0011005_最优化方法
《最优化方法》课件
![《最优化方法》课件](https://img.taocdn.com/s3/m/625689a0aef8941ea76e05ac.png)
5
2. 学习本课程所需的数学知识
向量、向量的模(范数)、向量的运算、 线性相关与无关、基. 矩阵的运算及性质、矩阵的秩、特征值、正定性。 向量函数、连续性、可微性、 梯度、海森矩阵、向量函数(多元函数)的Taylor定 理
6
3. 学习要求
掌握主要的优化模型的数学计算方法. 了解优化方法的数学原理. 了解现代优化方法. 熟练掌握应用数学软件计算优化问题.
3
二次大战以后,在军事运筹小组中工作过的一部分科 学家开始转入民用部门,他们把对军事系统最优化的研究 成果拓展到各种民用系统的研究上。
1947年美国数学家G.B.Dantzig在研究美国空军资源 配置时,提出了求解线性规划的有效方法—单纯形法。二 十世纪五十年代初,应用计算机求解线性规划获得成功。
2
运筹学这一名词最早出现于1938年。当时英,美等国盟军 在与德国的战争中遇到了许多错综复杂的战略和战术问题难以 解决,比如
(1)防空雷达的布置问题:
(2)护航舰队的编队问题:
为了应付上述各种复杂问题,英美等国逐批召集不同专业 背景的科学家,在三军组织了各种研究小组,研究的问题都是 军事性质的,在英国称为“Operational Research”,其他英语 国家称为“Operations Research”,意思是军事行动研究。这些 研究小组运用系统优化的思想,应用数学技术分析军事问题, 取得了非常理想的效果。
至五十年代末,一些工业先进国家的大型企业已经较 普遍地使用运筹学方法解决在生产经营管理中遇到的实际 问题,并取得了良好的效果,至六十年代中期,运筹学开 始应用于一些服务性行业和公用事业。
4
我国运筹学的研究始于五十年代中期,当时由钱学森教 授将运筹学从西方国家引入我国,以华罗庚教授为首的一大 批科学家在有关企事业单位积极推广和普及运筹学方法,在 建筑,纺织,交通运输,水利建设和邮电等行业都有不少应 用。关于邮递员投递的最佳路线问题就是由我国年轻的数学 家管梅谷于1962年首先提出的,在国际上统称为中国邮递员 问题。我国运筹学的理论和应用研究在较短时间内赶上了世 界水平。
最优化方法
![最优化方法](https://img.taocdn.com/s3/m/19eef92acbaedd3383c4bb4cf7ec4afe04a1b1e0.png)
最优化方法1. 简介最优化方法是一种通过调整变量值以最小化或最大化某个目标函数来优化系统性能的数学方法。
最优化方法广泛应用于各个领域,包括经济学、工程学、计算机科学等。
本文将介绍最优化方法的基本概念、常用算法以及其在实际问题中的应用。
2. 最优化问题最优化问题可以分为无约束最优化和约束最优化问题。
无约束最优化问题是在没有任何限制条件的情况下,寻找使目标函数值最小或最大的变量值。
约束最优化问题则在一定的约束条件下寻找最优解。
在最优化问题中,目标函数通常是一个多元函数,而变量则是目标函数的输入参数。
最优化的目标可以是最小化或最大化目标函数的值。
常见的优化问题包括线性规划、非线性规划、整数规划等。
3. 常用最优化算法3.1 梯度下降法梯度下降法是最常用的最优化算法之一。
它通过计算目标函数相对于变量的梯度(即偏导数),以负梯度方向更新变量值,逐步接近最优解。
梯度下降法的优点是简单易实现,但可能收敛速度较慢,且容易陷入局部最优解。
3.2 牛顿法牛顿法是一种基于目标函数的二阶导数(即海森矩阵)信息进行更新的最优化算法。
相较于梯度下降法,牛顿法的收敛速度更快,并且对于某些非凸优化问题更具优势。
然而,牛顿法的计算复杂度较高,且可能遇到数值不稳定的问题。
3.3 共轭梯度法共轭梯度法是一种用于解决线性方程组的最优化算法。
它利用共轭方向上的信息以减少最优化问题的迭代次数。
共轭梯度法适用于大规模线性方程组的求解,并且在非线性优化问题中也得到了广泛应用。
3.4 遗传算法遗传算法是一种通过模拟生物进化过程寻找最优解的优化算法。
它通过交叉、变异等操作生成新的解,并通过适应度评估筛选出优秀的解。
遗传算法适用于搜索空间较大、复杂度较高的优化问题。
4. 最优化方法的应用最优化方法在各个领域都有广泛的应用。
在经济学领域,最优化方法可以用于优化生产资源的配置、最小化成本或最大化利润等问题。
它可以帮助决策者制定最优的决策方案,提高效益。
五种最优化方法精编版
![五种最优化方法精编版](https://img.taocdn.com/s3/m/866a064b8e9951e79b892753.png)
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/023ccc386294dd88d1d26bc7.png)
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/73694c3fe009581b6ad9eb01.png)
五种最优化方法1.最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法:3)是一种函数逼近法。
原理和步骤3.最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4•模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),…,f_k(x)).g(x)<=o传统的多目标优化方法本质是将多目标优化中的各分目标函数, 经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象 (一般就是问题的解)的一种称呼。
数学中的最优化方法
![数学中的最优化方法](https://img.taocdn.com/s3/m/dbe1bde2d0f34693daef5ef7ba0d4a7302766c06.png)
数学中的最优化方法数学是一门综合性强、应用广泛的学科,其中最优化方法是数学的一个重要分支。
最优化方法被广泛应用于各个领域,如经济学、物理学、计算机科学等等。
本文将从理论和应用两个角度探讨数学中的最优化方法。
一、最优化的基本概念最优化是在给定约束条件下,寻找使某个目标函数取得最大(或最小)值的问题。
在数学中,最优化可以分为无约束最优化和有约束最优化两种情况。
1. 无约束最优化无约束最优化是指在没有限制条件的情况下,寻找使目标函数取得最大(或最小)值的问题。
常见的无约束最优化方法包括一维搜索、牛顿法和梯度下降法等。
一维搜索方法主要用于寻找一元函数的极值点,通过逐步缩小搜索区间来逼近极值点。
牛顿法是一种迭代方法,通过利用函数的局部线性化近似来逐步逼近极值点。
梯度下降法则是利用函数的梯度信息来确定搜索方向,并根据梯度的反方向进行迭代,直至达到最优解。
2. 有约束最优化有约束最优化是指在存在限制条件的情况下,寻找使目标函数取得最大(或最小)值的问题。
在解决有约束最优化问题时,借助拉格朗日乘子法可以将问题转化为无约束最优化问题,进而使用相应的无约束最优化方法求解。
二、最优化方法的应用最优化方法在各个领域中都有广泛的应用。
以下将以几个典型的应用领域为例加以说明。
1. 经济学中的最优化在经济学中,最优化方法被广泛应用于经济决策、资源配置和生产计划等问题的求解。
例如,在生产计划中,可以使用线性规划方法来优化资源分配,使得总成本最小或总利润最大。
2. 物理学中的最优化最优化方法在物理学中也是常见的工具。
例如,在力学中,可以利用最大势能原理求解运动物体的最优路径;在电磁学中,可以使用变分法来求解电磁场的最优配置;在量子力学中,可以利用变分法来求解基态能量。
3. 计算机科学中的最优化在计算机科学中,最优化方法被广泛应用于图像处理、机器学习和数据挖掘等领域。
例如,在图像处理中,可以使用最小割算法来求解图像分割问题;在机器学习中,可以使用梯度下降法来求解模型参数的最优值。
经典最优化方法
![经典最优化方法](https://img.taocdn.com/s3/m/23aefaa8680203d8ce2f246f.png)
第九章经典最优化方法9.1 最优化的基本概念最优化方法是一门古老而又年青的学科。
这门学科的源头可以追溯到17世纪法国数学家拉格朗日关于一个函数在一组等式约束条件下的极值问题(求解多元函数极值的Lagrange乘数法)。
19世纪柯西引入了最速下降法求解非线性规划问题。
直到20世纪三、四十年代最优化理论的研究才出现了重大进展,1939年前苏联的康托洛维奇提出了解决产品下料和运输问题的线性规划方法;1947年美国的丹奇格提出了求解线性规划的单纯形法,极大地推动了线性规划理论的发展。
非线性规划理论的开创性工作是在1951年由库恩和塔克完成的,他们给出了非线性规划的最优性条件。
随着计算机技术的发展,各种最优化算法应运而生。
比较著名的有DFP和BFGS无约束变尺度法、HP广义乘子法和WHP约束变尺度法。
最优化问题本质是一个求极值问题,几乎所有类型的优化问题都可概括为如下模型:给定一个集合(可行集)和该集合上的一个函数(目标函数),要计算此函数在集合上的极值。
通常,人们按照可行集的性质对优化问题分类:如果可行集中的元素是有限的,则归结为“组合优化”或“网络规划”,如图论中最短路、最小费用最大流等;如果可行集是有限维空间中的一个连续子集,则归结为“线性或非线性规划”;如果可行集中的元素是依赖时间的决策序列,则归结为“动态规划”;如果可行集是无穷维空间中的连续子集,则归结为“最优控制”。
线性规划与非线性规划是最优化方法中最基本、最重要的两类问题。
一般来说,各优化分支有其相应的应用领域。
线性规划、网络规划、动态规划通常用于管理与决策科学;最优控制常用于控制工程;非线性规划更多地用于工程优化设计。
前面提到的算法是最优化的基本方法,它们简单易行,对于性态优良的一般函数,优化效果较好。
但这些经典的方法是以传统微积分为基础的,不可避免地带有某种局限性,主要表现为:①大多数传统优化方法仅能计算目标函数的局部最优点,不能保证找到全局最优解。
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/6024c4a4856a561252d36f55.png)
精心整理五种最优化方法1.最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);341.22.2.11232.23.3.11233.24.模式搜索法(步长加速法)4.1简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min(f_1(x),f_2(x),...,f_k(x))s.t.g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2线性加权求合法6.遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
6.1遗传算法基本概念1.个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。
种群就是模拟生物种群而由若干个体组成的群体,它一般是整个搜索空间的一个很小的子集。
2.适应度与适应度函数适应度就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数就是问题中的全体个体与其适应度之间的一个对应关系。
该函数就是遗传算法中指导搜索的评价函数。
6.2遗传算法基本流程遗传算法的中心思想就是对一定数量个体组成的生物种群进行选择、交叉、变异等遗传操作,最终求得最优解或近似最优解。
最优化及最优化方法讲稿
![最优化及最优化方法讲稿](https://img.taocdn.com/s3/m/d4457cd350e79b89680203d8ce2f0066f533642f.png)
THANKS
谢谢您的观看
对于目标函数或约束条件中存在非线性函 数的问题,可以选择非线性规划求解。
动态规划
启发式算法
对于具有时间序列或过程优化的问题,可 以选择动态规划求解。
对于难以建立数学模型或难以使用传统优 化算法求解的问题,可以选择启发式算法 如遗传算法、模拟退火算法等。
编写求解程序
选择合适的编程语言
根据问题的复杂度和求解方法的特点,选择合适的编程语言如 Python、C等。
03
最优化问题的求解步骤
建立数学模型
确定问题的目标函数
确定决策变量
根据问题的实际背景,明确需要优化 的目标,并将其表示为数学函数。
将问题中需要决策的参数表示为数学 变量。
确定约束条件
分析问题中存在的限制条件,并将其 表示为数学不等式或等式。
选择合适的求解方法
线性规划
非线性规划
对于目标函数和约束条件均为线性函数的 问题,可以选择线性规划求解。
模拟退火算法
模拟退火算法是一种基于物理退火过程的优化算法,通过模拟固体退火过程,寻找最优解。模拟退火 算法适用于处理大规模、离散、非线性等复杂问题。
模拟退火算法的基本思想是在搜索过程中引入随机因素,使算法能够在局部最优解周围跳出,从而找 到全局最优解。模拟退火算法的优点在于能够处理多峰问题,且具有较强的鲁棒性和全局搜索能力。
机器学习中的优化问题是最优化问题在人工智能领域的应用,主要涉及如何选择合适的 算法和参数,以最小化预测误差或最大化分类准确率。
详细描述
机器学习中的优化问题需要考虑数据集、模型复杂度、过拟合与欠拟合等因素,通过优 化算法选择合适的算法和参数,以实现预测误差最小化、分类准确率最大化等目标。
最优化方法求解技巧
![最优化方法求解技巧](https://img.taocdn.com/s3/m/83e2b815cec789eb172ded630b1c59eef9c79a70.png)
最优化方法求解技巧最优化问题是数学领域中的重要课题,其目标是在给定一组约束条件下寻找使目标函数取得最大(或最小)值的变量取值。
解决最优化问题有多种方法,下面将介绍一些常用的最优化方法求解技巧。
1. 直接搜索法:直接搜索法是一种直接计算目标函数值的方法。
它的基本思路是在给定变量范围内,利用迭代计算逐步靠近最优解。
常用的直接搜索法包括格点法和切线法。
- 格点法:格点法将搜索区域均匀划分成若干个小区域,然后对每个小区域内的点进行计算,并选取最优点作为最终解。
格点法的优点是简单易行,但对于复杂的问题,需要大量的计算和迭代,时间复杂度较高。
- 切线法:切线法是一种基于目标函数的一阶导数信息进行搜索的方法。
它的基本思路是沿着目标函数的负梯度方向进行迭代搜索,直到找到最优解为止。
切线法的优点是收敛速度较快,但对于非光滑问题和存在多个局部最优点的问题,容易陷入局部最优。
2. 数学规划法:数学规划法是一种将最优化问题转化为数学模型的方法,然后借助已有的数学工具进行求解。
常用的数学规划法包括线性规划、非线性规划、整数规划等。
- 线性规划:线性规划是一种求解目标函数为线性函数、约束条件为线性等式或线性不等式的优化问题的方法。
常用的线性规划求解技巧包括单纯形法和内点法。
线性规划的优点是求解效率高,稳定性好,但只能处理线性问题。
- 非线性规划:非线性规划是一种求解目标函数为非线性函数、约束条件为非线性等式或非线性不等式的优化问题的方法。
常用的非线性规划求解技巧包括牛顿法、拟牛顿法、遗传算法等。
非线性规划的优点是可以处理更广泛的问题,但由于非线性函数的复杂性,求解过程相对较复杂和耗时。
- 整数规划:整数规划是一种在变量取值为整数的前提下求解优化问题的方法,是线性规划和非线性规划的扩展。
由于整数规划的复杂性,常常利用分支定界法等启发式算法进行求解。
3. 近似法:近似法是一种通过近似的方法求解最优化问题的技巧,常用于处理复杂问题和大规模数据。
最优化方法最详细总结
![最优化方法最详细总结](https://img.taocdn.com/s3/m/0b53ac7811661ed9ad51f01dc281e53a5802519a.png)
最优化方法最详细总结下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!最优化方法在计算机科学和数学领域广泛应用,其目的是寻找问题的最佳解决方案。
最优化法
![最优化法](https://img.taocdn.com/s3/m/8e4ba510b52acfc789ebc999.png)
优选法即“最优化理论”及解决方法始于第二次世界大战。
20世纪40年代初期,西方国家出于军事上的需要,提出一些不能用古典的微分法和变分法解决的最优化问题,从而产生了新的数学方法,并已成为应用数学上不可忽视的一个分支。
解决最优化问题的方法分两种:一种是间接最优化(或称解析最优化)方法,另一种是直接最优化(或称试验最优化)方法。
所谓间接最优化方法,就是要求把所研究的对象(如物理或化学过程)用数学方程描述出来,然后再用数学解析方法求出其最优解。
但是在很多情况下,研究对象本身机理不很清楚,无法用标准数学方程描述。
对于这种情形,可以构造一种函数来逼近这些试验数据,然后再从函数求最优解,并通过试验来验证。
然而也有很多实际问题可以不经过中间阶段,而直接通过少量试验,根据试验,结果的比较而迅速求得最优解——这就是“直接最优化方法”。
如爬山法、均分法、来回调试法、平分法、等这些安排科学试验的基本原则,早已应用,只是没有系统整理、提高为理论而已。
自从1953年美国的基弗(Kiefer)提出的分数法和.0618法后,从单因素方法扩展到多因素法、降维法等多种方法,在设计数字滤波器、变压器、微波网络及空间技术中确定最优弹道、空间交汇、拦截时间等方面都有广泛应用。
艾略特在1939年提出的波浪理论已经自觉不自觉地在应用“直接最优化方法”来判断和预测日后的走势。
如“主升浪是初升浪的1.618倍”等,他没有用“间接最优化法”先把初升浪和主升浪的数学方程函数求出来,而是直接求各种可能的结果。
但由于历史条件的限制,即受牛顿绝对时空观的束缚及最优化方法理论还不够完善情况的制约,艾略特只能把时间当常量,单就空间论空间,使得他不得不采用概率理论中的“把所有可能结果组成的集合样本空间”都罗列出来,让应用者自己去取舍。
譬如在经初升浪、主升浪后的收尾阶段——末升浪阶段,只能把末升浪推测为“与初升浪相等、失败或延长浪”。
即把A={与初升浪相等}、B={是初升浪的失败浪}、C={是初升浪的延长浪}三个事件的概率函数P(A)、P(B)、P(C)用语言表示法都罗列了出来了,却没有列出概率函数P(.)的具体计算公式。
最优化方法 总结
![最优化方法 总结](https://img.taocdn.com/s3/m/5bfe5c8ea0c7aa00b52acfc789eb172ded639993.png)
最优化方法总结
最优化方法是一种用于求解最优化问题的数学工具和技术。
最优化问题是指在给定约束条件下寻找使得目标函数取得最大或最小值的变量取值。
最优化方法主要分为两类:无约束优化和约束优化。
在无约束优化中,最优化方法包括:
1. 梯度下降法:通过不断迭代来寻找函数的最小值点,在每一步迭代中通过计算函数的梯度来确定下降的方向和步长。
2. 牛顿法:使用函数的一阶和二阶导数来近似估计最小值点,通过迭代计算来逐步逼近最小值点。
3. 拟牛顿法:使用函数的梯度信息来估计牛顿法的一阶导数信息,以减少计算二阶导数的复杂性。
4. 共轭梯度法:通过迭代来求解线性最小二乘问题,可以高效地求解大规模问题。
在约束优化中,最优化方法包括:
1. 等式约束优化:利用拉格朗日乘数法将等式约束转化为无约束优化问题,并使用无约束优化方法求解。
2. 不等式约束优化:使用罚函数、投影法或者序列二次规划等方法将不等式约束转化为无约束优化问题,并使用无约束优化方法求解。
3. 信赖域方法:通过构造信赖域来限制搜索方向和步长,以保证在搜索过程中满足约束条件。
4. 内点法:通过转化为等式约束问题,并使用迭代法来逐步逼近约束边界。
总体来说,选择适当的最优化方法取决于问题的性质和约束条件的类型。
不同的最优化方法有不同的优缺点,适用于不同的问题,因此需要在具体应用中进行选择和调整。
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/10f8abb06bec0975f465e2da.png)
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/bc5895a704a1b0717ed5dd0b.png)
五种最优化方法1. 最优化方法概述1.1最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
1.2最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法2.1简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
2.2 原理和步骤3. 最速下降法(梯度法)3.1最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;3.2 最速下降法算法原理和步骤4. 模式搜索法(步长加速法)4.1 简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
4.2模式搜索法步骤5.评价函数法5.1 简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x))s.t. g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
5.2 线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
最优化方法概述
![最优化方法概述](https://img.taocdn.com/s3/m/52a2db0b7cd184254b3535bf.png)
X(1)=(0, 0,120,50)T 相当于O(0,0)
20
x2 50 Q3¨0£ 40£ £ ¬ © 40 30 Q2¨15£ 20£ £ ¬ © É ò ¿ Ð Ó 10
X(2)=(25, 0,20,0)T 相当于Q1(25,0)
20
Q1¨25£ 0£ £ ¬ ©
O£ 0£ 0£ ¨ ¬ © 10 20 30 40 x
迭代数 函数计算数 使用的算法 PCG迭代数(large-scale algorithm only) 最终步长(medium-scale algorithm only)
无约束非线性规划
一元函数无约束优化问题
多元函数无约束优化问题
min{ f (x)| x ∈En }, 这里x =(x1 , x2 , …, xn)T.
S= 0
0 X3 1 0 0 0 X4 0 1 0 120 50 0 b Θ
x2 50 Q3¨0£ 40£ £ ¬ © 40 30 Q2¨15£ 20£ £ ¬ © É ò ¿ Ð Ó 10 Q1¨25£ 0£ £ ¬ © O£ 0£ 0£ ¨ ¬ © 10 20 30 40 x
X(1)=(0, 0,120,50)T 相当于O(0,0)
•x称为决策变量, •满足所有约束的变量称为可行解或可行点,可行点 的集合称为可行域。 •问题的求解是指在可行域中找一点x*,使得目标函 数在该点取极小值,这样的点称为问题的最优点,也 称为最小点,而相应的目标函数值f(x*)称为最优值, (x*,f(x*))称为最优解,习惯上x*称为最优解。
定义1:整体(全局)最优解:若x* D,对于一切 x D , 恒有 f x* f x 则称 x *是最优化问题的整体最优解。
局部最优解
五种最优化方法
![五种最优化方法](https://img.taocdn.com/s3/m/6d526967647d27284a735123.png)
五种最优化方法1. 最优化方法概述最优化问题的分类1)无约束和有约束条件;2)确定性和随机性最优问题(变量是否确定);3)线性优化与非线性优化(目标函数和约束条件是否线性);4)静态规划和动态规划(解是否随时间变化)。
最优化问题的一般形式(有约束条件):式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。
化过程就是优选X,使目标函数达到最优值。
2.牛顿法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)是一种函数逼近法。
原理和步骤3. 最速下降法(梯度法)最速下降法简介1)解决的是无约束非线性规划问题;2)是求解函数极值的一种方法;3)沿函数在该点处目标函数下降最快的方向作为搜索方向;最速下降法算法原理和步骤4. 模式搜索法(步长加速法)简介1)解决的是无约束非线性规划问题;2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。
3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。
轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。
模式搜索法步骤5.评价函数法简介评价函数法是求解多目标优化问题中的一种主要方法。
在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)). g(x)<=0传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。
常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。
选取其中一种线性加权求合法介绍。
线性加权求合法6. 遗传算法智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进而达到优化的一种方法,主要有人工神经网络法,遗传算法和模拟退火法等。
遗传算法基本概念1. 个体与种群个体就是模拟生物个体而对问题中的对象(一般就是问题的解)的一种称呼。
最优化方法及其应用
![最优化方法及其应用](https://img.taocdn.com/s3/m/841bbf88f78a6529657d5361.png)
第一章 最优化问题总论无论做任何一件事,人们总希望以最少的代价取得最大的效益,也就是力求最好,这就是优化问题.最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科.例如,从甲地到乙地有公路、水路、铁路、航空四种走法,如果我们追求的目标是省钱,那么只要比较一下这四种走法的票价,从中选择最便宜的那一种走法就达到目标.这是最简单的最优化问题,实际优化问题一般都比较复杂.概括地说,凡是追求最优目标的数学问题都属于最优化问题.作为最优化问题,一般要有三个要素:第一是目标;第二是方案;第三是限制条件.而且目标应是方案的“函数”.如果方案与时间无关,则该问题属于静态最优化问题;否则称为动态最优化问题.§1.1 最优化问题数学模型最简单的最优化问题实际上在高等数学中已遇到,这就是所谓函数极值,我们习惯上又称之为经典极值问题.例1.1 对边长为a 的正方形铁板,在四个角处剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?解 设剪去的正方形边长为x ,由题意易知,与此相应的水槽容积为x x a x f 2)2()(-=.令0)6)(2()2()2)(2(2)('2=--=-+--=x a x a x a x x a x f ,得两个驻点:a x a x 6121==,.第一个驻点不合实际,这是因为剪去4个边长为2a的正方形相当于将铁板全部剪去.现在来判断第二个驻点是否为极大点.∵ a x f 824)(''-=, 04)6(''<-=a af ,∴6a x =是极大点. 因此,每个角剪去边长为6a的正方形可使所制成的水槽容积最大.例1.2 求侧面积为常数)0(62>a a ,体积最大的长方体体积. 解 设长方体的长、宽、高分别为z y x ,,体积为v ,则依题意知体积为 xyz z y x f v ==)(,,,条件为06)(2)(2=-++=a xy xz yz z y x ,,ϕ.由拉格朗日乘数法,考虑函数)6222()(2a xy xz yz xyz z y x F -+++=λ,,,2()02()02()0x y z F yz y z F xz z x F xy x y λλλ'=++='=++='=++=,,,由题意可知z y x ,,应是正数,由此0≠λ,将上面三个等式分别乘以z y x ,,并利用条件23a xy zx yz =++,得到2222(3)02(3)02(3)0xyz a yz xyz a zx xyz a xy λλλ⎧+-=⎪+-=⎨⎪+-=⎩,,.比较以上三式可得xy a zx a yz a -=-=-222333,从而a z y x ===.又侧面积固定的长方体的最大体积客观存在,因此侧面积固定的长方体中以正方体体积最大,其最大值为3a .例1.3 某单位拟建一排四间的停车房,平面位置如图1.1所示.由于资金及材料的限制,围墙和隔墙的总长度不能超过40m ,为使车房面积最大,应如何选择长、宽尺寸?解 设四间停车房长为1x ,宽为2x .由题意可知面积为2121)(x x x x f =,,且变量1x ,2x 应满足405221≤+x x , 1200x x ≥≥,.即求2121),(m ax x x x x f =,1212254000x x x x +≤⎧⎨≥≥⎩,,.以上三个例子,虽然简单,但是它代表了三种类型的最优化问题.第一个例子代表无约束极值问题:一般可表示为),,,(m in 21n x x x f Λ或),,,(max 21n x x x f Λ.这里,),,,(21n x x x f Λ是定义在n R 上的可微函数.求极值的方法是从如下含有n 个未知数n x x x ,,,21Λ的非线性方程组⎪⎪⎩⎪⎪⎨⎧===0)('0)('0)('21212121n x n x n x x x x f x x x f x x x f n ΛΛΛΛΛΛΛ,,,,,中解出驻点,然后判定或验证这些驻点是不是极值点.第二个例子代表具有等式约束的极值问题: 一般可表示为121212min ()max ()()0123()n n j n f x x x f x x x h x x x j m m n ⎧⎪⎨==<⎪⎩L L L L ,,,或,,,,,,,,,,,,.该问题的求解通常采用拉格朗日乘数法,即把这个问题转化为求121212121()()()mn m n j j n j L x x x f x x x h x x x λλλλ==-∑L L L L ,,,;,,,,,,,,,的无约束极值问题.第三个例子代表具有不等式约束的极值问题.下面具体分析上述三种类型的最优化问题中按经典极值问题解法可能出现不能解决的情况:(1)当变量个数增加且方程组又是非线性,求解此方程组只有在相当特殊情况下才能人工解出.正因为如此,通常高等数学中的求极值问题的变量个数一般不超过三个.(2)当限制条件出现不等式,无论变量数多少,按经典极值方法求解根本无法解决. 直到本世纪50年代,最优化理论的建立以及电子计算机的迅速发展,才为求解各种最优化问题提供了雄厚的基础和有效手段.不过最优化方法作为一门崭新的应用学科,有关理论和方法还没有完善,有许多问题还有待解决,目前正处于迅速发展之中.最优化问题的数学模型包含三个要素:变量(又称设计变量)、目标函数、约束条件. 一、变量一个优化设计方案是用一组设计参数的最优组合来表示的.这些设计参数可概括地划分为两类:一类是可以根据客观规律、具体条件、已有数据等预先给定的参数,统称为常量;另一类是在优化过程中经过逐步调整,最后达到最优值的独立参数,称为变量.优化问题的目的就是使各变量达到最优组合.变量的个数称为优化问题的维数.例如有n 个变量n x x x ,,,Λ21的优化问题就是在n 维空间n R 中寻优.n 维空间n R 中的点T n x x x X ][21,,,Λ=就代表优化问题中的一个方案.当变量为连续量时,称为连续变量;若变量只能在离散量中取值,称为离散变量.二、目标函数反映变量间相互关系的数学表达式称为目标函数.其值的大小可以用来评价优化方案的好坏.按照规范化的形式,一般把优化问题归结为求目标函数的极小化问题,换句话说,目标函数值越小,优化方案越好.对于某些追求目标函数极大的问题,可以转化成求其负值最小的问题,即12max ()max ()min[()]n f X f x x x f X ==--L ,,,.因此在本书的叙述中,一律把优化问题描述为目标函数的极小化问题,其一般形式为12min ()min ()n f X f x x x =L ,,,. 如果优化问题只有一个目标函数,称为单目标函数,如果优化问题同时追求多个目标,则该问题的目标函数称为多目标函数.多目标优化问题的目标函数通常表示为12min ()[()()()]T m V F X f X f X f X -=L ,,,,其中Tn x x x X ][21,,,Λ=.这时的目标函数在目标空间中是一个m 维矢量,所以又称之为矢量优化问题(一般用min 加一个前缀“-V ”来表示矢量极小化). 三、约束条件变量间本身应该遵循的限制条件的数学表达式称为约束条件或约束函数. 约束条件按其表达式可分为不等式约束和等式约束两种,即()012..()012i j g X i l s t h X j m ≥=⎧⎪⎨==⎪⎩L L ,,,,,,,,,.上式中“s . t .”为Subject to 的缩写,意即“满足于”或“受限于”.按约束条件的作用还可将约束条件划分为起作用的约束(紧约束、有效约束)和不起作用的约束(松约束、消极约束).等式约束相当于空间里一条曲线(曲面或超曲面),点X 必须为该曲线(曲面或超曲面)上的一点,因而总是紧约束.有一个独立的等式约束,就可用代入法消去一个变量,使优化问题降低一维.因此,数学模型中独立的等式约束个数应小于变量个数;如果相等,就不是一个待定优化系统,而是一个没有优化余地的既定系统.不等式约束通常是以其边界)0)((0)(≈=X g X g 或表现出约束作用的,它只限制点X 必须落在允许的区域内(包括边界上),因而不等式约束的个数与变量个数无关.不带约束条件的优化问题称为无约束最优化问题;带约束条件的优化问题称为约束最优化问题.四、带约束条件的优化问题数学模型表示形式综上所述,全书所要讨论的问题是如下的(静态)最优化问题,其表示形式有三种: 第一种最优化问题表示形式为1212[]1212min()()012..()012()T n n x x x i n j n f x x x g x x x i l s t h x x x j m m n ∈Ω≥=⎧⎪⎨==<⎪⎩L L L L L L ,,,,,,,,,,,,,,,,,,,,,,.第二种最优化问题表示形式为min ()()012..()012()X i j f X g X i l s t h X j m m n ∈Ω≥=⎧⎪⎨==<⎪⎩L L ,,,,,,,,,,.第三种最优化问题表示形式为min ()()0..()0X f G X s t H X ∈Ω≥⎧⎨=⎩,,,X(1.1)其中11()[()()]()[()()]T Tl m G X g X g X H X h X h X ==L L ,,,,,. 上述三种表示形式中,X ∈Ω称为集约束.在所讨论的最优化问题中,集约束是无关紧要的.这是因为一般nR ≡Ω,不然的话,Ω通常也可用不等式约束表达出来.因此今后一般不再考虑集约束.满足所有约束的点X 称为容许点或可行点.容许点的集合称为容许集或可行域.可用 {|()012()012()}i j D X g X i l h X j m m n =≥===<L L ,,,,;,,,, 表示.一般地,对于最优化问题(1.1)的求解,是指在可行域内找一点*X ,使得目标函数)(X f在该点取得极小值,即***()min ()()0..()0f X f X G X s t H X =≥⎧⎨=⎩,,.这样的*X 称为问题(1.1)的最优点,也称极小点,而相应的目标函数值)(*X f 称为最优值;合起来,))((**X f X ,称为最优解,但习惯上常把*X 本身称为最优解.最优点的各分量和最优值必须是有限数.§1.2 最优化问题的算法一、二维最优化问题的图解法二维最优化问题具有鲜明的几何解释,这对于理解有关理论和掌握所述的方法是很有益处的.下面讨论的二维最优化问题为⎩⎨⎧==≥.0)(210)(..)(min 212121x x h l i x x g t s x x f i ,,,,,,,Λ(一)约束集合当约束函数为线性时,等式约束在21x x ,的坐标平面上为一条直线;不等式约束在21x x ,的坐标平面上为一半平面.当约束函数(例如)(21x x h ,)为非线性时,则等式约束条件0)(21=x x h ,在21x x ,的坐标平面上为一条曲线(如图 1.2所示).当约束函数(例如)(211x x g ,)为非线性时,则不等式约束0)(211≥x x g ,在21x x ,的坐标平面上为曲线0)(211=x x g ,把坐标平面分成两部分当中的一部分(如图1.3所示).图1.2图1.3综上所述,当把约束条件中的每一个等式所确定的曲线,以及每一个不等式所确定的部分在21x x ,坐标平面上画出之后,它们相交的公共部分即为约束集合D . 例1.4 在21x x ,坐标平面上画出约束集合 }001|],{[21222121≥≥≤+=x x x x x x D T ,,.解 满足12221≤+x x 的区域为以原点为圆心,半径为1的圆盘;满足0021≥≥x x ,的区域为第一象限中的扇形(如图1.4所示).(二)等高线我们知道)(21x x f t ,=在三维空间中表示一张曲面.c t =(其中c 为常数)在三维空间中表示平行于21x x ,平面的一个平面,这个平面上任何一点的高度都等于常数c (如图1.5所示).图1.4图1.5现在,在三维空间中曲面)(21x x f t ,=与平面c t =有一条交线L .交线L 在21x x ,平面上的投影曲线是L ',可见曲线L '上的点T x x ][21,到平面c t =的高度都等于常数c ,也即曲线L '上的T x x ][21,的函数值)(21x x f ,都具有相同的值c .当常数c 取不同的值时,重复上面的讨论,在21x x ,平面上得到一簇曲线——等高线.不难看出,等高线的形状完全由曲面)(21x x f t ,=的形状所决定;反之,由等高线的形状也可以推测出曲面)(21x x f t ,=的形状.在以后的讨论中,不必具体画出曲面)(21x x f t ,=的图形,只须在21x x ,平面上变动常数c 画出曲线簇c x x f =)(21,. 例1.5 在21x x ,坐标平面上画出目标函数222121)(x x x x f +=,的等高线. 解 因为当取0>c 时,曲线c x x =+2221表示是以原点为圆心,半径为c 的圆.因此等高线是一簇以原点为圆心的同心圆(如图1.6所示).(三)几何意义及图解法当在21x x ,坐标平面上分别画出约束集合D 以及目标函数)(21x x f ,的等高线后,不难求出二维最优化问题的最优解.下面举例说明.例1.6 用图解法求解二维最优化问题2212221212min[(2)(2)]1..00x x x x s t x x +++⎧+≤⎪⎨≥≥⎪⎩,,,. 解 由例1.4得到约束集合D (如图1.7所示).目标函数的等高线是以T]22[--,为圆心的同心圆,并且这簇同心圆的外圈比内圈的目标函数值大.因此,这一问题成为在约束集合中找一点Tx x ][21,,使其落在半径最小的那个同心圆上.不难看出,问题的最优解图1.6T T x x X ]00[][21*,,==.图1.7二、最优化问题的迭代解法(一)迭代方法在经典极值问题中,解析法虽然具有概念简明,计算精确等优点,但因只能适用于简单或特殊问题的寻优,对于复杂的工程实际问题通常无能为力,所以极少使用.最优化问题的迭代算法是指:从某一选定的初始点出发,根据目标函数、约束函数在该点的某些信息,确定本次迭代的一个搜索方向和适当的步长,从而到达一个新点,用式子表示即为1012k k k k X X t P k +=+=L ,,,,(1.2)式中k X 代表前一次已取得的迭代点,在开始计算时为迭代初始点0X ,1+k X 代表新的迭代点,k P 代表第k 次迭代计算的搜索方向,k t 代表第k 次迭代计算的步长因子.按照式(1.2)进行一系列迭代计算所根据的思想是所谓的“爬山法”,就是将寻求函数极小点(无约束或约束极小点)的过程比喻为向“山”的顶峰攀登的过程,始终保持向“高”的方向前进,直至达到“山顶”.当然“山顶”可以理解为目标函数的极大值,也可以理解为极小值,前者称为上升算法,后者称为下降算法.这两种算法都有一个共同的特点,就是每前进一步都应该使目标函数有所改善,同时还要为下一步移动的搜索方向提供有用的信息.如果是下降算法,则序列迭代点的目标函数值必须满足下列关系011()()()()k k f X f X f X f X +>>>>L .如果是求一个约束的极小点,则每一次迭代的新点Λ,,21X X 都应该在约束可行域内,即 012k X D k ∈=L ,,,,图1.8为迭代过程示意图.由上面的迭代过程可知,在迭代过程中有两个规则需要确定:一个是搜索方向k P 的选取;一个是步长因子k t 的选取.一旦k P 和k t 的选取方法确定,则一种迭代算法就确定,即不同的规则就对应不同的最优化方法.(二)收敛速度与计算终止准则(1)收敛速度作为一个算法,能够收敛于问题的最优解当然是必要8的,但仅收敛还不够,还必须能以较快的速度收敛,这才是好的算法.图1.8定义1.1 设由算法A 产生的迭代点列{}k X 在某种“||·||”的意义下收敛于点*X ,即0||||lim *=-∞→X X k k ,若存在实数0>α及一个与迭代次数k 无关的常数0>q ,使得,q X X X X k k k =--+∞→α||||||||lim **1则称算法A 产生的迭代点列}{k X 具有α阶收敛速度,或称算法A 为α阶收敛的.特别地:① 当01>=q ,α时,称迭代点列}{k X 具有线性收敛速度或称算法A 为线性收敛的. ② 当021><<q ,α时,或0,1==q α时,称迭代点列}{k X 具有超线性收敛速度或称算法A 是超线性收敛.③ 当2=α时,迭代点列}{k X 叫做具有二阶收敛速度或算法A 是二阶收敛的. 一般认为,具有超线性收敛或二阶收敛的算法是较快速的算法.例1.7 设一算法A 产生迭代点列}1{k X k =,它收敛于点0*=X ,试判定算法A 的收敛速度.解 因为 1|01||011|lim =--+∞→k k k ,即取 01,1>==q α.所以算法A 具有线性收敛速度.例1.8 设一算法A 产生迭代点列}1{k k k X =,它收敛于0*=X ,试确定A 的收敛速度.解 因为11)1(lim |01||0)1(1|lim +∞→+∞→+=--+k k k k k k k k k k11lim()01k k k k k +→∞=⋅=+,即取0,1==q α. 所以A 是超线性收敛的. (2)计算终止准则用迭代方法寻优时,其迭代过程不能无限制地进行下去,那么什么时候截断这种迭代呢?这就是迭代什么时候终止的问题.从理论上说,当然希望最终迭代点到达理论极小点,或者使最终迭代点与理论极小点之间的距离足够小时才终止迭代.但是这在实际上是办不到的.因为对于一个待求的优化问题,其理论极小点在哪里并不知道.所知道的只是通过迭代计算获得的迭代点列}{k X ,因此只能从点列所提供的信息来判断是否应该终止迭代.对于无约束优化问题通常采用的迭代终止准则有以下几种: ①点距准则相邻两迭代点1+k k X X ,之间的距离已达到充分小,即 ε≤-+||||1k k X X ,上式中ε是一个充分小的正数,代表计算精度.②函数下降量准则相邻两迭代点的函数值下降量已达到充分小.当1|)(|1<+k X f 时,可用函数绝对下降量准则ε≤-+|)()(|1k k X f X f .当1|)(|1>+k X f 时,可用函数相对下降量准则ε≤-++|)()()(|11k k k X f X f X f .③梯度准则目标函数在迭代点的梯度已达到充分小,即ε≤∇+||)(||1k X f .这一准则对于定义域上的凸函数是完全正确的.若是非凸函数,有可能导致误把驻点作为最优点.(凸函数的定义请参见第二章2.6节)对于约束优化问题,不同的优化方法有各自的终止准则. 综上所述,优化算法的基本迭代过程如下: ① 选定初始点0X ,置0=k .② 按照某种规则确定搜索方向k P . ③ 按某种规则确定k t 使得)()(k k k k X f P t X f <+.④ 计算k k k k P t X X +=+1.⑤ 判定1+k X 是否满足终止准则.若满足,则打印1+k X 和)(1+k X f ,停机;否则置1+=k k ,转②.上述算法用框图表达如图1.9.§1.3 最优化算法分类所谓优化算法,其实就是一种搜索过程或规则,它是基于某种思想和机制,通过一定的途径或规则来得到满足用户要求的问题的解.就优化机制与行为而分,目前工程中常用的优化算法主要可分为:经典算法、构造型算法、改进型算法、基于系统动态演化的算法和混合型算法等.(1)经典算法.包括线性规划、动态规划、整数规划和分枝定界等运筹学中的传统算法,其算法计算复杂性一般很大,只适于求解小规模问题,在工程中往往不实用.(2)构造型算法.用构造的方法快速建立问题的解,通常算法的优化质量差,难以满足工程需要.譬如,调度问题中的典型构造型方法有:Johnson 法、Palmer 法、Gupta 法、CDS 法、Daunenbring 的快速接近法、NEH 法等.(3)改进型算法,或称邻域搜索算法.从任一解出发,对其邻域的不断搜索和当前解的替换来实现优化.根据搜索行为,它又可分为局部搜索法和指导性搜索法.①局部搜索法.以局部优化策略在当前解的邻域中贪婪搜索,如只接受优于当前解的状态作为下一当前解的爬山法;接受当前解邻域中的最好解作为下一当前解的最陡下降法等.②指导性搜索法.利用一些指导规则来指导整个解空间中优良解的探索,如SA 、GA 、TS 等.(4)基于系统动态演化的算法.将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌搜索等.(5)混合型算法.指上述各算法从结构或操作上相混合而产生的各类算法. 优化算法当然还可以从别的角度进行分类,如确定性算法和不确定性算法,局部优化算法和全局优化算法等.§1.4 组合优化问题简介一、组合优化问题建模优化问题涉及的工程领域很广,问题种类与性质繁多,归纳而言,最优化问题可分为函数优化问题和组合优化问题两大类,上一节介绍的最优化数学模型属于函数优化问题,该函数优化的对象是一定区间内的连续变量,而组合优化的对象则是解空间中的离散状态.本节重点介绍组合优化问题.组合优化问题是通过对数学方法的研究去寻找离散事件的最优编排、分组、次序或筛选等,所研究的问题涉及信息技术、经济管理、工业工程、交通运输、通信网络等诸多领域,该问题数学模型可表示为⎩⎨⎧=≥Ω∈,,0)(0)(..)(min X H X G t s X f X其中)(X f 为目标函数,)(X G 和)(X H 为约束函数,X 为决策变量,Ω表示有限个点组成的集合.一个组合优化问题可用3个参数)(f D ,,Ω表示,其中Ω表示决策变量的定义域,D 表示可行解区域}0)(0)(|{=≥Ω∈=X H X G X X D ,,,D 中的任何一个元素称为该问题的可行解,f 表示目标函数,满足}|)(m in{)(*D X X f X f ∈=的可行解*X 称为该问题的最优解.组合最优化问题的特点是可行解集合为有限集.由直观可知,只要将Ω中有限个点逐一判别是否满足约束条件0)(0)(=≥X H X G ,和比较目标函数值的大小,该问题的最优解一定存在并可以求得,下面是三个典型的组合优化问题.例1.9 0-1背包问题(knapsack problem )设有一个容积为b 的背包,n 个体积分别为),,2,1(n i a i Λ=,价值分别为),,2,1(n i c i Λ=的物品,如何以最大的价值装包?这个问题称为0-1背包问题.用数学模型表示为∑=ni ii x c 1max , (1.3)⎪⎩⎪⎨⎧=∈≤∑=)5.1(21}10{)4.1(..1.,,,,,,n i x b x a t s ini i i Λ其中目标(1.3)欲使包内所装物品的价值最大,式(1.4)为包的能力限制,式(1.5)表示i x 为二进制变量,1=i x 表示装第i 个物品,0=i x 则表示不装.例1.10 旅行商问题(TSP ,traveling salesman problem )一个商人欲到n 个城市推销商品,每两个城市i 和j 之间的距离为ij d,如何选择一条道路使得商人每个城市走一遍后回到起点且所走路径最短.TSP 还可以细分为对称和非对称距离两大类问题.当对任意的j i ,时都有jiij d d =,则称该TSP 为对称距离TSP ,否则称为非对称距离TSP .对一般的TSP ,它的一种数学模型描述为∑≠ji ijij x d min , (1.6)11,112(1.7)112(1.8)..||12||2{12}(1.9){01}12(1.10)nij j n ij i ij i j Sij x i n x j n s t x S S n S n x i j n i j ==∈⎧==⎪⎪⎪⎪==⎨⎪≤-≤≤-⊂⎪⎪⎪∈=≠⎩∑∑∑L L L L ,,,,,,,,,,,,,,,,,,,,,,,.以上是基于图论的数学模型.其中式(1.10)中的决策变量ijx =1表示商人行走的路线包含从城市i 到城市j 的路径,0=ij x 表示商人没有选择走这条路.j i ≠的约束可以减少变量的个数,使得共有)1(-⨯n n 个决策变量.目标(1.6)要求距离之和最小.式(1.7)要求商人从城市i 出来一次,式(1.8)要求商人走入城市j 只有一次.式(1.7)和式(1.8)表示每个城市经过一次.仅有式(1.7)和式(1.8)的约束无法避免回路的产生,一条回路是由)1(n k k ≤≤个城市和k 条弧组成,因此,式(1.9)约束旅行商在任何一个城市子集中不形成回路,其中||S 表示集合S 中元素个数.例1.11 聚类问题m 维空间上的n 个模式}21|{n i X i ,,,Λ=要求聚类成k 类,使得各类本身内的点最相近,即∑=-ni p p i R X 0)(||||min ,其中p R 为第p 类的中心,∑==pn i p ip p Xn R 1)(1,k p ,,,Λ21=,pn 为第p 类中的点数.二、算法复杂性前面给大家介绍的三个组合优化问题例子,模型建立都比较简单,但要求它们的最优解却很困难,而解模型的困难主要原因是所谓的“组合爆炸”,如聚类问题的可能划分方式有!/k k n 个,TSP 问题有!n 个.显然状态数量随问题规模呈超指数增长,若计算机每秒处理1亿种排列,则列举20个城市问题的20!种排列约需几百年.如此巨大的计算量是无法承受的,更不用谈更大规模问题的求解,因此解决这些问题的关键在于寻求有效的优化算法,也正是由于组合优化问题算法的复杂性,激起了人们对它的理论与算法研究的兴趣.算法的复杂性是指算法对时间复杂性和对空间复杂性.按照算法复杂性求解的难易程度,可把组合优化问题分为P 类,NP 类和NP 完全类.算法或问题的复杂性一般表示为问题规模n (如TSP 问题中的城市数)的函数,时间的复杂性记为)(n T ,空间的复杂性记为)(n S .在算法分析和设计中,沿用实用性的复杂性概念,即把求解问题的关键操作,如加、减、乘,比较等运算指定为基本操作,算法执行基本操作的次数则定义的算法的时间复杂性,算法执行期间占用的存储单元则定义为算法的空间复杂性.P 类问题指具有多项式时间求解算法的问题类.许多优化问题仍没有找到求得最优解的多项式时间算法,称这种比P 类问题更广泛的问题为非确定型多项式算法的问题类,即NP 问题.三、NP 完全问题离散问题的求解常常要从有限个方案中选出一个满意的结果来 ,也许有人认为,从有限个方案中挑选一个,总是比较容易的.然而,事实并非如此,关键在于问题的规模.由于计算机的出现,人们对问题的求解在观念上发生了改变,一个在理论上可解的问题如果在求解时需要花费相当多,以至于不合理的时间(如几百年甚至更长时间),我们不能认为它已解决,而应当努力寻找更好的算法.如何比较算法的好坏呢?从不同的角度出发可以有不同的回答.这里,仅就算法的计算速度作一个十分粗略的比较.设有一台每小时能进行M 次运算的计算机.并设问题已有两种不同的算法,算法A 对规模为n 的问题约需作2n 次运算,算法B 则约需作n2次运算.运用算法A 在一个小时内大约可解一个规模为M 的问题,而算法B 则大约可解一个规模为M 2log 的问题.现在假设计算机有了改进,例如计算速度提高了100倍.此时,利用算法A 能求解的问题规模增大了10倍,利用算法B 可解的问题规模只增加了7100log 2<.前者得到了成倍的增加,而后者则几乎没有什么改变,今天无法求解的问题,将来也很少有希望解决.由于这一原因,对算法作如下分类.定义1.2(多项式算法) 设A 是求解某类问题D 的一个算法,n 为问题D 的规模,用)(n D f A ,表示用算法A 在计算机上求解这一问题时需作的初等运算的次数.若存在一个多项式)(n P 和正整数N ,当N n ≥时,总有)(),(n P n D f A ≤(不论求解的D 是怎样的具体实例),则称算法A 是求解问题D 的一个多项式算法.定义1.3(指数算法) 设算法B 是求解某类问题D 的一个算法,若存在一个常数0>k ,对任意n ,总可以找到问题D 的一个规模为n 的实例,用算法B 求解时,所需的计算量约为)2()(kn B o n D f =,,则称B 为求解问题D 的一个指数算法.多项式算法被称为是“好”算法(或有效算法),而指数算法则一般认为是“坏”算法,因为它只能用来求解规模很小的问题.这样看来,对一个问题只有在找到求解它的多项式算法后才能较为放心.然而十分可惜的是,对于许多具有广泛应用价值的离散模型,人们至今仍未找到多项式算法.现在的任何算法在最坏的情况下计算量均可达到或接近n2.1971年和1972年,S. Cook 和R. Karp 分别发表了相关论文,奠定了NP 完全理论基础.Cook 指出,NP 完全类问题,具有两个性质:(1)这类问题中的任何一个问题至今均未发现有多项式算法.(2)只要其中任一个问题找到了多项式算法,那么其他所有问题也就有了多项式算法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化方法
Optimization Methods
课程编号:0011005 开课单位:理学院
学时/学分:36/2开课学期:2
课程性质:学位课
适用学科:学术型各学科
大纲撰写人:宋巨龙
一、教学目的及要求:
本课程所讲授的内容是工程应用的基本工具,是一门实用性较强的应用型课程。
其主要目的在于讲授现代优化设计中常用的优化计算方法及其应用,使学生初步掌握现代工程优化设计的计算方法,具备用计算机进行工程优化设计、解决工程优化问题的能力。
要求学生重点掌握优化计算的基本概念、基本思想和基本计算步骤,能编制优化算法的计算计程序。
二、课程主要内容:
1. 最优化方法的数学基础
2. 最优化方法的基本概念和基本类型
3. 优化设计中常用的一维搜索方法
①黄金分割法;②牛顿切线法;③两分法
4. 求解无约束最优化问题的
①最速下降法;②牛顿法;③共轭梯度法
5 求解约束最优化问题的
①外罚函数法;②内罚函数法
6 求解线性规划问题的
①图解法;②单纯刑法及其转轴运算
三、课程教材及教学参考书:
课程教材:
宋巨龙等,《最优化方法》,西安电子科技大学出版社,2012年9月
主要参考书:
[1]张光澄等,《非线性最优化计算方法》,高等教育出版社,2005年7月,北京,第1版。
[2]何坚勇,《运筹学基础》,清华大学出版社,2000年7月,
[3]张可村,《工程优化的算法与分析》,西安交通大学出版社,1988年1月。