2016年高考试题(数学文)新课标Ⅰ卷 解析版

合集下载

2016年高考新课标1卷(理科数学答案)

2016年高考新课标1卷(理科数学答案)

2016年普通高等学校招生全国统一考试理科数学 参考答案一、选择题:1—12:DBCBA ADCCB AB 二、填空题:(13)2- (14)10 (15)64 (16)216000 三、解答题:(17)解:(I )由2cos (cos cos )C a B+b A c =得2cos (cos cos )sin C sinA B+sinB A C =,即1cos 2C =,又(0,)C π∈,3C π∴=; (II )2271cos 22a b C ab +-==,1sin 2ABC S ab C ==,6ab ∴=,2213a b +=5a b ∴+==,所以ABC ∆的周长为5(18)解:(I ),AF FE AF FD ⊥⊥,F FD FE = ,⊥∴AF 平面EFDC ,又⊂AF 平面ABEF ,所以平面⊥ABEF 平面EFDC ;(II )以E 为坐标原点,EF ,EB 分别为x 轴和y 轴建立空间直角坐标系(如图), 设2AF =,则1FD =,因为二面角D -AF -E 与二面角C -BE -F 都是60, 即60oEFD FEC ∠=∠=,易得(0,2,0)B ,(2,2,0)A,1(2C ,1(0,2,0),(2,0,0),(,2EB BA BC ∴===-,设平面EBC 与平面ABCD 的法向量分别 为1111(,,)n x y z =和2222(,,)n x y z =,则111111111111(,,)(0,2,0)2011(,,)(,2022n EB x y z y n BC x y z x y ⎧⋅=⋅==⎪⎨⋅=⋅-=-=⎪⎩ 令11x =,则110,3y z ==-,1(1,0,3n ∴=-由222222222222(,,)(2,0,0)2011(,,)(,2,202222n BA x y z xn BC x y z xy z ⎧⋅=⋅==⎪⎨⋅=⋅-=-+=⎪⎩, 令22z =,则220,x y ==,13(0,n ∴=12(1,0,2)cos ,n n ⋅∴<>===, 所以二面角E -BC -A 的余弦值为.(19)解:(I )这100台机器更换的易损零件数为8,9,10,11时的频率为分别为15,25,15,15, 故1台机器更换的易损零件数为8,9,10,11时发生的概率分别为15,25,15,15,每台机器更换与否相互独立,16,17,18,19,20,21,22X =,(II )(1),(1)252252P X 8P X 9≤=<≤=≥,所以n 的最小值为19; (III )若买19件时费用期望为:4040251)150019200(252)100019200(255)50019200(251719200=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯, 若买20件时费用期望为:4080251)100020200(252)50020200(252220200=⨯+⨯+⨯+⨯+⨯⨯, 所以应选用19n =.(20)解:(I )圆心为(1,0)A -,圆的半径为4AD =,AD AC =,ADC ACD ∴∠=∠,又//BE AC ,ACD EBD ADC ∴∠=∠=∠, BE ED =,4EA EB AD +==.所以点E 的轨迹是以点(1,0)A -和点(1,0)B 为焦点,以4为长轴长的椭圆,即2,1a c ==b ∴=所以点E 的轨迹方程为:221(0)43x y y +=≠. (II )当直线l 的斜率不存在时,直线l 的方程为1x =,3MN =,8PQ =, 此时四边形MPNQ 面积为12;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,与椭圆22143x y +=联立得:2222(34)84120k x k x k +-+-=, 设1122(,),(,)M x y N x y ,则2122834k x x k +=+,212241234k x x k-⋅=+,|MN |=2212(1)34k k +=+,直线PQ 方程为1(1)y x k=--,即10x ky +-=, 所以圆心(1,0)A -到直线PQ的距离为d =,PQ ∴==,221112(1)2234MPNQ k S MN PQ k +=⋅===+四边形=, 综上可知四边形MPNQ面积的取值范围为.(21)解:(I )'()(2)2(1)(1)(2)x x xf x e x e a x x e a =+-+-=-+①当0a =时,()(2)xf x x e =-,此时函数()f x 只有一个零点,不符合题意舍去;②当0a >时,由'()01f x x >⇒>,由'()01f x x <⇒<,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,min ()(1)0f x f e ∴==-<,又(2)0f a =>,所以函数()f x 在(1,)+∞上只有一个零点,当x →-∞时,0xe →,此时,()f x →+∞,所以函数()f x 在(,1)-∞上只有一个零点 此时函数()f x 有两个零点.③当02ea -<<时,0ln(2)1a <-<, 由'()01ln(2)f x x x a >⇒><-或,由'()0ln(2)1f x a x <⇒-<< 所以()f x 在(,ln(2))a -∞-和(1,)+∞上递增,在(ln(2),1)a -上递减,()(1)0f x f e ∴==-<极小值,2()(ln(2))(ln(2)2)(2)(ln(2)1)0f x f a a a a a =-=---+--<极大值 此时函数()f x 至多一个零点,不符合题意,舍去;④当2e a =-时,'()(2)2(1)(1)()0x x xf x e x e a x x e e =+-+-=--≥恒成立,此时函数()f x 至多一个零点,不符合题意,舍去;⑤当2e a <-时,ln(2)1a ->,由'()01ln(2)f x x x a >⇒<>-或,由'()01ln(2)f x x a <⇒<<-所以()f x 在(,1)-∞和(ln(2),)a -+∞上递增,()f x 在(1,ln(2))a -上递减,()(1)0f x f e ∴==-<极大值,因为()f x 在(1,ln(2))a -上递减,所以()=(ln(2))0f x f a -<极小值, 此时函数()f x 至多一个零点,不符合题意,舍去. 综上可知(0,)a ∈+∞.(II )由(I )若x 1,x 2是()f x 的两个零点,则0a >,不妨令12x x <,则121x x <<要证122x x +<,只要证122x x <-,21x >,221x ∴-<,当0a >时,()f x 在(,1)-∞上递减, 且1()0f x =,(1)0f <所以,只要证2(2)0f x -<,222222(2)(1)x f x x e a x --=-+-,又22222()(2)(1)0x f x x e a x =-+-= 222222(2)(2)x x f x x e x e -∴-=---令2(2),(1)xx y xex e x -=--->22'22(2)(1)xxxxxxe e y exee x e x e ---=-+---=-,.221,10,x x x e e >∴-><,'0y ∴<2(2)x x y xe x e -∴=---在(1,)+∞上递减,当1x =时,0y = 1,0x y ><,即2(2)0f x -<成立, 122x x ∴+<成立.22.(本小题满分10分)选修4—1:几何证明选讲解:(Ⅰ)设E 是AB 的中点,连结OE .因为,120,OA OB AOB ︒=∠= 所以,60OE AB AOE ︒⊥∠=在Rt AOE ∆中,12OE AO =, 即O 到直线AB 的距离等于O 的半径, 所以直线AB 与O 相切.(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心, 设O '是,,,A B C D 四点所在圆的圆心,作直线OO '.由已知的O 在线段AB 的垂直平分线上,又O '在线段AB 的垂直平分线上,所以OO AB '⊥. 同理可证,OO CD '⊥,所以//AB CD .23.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数t 得到1C 的普通方程()2221x y a +-=.故1C 是以()0,1为圆心,a 为半径的圆.将cos ,sin x y ρθρθ==代入1C 的普通方程中,得到1C 的极坐标方程为222sin 10a ρρθ-+-=.(Ⅱ)曲线12,C C 的公共点的极坐标满足方程组:{222sin 104cos a ρρθρθ-+-==. 若0ρ≠,由方程组得2216cos 8sin cos 10a θθθ-+-=,由已知tan 2θ=,可得216cos 8sin cos 0θθθ-=,从而210a -=,解得1a =-(舍去),1a =. 1a =时,极点也为12,C C 的公共点,在3C 上. 所以1a =.24.(本小题满分10分)选修4—5:不等式选讲解:(Ⅰ)()4,1,332,1,234,,2x x f x x x x x ⎧⎪-≤-⎪=--<≤⎨⎪⎪-+>⎩()y f x =的图像如图所示.(Ⅱ)由函数()f x 的表达式及图像, 当()1f x =时,可得1x =,或3x =; 当()1f x =-时,可得13x =,或5x =. 故()1f x >的解集为}{13x x <<;()1f x <-的解集为{}1,53x x x <>或. 所以()1f x >的解集为{}11353x x x x <<<>或或.。

2016年高考真题——理科数学(新课标Ⅰ卷) 含解析

2016年高考真题——理科数学(新课标Ⅰ卷) 含解析

绝密★启封并使用完毕前试题类型:A 2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x xx =-+<,{|230}B x x =->,则AB =(A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D考点:集合运算(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A)1 (B)2 (C 3 (D)2【答案】B 【解析】试题分析:因为(1)=1+,i x yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=所以故故选B.考点:复数运算(3)已知等差数列{}na 前9项的和为27,10=8a,则100=a(A )100 (B )99 (C )98 (D)97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A)错误! (B )错误! (C )错误!(D )错误! 【答案】B考点:几何概型(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,错误!) (C )(0,3) (D)(0,错误!)【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234mn m n ++-=,解得:21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A .考点:双曲线的性质(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是错误!,则它的表面积是(A)17π (B )18π (C )20π (D )28π【答案】A 【解析】试题分析:由三视图知:该几何体是78个球,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是22734221784πππ⨯⨯+⨯⨯=,故选A .考点:三视图及球的表面积与体积(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C ) (D )【答案】D考点:函数图像与性质(8)若101a b c >><<,,则 (A )cc ab <(B )cc abba <(C )log log ba a cbc <(D )loglog ab c c <【答案】C考点:指数函数与对数函数的性质(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =【答案】C 【解析】试题分析:当0,1,1x y n ===时,110,1112x y -=+=⨯=,不满足2236x y +≥;2112,0,21222n x y -==+==⨯=,不满足2236x y +≥;13133,,236222n x y -==+==⨯=,满足2236xy +≥;输出3,62x y ==,则输出的,x y 的值满足4y x =,故选C 。

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷文科全国一附带答案解析

2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。

2016全国统一高考数学试卷

2016全国统一高考数学试卷

2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bcB.abc<bacC.alogbc<blogac D.logac<logbc9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是.(用数字填写答案)15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.xx优网版权所有【专题】11 :计算题;4O:定义法;5J :集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)(2016•新课标Ⅰ)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.xx优网版权所有【专题】34 :方程思想;4O:定义法;5N :数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)(2016•新课标Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.xx优网版权所有【专题】11 :计算题;4O:定义法;54 :等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{an}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,xx在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.xx优网版权所有【专题】5I :概率与统计.【分析】求出xx等车时间不超过10分钟的时间xx,代入几何概型概率计算公式,可得答案.【解答】解:设xx到达时间为y,当y在7:50至8:00,或8:20至8:30时,xx等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)(2016•新课标Ⅰ)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,)C.(0,3) D.(0,)【考点】KB:双曲线的标准方程.xx优网版权所有【专题】11 :计算题;35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17π B.18πC.20πD.28π【考点】L!:由三视图求面积、体积.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5F :空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)(2016•新课标Ⅰ)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.xx优网版权所有【专题】27 :图表型;48 :分析法;51 :函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣ex,∴f′(x)=4x﹣ex=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)(2016•新课标Ⅰ)若a>b>1,0<c<1,则()A.ac<bc B.abc<bacC.alogbc<blogac D.logac<logbc【考点】72:不等式比较大小;4M:对数值大小的比较.xx优网版权所有【专题】33 :函数思想;35 :转化思想;4R:转化法;51 :函数的性质及应用;5T :不等式.【分析】根据已知xxa>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=xc在(0,+∞)上为增函数,故ac>bc,故A错误;函数f(x)=xc﹣1在(0,+∞)上为减函数,故ac﹣1<bc﹣1,故bac<abc,即abc>bac;故B错误;logac<0,且logbc<0,logab<1,即=<1,即logac>logbc.故D错误;0<﹣logac<﹣logbc,故﹣blogac<﹣alogbc,即blogac>alogbc,即alogbc <blogac,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)(2016•新课标Ⅰ)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.xx优网版权所有【专题】11 :计算题;28 :操作型;5K :算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(2016•新课标Ⅰ)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】KJ:圆与圆锥曲线的综合;K8:抛物线的简单性质.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5D :圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,xA==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)(2016•新课标Ⅰ)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;35 :转化思想;5G :空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.xx优网版权所有【专题】35 :转化思想;4R:转化法;57 :三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m= ﹣2 .【考点】9O:平面向量数量积的性质及其运算.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;5A :平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2016•新课标Ⅰ)(2x+)5的xx中,x3的系数是10 .(用数字填写答案)【考点】DA:二项式定理.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5P :二项式定理.【分析】利用二项xx的通项公式求出第r+1项,令x的指数为3,求出r,即可求出xxxxx3的系数.【解答】解:(2x+)5的xx中,通项公式为:Tr+1==25﹣r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)(2016•新课标Ⅰ)设等比数列{an}满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为64 .【考点】8I:数列与函数的综合;87:等比数列的性质.xx优网版权所有【专题】11 :计算题;29 :规律型;35 :转化思想;54 :等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…an,然后求解最值.【解答】解:等比数列{an}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…an=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)(2016•新课标Ⅰ)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000 元.【考点】7C:简单线性规划.xx优网版权所有【专题】11 :计算题;29 :规律型;31 :数形结合;33 :函数思想;35 :转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)(2016•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.xx优网版权所有【专题】15 :综合题;35 :转化思想;49 :综合法;58 :解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABCxx,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)(2016•新课标Ⅰ)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的xx值.【考点】MJ:与二面角有关的立体几何综合题.xx优网版权所有【专题】11 :计算题;34 :方程思想;49 :综合法;5H :空间向量及应用;5Q :立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的xx值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的xx值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)(2016•新课标Ⅰ)某公司计划购买2xx机器,该种机器使用三年后即被淘汰.机器有一xx零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个xx零件,为此搜集并整理了100xx这种机器在三年使用期内更换的xx零件数,得如图柱状图:以这100xx机器更换的xx零件数的频率代替1xx机器更换的xx零件数发生的概率,记X表示2xx机器三年内共需更换的xx零件数,n表示购买2xx机器的同时购买的xx零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买xx零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.xx优网版权所有【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5xxn的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5xx,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.4=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)(2016•新课标Ⅰ)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】KL:直线与椭圆的位置关系;J2:圆的一般方程.xx优网版权所有【专题】34 :方程思想;48 :分析法;5B :直线与圆;5D :圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用xx定理xx长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆xx的定义,考查直线和椭圆方程联立,运用xx定理xx长公式,以及直线xx相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)(2016•新课标Ⅰ)已知函数f(x)=(x﹣2)ex+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】6D:利用导数研究函数的极值;51:函数的零点.xx优网版权所有【专题】32 :分类讨论;35 :转化思想;4C :分类法;4R:转化法;51 :函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)ex+a(x﹣1)2可得:f′(x)=(x ﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g (x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0xx成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)ex+a(x﹣1)2,∴f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),①若a=0,那么f(x)=0⇔(x﹣2)ex=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么ex+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,ex<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)ex+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x ﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在Rxx至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故函数f(x)在Rxx单调递增,函数f(x)在Rxx至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,ex+2a<eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,ex+2a>eln(﹣2a)+2a=0,即f′(x)=(x﹣1)(ex+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在Rxx至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)xx成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)(2016•新课标Ⅰ)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙Oxx,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.xx优网版权所有【专题】14 :证明题;35 :转化思想;49 :综合法;5M :推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.(2016•新课标Ⅰ)在直角坐标系xOyxx,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系xx,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3xx,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.xx优网版权所有【专题】11 :计算题;35 :转化思想;4A :数学模型法;5S :坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3xx,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.(2016•新课标Ⅰ)已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.xx优网版权所有【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,。

2016年高考全国Ⅱ文科数学试题及答案(word解析版)

2016年高考全国Ⅱ文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅱ,文1,5分】已知集合{}1,2,3A =,{}2|9B x x =<,则A B = ( )(A ){}210123--,,,,, (B ){}21012--,,,, (C ){}1,2,3 (D ){}12,【答案】D【解析】由29x <得33x -<<,所以{|33}B x x =-<<,因为{}1,2,3A =,所以{}1,2A B = ,故选D .【点评】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.(2)【2016年全国Ⅱ,文2,5分】设复数z 满足i 3i z +=-,则z =( )(A )12i -+ (B )12i - (C )32i + (D )32i -【答案】C【解析】由i 3i z +=-得32i z =-,所以32i z =+,故选C .【点评】复数()i ,a b a b +∈R 的共轭复数是()i ,a b a b -∈R ,据此先化简再计算即可.(3)【2016年全国Ⅱ,文3,5分】函数()=sin y A x ωϕ+ 的部分图像如图所示,则( )(A )2sin 26y x π⎛⎫=- ⎪⎝⎭(B )2sin 23y x π⎛⎫=- ⎪⎝⎭(C )2sin +6y x π⎛⎫= ⎪⎝⎭(D )2sin +3y x π⎛⎫= ⎪⎝⎭【答案】A【解析】由题图知,2A =,最小正周期ππ2[()]π36T =--=,所以2π2πω==,所以2sin(2)y x ϕ=+. 因为图象过点π,23⎛⎫ ⎪⎝⎭,所以π22sin 23ϕ⎛⎫=⨯+ ⎪⎝⎭,所以2πsin 13ϕ⎛⎫+= ⎪⎝⎭,所以 ()2ππ2π32k k ϕ+=+∈Z ,令0k =,得π6ϕ=-,所以π2sin 26y x ⎛⎫=- ⎪⎝⎭,故选A . 【点评】根据图像求解析式问题的一般方法是:先根据函数=sin()y A x h ωϕ++图像的最高点、最低点确定A ,h的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.(4)【2016年全国Ⅱ,文4,5分】体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )(A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为,所以正方体的外接球的半径24π12π⋅=,故选A .【点评】与棱长为a 的正方体相关的球有三个:外接球、内切球和与各条棱都相切的球,、2a. (5)【2016年全国Ⅱ,文5,5分】设F 为抛物线2:4C y x =的焦点,曲线()0k y k x=>与C 交于点P ,PF x ⊥ 轴,则k =( )(A )12 (B )1 (C )32(D )2 【答案】D【解析】因为F 是抛物线24y x =的焦点,所以(1,0)F ,又因为曲线(0)k y k x=>与C 交于点P ,PF x ⊥轴,所以,A C ,所以2k =,故选D .【点评】抛物线方程有四种形式,注意焦点的位置. 对于函数()0k y k x=≠,当0k >时,在(),0-∞,()0,+∞上 是减函数,当0k <时,在(),0-∞,()0,+∞上是增函数.(6)【2016年全国Ⅱ,文6,5分】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )(A )43- (B )34- (C (D )2 【答案】A【解析】由2228130x y x y +--+=配方得()()22144x y -+-=,所以圆心为()1,4,因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为11=,解得43a =-,故选A . 【点评】直线与圆的位置关系有三种情况:相交、相切和相离.已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.(7)【2016年全国Ⅱ,文7,5分】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ) (A )20π (B )24π (C )28π (D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为212π248π2S =⋅⋅⋅=,圆柱 的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C .【点评】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.(8)【2016年全国Ⅱ,文8,5分】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为( )(A )710 (B )58 (C )38(D )310 【答案】B【解析】因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B . 【点评】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.(9)【2016年全国Ⅱ,文9,5分】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2,2,x n == 依次输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )34【答案】C【解析】由题意,2,2,0,0x n k s ====,输入2a =,则0222,1s k =⋅+==,循环;输入2a =,则2226,2s k =⋅+==,循环;输入5a =,62517,32s k =⋅+==>,结束循环.故输出的17s =,故选C .【点评】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.(10)【2016年全国Ⅱ,文10,5分】下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是( )(A )y x = (B )lg x = (C )2x y = (D )y=【答案】D【解析】lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D . 【点评】对于基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解.(11)【2016年全国Ⅱ,文11,5分】函数π()cos 26cos 2f x x x ⎛⎫=+- ⎪⎝⎭的最大值为( ) (A )4 (B )5 (C )6 (D )7【答案】B 【解析】因为22311()12sin 6sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭,而sin [1,1]x ∈-,所以当sin 1x =时,()f x 取得最大值5,故选B . 【点评】求解本题易出现的错误是认为当3sin 2x =时,函数23112sin 22y x ⎛⎫=--+ ⎪⎝⎭取得最大值. (12)【2016年全国Ⅱ,文12,5分】已知函数()()f x x ∈R 满足()()2f x f x =-,若函数223y x x =--与()y f x =图像的交点为()()()1122,,,,,,m m x y x y x y ,则1=mi i x =∑( )(A )0 (B )m (C )2m (D )4m【答案】B【解析】因为2(),|23|y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=;当m 为奇数时,其和为1212m m -⨯+=,故选B . 【点评】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a b x +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心,02a b +⎛⎫ ⎪⎝⎭. 第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上(13)【2016年全国Ⅱ,文13,5分】已知向量(),4a m =,()3,2b =-,且//a b ,则m = ______.【答案】6-【解析】因为//a b ,所以2430m --⨯=,解得6m =-.【点评】如果()11,a x y =,()()22,0b x y b ≠,则//a b 的充要条件是12210x y x y =-.(14)【2016年全国Ⅱ,文14,5分】若x ,y 满足约束条件10,30,30,x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩则2z x y =-的最小值为__ ____.【答案】5-【解析】由1030x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,记为点()1,2Α;由1030x y x -+=⎧⎨-=⎩得34x y =⎧⎨=⎩,记为点()3,4Β;由3030x x y -=⎧⎨+-=⎩得30x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【点评】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.(15)【2016年全国Ⅱ,文15,5分】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若4c o s 5A =,5cos 13C =,1a =,则b =_______.【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,sin sin[π()]B AC =-+,63sin()sin cos cos sin 65A C A C A C =+=+=,又因为sin sin a b AB =,所以sin 21sin 13a B b A ==. 【点评】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(16)【2016年全国Ⅱ,文16,5分】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_______.【答案】1和3【解析】由题意分析可知甲的卡片上的数字为1和3,乙的卡片上的数字为2和3,丙的卡片上的数字为1和2.【点评】演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2016年全国Ⅱ,文17,12分】等差数列{}n a 中,34574,6a a a a +=+=.(1)求{}n a 的通项公式;(2)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]2.62=. 解:(1)设数列{}n a 的公差为d ,有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (2)由(1)知235n n b +⎡⎤=⎢⎥⎣⎦,当1,2,3n =时,2312,15n n b +≤<=;当4,5n =时,2323,25n n b +≤<=; 当6,7,8n =时,2334,35n n b +≤<=;当9,10n =时,2345,45n n b +≤<=, 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.【点评】求解本题时常出现以下错误:对“[]x 表示不超过x 的最大整数”理解出错.(18)【2016年全国Ⅱ,文18,12分】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保(1(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求()P B 的估计值;(3)求续保人本年度的平均保费估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为60500.55200+=, 故()P A 的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3200+=,故()P B 的估计值为0.3. (3a ,因此,续保人本年度平均保费估计值为1.1925a .【点评】样本的数字特征常见的命题角度有:(1)样本的数字特征与频率分布直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题交汇.(19)【2016年全国Ⅱ,文19,12分】如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将D E F △沿EF 折到D'EF △的位置. (1)证明:AC HD'⊥;(2)若55,6,,4AB AC AE OD'====D'ABCFE -的体积. 解:(1)由已知得,,AC BD AD CD ⊥=又由AE CF =得AE CF AD CD =,故//AC EF . 由此得,EF HD EF HD '⊥⊥,所以//AC HD '.(2)由//EF AC 得14OH AE DO AD ==,由5,6AB AC ==得4DO BO ===,所以1,3OH D H DH '===,于是2222219OD OH D H ''+=+==,故OD OH '⊥由(1)知AC HD '⊥,又,AC BD BD HD H '⊥= ,所以AC ⊥平面BHD ',于是AC OD '⊥,又由,OD OH AC OH O '⊥= ,所以,OD '⊥平面.ABC 又由EF DH AC DO =得9.2EF = 五边形ABCFE 的面积11969683.222S =⨯⨯-⨯⨯=所以五棱锥D ABCEF '-体积16934V =⨯⨯. 【点评】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.(20)【2016年全国Ⅱ,文20,12分】已知函数()()()1ln 1f x x x a x =+--.(1)当4a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)若当()1,x ∈+∞时,()0f x >,求a 的取值范围.解:(1)()f x 的定义域为()0,+∞.当4a =时,1()(1)ln 4(1),()ln 3f x x x x f x x x'=+--=+-,()()12,10f f '=-=. 曲线()y f x =在(1,(1))f 处的切线方程为220x y +-=. (2)当()1,x ∈+∞时,()0f x >等价于()1ln 01a x x x -->+. 令(1)()ln 1-=-+a x g x x x ,则222122(1)1(),(1)0(1)(1)a x a x g x g x x x x +-+'=-==++, (i )当2a ≤,()1,x ∈+∞时,222(1)1210x a x x x +-+≥-+>,故()()0,g x g x '>在()1,x ∈+∞上单调递增,因此()0g x >;(ii )当2a >时,令()0g x '=得1211x a x a =-=-由21x >和121x x =得11x <,故当()21,x x ∈时,()0g x '<,()g x 在2(1,)x x ∈单调递减,因此()0g x <.综上,a 的取值范围是(],2-∞.【点评】求函数的单调区间的方法:(1)确定函数()y f x =的定义域;(2)求导数()y f x ''=;(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内部分为单调递减区间.(21)【2016年全国Ⅱ,文21,12分】已知A 是椭圆22:143x y E +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(1)当AM AN =时,求AMN ∆的面积;(2)当2AM AN =2k <.解:(1)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得()2222341616120k x k x k +++-=.由()2121612234k x k-⋅-=+得()21223434k x k -=+,故1||2|AM x +=.由题设,直线AN 的方程为()12y x k =-+,故同理可得||AN =. 由2||||AM AN =得2223443k k k =++,即3246380k k k -+-=. 设()324638f t t t t =-+-,则k 是()f t 的零点,()()22'121233210f t t t t =-+=-≥,所以()f t 在()0,+∞单调递增,又260,(2)60f f =<=>,因此()f t 在()0,+∞有唯一的零点,且零点k 在)22k <. 【点评】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号.(22)【2016年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.解:(1)因为DF EC ⊥,所以,DEF CDF ∆~∆则有,,DF DE DG GDF DEF FCB CF CD CB∠=∠=∠== 所以,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠=所以,,,B C G F 四点共圆.(2)由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥,连结GB ,由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故Rt Rt ,BCG BFG ∆~∆∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍, 即111221222GCB S S ∆==⨯⨯⨯=. 【点评】判定两个三角形相似要注意结合图形性质灵活选择判定定理,特别要注意对应角和对应边.通过相似三角形的性质可用来证明线段成比例、角相等,还可间接证明线段相等.(23)【2016年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是cos sin x t α,y t α,=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,AB l 的斜率. 解:(1)由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110ρρθ++=.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110ρρα++=.于是121212cos ,11ρραρρ+=-=,12AB ρρ=-AB =23cos ,tan 8αα==所以l或. 【点评】极坐标与直角坐标互化时要注意:将点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一;将曲线方程进行互化时,一定要注意变量的范围.要注意转化的等价性.(24)【2016年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(1)求M ;(2)证明:当,a b M ∈时,1a b ab +<+.解:(1)12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22x -<,解得1x >-;当1122x -<<时,()2f x <; 当12x ≥时,由()2f x <得22,x <解得1x <.所以()2f x <的解集{}|11M x x =-<<. (2)由(1)知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此|||1|a b ab +<+.【点评】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a -∞,(,]a b ,(),b +∞ (此处设a b <)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1||||y x a x b =-+-和2y c =的图象,结合图象求解.。

2016年山东省高考数学试卷(含文理及解析)

2016年山东省高考数学试卷(含文理及解析)

2016山东数学文理试题及解析(一)2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1)C.(﹣1,+∞)D.(0,+∞)解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC.D.2π解:数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),∴T=π,故选:B8.已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.﹣1 C.0 D.2解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a<b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a<b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a<b,故输出的i值为:3,故答案为:312.若(ax2+)5的展开式中x5的系数是﹣80,则实数a= .解:(ax2+)5的展开式的通项公式T r+1=(ax2)5﹣r=a5﹣r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.13.已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD 的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.14.在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.15.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.17.在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2AB=BC,求二面角F﹣BC﹣A的余弦值.证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH∥,又∵EF BO,∴GQ BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>===﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.18.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,∴a n﹣1=b n﹣1+b n,∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.19.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X 0 1 2 3 4 6P∴数学期望EX=0×+1×+2×+3×+4×+6×==20.已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.∵e x>1+x,∴x>ln(1+x),∴e x﹣1>x,则x﹣1>lnx,∴F(x)>=.令φ(x)=,则φ′(x)=(x∈[1,2]).∴φ(x)在[1,2]上为减函数,则,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.21.平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S 2=|PM|•|x 0﹣|=(y 0+)•=x 0•,则=,令1+2x 02=t (t ≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x 0=时,取得最大值,此时点P 的坐标为(,).(二)2016年山东省高考数学试卷(文科)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

2016新课标Ⅰ高考数学压轴卷文带解析

2016新课标Ⅰ高考数学压轴卷文带解析

2016新课标Ⅰ高考数学压轴卷(文带解析)2016新课标Ⅰ高考压轴卷文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.设集合,则()A.B.C.D.2.如果复数的实部和虚部相等,则等于()(A)(B)(C)(D)3.下列有关命题的说法正确的是().A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.命题“若cosx=cosy,则x=y”的逆否命题为真命题C.命题“&#8707;x∈R,使得2x2-10”的否定是“&#8704;x∈R,均有2x2-10”D.“若x+y=0,则x,y互为相反数”的逆命题为真命题4.已知公差不为0的等差数列满足成等比数列,为数列的前项和,则的值为()A、B、C、2D、35.以正方形的一条边的两个端点为焦点,且过另外两个顶点的椭圆与双曲线的离心率之积为A.B.C.D.6.如图是秦九韶算法的一个程序框图,则输出的为A.的值B.的值C.的值D.的值7.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为A.1.2B.1.6C.1.8D.2.48.设是双曲线的焦点,P是双曲线上的一点,且3||=4||,△的面积等于A.B.C.24D.489.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象的相邻两对称中心的距离为π,且f(x +)=f(-x),则函数y=f(-x)是().A.奇函数且在x=0处取得最小值B.偶函数且在x=0处取得最小值C.奇函数且在x=0处取得最大值D.偶函数且在x=0处取得最大值10已知函数,则关于的不等式的解集为()A、B、C、D、11.已知实数x,y满足2x-y+6≥0,x+y≥0,x≤2,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值范围是()A.[-1,2]B.[-2,1]C.[2,3]D.[-1,3]12.已知函数与图象上存在关于轴对称的点,则的取值范围是()A.B.C.D.第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。

2016年高考理科数学(全国新课标卷1)(含解析)

2016年高考理科数学(全国新课标卷1)(含解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。

2016年天津高考数学试题(文)(解析版)

2016年天津高考数学试题(文)(解析版)

2016 年一般高等学校招生全国一致考试(天津卷)数学(文史类)第 I 卷一、选择题:在每题给出的四个选项中,只有一项为哪一项切合题目要求的.(1)已知会合A{1,2,3} , B { y | y2x 1, x A},则AI B=()( A ){1,3}( B){1,2}( C){ 2,3}( D){1,2,3}【答案】 A【分析】试题剖析: B {1,3,5}, A I B {1,3} ,选A.考点:会合运算(2)甲、乙两人下棋,两人下成和棋的概率是1,甲获胜的概率是1,则甲不输的概率为()(A)5(B)2(C)12(D)13 6563【答案】 A考点:概率(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,获得的几何体的正视图与俯视图以下图,则该几何体的侧(左)视图为()【答案】 B【分析】试题剖析:由题意得截去的是长方体前右上方极点,应选B 考点:三视图(4)已知双曲线x2y21(a 0,b 0) 的焦距为2 5 ,且双曲线的一条渐近线与直线2x y 0 垂直,a2b2则双曲线的方程为()x2y21( B)x2y2( A )1 44(C) 3x23y21(D) 3x2 3 y21 205520【答案】 A考点:双曲线渐近线(5)设x 0,y R x y x| y |”的(),则“”是“(A)充要条件( B)充足而不用要条件( C)必需而不充足条件( D)既不充足也不用要条件【答案】 C【分析】试题剖析: 34,3| 4 | ,所以充足性不建立; x | y | y x y ,必需性建立,应选C 考点:充要关系(6)已知 f ( x) 是定义在 R 上的偶函数, 且在区间 (,0) 上单一递加, 若实数 a 知足 f (2|a 1| ) f ( 2 ) ,则 a 的取值范围是( )(A )( ,1)(B ) (,1) (3, ) (C )(1,3)(D ) (3,)2222 22【答案】 C【分析】试题剖析:由题意得 f ( 2|a 1|) f (2|a 1|22|a 1|11132)22| a 1| a ,应选 C2 22考点:利用函数性质解不等式(7)已知 △ABC 是边长为 1 的等边三角形,点D, E 分别是边 AB, BC 的中点,连结 DE 并延伸到点 F ,使得 DE 2EF ,则 AF BC 的值为()( A )【答案】 B5 1 1 11(B )8( C )( D )848【分析】uuur r uuur ruuur 1 uuur1 rruuur 3 uuur3 r r试题剖析:设 BAa , BCb ,∴ DEAC(ba) , DFDE4(ba) ,222uuur uuuruuur1 r 3 rr5r3ruuur uuur5 r r3 r 25 3 1,应选 B.AFADDF2a4(ba) ab ,∴ AFBC 4a bb84 8444考点:向量数目积(8)已知函数 f ( x)sin2x 1sin x 1 ( 0) ,xR .若 f ( x) 在区间 ( ,2 ) 内没有零点, 则的222 取值范围是( )(A ) (0, 1](B ) (0, 1][5,1) ( C ) (0, 5]( D ) (0, 1] [1,5]84 888 48【答案】 D考点:解简单三角方程第Ⅱ卷注意事项:1、用黑色墨水的钢笔或署名笔将答案写在答题卡上.2、本卷共 12 小题,合计110 分.二、填空题:本大题共 6 小题,每题 5 分,共 30 分.(9) i 是虚数单位,复数z 知足 (1i ) z 2 ,则z的实部为_______.【答案】 1【分析】试题剖析:(1i )z2z21i,所以 z 的实部为11i考点:复数观点(10)已知函数f (x)(2+1)x ,f( )为 f (x) 的导函数,则 f (0) 的值为__________.x e x【答案】 3【分析】试题剖析: Q f( x)(2 x+3)e x ,f(0) 3.考点:导数(11)阅读右侧的程序框图,运转相应的程序,则输出S 的值为_______.【答案】 4考点:循环构造流程图(12)已知圆 C 的圆心在 x 轴的正半轴上,点M (0,5) 在圆C上,且圆心到直线 2x y 0的距离为 4 5,5则圆 C 的方程为 __________.【答案】 ( x 2)2y29.【分析】试题剖析:设 C ( a,0),( a0) ,则| 2a |4 5a2, r225 3 ,故圆C的方程为 ( x2) 2y29.55考点:直线与圆地点关系(13)如图,AB 是圆的直径,弦 CD 与 AB 订交于点 E,BE=2AE =2,BD=ED ,则线段 CE 的长为 __________.【答案】2 33考点:订交弦定理x2(4a3) x3a, x0且a 1)在 R上单调递减,且关于 x的方程(14) 已知函数f ( x)log a ( x1)1,x0(a 0| f ( x) | 2x恰有两个不相等的实数解,则 a 的取值范围是 _________. 31 2 【答案】[ , )3 3 【分析】试题剖析:由函数 f ( x) 在R上单一递减得4a30,013,又方程 | f ( x) | 2x 2a 1,3a 1a恰343有两个不相等的实数解,所以3a2,1 1 62a 1,所以 a 的取值范围是[1,2)a3733考点:函数综合三、解答题:本大题共 6 小题,共80 分.(15)(本小题满分 13分)在 ABC 中,内角A, B,C所对应的边分别为a,b,c,已知a sin 2B3b sin A .(Ⅰ )求 B;1(Ⅱ )若cosA,求 sinC 的值 .3【答案】(Ⅰ) B261(Ⅱ)66考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理(16)(本小题满分 13 分 )某化肥厂生产甲、乙两种混淆肥料,需要A,B,C 三种主要原料 .生产 1 车皮甲种肥料和生产 1 车皮乙中肥料所需三种原料的吨数以下表所示:现有 A 种原料 200 吨, B 种原料 360 吨, C 种原料 300 吨,在此基础上生产甲乙两种肥料.已知生产1 车皮甲种肥料,产生的收益为2 万元;生产 1 车皮乙种肥料,产生的收益为3 万元 .分别用 x,y 表示生产甲、乙两种肥料的车皮数.(Ⅰ )用 x,y 列出知足生产条件的数学关系式,并画出相应的平面地区;(Ⅱ )问分别生产甲、乙两种肥料各多少车皮,可以产生最大的收益?并求出此最大收益.【答案】(Ⅰ)详看法析(Ⅱ)生产甲种肥料20 车皮,乙种肥料24 车皮时收益最大,且最大收益为112 万元试4x5y2008x5 y360题分析:(Ⅰ)解:由已知x, y 知足的数学关系式为 3x10 y300 ,该二元一次不等式组所表示的地区x 0y 0为图 1 中的暗影部分 .y8x+5y=360 10O104x+5y=200(1)x3x+10y=300y8x+5y=360M10xO102x+3y=z3x+10y=3004x+5y=2002x+3y=0(2)考点:线性规划(17)(本小题满分 13 分 )如图,四边形 ABCD 是平行四边形,平面 AED ⊥平面 ABCD ,EF||AB ,AB=2 ,BC=EF=1 ,AE= 6 ,DE=3 ,∠ BAD=60o , G 为 BC 的中点 .(Ⅰ )求证: FG||平面 BED ;(Ⅱ )求证:平面BED ⊥平面 AED ;(Ⅲ )求直线 EF 与平面 BED 所成角的正弦值.5【答案】(Ⅰ)详看法析(Ⅱ)详看法析(Ⅲ)6(Ⅱ)证明:在 ABD 中,AD1, AB2,BAD 600,由余弦定理可 BD 3 ,从而可得ADB900,即BD AD ,又由于平面AED平面 ABCD , BD平面 ABCD ;平面 AED 平面ABCD AD ,所以BD平面 AED .又由于 BD平面 BED ,所以平面 BED平面 AED .(Ⅲ)解:由于 EF // AB,所以直线 EF 与平面 BED 所成角即为直线AB 与平面BED 所成角.过点 A 作AH DE 于点 H ,连结 BH ,又由于平面 BED平面 AED ED ,由(Ⅱ)知AH平面 BED ,所以直线AB 与平面 BED 所成角即为ABH .在 ADE 中,AD1, DE3, AE 6 ,由余弦定理可得cos ADE 2,所以 sin ADE5,所以 AH AD sin ADE5,在 Rt AHB 中,333sin ABH AH5AB 与平面 BED 所成角的正弦值为5 AB,所以直线.66考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角(18)(本小题满分 13 分 )已知 a n是等比数列,前n项和为 S n n N,且112,S663 . a1a2a3(Ⅰ )求a n的通项公式;(Ⅱ )若对随意的n N , b n是 log 2 a n和 log 2 a n 1的等差中项,求数列n2的前 2n 项和 .1 b n【答案】(Ⅰ) a n2n 1(Ⅱ) 2n2(Ⅱ)解:由题意得b n 1(log 2a n log 2 a n 1 )1(log 2 2n 1log 2 2n ) n1,即数列 { b n } 是首项222为1,公差为 1的等差数列. 2设数列 {(1) n b n2 } 的前 n 项和为 T n,则T2n ( b12b22 )( b32b42 )(b22n 1 b22n )b1 b2b2 n2n(b1b2 n )2n22考点:等差数列、等比数列及其前n 项和(19)(本小题满分14 分)设椭圆 x2y21(a 3 )的右焦点为F,右极点为A,已知113e,此中 Oa23|OF | |OA| |FA |为原点, e为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点 A 的直线l与椭圆交于点B ( B 不在x轴上),垂直于l的直线与l交于点 M ,与 y 轴交于点 H ,若 BF HF ,且MOAMAO ,求直线的 l 斜率.【答案】(Ⅰ)x2y261(Ⅱ)443( 2)设直线的斜率为 k(k0) ,则直线l的方程为 y k( x2) ,x2y21,设 B( x B , y B ) ,由方程组43消去 y ,y k(x 2),整理得 (4 k23) x216k 2 x16k 2120,解得x2或 x8k 2 6 ,4k23由题意得 x B 8k4k226,从而 yB12k,3234kuuur uuur94k 2,12k) ,由( 1)知F (1,0),设H (0, y H),有FH( 1, y H ) ,BF(234k 24k3考点:椭圆的标准方程和几何性质,直线方程(20)(本小题满分14 分)设函数 f x x3ax b, x R ,此中a,b R( )(Ⅰ)求 f (x) 的单一区间;(Ⅱ)若 f (x) 存在极值点x0,且f ( x1) f (x0 ) ,此中 x1x0,求证: x1 2x00 ;1(Ⅲ)设 a0 ,函数g( x)| f ( x) | ,求证: g( x) 在区间 [1,1] 上的最大值不小于....4【答案】(Ⅰ)递减区间为 (3a ,3a) ,递加区间为 ( ,3a) , (3a, ) .(Ⅱ)详看法析(Ⅲ)3333详看法析【分析】试题剖析:(Ⅰ)先求函数的导数: f ( x) 3x2 a ,再依据导函数零点能否存在状况,分类议论:①当a0时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,存在三个单一区间试题分析:( 1)解:由 f (x)x 3 ax b ,可得 f ( x) 3x 2a ,下边分两种状况议论:①当 a0 时,有 f ( x)3x 2 a 0 恒建立,所以 f (x) 的单一增区间为 (, ) .②当 a 0 时,令 f ( x)0 ,解得 x3a 3a 或 x .33当 x 变化时, f ( x) 、 f ( x) 的变化状况以下表:x( ,3a ) 3a (3a , 3a ) 3a 3a , ) (333333f ( x)单一递加极大值单一递减极小值单一递加f ( x)所以 f ( x) 的单一递减区间为(3a , 3a) ,单一递加区间为 (,3a) , (3a, ) .3333( 2)证明:由于 f (x) 存在极值点,所以由( 1)知 a 0 且 x 00 .由题意得 f (x 0 ) 3x 02 a0 ,即 x 02a ,3从而f ( x 0 ) x 03ax 0 b2ax 0 b ,38a2a又f ( 2x 0 )8x 03 2ax 0 bx 0 2ax 0 b x 0 b f ( x 0 ) ,且 2x 0 x 0 ,3 3由题意及( 1)知,存在独一实数x 1 知足 f ( x 1 ) f ( x 0 ) ,且 x 1 x 0 ,所以 x 12x 0 ,所以 x1 +2 x0 =0 .( 3 )证明:设g( x) 在区间 [ 1,1]上的最大值为M , max{ x, y} 表示 x , y 两数的最大值,下边分三种状况议论:②当3a 3 时,23a13a3a123a ,43333由( 1)和( 2)知f (1) f ( 2 3a ) f (3a) , f (1) f (23a ) f (3a ),3333所以 f ( x) 在区间 [1,1]上的取值范围为 [ f (3a), f (3a)] ,33所以 max{| f (3a|,| f (3a) |}max{|2a3a b |,|2a3a b |} 3399max{|2a3a b |,|2a3a2a3a| b |23331 99b |}944.94考点:导数的运算,利用导数研究函数的性质、证明不等式。

2016年高考全国1新课标Ⅰ卷文科数学真题-【全解析精美题图】

2016年高考全国1新课标Ⅰ卷文科数学真题-【全解析精美题图】

2016年全国高考卷(Ⅰ)文数试题及解析一、选择题(1)设集合{=A 1,3,5,7},2|{x B =≤x ≤5},则=B A ( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【解析】借助数轴,据交集定义得{=B A 3,5}. 故选(B ).(2)设))(21(i a i ++的实部和虚部相等,其中a 为实数,则=a ( ) (A )3- (B )2- (C )2 (D )3 【解析】i a a i a i )12()2())(21(++-=++,∵实部和虚部相等,∴122+=-a a ,解得 3-=a . 故选(D ).(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的 两种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ( ) (A )31 (B )21 (C )32 (D )65【解析】从红、黄、白、紫4种颜色的花中任选2种花共有6种选法:红黄,红白,红紫,黄白,黄紫,白紫. 其中红色和紫色的花种在同一花坛的情况有2种,故红色和紫 色的花不在同一花坛的概率是32621=-=P . 故选(C ). (4)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知25==c a ,,32cos =A , 则=b ( ) (A )2 (B )3 (C )2 (D )3【解析】由余弦定理A bc c b a cos 2222-+=,得32222)5(222⨯⨯⨯-+=b b ,化简得 03832=--b b ,0)3)(13(=-+b b ,∵0>b ,∴3=b . 故选(D ). (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆的中心到l 的距离为其短轴长的41, 则该椭圆离心率为( ) (A )31 (B )21 (C )32 (D )43 【解析】不妨设椭圆的焦点在x 轴上,其方程为)0(12222>>=+b a by a x ,l 的方程为:1=+b y c x 即0=-+bc cy bx ,依题意,412||22⨯=+b cb bc ,∴21=a c . 故选(B ).2(6)将函数)62sin(2π+=x y 的图象向右平移41个周期后,所得图象对应的函数为( ) (A ))42sin(2π+=x y (B ))32sin(2π+=x y(C ))42sin(2π-=x y (D ))32sin(2π-=x y 【解析】易知函数)62sin(2π+=x y 的周期为π,将其图象向右平移41个周期后,所得函数解析式为)32s i n (2]6)4(2s i n [2πππ-=+-=x x y . 故选(D ). (7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径. 若该几何体的体积是328π,则它的表面积是 ( ) (A )π17 (B )π18 (C )π20 (D ) π28【解析】根据三视图,该空间几何体是一个球切除掉它的81后剩余部分,依题意,得32834873ππ=⨯R (R 为球的半径),∴2=R . 该几何体的表面积为:球表面积的87加上一个球大圆面积的43,即ππππ1741743487222==⨯+⨯R R R . 故选(A ). (8)若0>>b a ,10<<c ,则 ( ) (A )c c b a log log < (B )b a c c log log < (C )c c b a < (D )ba c c > 【解析】对于(A ),根据对数函数的图象在第一象限内的分布情况(底大头高),知 c cb a l o g l o g >,故(A )错误. 对于(B ),当10<<c 时,函数x y c log =是减 函数,∵0>>b a ,b a c c l o g l o g >. 故(B )是正确的. 对于(C ),考察幂函数 αx y =,当10<<α时,为增函数,∴c c b a >. 故(C )错误.对于(D ),∵10<<c ,∴xc y =是递减函数,ba c c <,故(D )错误.(9)函数||22x e x y -=在2[-,]2的图象大致为 ( )∙2 ∙-2Oxy⋅1)(A)(B∙2 ∙-2Oxy⋅1)(C ∙2 ∙-2Oxy⋅1)(D∙2 ∙-2Oxy⋅1肖斌学院:3【解析】易知为偶函数,当0>x 时,x e x y -=22,x e x y -='4,结合x y 4=及2e y =的图象,知当)0(0x x ,∈时,0<'y ;当]20(,∈x ,0>'y ,且当2=x 时,0>y ,且100<<x ,0x 为函数x e x y -=22的极小值点. 结合选项可知(D )符合.(10)执行右边的程序框图,如果输入的110===n y x ,,, 则输出y x ,的值满足 ( ) (A )x y 2= (B )x y 3= (C )x y 4= (D )x y 5=【解析】开始110===n y x ,,,第一次循环:210===n y x ,,;第二次循环:3221===n y x ,,; 第三次循环:4623===n y x ,,,此时满足3622≥+y x ,循环结束, 623==y x ,,满足x y 4=. 故选(C ). (11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB , α平面ABCD m =, α平面n A A B B =11,则n m ,所成角的正弦值为 ( )(A )23 (B )22 (C )33 (D )31【解析】过顶点A 分别作直线111//D C m ,111//B D n ,由11n m ,确定的平面即为α,又 α平面ABCD m =,根据线面平行的性质定理知,111////D C m m ,同理111////B D n n ,因此,11D C 与11B D 即为n m ,所成的角,在等边三角形11B CD 中,︒=∠6011B CD ,所以n m ,所成角的正弦值 为23. 故选(A ). 是否开始n y x ,,输入 ny y n x x =-+=,213622≥+y x y x ,输出结束1+=n n1nA1AB1BC1CD 1D1m4(12)若函数x a x x x f sin 2sin 31)(+-=在)(∞+-∞,上单调递增,则a 的取值范围( ) (A )1[-,]1 (B )1[-,]31 (C )31[-,]31 (D )1[-,]31- 【解析】函数x a x x x f sin 2sin 31)(+-=在)(∞+-∞,上单调递增,即)(x f '≥0对R x ∈恒 成立, 即5cos 3cos 42--x a x ≤0对R x ∈恒成立. 令t x =cos ,则1-≤t ≤1,亦即5342--at t ≤0对1-≤t ≤1恒成立,只需⎩⎨⎧≤-⨯-⨯≤-⨯--⨯051314053)1(422a t a ,解得 3131≤≤-a . 故选(C ). 二、填空题(13)设向量)1(+=x x a ,,1(=b ,)2,且b a ⊥,则=x .【解析】32-. ∵b a ⊥,∴02)1(=⨯++x x ,解得32-=x . (14)已知θ是第四象限角,且53)4sin(=+πθ,则=-)4tan(πθ .【解析】34-.∵53)4sin(=+πθ,∴53)cos (sin 22=+θθ,∴523cos sin =+θθ,又1c o s s i n 22=+θθ,且θ是第四象限角,解得1027cos 102sin =-=θθ,, ∴71t a n -=θ,34711171t a n 11t a n )4t a n(-=---=+-=-θθπθ. (15)设直线a x y 2+=与圆02222=--+ay y x C :相交于B A ,两点,若32||=AB , 则圆C 的面积为 .【解析】圆02222=--+ay y x C :,即2)(222+=-+a a y x ,圆心C 到直线a x y 2+=的 距离为2||2|2a a -0|a =+,由2)3()2||(222+=+a a ,解得22=a ,∴圆C 的面 积为ππ4)2(2=+a .(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。

2016年河北省高考数学试卷及答案解析(理科)(全国新课标ⅰ)

2016年河北省高考数学试卷及答案解析(理科)(全国新课标ⅰ)

2016年河北省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年河北省高考数学试卷(理科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C9.(5分)执行如图的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B二、填空题:本大题共4小题,每小题5分,共25分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.4=4080,∴买19个更合适.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C 1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

2016全国卷高考数学试题及答案

2016全国卷高考数学试题及答案

2016年高考题全国Ⅰ卷文数题干+解析1.(2016·全国Ⅰ卷,文1)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B等于( B )(A){1,3} (B){3,5} (C){5,7} (D){1,7}解析:集合A与集合B公共元素有3,5,故A∩B={3,5},选B.2.(2016·全国Ⅰ卷,文2)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( A )(A)-3 (B)-2 (C)2 (D)3解析:(1+2i)(a+i)=a-2+(1+2a)i,由已知,得a-2=1+2a,解得a=-3,选A.3.(2016·全国Ⅰ卷,文3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( C ) (A)(B)(C)(D)解析:将4种颜色的花中任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为,选C.4.(2016·全国Ⅰ卷,文4)△ABC的内角A,B,C的对边分别为a,b,c.已知a=,c=2,cos A=,则b等于( D )(A)(B)(C)2 (D)3解析:由余弦定理得5=b2+4-2×b×2×,解得b=3(b=-舍去),选D.5.(2016·全国Ⅰ卷,文5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( B )(A)(B)(C)(D)解析:设椭圆方程为+=1(a>b>0)(-c,0),B(0,b)F1点O到直线l的距离为OM,则OM=.O中,=sin 30°,=,所以∠OBM=30°,在△BF1所以e=.故选B.6.(2016·全国Ⅰ卷,文6)若将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( D )(A)y=2sin(2x+) (B)y=2sin(2x+)(C)y=2sin(2x-) (D)y=2sin(2x-)解析:因为T==π,=,所以y=2sin(2x+)y=2sin[2(x-)+],所以y=2sin(2x-).故选D.7.(2016·全国Ⅰ卷,文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是( A )(A)17π(B)18π(C)20π(D)28π解析:因为·πR3=π,所以R=2.S=·4π·R2+3·πR2=17π,故选A.8.(2016·全国Ⅰ卷,文8)若a>b>0,0<c<1,则( B )(A)loga c<logbc (B)logca<logcb(C)a c<b c (D)c a>c b 解析:由题意令a=4,b=2,c=.A选项:loga c=-,logbc=-1,logac>logbc,A错误.B选项:logc a=-2,logcb=-1,logca<logcb,B正确.同理C,D选项错误,故选B.9.(2016·全国Ⅰ卷,文9)函数y=2x2-e|x|在[-2,2]的图象大致为( D )解析:结合图象f(-x)=f(x),函数为偶数,在[0,2]区间内,f(x)=2x2-e x,f′(x)=4x-e x.当0<x<时,f′(x)<0.当<x<2时,f′(x)>0.得出f(x)在(0,)上为减函数,在(,2)上为增函数.故选D.10.(2016·全国Ⅰ卷,文10)执行如图所示的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足( C )(A)y=2x (B)y=3x (C)y=4x (D)y=5x 解析:当x=0,y=1,n=1,x=0,y=1,x2+y2=1<36,当n=2时,x=,y=2,x2+y2<36,当n=3时,x=+=,y=2×3=6,x2+y2>36,输出x=,y=6,令y=kx,得k=4,所以y=4x.故选C.11.(2016·全国Ⅰ卷,文11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( A )(A) (B) (C)(D)解析:在正方体ABCD A1B1C1D1中,由题意,直线m∥BD,直线n∥A1B,则△A1DB为等边三角形,∠DBA1=60°,sin 60°=,所以m,n所成角的正弦值为,故选A.12.(2016·全国Ⅰ卷,文12)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是( C )(A)[-1,1] (B)[-1,](C)[-,] (D)[-1,-]解析:排除法:令a=-1,f(x)=x-sin 2x-sin x=x-sin xcos x-sin x,f′(x)=-cos 2x-cos x=-(cos x+)2,当cos x=1时,f′(x)=-<0,因为f(x)在(-∞,+∞)上为增函数,所以f′(x)>0在(-∞,+∞)上恒成立,所以a=-1不正确,排除A,B,D.故选C.13.(2016·全国Ⅰ卷,文13)设向量a=(x,x+1),b=(1,2),且a⊥b,则x= .解析:因为a⊥b,所以a·b=(x,x+1)·(1,2)=x+2x+2=0,x=-.答案:-14.(2016·全国Ⅰ卷,文14)已知θ是第四象限角,且sin(θ+)=,则tan(θ-)= .解析:因为θ+-(θ-)=,所以(θ-)=.因为θ在第四象限,所以sin(θ-)=-,tan(θ-)==-.答案:-15.(2016·全国Ⅰ卷,文15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.解析:因为x2+y2-2ay-2=0,所以x2+(y-a)2=2+a2,点(0,a)到直线y=x+2a的距离h==.2+a2-=3,所以a2=2,所以r2=2+a2=4,圆面积S=πr2=4π.答案:4π16.(2016·全国Ⅰ卷,文16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.解析:设生产A产品x件,B产品y件,产品A,B的利润之和为z.则z=2 100x+900y.画出可行域.解得所以z=2 100×60+900×100=216 000,所以生产产品A、产品B的利润之和的最大值为216 000元. 答案:216 00017.(本小题满分12分)(2016·全国Ⅰ卷,文17)已知{an }是公差为3的等差数列,数列{bn}满足b 1=1,b2=,anbn+1+bn+1=nbn.(1)求{an}的通项公式;(2)求{bn}的前n项和.解:(1)由已知a1b2+b2=b1,b1=1,b2=,得a1=2.所以数列{an }是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和an bn+1+bn+1=nbn得bn+1=,因此{bn}是首项为1,公比为的等比数列.记{bn}的前n项和为Sn,则Sn==-.18.(本小题满分12分)(2016·全国Ⅰ卷,文18)如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.(1)证明G是AB的中点;(2)作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.解:(1)因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由已知可得PA=PB,从而G是AB的中点.(2)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=××2×2×2=.19.(本小题满分12分)(2016·全国Ⅰ卷,文19)某公司计划购买1台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解:(1)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y与x的函数解析式为y=(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800元,20台的费用为4 300元,10台的费用为4 800元,因此这100台机器在购买易损零件上所需费用的平均数为(3 800×70+4 300×20+4 800×10)=4 000元.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000元,10台的费用为4 500元,因此这100台机器在购买易损零件上所需费用的平均数为(4 000×90+4 500×10)=4 050元.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.20.(本小题满分12分)(2016·全国Ⅰ卷,文20)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其他公共点?说明理由.解:(1)由已知得M(0,t),P(,t).又N为M关于点P的对称点,故N(,t),ON的方程为y=x,代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=,因此H(,2t),所以N为OH的中心,即=2.(2)直线MH与C除H以外没有其他公共点.理由如下: 直线MH的方程为y-t=x,即x=(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.21.(本小题满分12分)(2016·全国Ⅰ卷,文21)已知函数f(x)=(x-2)e x+a(x-1)2.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a≥0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0.所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.②设a<0,由f′(x)=0得x=1或x=ln(-2a).③若a>-,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1,+∞)时,f′(x)>0;当x∈(ln(-2a),1)时,f′(x)<0,所以f(x)在(-∞,ln(-2a)),(1,+∞)上单调递增,在(ln(-2a),1)上单调递减.④若a<-,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f′(x)>0;当x∈(1,ln(-2a))时,f′(x)<0,所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递增. (2)①设a>0,则由(1)知,f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f(1)=-e,f(2)=a,取b满足b<0且<ln,则f(b)>(b-2)+a(b-1)2=a(b2-b)>0,所以f(x)有两个零点.②设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.③设a<0,若a≥-,则由(1)知,f(x)在(1,+∞)上单调递增.又当x≤1时f(x)<0,故f(x)不存在两个零点;若a<-,则由(1)知,f(x)在(1,ln(-2a))上单调递减,在(ln(-2a),+∞)上单调递增.又当x≤1时f(x)<0,故f(x)不存在两个零点.综上,a的取值范围为(0,+∞).22.(本小题满分10分)(2016·全国Ⅰ卷,文22)(选修4-1:几何证明选讲)如图,△OAB是等腰三角形,∠AOB=120°.以☉O为圆心,OA为半径作圆.(1)证明:直线AB与☉O相切;(2)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥CD.解:(1)设E是AB的中点,连接OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.在Rt△AOE中,OE=AO,即O到直线AB的距离等于☉O半径,所以直线AB与☉O相切.(2)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB. 同理可证,OO′⊥CD,所以AB∥CD.23.(本小题满分10分)(2016·全国Ⅰ卷,文23)(选修44:坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2: =4cos .(1)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为=a,其中a满足tan a=2,若曲线C1与C2的公共点都在C3上,求a.解:(1)消去参数t得到C1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(2)曲线C1,C2的公共点的极坐标满足方程组若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=1,a=1(舍去).a=1时,极点也为C1,C2的公共点,在C2上,所以a=1.24.(本小题满分10分)(2016·全国Ⅰ卷,文24)(选修45:不等式选讲)已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)f(x)=y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为{x x<或x>5}.所以|f(x)|>1的解集为{x x<或1<x<3或x>5}.2016年普通高等学校招生全国统一考试Ⅱ文科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅱ卷,文1)已知集合A={1,2,3},B={x|x2<9},则A∩B等于( D )(A){-2,-1,0,1,2,3} (B){-2,-1,0,1,2}(C){1,2,3} (D){1,2}解析:B={x|-3<x<3},A∩B={1,2}.故选D.2.(2016·全国Ⅱ卷,文2)设复数z满足z+i=3-i,则等于( C )(A)-1+2i (B)1-2i(C)3+2i (D)3-2i解析:z=3-2i,=3+2i.故选C.3.(2016·全国Ⅱ卷,文3)函数y=Asin(ωx+ϕ)的部分图像如图所示,则( A )(A)y=2sin(2x-)(B)y=2sin(2x-)(C)y=2sin(x+)(D)y=2sin(x+)解析:T=2(+)=π=得ω=2,A=2.当x=时,y=2sin(2x+ϕ)=2,+ϕ=+2kπ,k∈Z,ϕ=-+2kπ,k∈Z.故选A.4.(2016·全国Ⅱ卷,文4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( A )(A)12π(B)π(C)8π(D)4π解析:由题知正方体棱长为2,球的直径为2,半径R=,则球的表面积S=4πR2=12π.故选A.5.(2016·全国Ⅱ卷,文5)设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x 轴,则k等于( D )(A)(B)1 (C)(D)2解析:由题P(1,2),2=k.故选D.6.(2016·全国Ⅱ卷,文6)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a等于( A )(A)-(B)-(C)(D)2解析:同全国Ⅱ理4解析.7.(2016·全国Ⅱ卷,文7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )(A)20π(B)24π(C)28π(D)32π解析:几何体的表面积为S=π·2×+2π·2×4+π22=8π+16π+4π=28π.故选C.8.(2016·全国Ⅱ卷,文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( B )(A)(B)(C)(D)解析:由题至少等15秒遇绿灯的概率为P==.故选B.9.(2016·全国Ⅱ卷,文9)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s等于( C )(A)7 (B)12 (C)17 (D)34解析:由输入x=2,n=2.k=0,S=0,a=2,则S=2,k=1<n,再输入a=2,得S=6,k=2=n,再输入a=5,得S=17,k=3>n,输出S=17.故选C.10.(2016·全国Ⅱ卷,文10)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( D )(A)y=x (B)y=lg x(C)y=2x(D)y=解析:由y=10lg x定义域值域均为(0,+∞),与D符合.故选D.11.(2016·全国Ⅱ卷,文11)函数f(x)=cos 2x+6cos(-x)的最大值为( B )(A)4 (B)5 (C)6 (D)7解析:f(x)=1-2sin2x+6sin x=-2(sin2x-3sin x)+1=-2[(sin x-)2-]+1=-2(sin x-)2+.当sin x=1时,f(x)max=5.故选B.12.(2016·全国Ⅱ卷,文12)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则xi等于( B )(A)0 (B)m (C)2m (D)4m解析:由题y=f(x)与y=|x2-2x-3|均关于x=1对称.则两函数交点个数m为偶数.=×2=m.故选B.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.(2016·全国Ⅱ卷,文13)已知向量a=(m,4),b=(3,-2),且a∥b,则m= .解析:由题-2m+12=0,m=6.答案:614.(2016·全国Ⅱ卷,文14)若x,y满足约束条件则z=x-2y的最小值为.解析:由线性约束条件得可行域如图则z=x-2y在B(3,4)处取得最小值为3-2×4=-5.答案:-515.(2016·全国Ⅱ卷,文15)△ABC的内角A,B,C的对边分别为a,b,c,若cos A=, cos C=,a=1,则b= .解析:解析:由题sin A=,sin C=,sin B=sin(A+C)=sin Acos C+cos Asin C=×+×=.则由=得b===.答案:16.(2016·全国Ⅱ卷,文16)有三张卡片,分别写有1和2,1和3,2和3,甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.解析:设三张卡片分别为A(1,2),B(1,3),C(2,3),由丙得数字和不是5,则丙的卡片可能为A或B.若丙为A(1,2),则乙为C(2,3),甲为B(1,3)合题,若丙为B(1,3),则甲、乙为相同数字2,不合题.答案:1,3三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2016·全国Ⅱ卷,文17)等差数列{an }中,a3+a4=4,a5+a7=6.(1)求{an}的通项公式;(2)设bn =[an],求数列{bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.解:(1)设数列{an }的公差为d,由题意有2a1+5d=4,a1+5d=3.解得a1=1,d=.所以{an }的通项公式为an=.(2)由(1)知,bn=[].当n=1,2,3时,1≤<2,bn=1;当n=4,5时,2≤<3,bn=2;当n=6,7,8时,3≤<4,bn=3;当n=9,10时,4≤<5,bn=4.所以数列{b}的前10项和为1×3+2×2+3×3+4×2=24.n18.(本小题满分12分)(2016·全国Ⅱ卷,文18)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出0 1 2 3 4 ≥5险次数保费0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数0 1 2 3 4 ≥5频数60 50 30 30 20 10(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85a a 1.25a 1.5a 1.75a 2a 频率0.30 0.25 0.15 0.15 0.10 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.19.(本小题满分12分)(2016·全国Ⅱ卷,文19)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD 上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.(1)证明:AC⊥HD′;(2)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′-ABCFE的体积.(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得=,故AC∥EF.由此得EF⊥HD,EF⊥HD′,所以AC⊥HD′.(2)解:由EF∥AC得==.由AB=5,AC=6得DO=BO==4.所以OH=1,D′H=DH=3.于是OD′2+OH2=(2)2+12=9=D′H2,故OD′⊥OH.由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H,所以AC⊥平面BHD′,于是AC⊥OD′.又由OD′⊥OH,AC∩OH=O,所以OD′⊥平面ABC.又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.所以五棱锥D′-ABCFE的体积V=××2=.20.(本小题满分12分)(2016·全国Ⅱ卷,文20)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f′(x)=ln x+-3,f′(1)=-2,f(1)=0.曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x->0.设g(x)=ln x-,则g′(x)=-=,g(1)=0.(ⅰ)当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0。

2016年高考新课标1卷文科数学试题(解析版)

2016年高考新课标1卷文科数学试题(解析版)

2016年高考数学新课标Ⅰ〔文〕试题及答案解析〔使用地区山西、河南、河北、湖南、湖北、江西、安徽、福建、广东〕一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.【2016 新课标Ⅰ〔文〕】1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】取A ,B 中共有的元素是{3,5},故选B【2016 新课标Ⅰ〔文〕】2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 3【答案】A【解析】(1+2i )(a+i )= a -2+(1+2a )i ,依题a -2=1+2a ,解得a=-3,故选A【2016 新课标Ⅰ〔文〕】3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .56【答案】C【解析】设红、黄、白、紫4种颜色的花分别用1,2,3,4来表示,则所有基本领件有 (12,34),(13,24),(14,23),(23,14),(24,13),(34,12),共6个,其中1和4不在同一花坛的事件有4个, 其概率为P=4263=,故选C 【2016 新课标Ⅰ〔文〕】4.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===,则b=( )A .B C .2 D .3【答案】D 【解析】由余弦定理得:5=4+b 2-4b ×23, 则3b 2-8b -3=0,解得b =3,故选D【2016 新课标Ⅰ〔文〕】5.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34【答案】B【解析】由直角三角形的面积关系得bc=124⨯12c e a ==,故选B【2016 新课标Ⅰ〔文〕】6.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +4π) B .y =2sin(2x +3π) C .y =2sin(2x –4π) D .y =2sin(2x –3π) 【答案】D【解析】对应的函数为y =2sin[ 2(x -14π⨯)+6π],即y =2sin(2x –3π),故选D【2016 新课标Ⅰ〔文〕】7283π, 则它的外表积是( )A .17πB .18πC .20πD .28π【答案】A【解析】依图可知该几何体是球构成截去了八分之一,其体积34728383V R ππ=⨯=,解得R=2,外表积227342+21784S πππ=⨯⨯⨯=,故选B 【2016 新课标Ⅰ〔文〕】8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <logc b C .a c <b c D .c a >c b【答案】B【解析】取特值a =1,b ,c ,可排除A ,C ,D ,故选B【2016 新课标Ⅰ〔文〕】9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )【解析】当0≤x ≤2时,y'=4x –e x ,函数先减后增,且y'|x >0,最小值在(0,0.5)内.故选D【2016 新课标Ⅰ〔文〕】10则输出x ,y 的值满足( )CA .y =2xB .y =3xC .y =4xD .y =5x 【答案】C 【解析】运行程序,循环节内的n ,x ,y 依次为 (1,0,1),(2,0.5,2),(3,1.5,6), 输出x ,y= 6, 故选C 【2016 新课标Ⅰ〔文〕】11.平面α过正方体ABCD -A 1B 1 α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1则m ,n 所成角的正弦值为( )A B .2 C D .13【答案】A【解析】平面A 1B 1C 1D 1∩平面CB 1D 1= B 1D 1与m 平行,平面CDD 1C 1∩平面CB 1D 1= CD 1与n 平行,所以m ,n 所成角就是B 1D 1与CD 1所成角,而ΔCB 1D 1是等边三角形,则所成角是60°,故选A【2016 新课标Ⅰ〔文〕】12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13] C .[-,13] D .[-1,-13] 【答案】C 【解析】2()sin cos sin 3f x x -x x a x =+,222'()1(cos sin )cos 3f x -x x a x ∴=-+, 依题f'(x )≥0恒成立,即a cos x ≥2cos213x -恒成立,而(a cos x )min =-|a |,21111cos21||[]33333x a a -≤-∴-≥-∈-,,解得,,故选C二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.【2016 新课标Ⅰ〔文〕】13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23- 【解析】依题x +2(x +1)=0,解得x=23- 【2016 新课标Ⅰ〔文〕】14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 【答案】43- 【解析】依题θ+π4是第一象限角,cos(θ+π4)=45,tan(θ-π4)=- tan(π4-θ) =- tan[π2-(θ+π4)]=- sin[π2-(θ+π4)]/cos[π2-(θ+π4)]=- cos(θ+π4)/ sin(θ+π4)=43- 【2016 新课标Ⅰ〔文〕】15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB |=C 的面积为 .【答案】4π【解析】圆方程可化为x 2+ (y -a )2=a 2+2,圆心C 到直线距离dd 2+3=a 2+2, 解得a 2=2,所以圆半径为2,则圆面积为4π【2016 新课标Ⅰ〔文〕】16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产A 、B 两种产品各x 件、y 件,利润之和是z =2100x +900y ,约束条件是 1.50.51500.390536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,即3300103900536000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩ 作出可行域四边形OABC ,如图.画出直线l 0:7x +3y =0,平移l 0到l , 当l 经过点B 时z 最大,联立10x+3y=900与5x+3y=600 解得交点B (60,100),所以 z max =126000+90000=216000.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.【2016 新课标Ⅰ〔文〕】17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313nn --=-⨯- …12分 【2016 新课标Ⅰ〔文〕】18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. 【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB . 又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . 又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE// PC,PC=PB=P A= 6,∴DE=2,PE=223222 33PG=⨯=.则在等腰直角ΔPEF中,PF=EF=2,∴ΔPEF的面积S=2.所以四面体PDEF的体积1433V S DE=⨯=. …12分【2016 新课标Ⅰ〔文〕】19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用〔单位:元〕,n表示购机的同时购买的易损零件数.(Ⅰ)假设n=19,求y与x的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n”的频率不小于,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【解析】(Ⅰ)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为3800,19(*)5005700,19xy x Nx x≤⎧=∈⎨->⎩…3分(Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的平均数为1100(3800×70+4300×20+4800×10)=4000. …9分假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的平均数为1100(4000×90+4500×10)=4050. …11分比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分【2016 新课标Ⅰ〔文〕】20.〔本小题总分值12分〕在直角坐标系xoy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分【2016 新课标Ⅰ〔文〕】21.〔本小题总分值12分〕已知函数f (x )=(x -2)e x +a (x -1)2.(Ⅰ)讨论f (x )的单调性; (Ⅱ)假设有两个零点,求a 的取值范围.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分【2016 新课标Ⅰ〔文〕】22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.证明:(Ⅰ)设E是AB的中点,连接OE,因为OA=OB,∠AOB =120°. 所以OE⊥AB,∠AOE=60°. …3分在Rt ΔAOE 中,OE=12OA. 即圆心O到直线AB的距离等打半径,所以直线AB与⊙O相切. …5分(Ⅱ)因为OD=12OA,所以O不是A,B,C,D四点共圆的圆心,故设其圆心为O',则O'在AB的垂直平分线上.又O在AB的垂直平分线上,作直线O O',所以O O'⊥AB.…8分同理可证O O'⊥CD.所以AB∥CD. …10分【2016 新课标Ⅰ〔文〕】23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为cos1sinx a ty a t=⎧⎨=+⎩〔t为参数,a>0〕.在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,假设曲线C1与C2的公共点都在C3上,求a.【解析】(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2.所以C1是以(0,1)为圆心a为半径的圆. …3分将x=cos,y=sin代入可得C1的极坐标方程为2-2 sin+1-a2=0. …5分(Ⅱ)联立2-2 sin+1-a2=0与ρ=4cosθ消去ρ得16cos2-8sin cos+1-a2=0,由tanθ=2可得16cos2-8sin cos=0. 从而1-a2=0,解得a=1. …8分当a=1时,极点也是C1与C2的公共点,且在C3上,综上a=1. …10分【2016 新课标Ⅰ〔文〕】24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f(x)=| x+1| -|2x-3|.(Ⅰ)在答题卡第24题图中画出y=f(x)的图像;(Ⅱ)求不等式| f(x)|>1的解集.【解析】(Ⅰ)4,13 ()32,1234,2x xf x x xx x⎧⎪-<-⎪⎪=--≤<⎨⎪⎪-+≥⎪⎩y =f (x )的图像如下图. …5分(Ⅱ)由f (x )的图像和表达式知,当f (x )=1时,解得x =1或x =3.当f (x )=-1时,解得x =13或x =5. …8分 结合f (x )的图像可得| f (x )|>1的解集为{x |x <13或1< x <3或x >5}. …10分2016年全国高考新课标1卷文科数学试题第Ⅰ卷一、选择题,本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=( )A .{1,3}B .{3,5}C .{5,7}D .{1,7}2.设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=( )A .-3B .-2C .2D . 33.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .564.ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3a c A ===, 则b=( )A .BC .2D .35.直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .346.假设将函数y =2sin (2x +6π)的图像向右平移14个周期后,所得图像对应的函数为 ( )A .y =2sin(2x +4π)B .y =2sin(2x +3π)C .y =2sin(2x –4π)D .y =2sin(2x –3π) 7.如图,某几何体的三视图是三个半径相等的圆及每个283π,则它的外表积是( )A .17πB .18πC .20πD .28π8.假设a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.函数y =2x 2–e |x |在[–2,2]的图像大致为( )10.执行右面的程序框图,如果输入的x =0,y =1,n =1,则输出x ,y 的值满足( )A .y =2xB .y =3xC .y =4xD .y =5x11.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α∩平面ABCD=m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.2 B.2 C.3 D .13 12.假设函数1()sin 2sin 3f x x -x a x =+在(-∞,+∞)单调递增,则a 的取值范围是( ) A .[-1,1] B .[-1,13] C .[-13,13] D .[-1,-13]第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分,共20分.把答案填在横线上.13.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= . 15.设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设|AB|=则圆C 的面积为 .16.某高科技企业生产产品A 和产品BA 需要甲材料,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料,乙材料,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.〔此题总分值12分〕已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=31,a n b n +1+b n +1=nb n . (Ⅰ)求{a n }的通项公式; (Ⅱ)求{b n }的前n 项和.B E G P DC A 18.〔此题总分值12分〕如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第〔18〕题图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.19.〔本小题总分值12分〕某公司计划购买1台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元. 在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用〔单位:元〕,n 表示购机的同时购买的易损零件数.(Ⅰ)假设n =19,求y 与x 的函数解析式;(Ⅱ)假设要求“需更换的易损零件数不大于n ”的频率不小于,求n 的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.〔本小题总分值12分〕在直角坐标系xoy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求OH ON; (Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.21.〔本小题总分值12分〕已知函数f(x)=(x -2)e x+a(x -1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)假设有两个零点,求a的取值范围.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.〔本小题总分值10分〕选修4-1:几何证明选讲如图,ΔOAB是等腰三角形,∠AOB=120°. 以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.EG PFDC A23.〔本小题总分值10分〕选修4—4:坐标系与参数方程在直线坐标系xoy 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩〔t 为参数,a >0〕.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,假设曲线C 1与C 2的公共点都在C 3上,求a .24.〔本小题总分值10分〕,选修4—5:不等式选讲已知函数f (x )=| x +1| -|2x -3|.(Ⅰ)在答题卡第24题图中画出y =f (x )的图像;(Ⅱ)求不等式| f (x )|>1的解集.2016年全国高考新课标1卷文科数学试题参考答案一、选择题,本大题共12小题,每题5分,共60分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C二、填空题:本大题共4小题,每题5分,共20分.13.23- 14.43- 15.4π 16.216000 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.【解析】(Ⅰ)依题a 1b 2+b 2=b 1,b 1=1,b 2=31,解得a 1=2 …2分 通项公式为 a n =2+3(n -1)=3n -1 …6分(Ⅱ)由(Ⅰ)知3nb n +1=nb n ,b n +1=31b n ,所以{b n }是公比为31的等比数列.…9分 所以{b n }的前n 项和S n =111()313122313n n --=-⨯- …12分18.【解析】(Ⅰ)证明:PD ⊥平面ABC ,∴PD ⊥AB .又DE ⊥平面P AB ,∴DE ⊥AB .∴AB ⊥平面PDE . …3分又PG ⊂平面PDE ,∴AB ⊥PG .依题P A=PB ,∴G 是AB 的中点.…6分(Ⅱ)在平面P AB 内作EF ⊥P A 〔或EF // PB 〕垂足为F ,则F 是点E 在平面P AC 内的正投影. …7分理由如下:∵PC ⊥P A ,PC ⊥PB ,∴ PC ⊥平面P AB . ∴EF ⊥PC作EF ⊥P A ,∴EF ⊥平面P AC .即F 是点E 在平面P AC 内的正投影.…9分连接CG ,依题D 是正ΔABC 的重心,∴D 在中线CG 上,且CD =2DG .易知DE // PC ,PC=PB=P A = 6,∴DE =2,PE =2233PG =⨯=. 则在等腰直角ΔPEF 中,PF=EF=2,∴ΔPEF 的面积S=2.所以四面体PDEF 的体积1433V S DE =⨯=. …12分 19.【解析】(Ⅰ)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 与x 的函数解析式为3800,19(*)5005700,19x y x N x x ≤⎧=∈⎨->⎩ …3分 (Ⅱ)由柱状图知,需更换的易损零件数不大于18为0.46,不大于19为0.7,所以n 的最小值为19. …6分(Ⅲ)假设每台机器都购买19个易损零件,则有70台的费用为3800,20台的费用为4300,10台的费用为4800,所以100台机器购买易损零件费用的 平均数为1100(3800×70+4300×20+4800×10)=4000. …9分 假设每台机器都购买20个易损零件,则有90台的费用为4000,10台的费用为4500,所以100台机器购买易损零件费用的 平均数为1100(4000×90+4500×10)=4050. …11分 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.…12分20.【解析】(Ⅰ)依题M (0, t ),P (22t p , t ). 所以N (2t p , t ),ON 的方程为p y x t=. 联立y 2=2px ,消去x 整理得y 2=2ty . 解得y 1=0,y 2=2t . …4分所以H (22t p ,2t ). 所以N 是OH 的中点,所以OH ON=2. …6分 (Ⅱ)直线MH 的方程为2p y t x t-=,联立y 2=2px ,消去x 整理得y 2-4ty +4t 2=0. 解得y 1=y 2=2t . 即直线MH 与C 只有一个交点H .所以除H 以外,直线MH 与C 没有其它公共点. …12分21.【解析】(Ⅰ) f '(x )=(x -1)e x +a (2x -2)=(x -1)(e x +2a ). x ∈R …2分(1)当a ≥0时,在(-∞,1)上,f '(x )<0,f (x )单调递减;在(1,+∞)上,f '(x )>0,f (x )单调递增. …3分(2)当a <0时,令f '(x )=0,解得x =1或x =ln(-2a ).①假设a =2e -,ln(-2a ) =1,f '(x )≥0恒成立,所以f (x )在(-∞,+ ∞)上单调递增. ②假设a >2e -,ln(-2a )<1,在(ln(-2a ),1)上,f '(x )<0,f (x )单调递减; 在(-∞, ln(-2a ))与(1,+∞)上,f '(x )>0,f (x )单调递增.③假设a <2e -,ln(-2a )>1,在(1,ln(-2a ))上,f '(x )<0,f (x )单调递减; 在(-∞,1)与(ln(-2a ),+∞)上,f '(x )>0,f (x )单调递增.…7分(Ⅱ) (1)当a =0时,f (x )=(x -2)e x 只有一个零点,不合要求. …8分(2)当a >0时,由(Ⅰ)知f (x )在(-∞,1)上单调递减;在(1,+∞)上单调递增.最小值f (1)=-e <0,又f (2)= a >0,假设取b <0且b <ln2a ,e b <2a . 从而f (b )>223(2)(1)()022a b a b a b b -+-=->,所以f (x )有两个零点. …10分 (3)当a <0时,在(-∞,1]上,f (x )<0恒成立;假设a ≥2e -,由(Ⅰ)知f (x )在(1,+∞)上单调递增,不存在两个零点.假设a <2e -,f (x )在(1,ln(-2a ))上单调递减;在(ln(-2a ),+∞)上单调递增,也不存在两个零点.综上a 的取值范围是(0,1). …12分。

2016年全国高考文科数学试题及答案-全国卷

2016年全国高考文科数学试题及答案-全国卷

2016 年一般高等学校招生全国一致考试文科数学一、选择题:本大题共12 小题。

每题 5 分 .( 1)已知会合,则(A)(B)(C)(D)(2)设复数z 知足,则 =(A)(B)(C)(D)(3)函数的部分图像以下图,则(A)(B)(C)(D)(4)体积为 8 的正方体的极点都在同一球面上,则该球面的表面积为(A)(B)( C)( D)(5)设 F 为抛物线C:y2=4x 的焦点,曲线y=( k>0)与C交于点P,PF⊥ x 轴,则k=(A)(B)1( C)(D)2(6)圆x2+y2- 2x- 8y+13=0的圆心到直线ax+y- 1=0的距离为1,则a=(A)-(B)-(C)(D)2(7)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A)20π(B)24π(C)28π(D)32π(8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯连续时间为40 秒,若一名行人到达该路口碰到红灯,则起码需要等候15 秒才出现绿灯的概率为(A)( B)( C)( D)(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.履行该程序框图,若x=2, n=2,输入的 a 为2, 2, 5,则输出的s=(A) 7(B)12(C)17(D) 34(10)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域同样的是(A)y=x( B)y=lg x( C)y=2x( D)(11)函数的最大值为(A) 4( B)5(C)6(D)7(12) 已知函数f (x) (∈ R)知足f(x)=f(2-x) ,若函数y=|x2x-3|与= (x) 图像的交-2x y f点为( x1, y1),( x2, y2),,( x m, y m),则(A)0(B)m(C) 2m(D) 4m二.填空题:共 4 小题,每题 5 分 .(13)已知向量 a=( m,4), b=(3,-2),且 a∥ b,则 m=___________.(14)若 x, y 知足拘束条件,则 z=x-2 y 的最小值为__________(15)△ABC的内角A,B,C的对边分别为a,b,c,若,,a=1,则b=____________.(16)有三张卡片,分别写有 1 和 2,1 和 3, 2 和 3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上同样的数字不是 2”,乙看了丙的卡片后说:“我与丙的卡片上同样的数字不是 1”,丙说:“我的卡片上的数字之和不是 5”,则甲的卡片上的数字是________________.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17) ( 本小题满分12 分 )等差数列 {} 中,( I )求 {} 的通项公式;(II)设=[] ,求数列 {} 的前 10 项和,此中 [ x] 表示不超出x的最大整数,如 []=0,[]=2(18) ( 本小题满分 12 分 )某险种的基本保费为a(单位:元),连续购置该险种的投保人称为续保人,续保人今年度的保费与其上年度出险次数的关系以下:随机检查了该险种的200 名续保人在一年内的出险状况,获得以下统计表:(I )记 A 为事件:“一续保人今年度的保费不高于基本保费”。

2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】

2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】

绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。

第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3。

考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。

2016年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2016年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( )A .3(3,)2--B .3(3,)2- C .3(1,)2 D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y += ( )A .1BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( )A .13B .12C .23D .345.已知方程222213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(1,3)- B.(- C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------ABC D 8. 若0a b >>,01c <<,则( )A .c ca b <B .c cab ba >C .alog log b a c b c <D .log log a b c c <9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E两点,已知||AB =,||DE =C 的焦点到准线的距离为( ) A .2 B .4 C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A.B.2C.D .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = .14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=.(Ⅰ)求C ;(Ⅱ)若c =ABC △的面积为,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)x f x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲ABCDE已知函数()|1||23| f x x x=+--.(Ⅰ)在图中画出()y f x=的图象;(Ⅱ)求不等式|()|1f x>的解集.2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】{}{}2A x x4x30x1x3=-+<=<<,{}3B x2x30x x2⎧⎫=->=>⎨⎬⎩⎭,故3A B x x32⎧⎫=<<⎨⎬⎩⎭.【提示】解不等式求出集合A,B,结合交集的定义,可得答案.【考点】交集及其运算2.【答案】B【解析】(1i)x1yi+=+,x xi1yi∴+=+,即x1x y=⎧⎨=⎩,解得x1y1=⎧⎨=⎩,即x y i12+=+【提示】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【考点】复数求模3.【答案】C【解析】等差数列{an}前9项的和为27,195959(a a)92aS9a22+⨯===,59a27∴=,5a3=,又10a8=,d1∴=,10010a a90d98∴=+=.【提示】根据已知可得5a3=,进而求出公差,可得答案.【考点】等差数列的性质4.【答案】B【解析】设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故201P402==.【提示】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【考点】几何概型5.【答案】A 【解析】双曲线两焦点间的距离为4,c 2∴=,当焦点在x 轴上时,可得224(m n)(3m n)=++-,解得2m 1=,方程2222x y 1m n 3m n-=+-表示双曲线,22(m n)(3m n)0∴+->,可得(n 1)(3n)0+->,解得1n 3-<<,即n 的取值范围是(1,3)-,当焦点在y 轴上时,可得224(m n)(3m n)-=++-,解得2m 1=-,无解.【提示】由已知可得c 2=,利用224(m n)(3m n)=++-,解得2m 1=,又22(m n)(3m n)0+->,从而可求n 的取值范围.【考点】双曲线的标准方程 6.【答案】A【解析】由题意可知三视图复原的几何体是一个球去掉18后的几何体,如图:可得37428ππR 833⨯=,R 2=,它的表面积是22714π2+3π2=17π84⨯⨯⨯⨯. 【提示】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【考点】由三视图求面积、体积 7.【答案】D【解析】2x ||f (x)y 2x e ==-,2x 2x ||||f (x)2(x)e 2x e -∴-=--=-,故函数为偶函数,当x 2=±时,2y 8e (0,1)=-∈,故排除A ,B ;当x []0,2∈时,2xf (x)y 2x e ==-,x f (x)4x e 0∴'=-=有解,故函数2x ||y 2x e =-在[0,2]不是单调的,故排除C .【提示】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答. 【考点】函数的图象8.【答案】C【解析】a b 1>>,0c 1<<,∴函数cy x =在(0,)+∞上为增函数,故c c a b >,故A错误;函数c 1y x-=在(1,)+∞上为减函数,故c 1c 1a b --<,故c c ba ab <,故B 错误;a log c 0<,且b logc 0<,a log b 1<,即c a a b log b log c1log a log c<=,即a b log c log c >,故D 错误;a b 0log c log c <-<-,故a b blog c alog c -<-,即a b blog c alog c >,即b a alogc blog c <,故C 正确.【提示】根据已知中a b 1>≥,0c 1<<,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【考点】不等式比较大小,对数值大小的比较 9.【答案】C【解析】输入x 0=,y 1=,n 1=,则x 0=,y 1=,不满足22x y 36+≥,故n 2=,则1x 2=,y 2=,不满足22x y 36+≥,故n 3=,则3x 2=,y 6=,满足22x y 36+≥,故y 4x =.【提示】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x ,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【考点】程序框图 10.【答案】B【解析】设抛物线为2y 2px =,如图:AB =,AM =,DE =,DN =pON 2=,A x 4p ==,OD OA =,2216p 85p 4+=+,解得p 4=,C 的焦点到准线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质 11.【答案】A【解析】如图,α∥平面11CB D ,α平面ABCD m =,α平面11ABA B n =,可知:1n CD ∥,11m B D ∥,11CB D △是正三角形,m 、n 所成角就是11CD B 60∠=,则m 、n.【提示】画出图形,判断出m 、n 所成角,求解即可. 【考点】异面直线及其所成的角 12.【答案】B【解析】πx 4=-为f (x)的零点,πx 4=为y f (x)=图象的对称轴,2n 1πT 42+∴=,即2n 12ππ(n )N 42+=∈ω,即2n 1)N (n ω=+∈,即ω为正奇数,f (x)在π5π,1836⎛⎫⎪⎝⎭上单调,则5πππT 3618122∴-=≤,即2ππT 6=≥ω,解得12ω≤,当11ω=时,11πk π4-+ϕ=,k ∈Z ,π2ϕ≤,π4∴ϕ=-,此时f (x)在π5π,1836⎛⎫ ⎪⎝⎭不单调,不满足题意;当9ω=时,9πk π4-+ϕ=,k ∈Z ,π2ϕ≤,π4∴ϕ=,此时f (x)在π5π,1836⎛⎫⎪⎝⎭单调,满足题意;故ω的最大值为9. 【提示】根据已知可得ω为正奇数,且12ω≤,结合πx 4=-为f (x)的零点,πx 4=为y f (x)=图象的对称轴,求出满足条件的解析式,并结合f (x)在π5π,1836⎛⎫⎪⎝⎭上单调,可得ω的最大值. 【考点】正弦函数的对称性第Ⅱ卷二、填空题13.【答案】2-【解析】222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,m 20+=,解得m 2=-.【提示】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【考点】平面向量数量积的运算 14.【答案】10 【解析】5(2x )的展开式中,通项公式为r25r 5r r r 5r r 155T C (2x)C 2x ---+==,令r 532-=,解得r 4=,3x ∴的系数452C 10=. 【提示】利用二项展开式的通项公式求出第r 1+项,令x 的指数为3,求出r ,即可求出展开式中3x 的系数. 【考点】二项式定理的应用 15.【答案】64【解析】等比数列n {a }满足13a a 10+=,24a a 5+=,可得13q(a a )5+=,解得1q 2=,211a q a 10+=,解得1a 8=,则22n 1n n 23n 1n 17n n 32n n ()2211n(n 1)222a a a q 82a ++++----⎛⎫== ⎪⎝⎭==……,当n 3=或4时,表达式取得最大值12622264==.【提示】求出数列的等比与首项,化简12n a a a …,然后求解最值. 【考点】数列与函数的综合,等比数列的性质 16.【答案】216000元【解析】设A ,B 两种产品分别是x 件和y 件,获利为z 元,由题意得x N,y N1.5x 0.5y 150x 0.3y 905x 3y 600∈∈⎧⎪+≤⎪⎨+≤⎪⎪+≤⎩,z 2100x 900y =+,不等式组表示的可行域如图,由题意可得x 0.3y 905x 3y 600+=⎧⎨+=⎩,解得x 60y 100=⎧⎨=⎩,A(600,100),目标函数z 2100x 900y =+经过A 时,直线的截距最大,目标函数取得最大值210060900100216000⨯+⨯=元.【提示】设A ,B 两种产品分别是x 件和y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用 三、解答题17.【答案】(Ⅰ)在ABC △中,0C π<<,sinC 0∴≠,已知等式利用正弦定理化简得2cosC(sin AcosB sin BcosA)sinC +=,整理得2cosCsin(A B)sinC +=,即[]2c o s C s i n π(A B )s i n C -+=,2cosCsinC sinC =, 1cosC 2∴=,πC 3∴=;(Ⅱ)由余弦定理得2217a b 2ab2=+-,2(a b)3ab 7∴+-=,,ab 6∴=,2(a b)187∴+-=,a b 5∴+=,ABC ∴△的周长为5【提示】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0求出cosC 的值,即可确定出出C 的度数; (Ⅱ)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a b +的值,即可求ABC △的周长. 【考点】解三角形18.【答案】(Ⅰ)ABEF 为正方形,AF EF ∴⊥,AFD 90∠=,AF DF ∴⊥,DF EF F =,AF ∴⊥平面EFDC , AF ⊂平面ABEF ,∴平面ABEF ⊥平面EFDC ;(Ⅱ)由A F D F ⊥,AF EF ⊥,可得DFE ∠为二面角D AF E --的平面角,由ABEF 为正方形,AF ⊥平面EFDC , BE EF ⊥,BE ∴⊥平面EFDC ,即有CE BE ⊥,可得CEF ∠为二面角C BE F --的平面角,可得DFE CEF 60∠=∠=.A B EF ∥,AB ⊄平面EFDC ,EF ⊂平面EFDC , AB ∴∥平面EFDC ,平面EFDC平面ABCD CD =,AB ⊂平面ABCD ,AB CD ∴∥, CD EF ∴∥,∴四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,设FD a =,则E(0,0,0),B(0,2a,0),a C 2⎛⎫⎪ ⎪⎝⎭,A(2a,2a,0),EB (0,2a,0)∴=,a BC ,2⎛⎫=- ⎪ ⎪⎝⎭,AB (2a,0,0)=-, 设平面BEC 的法向量为111m (x ,y ,z )=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则11112ay 0a x 2ay 022=⎧⎪⎨-+=⎪⎩,取m (3,0,1)=-,设平面ABC 的法向量为222n (x ,y ,z )=,则n BC=0n A B 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=,设二面角E-BC-A 的大小为θ,则m n cos |m ||n|31316θ===++,则二面角E-BC-A 的余弦值为.【提示】(Ⅰ)证明AF ⊥平面EFDC ,利用平面与平面垂直的判定定理证明平面ABEF ⊥平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC 、平面ABC 的法向量,代入向量夹角公式可得二面角E BC A --的余弦值.【考点】与二面角有关的立体几何19.【答案】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,2201P(X 16)10025⎛⎫=== ⎪⎝⎭, 20404P(X 17)210010025==⨯⨯=,22P 40206(X 18)210010025⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭, 24020206P(X 19)2210010010025⎛⎫==⨯⨯+⨯= ⎪⎝⎭, 220402051P(X 20)2100100100255⎛⎫==+⨯⨯== ⎪⎝⎭, 2202P(X 21)210025⎛⎫==⨯= ⎪⎝⎭, 2201P(X 22)10025⎛⎫===⎪⎝⎭, X ∴(Ⅱ)由(Ⅰ)知:4611P(X 18)P(X 16)P(X 17)P(X 18)25252525≤==+=+==++=, 146617P(X 19)P(X 16)P(X 17)P X 18P(X 19)2525252525≤==+=+=+==+++=(), P(x n)0.5∴≤≥中,n 的最小值为19;(Ⅲ)解法一:由(Ⅰ)得146617P(X 19)P(X 16)P(X 17)P X 18P(X 19)2525252525≤==+=+=+==+++=(), 买19个所需费用期望:117521EX 20019(20019500)(200195002)(200195003)404025252525=⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯⨯=,买20个所需费用期望:22221EX 20020(20020500)(200205002)4080252525=⨯⨯+⨯+⨯+⨯+⨯⨯=,12EX EX <,∴买19个更合适;解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n 19=时,费用的期望为:192005000.210000.0815000.044040⨯+⨯+⨯+⨯=,当n 20=时,费用的期望为:202005000.0810000.044080⨯+⨯+⨯=,∴买19个更合适.【提示】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列; (Ⅱ)由X 的分布列求出11P(X 18)25≤=,17P(X 19)25≤=,由此能确定满足P(x n)0.5≤≥中n 的最小值;(Ⅲ)方法一:由X 的分布列得17P(X 19)25≤=,求出买19个所需费用期望1EX 和买20个所需费用期望2EX ,由此能求出买19个更合适;方法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n 19=时,费用的期望和当n 20=时,费用的期望,从而得到买19个更合适. 【考点】离散型随机变量及其分布列20.【答案】(Ⅰ)圆22x y 2x 150++-=即为22(x 1)y 16++=,可得圆心A(1,0)-,半径r 4=,由BEAC ∥,可得C EBD ∠=∠,由AC AD =,可得D C ∠=∠,即为D EBD ∠=∠,即有EB ED =,则EA EB EA ED AD 4+=+==,故E 的轨迹为以A ,B 为焦点的椭圆,且有2a 4=,即a 2=,c 1=,b =点E 的轨迹方程为22x y 143+=,(y 0)≠,(Ⅱ)椭圆221x y C :143+=,设直线l :x my 1=+,由PQ ⊥l ,设PQ:y m(x 1)=--,由22x my 1x y 143=+⎧⎪⎨+=⎪⎩可得22(3m 4)y 6my 90++-=,设11M(x ,y ),22N(x ,y ),可得1226m y y 3m 4+=-+,1229y y=-, 则2M N212(m 1)|MN |y y |3m 4+=-==+,A 到PQ 的距离为d == 则四边形MPNQ 面积为2222221143m 41m 1mS |PQ ||MN |1224223m 41m3m 4+++====+++当m 0=时,S 取得最小值12,又2101m >+,可得3S 2483<= 即有四边形MPNQ 面积的取值范围是⎡⎣.【提示】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB ED =,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my 1=+,代入椭圆方程,运x 10-<用韦达定理和弦长公式,可得|MN |,由PQ ⊥l ,设PQ:y m(x 1)=--,求得A 到PQ 的距离,再由圆的弦长公式可得|PQ |,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【考点】直线与椭圆的位置关系,圆的一般方程 21.【答案】(Ⅰ)函数x 2f (x)(x 2)e a(x 1)=-+-,x x f (x)(x 1)e 2a(x 1)(x 1)(e 2a)∴'=-+-=-+,①若a 0=,那么xf (x)0(x 2)e 0x 2=⇔-=⇔=,函数f (x)只有唯一的零点2,不合题意;②若a 0>,那么x e 2a 0+>恒成立,当x 1<时,f (x)0'<,此时函数为减函数; 当x 1>时,f (x)0'>,此时函数为增函数;此时当x 1=时,函数f (x)取极小值e -,由f (2)a 0=>,可得:函数f (x)在x 1>存在一个零点; 当x 1<时,x e e <,x 210-<-<,x 222f (x)(x 2)e a(x 1)(x 2)e a(x 1)a(x 1)e(x 1)e∴=-+->-+-=-+--,令2a (x 1)e (x 1)e 0-+--=的两根为1t ,2t ,且12t t <,则当1x t <,2x t >时,2f (x )a (x 1)e(x 1)e 0>-+-->,故函数f (x)在x 1<存在一个零点; 即函数f (x)在R 是存在两个零点,满足题意;③若ea 02-<<,则ln (2a )l n e 1-<=,当x l n (2a )<-时,x 1ln(2a)1lne 10-<--<-=,x ln(2a)e 2a e 2a 0-+<+=,即xf '(x)(x 1)(e 2a)0=-+>恒成立,故f (x)单调递增,当ln(2a)x 1-<<时,,x ln(2a)e 2a e 2a 0-+>+=,即xf '(x)(x 1)(e 2a)0=-+<恒成立,故f (x)单调递减,当x 1>时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即xf '(x )(x1)(e 2a )0=-+>恒成立,故f (x)单调递增,故当x ln(2a)=-时,函数取极大值,由[][][][]{}22f ln(2a)2a ln(2a)2a ln(2a)1a ln(2a)210-=---+--=--+<得:函数f (x)在R 上至多存在一个零点,不合题意; ④若ea 2=-,则l n (2a)1-=,当x 1l n (2a)<=-时,x 10-<,x ln(2a)e2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,当x 1>时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即x f (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,故函数f (x)在R 上单调递增,函数f (x)在R 上至多存在一个零点,不合题意;⑤若ea 2<-,则ln(2a)lne 1->=,当x 1<时,x 10-<,x ln(2a)e 2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立,故f (x)单调递增,当1x ln(2a)<<-时,x 10->,x ln(2a)e 2a e 2a 0-+<+=,即xf (x)(x 1)(e 2a)0'=-+<恒成立,故f (x)单调递减,当x ln(2a)>-时,x 10->,x ln(2a)e 2a e 2a 0-+>+=,即xf (x)(x 1)(e 2a)0'=-+>恒成立, 故f (x)单调递增,故当x 1=时,函数取极大值,由f (1)e 0=-<得:函数f (x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,)+∞; (Ⅱ)1x ,2x 是f (x)的两个零点,12f (x )f (x )0∴==,且1x 1≠,2x 1≠,12x x 122212(x 2)e (x 2)e a (x 1)(x 1)--∴-==--,令x2(x 2)eg (x )(x 1)-=-,则12g(x )g(x )a ==-,2x3[(x 2)1]eg (x)(x 1)-+'=-,∴当x 1<时,g (x)0'<,g(x)单调递减;当x 1>时,g (x)0'>,g(x)单调递增;设,则1m 1m 1m 2m 222m 1m 1m 1m 1g (1m )g (1m )e e e e 1m mm m 1+-----+-⎛⎫+--=-=+ ⎪+⎝⎭,设2mm 1h(m)e 1m 1-=++,m 0>,则22m 22m h '(m)e 0(m 1)=>+恒成立,即h(m)在(0,)+∞上为增函数,h(m)h(0)0>=恒成立, 即g(1m)g(1m)+>-恒成立,令1m 1x 0=->,则1111212g(11x )g(11x )g(2x )g(x )g(x )2x x +->+-⇔->=⇔->,即12x x 2+<. 【提示】(Ⅰ)由函数x 2f (x)(x 2)e a(x 1)=-+-可得xxf (x)(x 1)e 2a(x 1)(x 1)(e 2a)'=-+-=-+,对a 进行分类讨论,综合讨论结果,可得答案;(Ⅱ)设1x ,2x 是f (x)的两个零点,则12x x 122212(x 2)e (x 2)e a (x 1)(x 1)---==--,令x2(x 2)e g (x )(x 1)-=-, 则12g(x )g(x )a==-,分析g(x)的单调性,令m 0>,则1m 2m2m 1m 1g (1m )g (1m )ee 1m m 1-+-⎛⎫+--=+ ⎪+⎝⎭, 设2mm 1h(m)e 1m 1-=++,m 0>,利用导数法可得h(m)h(0)0>=恒成立,即g(1m)g(1m)+>-恒成立,令1m 1x 0=->,可得结论.【考点】利用导数研究函数的极值,函数的零点22.【答案】(Ⅰ)设K 为AB 中点,连结OK ,OA OB =,AOB 120∠=,OK AB ∴⊥,A 30∠=,1OK OAsin30OA 2==,∴直线AB 与O 相切;(Ⅱ)因为OA 2OD =,所以O 不是A ,B ,C ,D 四点所在圆的圆心,设T 是A ,B ,C ,D 四点所在圆的圆心,OA OB =,TA TB =,OT ∴为AB 的中垂线,同理,OC OD =,TC TD =,OT ∴为CD 的中垂线,AB CD ∴∥.【提示】(Ⅰ)设K 为AB 中点,连结OK ,根据等腰三角形AOB 的性质知OK AB ⊥,A 30∠=,1OK OAsin30OA 2==,则AB 是圆O 的切线;m 0>(Ⅱ)设圆心为T ,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论. 【考点】圆的切线的判定定理的证明23.【答案】(Ⅰ)由x a cos t y 1a sin t =⎧⎨=+⎩,得x aco st y 1as i n t =⎧⎨-=⎩,两式平方相加得,22x (y 1)a +-=,1C ∴为以(0,1)为圆心,以a 为半径的圆,化为一般式222x y 2y 1a 0+-+-=①,由222x y +=ρ,y sin =ρθ, 得222sin 1a 0ρ-ρθ+-=;(Ⅱ)2C 4cos ρ=θ:,两边同时乘ρ得24cos ρ=ρθ,22x y 4x ∴+=②, 即22(x 2)y 4-+=,由30C θ=α:,其中0α满足0tan 2α=,得y 2x =,曲线1C 与2C 的公共点都在3C 上,y 2x ∴=为圆1C 与2C 的公共弦所在直线方程,数学试卷 第21页(共56页) 数学试卷 第22页(共56页)①-②得:24x 2y 1a 0-+-=,即为3C ,21a 0∴-=,a 1(a 0)∴=>.【提示】(Ⅰ)把曲线1C 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线1C 是圆,化为一般式,结合222x y +=ρ,y sin =ρθ化为极坐标方程;(Ⅱ)化曲线2C 、3C 的极坐标方程为直角坐标方程,由条件可知y 2x =为圆C 1与C 2的公共弦所在直线方程,把1C 与2C 的方程作差,结合公共弦所在直线方程为y 2x =可得21a 0-=,则a 值可求.【考点】简单曲线的极坐标方程,参数方程的概念24.【答案】(Ⅰ)x 4x 13f (x)3x 21x 234x x 2⎧⎪-≤-⎪⎪=--<<⎨⎪⎪-≥⎪⎩,,,,由分段函数的图象画法,可得f (x)的图象,如图:(Ⅱ)由f (x)1>,可得,当x 1≤-时,x 41->,解得x 5>或x 3<,即有x 1≤-;当31x 2-<<时,3x 21->,解得x 1>或1x 3<,即有11x 3-<<或31x 2<<;当3x 2≥时,4x 1->,解得x 5>或x 3<,即有3x 32≤<或x 5>.综上可得,1x 3<或1x 3<<或x 5>.则f (x)1>的解集为1,(1,3)(5,)3⎛⎫-∞+∞ ⎪⎝⎭【提示】(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x 1≤-时,当31x 2-<<时,当3x 2≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集. 【考点】带绝对值的函数,函数图象的作法绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知(3)(1)iz m m=++-在复平面内对应的点在第四象限,则实数m的取值范围是( )A.(3,1)-B.(1,3)-C.(1,)+∞D.(,3)∞--2.已知集合{1,2,3}A=,则{|(1)(2)0,}=+-<∈B x x x x Z,则A B =( )A.{1}B.{1,2}C.{0,1,2,3}D.{1,0,1,2,3}-3.已知向量a(1,)m=,b(3,2)-=,且(a+b)⊥b,则m=( )A.—8B.—6C.6D.84.圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a= ( )A.43-B.34-CD.25.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A.20πB.24πC.28πD.32π-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效数学试卷第23页(共56页)数学试卷第24页(共56页)数学试卷 第25页(共56页) 数学试卷 第26页(共56页)7.若将函数2sin 2y x =的图象向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的=s( )A .7B .12C .17D .34 9.若3cos()45πα-=,则sin2α=( ) A .725B .15C .15-D .725-10.从区间[]0,1随机抽取2n 个数1x ,2x,…,n x ,1y ,2y ,…,n y ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4n mB .2n mC .4m nD .2m n11.已知1F ,2F 是双曲线E:22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) A.B .32C .3D .212.已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图象的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( ) A .0B .mC .2mD .4m第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = .14.α,β是两个平面,,m n 是两条直线,有下列四个命题: ①如果m n ⊥,m α⊥,n β∥那么αβ⊥;②如果m α⊥,n α∥,那么m n ⊥; ③如果αβ∥,m α⊂,那么m β∥;④如果mn ∥,αβ∥,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 (填写所有正确命题的编号).15.有三张卡片,分别写有1和2,1和3,2和3,甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .16.若直线y k x b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且1=1a ,728S=.记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,. (Ⅰ)求1b ,11b ,101b;数学试卷 第27页(共56页) 数学试卷 第28页(共56页)(Ⅱ)求数列{}n b 的前1 000项和.18.(本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 19.(本小题满分12分)如图,菱形ABCD 的对角线AC 与BC 交于点O ,5=AB ,6=AC ,点E ,F 分别在AD ,CD 上,54AE CF ==,EF 交BD 于点H .将△DEF 沿EF 折到△'D EF 的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.20.(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4=t ,||||=AM AN 时,求AMN △的面积;(Ⅱ)当2||=||AM AN 时,求k 的取值范围.21.(本小题满分12分)(Ⅰ)讨论函数2()2-=+xx f x x e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2=(0)()-->x e ax ag x x x 有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ)证明:B ,C ,G ,F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin ,,αα=⎧⎨=⎩x t y t (t 为参数),l 与C 交于A ,B 两点,||AB =求l 的斜率.数学试卷 第29页(共56页) 数学试卷 第30页(共56页)24.(本小题满分10分)选修4—5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+.【解析】集合A B {0,1,2,3}=A B 的值.a (4,m ,b(3,2)-,ab (4,m ∴+=-(a b)b +⊥,,解得m 【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得【考点】平面向量的基本定理及其意义【解析】输入的:πcos4⎛-⎝πcos4⎛-⎝9712525-=.22π1n1,π∴=c a b=+,可得2e e20--=,e1>,解得e2=.1数学试卷第31页(共56页)数学试卷第32页(共56页)数学试卷第33页(共56页)数学试卷第34页(共56页)数学试卷 第35页(共56页) 数学试卷 第36页(共56页)(Ⅰ)某保险的基本保费为(Ⅰ)ABCD 是菱形,ABCD 是菱形,得AC 6=,AO ∴=AEOD 1AO=,则DH D =2OD OH '=OH EF H =,建立如图所示空间直角坐标系,AB 5=,6,B(5,0,0)∴,AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=的一个法向量为n (x,y,z)=,由11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z +=++1n (3,4,5)∴=-同理可求得平面AD C '的一个法向量2n (3,0=,,设二面角B-D '122n n 9255210n n +==,∴二面角数学试卷 第37页(共56页) 数学试卷 第38页(共56页)(Ⅱ)以H 为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC 的坐标,的一个法向量n 、n ,求.221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM 22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥226t 3tk +,26t t 3k k+,AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,当2)(2,)-+∞2)和(2,-+∞x2e f (0)=2>数学试卷 第39页(共56页) 数学试卷 第40页(共56页)x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t2e a 2=-,t2e 02≤恒成立,可得2t 2-<≤,由时,g (x)0'<g (x)0'>tt 2e e 2t 2=+,,e k (t )'=Rt DFC Rt EDC ∴△∽△,DF CFED CD∴=, DE DG =,CD BC =, DF CFDG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=, GFB GCB 180∴∠+∠=, B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,AB 1=,1DG CG DE 2∴===,∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△,BCGBCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=; (Ⅱ)在Rt DFC △中,1G F C D G C 2==,因此可得B C G B F G △≌△,则S 2S =,据此解答. )圆22x ρ=+(Ⅱ)直线l xx α, l ,半径r =数学试卷 第41页(共56页) 数学试卷 第42页(共56页)24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-,11x 2∴-<<-,当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立,11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<,1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即222a b 1a b +>+,即222a b 2a b 1a 2a b b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+. 【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法数学试卷 第43页(共56页) 数学试卷 第44页(共56页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2.答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3.答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4.答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0T x x =>,则ST =( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =-( )A. 1B. 1-C. iD. i -3.已知向量1331()()22BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个 5. 若3tan 4α=,则2cos 2sin 2αα+=( )A.6425B. 4825C. 1D. 16256. 已知432a =,254b =,1325c =,则( ) A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效---。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一 题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆. (I)证明:直线AB与O相切; (II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD. 【答案】(I)见解析(II)见解析
在中,,即到直线的距离等于圆的半径,所以直线与⊙相切.
(Ⅱ)因为,所以不是四点所在圆的圆心,设是四点所在圆的圆心,作 直线. 由已知得在线段的垂直平分线上,又在线段的垂直平分线上,所以. 同理可证,.所以.
(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系xy中,曲线C1的参数方程为
(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产 一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为 2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材 料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之 和的最大值为元. 【答案】 【解析】设生产产品、产品分别为、件,利润之和为元,那么
(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其 短轴长的,则该椭圆的离心率为 (A) (B) (C) (D) 【答案】B y x O B F D 【解析】如图,由题意得在椭圆中, 在中,,且,代入解得 ,所以椭圆得离心率得,故选B.
(6)若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的 函数为 (A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x–) (D)y=2sin(2x–) 【答案】D
【答案】(I)见解析(II)作图见解析,体积为 【解析】(I)因为在平面内的正投影为,所以
因为在平面内的正投影为,所以 所以平面,故 又由已知可得,,从而是的中点. (II)在平面内,过点作的平行线交于点,即为在平面内的正投影. 理由如下:由已知可得,,又,所以,因此平面,即点为在平面内的正
投影. 连接,因为在平面内的正投影为,所以是正三角形的中心. 由(I)知,是的中点,所以在上,故 由题设可得平面,平面,所以,因此 由已知,正三棱锥的侧面是直角三角形且,可得 在等腰直角三角形中,可得 所以四面体的体积
① 目标函数.
取得最大值.解方程组,得的坐标. 所以当,时,. 故生产产品、产品的利润之和的最大值为元.
பைடு நூலகம்三.解答题:解答应写出文字说明,证明过程或演算步骤. (17).(本题满分12分)已知是公差为3的等差数列,数列满足,. (I)求的通项公式; (II)求的前n项和. 【答案】(I)(II)
(II)由(I)和 ,得,因此是首项为1,公比为的等比数列.记的前项和 为,则
2016普通高等学校招生全国统一考试(新课标Ⅰ 卷)
文科数学
1. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项 中,只有一项是符合题目要求的.
(1)设集合,,则 (A){1,3} (B){3,5} (C){5,7} (D){1,7} 【答案】B
(2) 设的实部与虚部相等,其中a为实数,则a= (A)-3 (B)-2 (C)2 (D)3 【答案】A 【解析】,由已知,得,解得,故选A.
(18)(本题满分12分)如图,在已知正三棱锥P-ABC的侧面是直角三 角形,PA=6,顶点P在平面ABC内的正投影为点,在平面 内的正投影为 点E,连接PE并延长交AB于点G. (I)证明G是AB的中点; (II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明 作法及理由),并求四面体PDEF的体积.
(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相 互垂直的半径.若该几何体的体积是,则它的表面积是
(A)17π 【答案】A 【解析】
(B)18π
(C)20π (D)28π
(8)若,,则 (A)logac<logbc (B)logca<logcb (C)ac<bc (D)ca>cb 【答案】B 【解析】由可知是减函数,又,所以.故选B.本题也可以用特殊值代入 验证.
(19)(本小题满分12分)某公司计划购买1台机器,该种机器使用三 年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种 零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则 每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集 并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱 状图:
(21)(本小题满分12分)已知函数. (I)讨论的单调性; (II)若有两个零点,求的取值范围. 【答案】见解析(II) 【解析】(I) (i)设,则当时,;当时,. 所以在单调递减,在单调递增. (ii)设,由得x=1或x=ln(-2a). ①若,则,所以在单调递增. ②若,则ln(-2a)<1,故当时,; 当时,,所以在单调递增,在单调递减. ③若,则,故当时,,当时,,所以在单调递增,在单调递减.
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在 购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损 零件数. (I)若=19,求y与x的函数解析式; (II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小 值; (III)假设这100台机器在购机的同时每台都购买19个易损零件,或每 台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需 费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还 是20个易损零件? 【答案】(I)(II)19(III)19
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一 个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同 一花坛的概率是 (A) (B) (C) (D) 【答案】A
(4)△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b= (A) (B) (C)2 (D)3
【答案】D 【解析】由余弦定理得,解得(舍去),故选D.
(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19 的概率为0.7,故的最小值为19. (Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中 有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费 用为4800,因此这100台机器在购买易损零件上所需费用的平均数为. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.
(12)若函数在单调递增,则a的取值范围是
(A)(B)(C)(D) 【答案】C
二、填空题:本大题共3小题,每小题5分 (13)设向量a=(x,x+1),b=(1,2),且a b,则x= . 【答案】 【解析】由题意, (14)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=. 【答案】 【解析】由题意, 因为,所以, 从而,因此.故填. (15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若 ,则圆C的面积为 【答案】
(24)(本小题满分10分),选修4—5:不等式选讲 已知函数. (I)在答题卡第(24)题图中画出的图像; (II)求不等式的解集.
【答案】(I)见解析(II) 【解析】⑴如图所示:
(t为参数,a>0). 在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=. (I)说明C1是哪一种曲线,并将C1的方程化为极坐标方程; (II)直线C3的极坐标方程为,其中满足tan=2,若曲线C1与C2的公共点 都在C3上,求a. 【答案】(I)圆,(II)1 【解析】⑴ (均为参数),∴ ① ∴为以为圆心,为半径的圆.方程为 ∵,∴ 即为的极坐标方程 ⑵ ,两边同乘得 ,即 ② :化为普通方程为,由题意:和的公共方程所在直线即为 ①—②得:,即为 ∴,∴
(9)函数在的图像大致为 (A)
(B)
(C)
(D)
【答案】D
(10)执行右面的程序框图,如果输入的n=1,则输出的值满足 (A) (B) (C) (D) 【答案】C
【解析】第一次循环:, 第二次循环:, 第三次循环:,此时满足条件,循环结束,,满足.故选C (11)平面过正文体ABCD—A1B1C1D1的顶点A,,,则m,n所成角的 正弦值为 (A) (B) (C) (D) 【答案】A
(20)(本小题满分12分)在直角坐标系中,直线l:y=t(t≠0)交y轴于点 M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C 于点H. (I)求; (II)除H以外,直线MH与C是否有其它公共点?说明理由. 【答案】(I)2(II)没有 【解答】
(Ⅱ)直线与除以外没有其它公共点.理由如下: 直线的方程为,即.代入得,解得,即直线与只有一个公共点,所以除 以外直线与没有其它公共点.
相关文档
最新文档