>0,∴abc<0;∵对称轴为x=1,∴-b2a=1,∴-b=2a,∴2a+b=0;当x=2时,4a+2b+c>0;当x=3时,9a+3b+c=0.5.已知二次函数y=3x2+36x+81.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标;(4)当x取何值时,y有最小值,并求出最小值;(5)当x取何值时,y<0.解:(1)∵y=3x2+36x+81=3(x+6)2-27,∴顶点坐标为(-6,-27);(2)∵抛物线的对称轴为x=-6,且抛物线的开口向上,∴当x>-6时,y随x的增大而增大;(3)当3x2+36x+81=0时,得x1=-3,x2=-9,∴该函数图象与x轴的交点为(-9,0),(-3,0);(4)∵抛物线的顶点坐标为(-6,-27), ∴当x =-6时,y 有最小值,最小值为-27;(5)∵该函数图象与x 轴的交点为(-9,0),(-3,0),且抛物线的开口向上, ∴当-9<x <-3时,y <0.6.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5). (1)求该二次函数的表达式;(2)求该二次函数图象与y 轴的交点坐标.解:(1)由顶点A (-1,4),可设二次函数关系式为y =a (x +1)2+4(a ≠0). ∵二次函数的图象过点B (2,-5), ∴-5=a (2+1)2+4,解得a =-1. ∴二次函数的关系式是y =-(x +1)2+4; (2)令x =0,则y =-(0+1)2+4=3, ∴图象与y 轴的交点坐标为(0,3).7.如图3,已知抛物线y =x 2+bx +c 经过A (-1,0),B (3,0)两点.图3(1)求抛物线的表达式和顶点坐标; (2)当0<x <3时,求y 的取值范围;(3)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标. 解:(1)把A (-1,0),B (3,0)分别代入y =x 2+bx +c 中,得⎩⎪⎨⎪⎧1-b +c =0,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-2,c =-3, ∴抛物线表达式为y =x 2-2x -3. ∵y =x 2-2x -3=(x -1)2-4, ∴顶点坐标为(1,-4);(2)由图可得当0<x <3时,-4≤y <0; (3)∵A (-1,0),B (3,0),∴AB =4.设P (x ,y ),则S △PAB =12AB ·|y |=2|y |=10,∴|y |=5,∴y =±5.①当y =5时,x 2-2x -3=5,解得x 1=-2,x 2=4, 此时P 点坐标为(-2,5)或(4,5);②当y =-5时,x 2-2x -3=-5,方程无解. 综上所述,P 点坐标为(-2,5)或(4,5).8.如图4,在一面靠墙的空地上用长为24 m 的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB 为x m ,面积为S m 2.(1)求S 与x 的函数关系式及自变量的取值范围; (2)已知墙的最大可用长度为8 m , ①求所围成花圃的最大面积;②若所围花圃的面积不小于20 m 2,请直接写出x 的取值范围.图4解:(1)S =x (24-4x )=-4x 2+24x (0<x <6); (2)①S =-4x 2+24x =-4(x -3)2+36, 由24-4x ≤8,24-4x >0,解得4≤x <6, 当x =4时,花圃有最大面积为32;②令-4x 2+24x =20时,解得x 1=1,x 2=5, ∵墙的最大可用长度为8,即24-4x ≤8, ∴x ≥4,∴4≤x ≤5.9.[2017·三原校级月考]东方小商品市场一经营者将每件进价为80元的某种小商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种小商品单价每降低1元,其销量可增加10件. (1)该经营者经营这种商品原来一天可获利润__2__000__元; (2)若设后来该小商品每件降价x 元,该经营者一天可获利润y 元.①若该经营者经营该商品一天要获利润2 090元,求每件商品应降价多少元?②求出y 与x 之间的函数关系式,并求出当x 取何值时,该经营者所获利润最大,且最大利润为多少元? 解:(1)若商店经营该商品不降价,则一天可获利润:100×(100-80)=2 000(元); (2)①设该商品每件降价x 元,依题意,得(100-80-x )(100+10x )=2 090, 即x 2-10x +9=0,解得x 1=1,x 2=9. 答:每件商品应降价1元或9元; ②根据题意得y =(100-80-x )(100+10x ) =-10x 2+100x +2 000,当x =-b2a =5时,y 最大=2 250元,答:该经营者所获最大利润为2 250元.10.[2016·泰安]如图6,在平面直角坐标系中,抛物线y =ax 2+bx +c 的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E ,B .图6(1)求二次函数y =ax 2+bx +c 的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行于y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积.解:(1)设抛物线的表达式为y =a (x -2)2+9, 把A (0,5)代入得4a +9=5,解得a =-1, ∴y =-(x -2)2+9=-x 2+4x +5; (2)当y =0时,-x 2+4x +5=0,解得x 1=-1,x 2=5,∴E (-1,0),B (5,0), 设直线AB 的表达式为y =mx +n ,把A (0,5),B (5,0)代入,得m =-1,n =5, ∴y =-x +5,设P (x ,-x 2+4x +5),则D (x ,-x +5),PD =-x 2+4x +5+x -5=-x 2+5x ,∵AC =4, ∴四边形APCD 的面积=12AC ·PD =12×4×(-x 2+5x )=-2x 2+10x ,当x =-102×(-2)=52时,四边形APCD 的面积最大,最大面积为252.11.[2017·双台子区校级一模]如图7,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A ,B (3,0)两点,与y 轴交于c (0,-3),点P 是直线BC 下方抛物线上的动点.(1)求出二次函数的表达式;图7(2)连结PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP ′C ,那么是否存在点P ,使得四边形POP ′C 为菱形?若存在,求出点P 的坐标,若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 的坐标和四边形ACPB 的最大面积. 解:(1)把B (3,0),C (0,-3)代入y =x 2+bx +c ,得⎩⎪⎨⎪⎧9+3b +c =0,c =-3,解得⎩⎨⎧b =-2,c =-3,∴这个二次函数的表达式为y =x 2-2x -3; (2)存在.理由如下:如答图①,作OC 的垂直平分线交直线BC 下方的抛物线于点P ,垂足为点E .则PO =PC , ∵△POC 沿CO 翻折,得到四边形POP ′C , ∴OP ′=OP ,CP ′=CP ,∴OP ′=OP =CP ′=CP , ∴四边形POP ′C 为菱形,∵C 点坐标为(0,-3), ∴E 点坐标为⎝ ⎛⎭⎪⎫0,-32,∴点P 的纵坐标为-32, 把y =-32代入y =x 2-2x -3,得x 2-2x -3=-32,解得x =2±102, ∵点P 在直线BC 下方的抛物线上, ∴x =2+102,∴满足条件的点P 的坐标为⎝⎛⎭⎪⎫2+102,-32;第11题答图① 第11题答图②(3)如答图②,作PF ⊥x 轴于点F ,交BC 于点E ,BC 的表达式为y =x -3,设E (m ,m -3),P (m ,m 2-2m -3).则PE =m -3-(m 2-2m -3)=-m 2+3m =-⎝ ⎛⎭⎪⎫m -322+94,S △BCP =S △BEP +S △CEP=12PE ·FB +12EP ·OF =12EP ·OB =12×3⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫m -322+94 =-32⎝ ⎛⎭⎪⎫m -322+278,∵-32<0,∴当m =32时,S 最大=278,此时P ⎝ ⎛⎭⎪⎫32,-154;∵A (-1,0),B (3,0),C (0,-3),又∵S 四边形ACPB =S △ABC +S △PBC ,S △ABC =12×4×3=6=定值,∴当△PBC的面积最大时,四边形ACPB的面积最大,最大面积为6+278=758.。
中考二次函数应用题附答案解析
中考二次函数应用题附答案解析二次函数应用题1.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图).已知计划中的建筑材料可建围墙的总长为50m,设两间饲养室合计长x (m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围;(2)在所给出的坐标系中画出函数的图象;(3)利用图象判断:若要使两间饲养室占地总面积达到200m2,则各道墙的长度为多少? 2.为响应江阴市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=x cm,面积为y m2如图所示).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲 乙 丙 单价(元/棵)14 16 28 合理用地(m 2/棵) 0.4 1 0.43.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?4.为进一步落实“双减增效”政策,某校增设活动拓展课程——开心农场.如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB BC ⊥,3AB =米,1BC =米)和总长为14米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,①设DF 的长为x 米,请用含x 的代数式表示EF 的长;②若要求所围成的小型农场DBEF 的面积为12平方米,求DF 的长;(2)DF 的长为多少米时,小型农场DBEF 的面积最大?最大面积为多少平方米?5.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 6.罗平县小黄姜生产销售扶贫公司,2021年生产并销售小黄姜情况如图.该公司销售量与生产量相等,图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1(y 单位:万元)、销售价2(y 单位:万元)与产量(x 单位:吨)之间的函数关系.(1)求该产品每千克生产成本1y 与x 之间的函数关系式;(2)当该产品产量为多少时,获得的利润最大?最大利润是多少?7.两段相互垂直的墙AB 和AC 的长分别为12m 和3m ,用一段长为23m 的篱笆成一个矩形菜园(篱笆全部使用完),如图所示,矩形菜园的一边AD 由墙AC 和一节篱笆CD 构成,一边AF 靠在墙AB 上,一边EF 上有一个2m 的门.假设篱笆CD 的长为xm ,矩形菜园的面积为2m (0)S S >,回答下面的问题:(1)用含x的式子表示篱笆DE的长为________m,x的取值范围是________;(2)菜园的最大面积是多少2m求出此时x的值是多少?8.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围):并求年产量多少万件时,所获毛利润最大?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润9.一商场经营某种品牌商品,该商品的进价为每件4元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)678y(件)1000900800(1)求y与x的函数关系式;(2)在销售过程中要求销售单价不低于成本价,求一周该商场销售这种商品获得的最大利润和售价分别为多少元?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x(0<x<0.5).第一次锻炼第二次锻炼平均步长(米/步)0.6①_________(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)215033y x x =-+ 其中0<x <50 (2)画函数图象见解析(3)各道墙的长度分别为20m ,10m 或者30m ,20m 3时,总面积达到200m 2 【解析】 【分析】(1)根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽计算即可; (2)确定特殊点位置,继而可得函数图象;(3)构建方程即可解决问题.(1)解:∵围墙的总长为50 m ,2间饲养室合计长x m ,∴饲养室的宽=503x - m , ∴总占地面积为y =x •503x -=-13x 2+503x (0<x <50); (2)解:y =-13x 2+503x =()216252533x --+, 顶点坐标为(25,6253), 当y =200时,()216252520033x --+=, 解得x =20或30,图象经过点(20,200)和(30,200),当y =0时,()2162525033x --+=,解得x =0或50,图象经过点(0,0)和(50,0),描点,连线,函数图象如图所示.(3)解:当两间饲养室占地总面积达到200 m 2时,则-13x 2+503x =200, 解得:x =20或30;答:各道墙长分别为20 m 、10 m 或30 m 、203m 时,总面积达到200 m 2. 【点睛】此题主要考查了二次函数的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.2.(1)y =﹣2x 2+36x (9≤x <18)(2)丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.理由见解析【解析】【分析】(1)根据矩形的面积公式计算即可;(2)利用二次函数的性质求出y 的最大值,设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意得1440016288600a b a b --++=(),可得71500a b +=,推出b 的最大值为214,此时2a =,再求出实际植物面积即可判断.(1)解:∵AB =x ,∴BC =36﹣2x ,∴y =x (36﹣2x )=﹣2x 2+36x ,∵0<36﹣2x ≤18,∴9≤x <18.∴y 与x 之间的函数关系式为y =﹣2x 2+36x (9≤x <18);(2)解:∵y =﹣2x 2+36x =﹣2(x ﹣9)2+162,∴x =9时,y 有最大值162(m 2),设购买了乙种绿色植物a 棵,购买了丙种绿色植物b 棵,由题意:14(400﹣a ﹣b )+16a +28b =8600,∴a +7b =1500,∴b 的最大值为214,此时a =2.需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=161.2(m 2)<162m 2,∴丙种植物最多可以购买214棵,此时这批植物可以全部栽种到这块空地上.【点睛】本题考查二次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题. 3.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.4.(1)①153EF x =-;②4米2【解析】【分析】(1)①根据题意结合图形即可求解;②根据矩形的面积公式列方程求解即可; (2)设饲养场DBEF 的面积为S ,求出关于DF 的长的关于x 的函数关系式,根据二次函数的性质即可解答.(1)①设DF 的长为x 米,∵点D 在线段AB 上,∴()()1421153EF x x x =---=-米,②∵3AB =,∴3EF ≤,即1533x -≤,∴4x ≥;设DF 的长为x 米,根据题意得:()15312x x -=,解得:14x =,21x =(此时点D 不在线段AB 上,舍去),∴4x =,答:饲养场的长DF 为4米;(2)设饲养场DBEF 的面积为S ,DF 的长为x 米,①点D 在15段AB 上,由(1)知此时4x ≥,则()22575153315324S x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭, ∵30a ,抛物线对称轴是直线52x =, ∴在对称轴右侧,S 随x 的增大而减小,∴4x =时,S 有最大值,23415412S =-⨯+⨯=最大值(平方米);②点D 在线段BA 的延长线上,此时4x <, 则()()2132715333222S x x x =-+=--+, ∵302a =-<,34<, ∴3x =时,S 有最大值,272S =最大值, ∴3x =时,272S =最大值(平方米); ∵27122>,2答:饲养场的宽DF 为3米时,饲养场DBEF 的面积最大,最大面积为272平方米. 【点睛】此题主要考查的是二次函数的应用,一元二次方程的应用,掌握矩形的面积计算方法是解题的关键.5.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.6.(1)()()10.2600904290130x x y x ⎧-+≤≤⎪=⎨≤≤⎪⎩ (2)当该产品产量为75kg 时,获得的利润最大,最大值为2250.【解析】【分析】(1)根据线段AB ,线段CD 经过的两点的坐标利用待定系数法确定一次函数的表达式即可得;(2)设2y 与x 之间的函数关系式为222y k x b =+,用待定系数法得()20.61200130y x x =-+≤≤, 设产量为xkg 时,获得的利润为W 元,利用二次函数的性质即可得.(1)解:设线段AB 所表示的1y 与x 之间的函数关系式为111y k x b =+,111y k x b =+的图象过点()0,60与()90,42,111609042b k b =⎧∴⎨+=⎩, 解得:110.260k b =-⎧⎨=⎩. ∴线段AB 所表示的一次函数的表达式为;()10.260090y x x =-+≤≤;当90130x ≤≤时,线段BD 的解析式为:()14290130y x =≤≤.∴每千克生产成本1y 与x 之间的函数关系式为:()()10.2600904290130x x y x ⎧-+≤≤⎪=⎨≤≤⎪⎩. (2)解:设2y 与x 之间的函数关系式为222y k x b =+,经过点()0,120与()130,42,22212013042b k b =⎧∴⎨+=⎩, 解得:220.6120k b =-⎧⎨=⎩, ∴线段CD 所表示的一次函数的表达式为()20.61200130y x x =-+≤≤;设产量为xkg 时,获得的利润为W 元,①当090x ≤≤时,()()20.61200.2600.4(75)2250W x x x x ⎡⎤=-+--+=--+⎣⎦,∴当75x =时,W 的值最大,最大值为2250;②当90130x ≤≤时,()20.6120420.6(65)2535W x x x ⎡⎤=-+-=--+⎣⎦,∴当90x =时,20.6(9065)25352160W =--+=,由0.60-<知,当65x >时,W 随x 的增大而减小,90130x ∴≤≤时,2160W ≤,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250.【点睛】本题考查了一次函数,分段函数,二次函数,,解题的关键是理解题意,掌握一次函数的性质,分段函数和二次函数的性质.7.(1)22-2x 5≤x <11(2)菜园的最大面积是296m ,此时x =5【解析】【分析】(1)根据矩形的性质,由EF = AD = 3+x ,再根据EF 上有一个2m 的门,DE = 23- CD - EF + 2得出DE ,并根据0< 22- 2x ≤12,求出自变量x 的取值范围;(2)根据矩形的面积公式写出函数解析式,再根据函数的性质,在自变量范围内求最值.(1)解:∵AC =3,CD =x ,∴ EF = AC + CD = 3+x ,∴DE = 23- CD - EF +2= 23- x -(3+x )+2= 23-x -3-x +2= 22-2x ,∵0< 22- 2x ≤12,∴5≤x < 11;(2)由题意,得:S = (3+x )(22- 2x )= -2x 2+ 16x +66= - 2(x -4)2 + 98,∵-2 <0,∴当x >4时,S 随x 的增大而减小,∵5≤x < 11,∴当x = 5时,S 有最大值,最大值= -2×(5-4)2+ 98 = 96.【点睛】本题考查了二次函数的应用,解题关键是根据题意正确表示出矩形的边长.8.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =,即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.9.(1)1001600y x =-+(2)一周该商场销售这种商品获得的最大利润为6400元,此时该商品的售价为每件8元.【解析】【分析】(1)由y 与x 之间满足一次函数关系,可设y=kx+b ,代入两组数值求解即可;(2)由题意可得x ≥4,总利润是关于x 的二次函数,根据二次函数求最值可得答案.(1)解:由题意可设y=kx+b ,当x =6时,y =1000;当x =7时,y =900,代入解析式可得610007900k b k b +=⎧⎨+=⎩ 解得1001600k b =-⎧⎨=⎩, 所以y 与x 的函数关系式为1001600y x =-+(2)解:由题意可得x ≥4,一周该商场这种商品获得的利润为W =xy=x (-100x +1600)=-100x 2+1600x=2100(8)6400x --+当x =8时,W 取得最大值6400,所以一周该商场销售这种商品获得的最大利润为6400元,此时该商品的售价为每件8元.【点睛】本题考查一次函数的实际应用,以及二次函数的最值问题,根据题意列出关系式是解题的关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空:
1.体育加试时,一女生掷实心球,实心球飞行中高度y(m)与水平距离x(m)之间的关系是y=-.已知女生掷实心球的评分标准如下表:
2.利用图象解一元二次方程x2+x-3=0时,我们采用的一种方法是:在平面直角坐标系中画出抛物线y=x2和直线y=-x+3,两图象交点的横坐标就是该方程的解.
(1)填空:利用图象解一元二次方程x2+x-3=0,也可以这样求解:在平面直角坐标系中画出抛物线y= 和直线y=-x,其交点的横坐标就是该方程的解.
(2)已知函数y=-的图象(如图所示),利用图象求方程-x+3=0的近似解.(结果保留两个有效数字)
3.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第
象限.
4.已知抛物线y=x2-2x-3的图象与x轴交于A,B两点,在x轴上方的抛物线上有一点C,使△ABC的面积为10,则C点坐标为.
5.老师给出一个二次函数,甲,乙,丙三位同学各指出这个函数的一个性质:甲:函数的图象经过第一、二、四象限;
乙:当x<2时,y随x的增大而减小.
丙:函数的图象与坐标轴只有两个交点.
已知这三位同学叙述都正确,请构造出满足上述所有性质的一个函数.
6.如图所示的二次函数y=ax2+bx+c的图象中,刘星同学观察得出了下面四条信息:
(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0.你认为其中错误的有()
7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.
8.已知函数,若使y=k成立的x值恰好有三个,则k的值为()
9.如图,在平面直角坐标系中,四边形OABC是菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度向右平移,设直线l与菱形OABC的两边分别交于点M,N(点M在点N的上方),若△OMN的面积为S,直线l的运动时间为t 秒(0≤t≤4),则能大致反映S与t的函数关系的图象是()
.B.
C.D.
的最小值是.
11.抛物线y=ax2+ax+x+1与x轴有且只有一个交点,则a= .
12.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围.
13.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象交于点A(﹣1,4),B(6,2)(如图所示),则能使y1>y2成立的x的取值范围是.
14.若函数,则当函数值y=8时,自变量x的值是()
解答:
1.已知抛物线y=x2-2x-8.
(1)试说明该抛物线与x轴一定有两个交点.
(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.
2.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B (0,3).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积;
(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由.
3.已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.
4.已知函数y=(m2﹣m)x2+(m﹣1)x+2﹣2m.
(1)若这个函数是二次函数,求m的取值范围;
(2)若这个函数是一次函数,求m的值;
(3)这个函数可能是正比例函数吗?为什么?
5.如图,用20m的篱笆围成一个矩形的花圃.设连墙的一边为x(m),矩形的面积为y(m2).
(1)写出y关于x的函数解析式;
(2)当x=3时,矩形的面积为多少?。