经济数学基础课后答案(概率统计第三分册)第二章_习题解答
概率统计(概率论)第二章练习题答案及解析
第二章习题与答案同学们根据自己作答的实际情况,并结合总正误率和单个题目正误统计以及答案解析来总结和分析习题!!!标红表示正确答案标蓝表示解析1、为掌握商品销售情况,对占该地区商品销售额60%的10家大型商场进行调查,这种调查方式属于( )。
A普查B抽样调查【解析:抽取一部分单位进行调查;习惯上将概率抽样(根据随机原则来抽取样本)称为抽样调查】C重点调查【解析:在调查对象中选择一部分重点单位进行调查的一种非全面调查】D统计报表2、人口普查规定标准时间是为了()。
A确定调查对象和调查单位B避免资料的重复和遗漏。
C使不同时间的资料具有可比性D便于登记资料【解析:规定时间只是为了统计该时间段内的人口数据,没有不同时间数据对比的需要】3、对一批灯泡的使用寿命进行调查,应该采用( )。
A普查 B重点调查 C典型调查D抽样调查4、分布数列反映( )。
A总体单位标志值在各组的分布状况B总体单位在各组的分布状况【解析:课本30页1.分布数列的概念一段最后一句】C总体单位标志值的差异情况D总体单位的差异情况5、与直方图比较,茎叶图( )。
A没有保留原始数据的信息B保留了原始数据的信息【解析:直方图展示了总体数据的主要分布特征,但它掩盖了各组内数据的具体差异。
为了弥补这一局限,对于未分组的原始数据则可以用茎叶图来观察其分布。
课本P38】C更适合描述分类数据D不能很好反映数据的分布特征6、在累计次数分布中,某组的向上累计次数表明( )。
A大于该组上限的次数是多少B大于该组下限的次数是多少C小于该组上限的次数是多少【解析:向上累计是由变量值小的组向变量值大的组累计各组的次数或频率,各组的累计次数表明小于该组上限的次数或百分数共有多少。
课本P33】D小于该组下限的次数是多少7、对某连续变量编制组距数列,第一组上限为500,第二组组中值是750,则第一组组中值为 ( )。
A. 200B. 250C. 500D. 300【解析:组中值=下限+组距/2=上限+组距/2】8、下列图形中最适合描述一组定量数据分布的是( )。
概率论第三版第2章答案详解
第二章作业题解:2.1 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式.解:由表格知X 的可能取值为2,3,4,5,6,7,8,9,10,11,12。
并且,361)12()2(====X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ;365)8()6(====X P X P ;366)7(==X P 。
即36|7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12)2.2 设离散型随机变量的概率分布为,2,1,}{ ===-k ae k X P k 试确定常数a .解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故1-=e a2.3 甲、乙两人投篮时, 命中率分别为0.7和0.4 , 今甲、乙各投篮两次, 求下列事件的概率:(1) 两人投中的次数相同; (2) 甲比乙投中的次数多.解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ========两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=⨯⨯⨯=B B A A P , 两人各投中一次的概率为:2016.06.04.03.07.04)()()()(1221211212212121=⨯⨯⨯⨯=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。
所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:12121221121212121212()()()()()20.490.40.60.490.3620.210.360.5628P A A B B P A A B B P A A B B P A A B B P A A B B ++++=⨯⨯⨯+⨯+⨯⨯= 2.4 设离散型随机变量X 的概率分布为5,4,3,2,1,15}{===k kk X P ,求 )31()1(≤≤X P )5.25.0()2(<<X P解:(1)52153152151)31(=++=≤≤X P (2) )2()1()5.25.0(=+==<<X P X P X P 51152151=+=2.5 设离散型随机变量X 的概率分布为,,3,2,1,21}{ ===k k X P k,求 };6,4,2{)1( =X P }3{)2(≥X P解:31)21211(21212121}6,4,2{)1(422642=++⨯=++== X P41}2{}1{1}3{)2(==-=-=≥X P X P X P2.6 设事件A 在每次试验中发生的概率均为0.4 , 当A 发生3 次或3 次以上时, 指示灯发出信号, 求下列事件的概率:(1) 进行4 次独立试验, 指示灯发出信号; (2) 进行5 次独立试验, 指示灯发出信号.解:(1))4()3()3(=+==≥X P X P X P1792.04.06.04.04334=+⨯=C(2) )5()4()3()3(=+=+==≥X P X P X P X P31744.04.06.04.06.04.054452335=+⨯+⨯=C C .2.7 某城市在长度为t (单位:小时) 的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布, 且与时间间隔的起点无关, 求下列事件的概率: (1) 某天中午12 时至下午15 时未发生火灾; (2) 某天中午12 时至下午16 时至少发生两次火灾. 解:(1)()!kP X k e k λλ-==,由题意,0.53 1.5,0k λ=⨯==,所求事件的概率为 1.5e -. (2)0(2)110!1!P X e e e e λλλλλλλ----≥=--=--, 由题意,0.54 1.5λ=⨯=,所求事件的概率为213e --.2.8 为保证设备的正常运行, 必须配备一定数量的设备维修人员. 现有同类设备180 台, 且各台设备工作相互独立, 任一时刻发生故障的概率都是0.01,假设一台设备的故障由一人进行修理,问至少应配备多少名修理人员, 才能保证设备发生故障后能得到及时修理的概率不小于0.99?解:设应配备m 名设备维修人员。
概率论与数理统计第二章课后习题及参考答案
于是
P ( X k ) p (1 p ) k 1 ,
所以 X 的分布律为 P ( X k ) p (1 p ) k 1 , k 1,2, . (2) Y 的所有可能取值为 0,1,2,…, k ,…,于是
Y 的分布律为 P (Y k ) p (1 p ) k 1 , k 0,1,2, .
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 , X 的分布律为 X P
1000000 0.16
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
由题知, { X k} A B , AB ,则
P ( A) p k 1 (1 p ) , P ( B ) (1 p ) k 1 p , P ( X k ) P ( A B ) P ( A) P ( B ) p k 1 (1 p ) (1 p ) k 1 p ,
x 0, 0, 2 2x x F ( x ) 2 ,0 x a , . a a x a. 1, a a 1 1 (3) P ( X a ) F (a ) F ( ) 1 (1 ) . 2 2 4 4
12.设随机变量 X 在 [2,6] 上服从均匀分布,现对 X 进行三次独立观察,试求至 少有两次观测值大于 3 的概率. 解:由题意知
吴赣昌编 《概率论与数理统计》(经管类三版) 第二章
吴赣昌经管类三版复习提要及课后习题解答习题2-2题型一:求随机变量的分布律、分布律的性质应用、由分布律求概率(题1-7)1. 设~()X P λ,且(1)(2)P X P X ===,求λ,(1)P X ≥=2(03)P X <<=.解:122(1)2(0)1!2!2P X eeλλλλλλλλ--===⇒=⇒=>2、设随机变量的分布律为{}(1,2,3,4,5)15kP X k k ===,求(1)15{}22P X <<;(2){13}P X ≤≤;(3){3}P X > 解:由分布律的性质51{}1k P X k ===∑,得(1)15121{}{1}{2}2215155P X P x x <<==+==+=(2)312{13}155k k P X =≤≤==∑(3)3{3}1{3}1{13}5P X P X P X >=-≤=-≤≤=3、已知X 只取-1,0,1,2四个值,相应的概率为1357,,,24816c c c c,求常数c ,并计算{1|0}P X X <≠。
解:由分布律的性质有1357124816c c c c+++=,所以3716c ={1,0}{1}8{1|0}{0}{1}{1}{2}25P X X P X P X X P X P X P X P X <≠=-<≠===≠=-+=+=4、一袋中有5只球,编号分别为1,2,3,4,5,在袋中同时取5只球,以X 表示取出的3只球中的大号码,求X 的分布律。
解:由题意知,X 所有可能取到的值为3,4,5,由古典概率计算公式可得分布律为3511{3}10P X C===,23353{4}10C P X C ===,24356{5}10C P X C ===5、某加油站替出租公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元。
因为代出租汽车这项业务,每天加油站需多付职工的服务费60元。
概率论与数理统计第三版课后习题答案
概率论与数理统计第三版课后习题答案概率论与数理统计是一门应用广泛的数学学科,它研究了随机事件的发生规律和数据的统计分析方法。
而《概率论与数理统计》第三版是一本经典的教材,它系统地介绍了概率论和数理统计的基本理论和方法。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供一些《概率论与数理统计》第三版课后习题的答案,希望能对大家的学习有所帮助。
第一章概率论的基本概念1. 掷一颗骰子,问出现奇数的概率是多少?答:骰子一共有6个面,其中3个面是奇数(1、3、5),所以出现奇数的概率是3/6=1/2。
2. 从一副扑克牌中随机抽取一张牌,问抽到红心的概率是多少?答:一副扑克牌有52张牌,其中有13张红心牌,所以抽到红心的概率是13/52=1/4。
第二章随机变量及其分布1. 设随机变量X的概率密度函数为f(x)=kx,其中0<x<1,求k的值。
答:由概率密度函数的性质可知,对于0<x<1,有∫f(x)dx=∫kxdx=1,解得k=2。
2. 设随机变量X的概率密度函数为f(x)=ce^(-x),其中x>0,求c的值。
答:由概率密度函数的性质可知,对于x>0,有∫f(x)dx=∫ce^(-x)dx=1,解得c=1。
第三章多维随机变量及其分布1. 设随机变量(X,Y)服从二维正态分布,其概率密度函数为f(x,y)=1/(2πσ1σ2√(1-ρ^2))e^(-(1/(2(1-ρ^2)))(x^2/σ1^2-2ρxy/(σ1σ2)+y^2/σ2^2)),其中-∞<x,y<∞,求常数σ1、σ2和相关系数ρ之间的关系。
答:由二维正态分布的性质可知,对于-∞<x,y<∞,有∫∫f(x,y)dxdy=1,解得σ1σ2√(1-ρ^2)=1。
2. 设随机变量(X,Y)服从二维均匀分布,其概率密度函数为f(x,y)=1/(b-a)(d-c),其中a<x<b,c<y<d,求常数a、b、c、d之间的关系。
经济数学基础 概率统计课后习题答案
目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω== )+#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P P P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB P P (B |A)=7.0)()(=A P AB P P (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P += 37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k qp C n k A B P kn k k n n k 00)|(> 其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值. 解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n ppP 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p 解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠⎰x x,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x cx x f cx ,> 其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a 由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21{}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P . 解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e xx A-+确定A 的值;求分布函数F ( x ) . 解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布. 34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y 1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z 36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x > Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y > 当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y即Y 服从区间(0 , 2π)上的均匀分布. z =x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-. 因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x --='当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞- 1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f b b ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 2212=⎰=x xx EX DX = EX 2- ( EX )2 =454 在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x x EX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0DY =2σDX=151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.60.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10.)(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY 62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===3 2 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={} 71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值:(1);9.0=≤}{a X P ;(2){};9.0 =≤a X P (3){};97725.0=≤a X P (4)};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。
经济数学基础课后答案(概率统计第三分册)第二章习题解答
f
(
x)
c ,
1 x2
x 1
0,
其它
确
定c值
;
计
算P
x
1 2
.
1
解:1 f ( x)dx
1
1
c
x2
dx
1
c
1
1 dx 1 x2
c arcsin x 1 c , c 1
1
1
P
X
1
2
2
1
2
1
1
2
21
dx arcsin x
1 x2
03
23.设连续型随机变量X 的分布函数F ( x)为
0, x 0
F
(
x)
A
x,
0 x1
1, 1 x
确定系数A;求 P{0 X 0.25};求概率密度f ( x).
解: 连续型随机变量X的分布函数是连续函数, F (1) F (1 0), 故A 1
P{0 X 0.25} F(0.25) F(0) 0.5
f
(
x)
F
(
x)
1、已知随机变量X服从0-1分布,并且PX 0 0.2 求X的概率分布。
解:X只取0与1两个值,
PX 0 PX 0 PX 0 0.2
PX 1 1 PX 0 0.8
2、一箱产品20件,其中有5件优质品,不放回地抽取,每次一件, 共抽取两次,求取到的优质品件数X的概率分布。
解: X可以取0,1,2三个值,有古典概型公式可知
y2,
x
y
2 y,
f
Y
(
y)
2 ye 0,
y2
,
y0 y 0.
经济数学基础课后答案(概率统计第三分册)
解设事件A2n-1B2n分别表示“甲在第2n-1次投中”与“乙在第2n次投中”,显然A1,B2,A3,B4,…相互独立.设事件A表示“甲先投中”.
计算得知P(A)>0.5,P( )<0.5,因此甲先投中的概率较大.
3.事件Ai表示某个生产单位第i车间完成生产任务,i=1,2,3,B表示至少有两个车间完成生产任务,C表示最多只有两个车间完成生产任务,说明事件 及B-C的含义,并且用Ai(i=1,2,3)表示出来.
解 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务.
B-C表示三个车间都完成生产任务
27.设A与B独立,P(A)=0.4,P(A+B)=0.7,求概率P(B).
解P(A+B)=P(A)+P( B)=P(A)+P( )P(B)
0.7=0.4+0.6P(B)
P(B)=0.5
28.设事件A与B的概率都大于0,如果A与B独立,问它们是否互不相容,为什么?
解因P(A),P(B)均大于0,又因A与B独立,因此P(AB)=P(A)P(B)>0,故A与B不可能互不相容.
P(A )=P(A+B)-P(B)=0.988-0.93=0.058
25.分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A表示数学成绩优秀,B表示外语成绩优秀,若P(A)=P(B)=0.4,P(AB)=0.28,求P(A|B),P(B|A),P(A+B).
解P(A|B)=
P(B|A)=
P(A+B)=P(A)+P(B)-P(AB)=0.52
P(A2)=0.58×0.42=0.2436
P(Am)=0.58m-1×0.42
《经济数学基础》习题答案及试卷(附答案)
习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。
概率论与数理统计(经管类)第二章课后习题答案
习题2.11.设随机变量X 的分布律为P{X=k}=,k=1, 2,N,求常数a.aN 解:由分布律的性质=1得∑∞k =1p kP(X=1) + P(X=2) +…..+ P(X=N) =1N*=1,即a=1aN 2.设随机变量X 只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为,,求常数c.12c 34c ,58c ,716c 解:12c +34c +58c +716c =1C=37163.将一枚骰子连掷两次,以X 表示两次所得的点数之和,以Y 表示两次出现的最小点数,分别求X,Y 的分布律.注: 可知X 为从2到12的所有整数值.可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))P(X=5)=4*(1/36)=1/9(四种组合(1,4)(4,1)(2,3)(3,2))P(X=6)=5*(1/36=5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3))P(X=7)=6*(1/36)=1/6(这里就不写了,应该明白吧)P(X=8)=5*(1/36)=5/36P(X=9)=4*(1/36)=1/9P(X=10)=3*(1/36)=1/12P(X=11)=2*(1/36)=1/18P(X=12)=1*(1/36)=1/36以上是X 的分布律投两次最小的点数可以是1到6里任意一个整数,即Y 的取值了.P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值P(Y=2)=(1/6)*(5/6)=5/36 一个是2,另一个是大于等于2的5个值P(Y=3)=(1/6)*(4/6)=1/9 一个是3,另一个是大于等于3的4个值P(Y=4)=(1/6)*(3/6)=1/12一个是4,另一个是大于等于4的3个值P(Y=5)=(1/6)*(2/6)=1/18一个是5,另一个是大于等于5的2个值P(Y=6)=(1/6)*(1/6)=1/36一个是6,另一个只能是6以上是Y 的分布律了.4.设在15个同类型的零件中有2个是次品,从中任取3次,每次取一个,取后不放回.以X 表示取出的次品的个数,求X 的分布律.解:X=0,1,2X=0时,P=C 313C 315=2235X=1时,P=C 213∗C 12C 315=1235X=2时,P=C 013∗C 22C 315=1355.抛掷一枚质地不均匀的硬币,每次出现正面的概率为,连续抛掷8次,以X 表示出现正面的次数,求23X 的分布律.解:P{X=k}=, k=1, 2, 3, 8C k 8(23)k (13)8‒k 6.设离散型随机变量X 的分布律为X -123P141214解:求P {X ≤12}, P {23<X ≤52}, P {2≤X ≤3}, P {2≤X <3}P {X ≤12}=14P {23<X ≤52}=12P {2≤X ≤3}=12+14=34P {2≤X <3}=127.设事件A 在每一次试验中发生的概率分别为0.3.当A 发生不少于3次时,指示灯发出信号,求:(1)进行5次独立试验,求指示灯发出信号的概率;(2)进行7次独立试验,求指示灯发出信号的概率.解:设X 为事件A 发生的次数,(1)P {X ≥3}=P {X =3}+P {X =4}+P {X =5}=C 35(0.3)3(0.7)2+C 45(0.3)4(0.7)1+C 55(0.3)5(0.7)0=0.1323+0.02835+0.00243=0.163(2) P{X≥3}=1‒P{X=0}‒P{X=1}‒P{X=2}=1‒C07(0.3)0(0.7)7‒C17(0.3)1(0.7)6‒C27(0.3)2(0.7)5=1‒0.0824‒0.2471‒0.3177=0.3538.甲乙两人投篮,投中的概率分别为0.6,0.7.现各投3次,求两人投中次数相等的概率.解:设X表示各自投中的次数P{X=0}=C03(0.6)0(0.4)3∗C03(0.7)0(0.3)3=0.064∗0.027=0.002P{X=1}=C13(0.6)1(0.4)2∗C13(0.7)1(0.3)2=0.288∗0.189=0.054P{X=2}=C23(0.6)2(0.4)1∗C23(0.7)2(0.3)1=0.432∗0.441=0.191P{X=3}=C33(0.6)3(0.4)0∗C33(0.7)3(0.3)0=0.216∗0.343=0.074投中次数相等的概率= P{X=0}+P{X=1}+P{X=2}+P{X=3}=0.3219.有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率是多少?(利用泊松分布定理计算)解:设X表示该段时间出事故的次数,则X~B(1000,0.0001),用泊松定理近似计算=1000*0.0001=0.1λP{X≥2}=1‒P{X=0}‒P{X=1}=1‒C01000(0.0001)0(0.9999)1000‒C11000(0.0001)1(0.9999)999=1‒e‒0.1‒0.1e‒0.1=1‒0.9048‒0.0905=0.004710.一电话交换台每分钟收到的呼唤次数服从参数为4的泊松分别,求:(1)每分钟恰有8次呼唤的概率;(2)每分钟的呼唤次数大于10的概率.解: (1) P{X=8}=P{X≥8}‒P{X≥9}=0.051134‒0.021363=0.029771(2) P{X>10}=P{X≥11}=0.002840习题2.21.求0-1分布的分布函数.解:F(x)={0, x<0q, 0≤x<11,x≥12.设离散型随机变量X的分布律为:3 OF 18X -123P0.250.50.25求X 的分布函数,以及概率,.P {1.5<X ≤2.5} P {X ≥0.5}解:當x <‒1時,F (x )=P {X ≤x }=0;當‒1≤x <2時,F (x )=P {X ≤x }=P {X =‒1}=0.25;當2≤x <3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}=0.25+0.5=0.75;當x ≥3時,F (x )=P {X ≤x }=P {X =‒1}+P {X =2}+P {X =3}=0.25+0.5+0.25=1;则X 的分布函数F(x)为:F (x )={0, x <‒10.25, ‒1≤x <20.75, 2≤x <31, x ≥3P {1.5<X ≤2.5}=F (2.5)‒F (1.5)=0.75‒0.25=0.5 P {X ≥0.5}=1‒F (0.5)=1‒0.25=0.753.设F 1(x),F 2(x)分别为随机变量X 1和X 2的分布函数,且F(x)=a F 1(x)-bF 2(x)也是某一随机变量的分布函数,证明a-b=1.证: F (+∞)=aF (+∞)‒bF (+∞)=1,即a ‒b =14.如下4个函数,哪个是随机变量的分布函数:(1)F 1(x )={0, x <‒212, ‒2≤x <02, x ≥0(2)F 2(x )={0, x <0sinx, 0≤x <π1, x ≥π(3)F 3(x )={0, x <0sinx, 0≤x <π21, x ≥π2(4)F 4(x )={0, x <0x +13, 0<x <121, x ≥125.设随机变量X 的分布函数为F(x) =a+b arctanx ,‒∞<x <+∞,求(1)常数a,b;(2) P {‒1<X ≤1}解: (1)由分布函数的基本性质 得:F (‒∞)=0,F (+∞)=1{a +b ∗(‒π2)=0a +b ∗(π2)=1of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy5 OF 18解之a=, b=121π(2)P {‒1<X ≤1}=F (1)‒F (‒1)=a +b ∗π4‒(a +b ∗‒π4)=b ∗π2=12(将x=1带入F(x) =a+b arctanx )注: arctan 为反正切函数,值域(), arctan1=‒π2,π2 π46.设随机变量X 的分布函数为F (x )={0, x <1lnx, 1≤x <e1, x ≥e求P {X ≤2},P {0<X ≤3},P {2<X ≤2.5}解: 注: P {X ≤2}=F(2)=ln2 F(x)=P {X ≤x }P {0<X ≤3}=F (3)‒F (0)=1‒0=1;P {2<X ≤2.5}=F (2.5)‒F (2)=ln2.5‒ln2=ln2.52=ln1.25习题2.31.设随机变量X 的概率密度为:f (x )={acosx, |x |≤π20, 其他.求: (1)常数a; (2);(3)X 的分布函数F(x).P {0<X <π4}解:(1)由概率密度的性质∫+∞‒∞f (x )dx =1,∫π2‒π2acosxdx =a sinx |π2‒π2=asin π2‒asin (‒π2)=asin π2+asin π2=a +a =1A =12(2)P {0<X <π4}=(12)sin(π4)‒(12)sin (0)=12∗22+12∗0=24一些常用特殊角的三角函数值正弦余弦正切余切0010不存在π/61/2√3/2√3/3√3π/4√2/2√2/211of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy(3)X 的概率分布为:F (x )={0, x <‒π212(1+sinx ), ‒π2≤x <π21, x ≥π2 2.设随机变量X 的概率密度为f (x )=ae ‒|x |, ‒∞<x <+∞,求: (1)常数a; (2); (3)X 的分布函数. P {0≤X ≤1}解:(1),即a=∫+∞‒∞f(x)dx =∫0‒∞ae x dx +∫+∞ae ‒x dx =a +a =112(2)P {0≤X ≤1}=F (1)‒F (0)=12(1‒e ‒1)(3)X 的分布函数F (x )={12e x, x ≤01‒12e ‒x, x >03.求下列分布函数所对应的概率密度:(1)F 1(x )=12+1πarctanx , ‒∞<x <+∞;解:(柯西分布)f 1(x )=1π(1+x 2)(2)F 2(x )={1‒e ‒x 22, x >00, x ≤0π/3√3/21/2√3√3/3π/210不存在0π-1不存在7 OF 18解:(指数分布) f 2(x )={x e ‒x 22, x >00, x ≤0(3)F 3(x )={0, x <0sinx , 0≤ x ≤π21, x >π2解: (均匀分布)f 3(x )={cosx , 0≤ x ≤π20, 其他4.设随机变量X 的概率密度为f (x )={x, 0≤x <12‒x, 1≤ x <20, 其他.求: (1); (2)P {X ≥12} P {12<X <32}.解:(1)P {X ≥12}=1‒F (12)=1‒1222=1‒18=78(2)(2)P {12<X <32}=F(32)‒F(12)=(2∗32‒1‒3222)‒(3222)=345.设K 在(0,5)上服从均匀分布,求方程(利用二次式的判别式)4x 2+4Kx +K +2=0有实根的概率.解: K~U(0,5)f (K )={15 , 0≤x ≤50, 其他方程式有实数根,则Δ≥0,即(4K)2‒4∗4∗(K +2)=16K 2‒16(K +2)≥02≤K ≤‒1故方程有实根的概率为:P {K ≤‒1}+P {K ≥2}=∫5215dx =0.66.设X ~ U(2,5),现在对X 进行3次独立观测,求至少有两次观测值大于3的概率.解:P {K >3}=1‒F (3)=1‒3‒25‒2=23至少有两次观测值大于3的概率为:C 23(23)2(13)1+C 33(23)3(13)0=20277.设修理某机器所用的时间X 服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.解: P {X ≤1}=F (1)=1‒e‒0.58.设顾客在某银行的窗口等待服务的时间X(以分计)服从参数为λ=的指数分布,某顾客在窗口等待159 OF 18服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.写出Y 的分布律,并求P {Y ≥1}.解:“未等到服务而离开的概率”为P {X ≥10}=1‒F (10)=1‒(1‒e‒15∗10)=e ‒2P {Y =k }=C k 5(e ‒2)k(1‒e ‒2)5‒k , (k =0,1,2,3,4,5)Y 的分布律:Y 012345P0.4840.3780.1180.0180.0010.00004P {Y ≥1}=1‒P {Y =0}=1‒0.484=0.5169.设X ~ N(3,),求:22(1);P {2<X ≤5}, P {‒4<X ≤10}, P {|X |>2}, P {X >3}(2).常数c,使P {X >c }=P {X ≤c }解: (1)P {2<X ≤5}=Φ(5‒32)‒Φ(2‒32)=Φ(1)‒[1‒Φ(12)]=0.8413‒(1‒0.6915)=0.5328P {‒4<X ≤10}=Φ(10‒32)‒Φ(‒4‒32)=Φ(3.5)‒[1‒Φ(3.5)]=0.9998‒0.0002=0.9996 P {|X |>2}= 1‒P {‒2≤X ≤2}=1‒[Φ(2‒32)‒Φ(‒2‒32)]=1‒(0.3085‒0.0062)=0.6977P {X >3}= P {X ≥3}=1‒Φ(3‒32)=1‒Φ(0)=1‒0.5=0.5(2)P {X >c }=P {X ≤c }P {X >c }=1‒P {X ≥c }P {X >c }+P {X ≥c }=1Φ(c ‒32)+Φ(c ‒32)=1Φ(c ‒32)=0.5经查表,即C=3c ‒32=010.设X ~ N(0,1),设x 满足P {|X |>x }<0.1.求x 的取值范围.解:P {|X |>x }<0.12[1‒Φ(x )]<0.1‒Φ(x )<‒1920Φ(x )≥1920Φ(x )≥0.95经查表当 1.65时x ≥Φ(x )≥0.95即 1.65时x ≥P {|X |>x }<0.111.X ~ N(10,),求:22(1)P {7<X ≤15};(2)常数d,使P {|X ‒10|<d }<0.9.解: (1)P {7<X ≤15}=Φ(15‒102)‒Φ(7‒102)=Φ(2.5)‒[1‒Φ(1.5)]=0.9938‒0.0668=0.927(2)P {|X ‒10|<d }=P {10‒d <X <10+d }<0.9=Φ(10+d ‒102)‒Φ(10‒d ‒102)<0.9=Φ(d2)<0.95经查表,即d=3.3d2=1.6512.某机器生产的螺栓长度X(单位:cm)服从正态分布N(10.05,),规定长度在范围10.050.12内 0.062±为合格,求一螺栓不合格的概率.解:螺栓合格的概率为:P {10.05‒0.12<X <10.05+0.12}=P {9.93<X <10.17}=Φ(10.17‒10.050.06)‒Φ(9.93‒10.050.06)=Φ(2)‒[1‒Φ(2)]=0.9772∗2‒1=0.9544螺栓不合格的概率为1-0.9544=0.045613.测量距离时产生的随机误差X(单位:m)服从正态分布N(20,).进行3次独立测量.求:402(1)至少有一次误差绝对值不超过30m 的概率;(2)只有一次误差绝对值不超过30m的概率.解:(1)绝对值不超过30m的概率为:P{‒30<X<30}=Φ(30‒2040)‒Φ(‒30‒2040)=Φ(0.25)‒[1‒Φ(1.25)]=0.4931至少有一次误差绝对值不超过30m的概率为:1−C 03(0.4931)0(1‒0.4931)3=1‒0.1302=0.8698(2)只有一次误差绝对值不超过30m的概率为:C13(0.4931)1(1‒0.4931)2=0.3801习题2.41.设X的分布律为X-2023P0.20.20.30.3求(1)的分布律.Y1=‒2X+1的分布律; (2)Y2=|X|解: (1)的可能取值为5,1,-3,-5.Y1由于P{Y1=5}=P{‒2X+1=5}=P{X=‒2}=0.2P{Y1=1}=P{‒2X+1=1}=P{X=‒2}=0.2P{Y1=‒3}=P{‒2X+1=‒3}=P{X=2}=0.3P{Y1=‒5}=P{‒2X+1=‒5}=P{X=3}=0.3从而的分布律为:Y1X-5-315Y10.30.30.20.2(2)的可能取值为0,2,3.Y2由于P{Y2=0}=P{|X|=0}=P{X=0}=0.2P{Y2=2}=P{|X|=0}=P{X=‒2}+P{X=2}=0.2+0.3=0.5P{Y2=3}=P{|X|=3}=P{X=3}=0.3从而的分布律为:Y2X023Y20.20.50.32.设X的分布律为X-1012P0.20.30.10.411 OF 18求Y=(X‒1)2的分布律.解:Y的可能取值为0,1,4.由于P{Y=0}=P{(X‒1)2=0}=P{X=1}=0.1P{Y=1}=P{(X‒1)2=1}=P{X=0}+P{X=2}=0.7P{Y=4}=P{(X‒1)2=4}=P{X=‒1}=0.2从而的分布律为:YX014Y0.10.70.23.X~U(0,1),求以下Y的概率密度:(1)Y=‒2lnX; (2)Y=3X+1; (3)Y=e x.解: (1) Y=g(x)=‒2lnX, 值域為(0,+∞),X=ℎ(y)=e‒Y2, ℎ'(y)=12e‒Y2 f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗12e‒Y2=12e‒Y2.即f Y(y)={12e‒Y2, y>0,0, y≤0(2) Y=g(x)=3X+1,值域為(‒∞,+∞), X=ℎ(y)=Y‒13, ℎ'(y)=13f Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗13=13即f Y(y)={13, 1< y<4,0, 其他注: 由X~U(0,1),,当X=0时,Y=3*0+1=1; ,当X=1时,Y=3*1+1=4 Y=3X+1(3) Y=g(x)=e x, X=ℎ(y)=lny, ℎ'(y)=1yf Y(y)=f x(ℎ(y))| ℎ'(y)|=1∗1y=1y即f Y(y)={1y, 0< y<e,0, 其他注: ,当X=0时,; ,当X=1时,Y=e0=0 Y=e1=e4.设随机变量X的概率密度为f X(x)={32x2, ‒1<x<00, 其他.of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy13 OF 18求以下Y 的概率密度:(1)Y=3X; (2) Y=3-X; (3)Y =X 2.解: (1) Y=g(x)=3X,X =ℎ(y )=Y 3, ℎ'(y)=13f Y (y )=f x (ℎ(y ))| ℎ'(y)|=Y 26∗13=Y218即f Y (y )={Y 218, ‒3< y <0,0, 其他(2)Y=g(x) =3-X, X=h(y) =3-Y,-1ℎ'(y)=f Y (y )=f x (ℎ(y ))| ℎ'(y)|=32∗(3‒Y)2+1=3(3‒Y)22即f Y (y )={3(3‒Y)22, 3< y <4,0, 其他(3), X=h(y)=,Y =g(x)=X 2Y ℎ'(y)=12Y,即f Y (y )=f x (ℎ(y ))| ℎ'(y)|=3Y 22∗1 2Y=3Y4f Y (y )={3Y4, 0< y <1,0, 其他5.设X 服从参数为λ=1的指数分布,求以下Y 的概率密度:(1)Y=2X+1; (2)(3) Y =e x; Y =X 2.解: (1) Y=g(x)=2X+1,X =ℎ(y )=Y ‒12, ℎ'(y )=12X 的概率密度为:f X (x )={λe ‒λx, x >0,0, x ≤0f Y (y )=f x (ℎ(y ))| ℎ'(y)|=λe ‒λ∗Y ‒12∗12=12e ‒Y ‒12即f Y (y )={12e ‒Y ‒12, y >00, 其他(2)Y =g (x )=e x , X =ℎ(y )=lnY,ℎ'(y )= 1Y注意是绝对值 ℎ'(y)of backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, full of humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happyf Y (y )=f x (ℎ(y ))| ℎ'(y)|=e‒lnY∗1Y =1e lnY ∗1Y =1Y ∗1Y =1Y 2即f Y (y )={1Y2, y >10, 其他(3)Y =g (x )=X 2,X =ℎ(y )=Y , ℎ'(y )=12Y,,f Y (y )=f x (ℎ(y ))| ℎ'(y)|=e ‒Y∗12Y=12Ye ‒Y即f Y (y )={12Ye ‒Y, y >00, 其他6.X~N(0,1),求以下Y 的概率密度:(1) Y =|X |; (2)Y =2X 2+1解: (1) Y =g (x )=|X |, X =ℎ(y )=±Y, ℎ'(y )=1f X (x )=12πσe‒(x ‒μ)22σ2‒∞<x <+∞当X=+Y 时:f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒y 22当X=-Y 时: f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe ‒y 22故f Y (y )=12πe ‒y 22+12πe‒y 22=22πe ‒y 22=42πe‒y 22=2πe ‒y 22f Y (y )={2πe ‒y 22, y >00, y ≤0(2)Y =g (x )=2X 2+1, X =ℎ(y )=Y ‒12,ℎ'(y )=12Y ‒12永远大于0.e x 当x>0是,>1e xof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy15 OF 18f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12Y ‒12=12π(y ‒1)e‒y ‒14即f Y (y )={12π(y ‒1)e ‒y ‒14, y >10, y ≤1自测题一,选择题1,设一批产品共有1000件,其中有50件次品,从中随机地,有放回地抽取500件产品,X 表示抽到次品的件数,则P{X=3}= C .A. B.C. D.C 350C 497950C 5001000A 350A 497950A 5001000C 3500(0.05)3(0.95)497 35002.设随机变量X~B(4,0.2),则P{X>3}= A .A. 0.0016B. 0.0272C. 0.4096D. 0.8192解:P{X>3}= P{X=4}= (二项分布)C 44(0.2)4(1‒0.2)03.设随机变量X 的分布函数为F(x),下列结论中不一定成立的是D .A. B. C. D. F(x) 为连续函数F (+∞)=1 F (‒∞)=00≤F (x )≤14.下列各函数中是随机变量分布函数的为 B .A. B.F 1(x )=11+x 2, ‒∞<x <+∞F 2(x )={0, x ≤0x 1+x , x >0C.D.F 3(x )=e ‒x, ‒∞<x <+∞F 4(x )=34+12πarctanx, ‒∞<x <+∞5.设随机变量X 的概率密度为 则常数a= A .f (x )={a x 2, x >100, x ≤10A. -10B.C.D. 10解: F(x) =‒15001500∫+∞‒∞a x2dx =‒ax =16.如果函数是某连续型随机变量X 的概率密度,则区间[a,b]可以是 C f (x )={x, a<x <b0, 其他A. [0, 1]B. [0, 2]C. D. [1, 2][0,2]不晓得为何课后答案为Dof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy7.设随机变量X 的取值范围是[-1,1],以下函数可以作为X 的概率密度的是 A A. B. {12, ‒1< x <10, 其他{2, ‒1< x <10, 其他C.D. {x, ‒1< x <10, 其他{x 2, ‒1< x <10, 其他8.设连续型随机变量X 的概率密度为 则= B .f (x )={x2, 0< x <20, 其他P{‒1≤ X ≤1}A. 0 B. 0.25 C. 0.5 D. 1解:P {‒1≤ X ≤1}=∫1‒1x2dx =x 24|1‒1=149.设随机变量X~U(2,4),则= A . (需在区间2,4内)P{3< x <4}A. B. P{2.25< x <3.25}P{1.5< x <2.5}C. D. P{3.5< x <4.5}P{4.5< x <5.5}10. 设随机变量X 的概率密度为 则X~ A .f (x )=122πe ‒(x ‒1)28A. N (-1, 2)B. N (-1, 4)C. N (-1, 8)D. N (-1, 16)11.已知随机变量X 的概率密度为fx(x),令Y=-2X,则Y 的概率密度fy(y)为 D .A.B.C.D. 2f X (‒2y)f X (‒y2)12f X(‒y2)12f X (y 2)二,填空题1.已知随机变量X 的分布律为X 12345P2a0.10.3a0.3则常数a= 0.1 .解:2a+0.1+0.3+a+0.3=12.设随机变量X 的分布律为X 123P162636记X 的分布函数为F(x)则F(2)=.解: 1216+263.抛硬币5次,记其中正面向上的次数为X,则=.P{ X ≤4}3132解:P { X ≤4}=1‒P { X =5}=1‒C 55(12)5(12)自己算的结果是12f X(‒y2)17 OF 184.设X 服从参数为λ(λ>0)的泊松分布,且,则λ= 2 .P { X =0}=12P { X =2}解:分别将.P { X =0},P { X =2}帶入P k =P { X =k }=λk k!e ‒λ5.设随机变量X 的分布函数为F (x )={0, x <a0.4, a ≤x <b1, x ≥b其中0<a<b,则= 0.4.P {a2<X <a +b 2}解:P { a 2<X <a +b 2}=F (a +b 2)‒F (a 2)=0.4‒0=0.46.设X 为连续型随机变量,c 是一个常数,则= 0.P { X =c }7. 设连续型随机变量X 的分布函数为F (x )={13e x, x <013(x +1), 0≤x <21, x ≥2则X 的概率密度为f(x),则当x<0是f(x)=.13e x 8. 设连续型随机变量X 的分布函数为其中概率密度为f(x),F (x )={1‒e ‒2x , x >00, x ≤0则f(1)= .2e ‒29. 设连续型随机变量X 的概率密度为其中a>0.要使,则常数a=f (x )={12a, ‒a < x <a 0, 其他P { X >1}=13 3 .解:P { X >1}=1‒P { X ≤1}=13,P { X ≤1}=23=12a10.设随机变量X~N(0,1),为其分布函数,则= 1 .Φ(x)Φ(x )+Φ(‒x)11.设X~N ,其分布函数为为标准正态分布函数,则F(x)与之间的关系是(μ,σ2)F (x ),Φ(x)Φ(x)=.F (x )Φ(x ‒μσ)12.设X~N(2,4),则= 0.5 .P { X ≤2}13.设X~N(5,9),已知标准正态分布函数值,为使,则Φ(0.5)=0.6915P { X <a }<0.6915常数a< 6.5. 解:, F (a )=Φ(a ‒μσ)=a ‒53a ‒53<0.514. 设X~N(0,1),则Y=2X+1的概率密度= .f Y (y )122πe‒(Y ‒1)28解:Y =g (x )=2X +1, X =ℎ(y )=Y ‒12,ℎ'(y )=12f Y (y )=f x (ℎ(y ))| ℎ'(y)|=12πe‒(Y ‒12)22∗12=122πe‒(Y ‒1)28三.袋中有2个白球3个红球,现从袋中随机地抽取2个球,以X 表示取到红球的数,求X 的分布律.解: X=0,1,2当X=0时,P { X =0}=C 03∗C 22C 25=110当X=1时,P { X =1}=C 13∗C 12C 25=610当X=2时,P { X =2}=C 23∗C 02C 25=310X 的分布律为:X 012P110610310四.设X 的概率密度为求: (1)X 的分布函数F(x);(2).f (x )={|x|, ‒1≤ x ≤10, 其他 P { X <0.5},P { X >‒0.5}解: (1)当x <-1时. F(x)=0;;当‒1≤x <0时,F(x)=∫x‒1‒x dx =‒x 22|x ‒1=12‒x 22当0≤x <1时,F (x )=1‒ 1∫xx dx =1‒x 22|1x =12+x 22当x ≥1时. F(x)=1F (X )={0, X <‒112‒x22, ‒1≤X <012+x22, 0≤X <11, X ≥1(2)P { X <0.5}=F (0.5)=12+0.522=58;P { X >‒0.5}=1‒F (‒0.5)=1‒(12‒0.522)=58五.已知某种类型电子组件的寿命X(单位:小时)服从指数分布,它的概率密度为f (x )={12000e ‒x 2000, x >00, x ≤0We will continue to improve the company's internal control system, and steady improvement in ability to manage and control, optimize business processes, to ensure smooth processes, responsibilities in place; to further strengthen internal controls, play a control post independent oversight role of evaluation complying with third-party responsibility; to actively make use of internal audit tools detect potential management, streamline, standardize related transactions, strengthening operations in accordance with law. Deepening the information management to ensure full communication "zero resistance". To constantly perfect ERP, and BFS++, and PI, and MIS, and SCM, information system based construction, full integration information system, achieved information resources shared; to expand Portal system application of breadth and depth, play information system on enterprise of Assistant role; to perfect daily run maintenance operation of records, promote problem reasons analysis and system handover; to strengthening BFS++, and ERP, and SCM, technology application of training, improve employees application information system of capacity and level. Humanistic care to ensure "zero." To strengthening Humanities care,continues to foster company wind clear, and gas are, and heart Shun of culture atmosphere; strengthening love helped trapped, care difficult employees; carried out style activities, rich employees life; strengthening health and labour protection, organization career health medical, control career against; continues to implementation psychological warning prevention system, training employees health of character, and stable of mood and enterprising of attitude, created friendly fraternity of Humanities environment. To strengthen risk management, ensure that the business of "zero risk". To strengthened business plans management, will business business plans cover to all level, ensure the business can control in control; to close concern financial, and coal electric linkage, and energy-saving scheduling, national policy trends, strengthening track, active should; to implementation State-owned assets method, further specification business financial management; to perfect risk tube control system, achieved risk recognition, and measure, and assessment, and report, and control feedback of closed ring management, improve risk prevention capacity. To further standardize trading, and strive to achieve "according to law, standardize and fair." Innovation of performance management, to ensure that potential employees "zero fly". To strengthen performance management, process control, enhance employee evaluation and levels of effective communication to improve performance management. To further quantify and refine employee standards ... Work, full play party, and branch, and members in "five type Enterprise" construction in the of core role, and fighting fortress role and pioneer model role; to continues to strengthening "four good" leadership construction, full play levels cadres in enterprise development in theof backbone backbone role; to full strengthening members youth work, full play youth employees in company development in the of force role; to improve independent Commission against corruption work level, strengthening on enterprise business key link of effectiveness monitored. , And maintain stability. To further strengthen publicity and education, improve the overall legal system. We must strengthen safety management, establish and improve the education, supervision, and evaluation as one of the traffic safety management mechanism. To conscientiously sum up the Olympic security controls, promoting integrated management to a higher level, higher standards, a higher level of development. Employees, today is lunar calendar on December 24, the ox Bell is about to ring, at this time of year, we clearly feel the pulse of the XX power generation company to flourish, to more clearly hear XX power generation companies mature and symmetry breathing. Recalling past one another across a railing, we are enthusiastic and full of confidence. Future development opportunities, we more exciting fight more spirited. Employees, let us together across 2013 full of challenges and opportunities, to create a green, low-cost operation, fullof humane care of a world-class power generation company and work hard! The occasion of the Spring Festival, my sincere wish that you and the families of the staff in the new year, good health, happy, happy19 OF 18一台仪器装有4个此种类型的电子组件,其中任意一个损坏时仪器便不能正常工作,假设4个电子组件损坏与否相互独立.试求: (1)一个此种类型电子组件能工作2000小时以上的概率;(2)一台仪器能正p 1常工作2000小时以上的概率.p 2解: (1)P 1=P {X ≥2000}=∫+∞200012000e‒x 2000dx=12000∗‒2000∗e‒x2000|+∞2000=‒e‒x 2000|+∞2000=0‒(‒e ‒1)=e ‒1(2)因4个电子组件损坏与否相互独立,故:P 2=P 14=(e ‒1)4=e ‒4当+∞带入‒x2000时变成负无穷大,e ‒∞=0。
《经济数学基础》答案
第17题: 下面哪一个可以用泊松分布来衡量( B)。
A一个班学生们的身高B一段道路上碰到坑的次数C投掷硬币时遇到正面朝上的概率D某稀有金属的半衰期长短第18题: 线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的( C)为最小。
A水平距离的平方和B垂直距离的和C垂直距离的平方和D垂直距离的平方第19题: 当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间( B)。
A几乎没有什么相关性B近乎完全负相关C近乎完全正相关D可以直接用一个变量代替另一个第20题: 关于概率,下列说法正确的是( ABC)。
A是度量某一事件发生的可能性的方法B概率分布是不确定事件发生的可能性的一种数学模型C值介于0和1之间D所有未发生的事件的概率值一定比1小第21题: 下列哪些方面需要用到概率知识分析其不确定性( ABC )。
A外汇走势B不良贷款率预测C证卷走势D税收确认第22题: 什么样的情况下,可以应用古典概率或先验概率方法( BD )。
A不确定有什么样的结果空间B不确定结果的范围是已知的C不确定结果发生的概率不一样D不确定结果具有等可能性第23题: 关于协方差,下列说法正确的有( ABD )。
A协方差体现的两个随机变量随机变动时的相关程度B如果P=1,则I 和n有完全的正线性相关关系C方差越大,协方差越大D Cov(x,η)=E(X-EX)( η-Eη)第24题: 关于中位数,下列理解错误的有( BC )。
A当所获得的数据资料呈偏态分布时,中位数的代表性优于算术平均数B当观测值个数为偶数时,(n+1)/2位置的观测值,即X(n+1)/2为中位数C当观测值个数为偶数时,(n+1)/2位置的观测值,X(n+1)/2为中位数D将资料内所有观测值从小到大一次排列,位于中间的那个观测值,称为中位数第25题: 线性回归时,在各点的坐标为已知的前提下,要获得回归直线的方程就是要确定该直线的( BD )。
概率论与数理统计 第三版课后答案
∴
4 6 12 3
15.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一只,作不放回 抽样。求下列事件的概率。
(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。 解 设以 Ai(i=1,2)表示事件“第 i 次取出的是正品“,因为不放回抽样,故
(2) 不成立,因为 AB A B AB 。
(3) 成立, B A, B AB,又AB B, B AB 。
(4) 成立。 (5) 不成立,因左边包含事件 C,右边不包含事件 C,所以不成立。 (6) 成立。因若 BC≠φ,则因 CA,必有 BCAB,所以 AB≠φ与已知矛盾,
C51C82 C52 C140
13 0.619 21
11.将 3 鸡蛋随机地打入 5 个杯子中去,求杯子中鸡蛋的最大个数分别为 1,2,3 的概 率。
解 依题意知样本点总数为 53 个。
以 Ai(i=1, 2, 3)表示事件“杯子中鸡蛋的最大个数为 i”,则 A1 表示每杯最多放一只鸡
蛋,共有 A53 种放法,故
(2) ( A B)(A B ) A AB BA BB , 因为 AB BA A A ,
BB 且 C C ,所以 (A B)(A B ) A 。
(3)( A B)(A B )(A B) A( A B) AB AB 。 5.设 A,B,C 是三
1 P( AB) P(BC) 0, P( AC) 1 ,
事件,且 P(A)=P(B)= P(C)= 4 ,
8 求 A,
B,C 至少有一个发生的概率。 解 ∵ABCAB ∴0∠P(ABC)∠P(AB)=0,故 P(ABC)=0 ∴所求概率为
经济数学基础——概率统计课后习题答案
目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }2.掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+ 25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z >即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n 图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0 DY = 2σDX =151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===32 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={}71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值: (1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。
概率统计第二章习题答案.docx
第二章习题答案1、 P{Y 詡=(1-0.4尸 x0.4 k=l,2,…2、 用4表示第i 个阀门开P{X = 0} = P (A (X U 4))= p (A )(p (A ;)+ p (4)- P (石)P (忑))=0.2(0.2 + 0.2 - 0.2 x 0.2) = 0.072P{X =1} = P[A,(兀 U 石)U A^A 2A 3] = 0.8(0.2 + 0.2 - 0.04) + 0.2 x 0.82-0.416P{X =2} = P(A 1A 2A 3) = 0.83 = 0.512 3、 X~b(15,0.2)P{X =k} = C^0.2k xO.815-' k=0,l,2,……,15 (1) P{X = 3} =0.23 x 0.812 = 0.2501(2) >2}-l-C° 0.2° x0.815 -C :0.2x0.814 = 0.8329(3)P{1 < X <3} = Q50.21 x0.814 + C ;50.22 x0.813 + Cf 50.23 x0.812 =0.61295(4) P{X 〉5} = 1 —工生0.2* x0.8z =0.0611R=04、用X 表示5个元件中正常工作的个数P(X > 3) = Cf 0.93 x 0.12 + C" 0.94 x 0.1 + 0.95 =0.9914 5、设 X=(8000#产品的次品数}则 X~b(8000,0.001)近似地由于n 很大,P 很小,所以利用X 〜”⑻6、(l)X~n(10)15 [0*0-10P{X 〉15}=1-P{X V15} = 1-工 ------------ = 1-0.9513 = 0.0487*=o kl(2) V X~n( X).-.| = p{x >O } = I -P {X =0} = l-^-P{X<7} =工*=0 8。
概率论与数理统计(第三版)课后答案习题2
第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计-第二章习题附答案
习题2-21. 设A 为任一随机事件, 且P (A )=p (0<p <1). 定义随机变量1,,0,A X A =⎧⎨⎩发生不发生. 写出随机变量X 的分布律.解2. 已知随机, 且取这四个值的相应概率依次为cc c c 167,85,43,21. 试确定常数c , 并计算条件概率}0|1{≠<X X P . 解由离散型随机变量的分布律的性质知,13571,24816c c c c+++= 所以3716c =. 所求概率为P {X <1| X 0≠}=258167852121}0{}1{=++=≠-=cc c c X P X P . 3. 设随机变量X 服从参数为2, p 的二项分布, 随机变量Y 服从参数为3, p 的二项分布,若{P X ≥51}9=, 求{P Y ≥1}.解注意p{x=k}=k k n kn C p q -,由题设5{9P X =≥21}1{0}1,P X q =-==-故213q p =-=. 从而{P Y ≥32191}1{0}1().327P Y =-==-=4. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927, 求每次试验成功的概率. 解设每次试验成功的概率为p , 由题意知至少成功一次的概率是2719,那么一次都没有成功的概率是278. 即278)1(3=-p , 故p =31. 5. 若X 服从参数为λ的泊松分布, 且{1}{3}P X P X ===, 求参数λ.解由泊松分布的分布律可知6=λ.6. 一袋中装有5只球, 编号为1,2,3,4,5. 在袋中同时取3只球, 以X 表示取出的3只球中的最大, 写出随机变量X 的分布律.解X1. 设X 的分布律为解 (1) F (x )=0,1,0.15,10,0.35,01,1,1.x x x x <-⎧⎪-<⎪⎨<⎪⎪⎩≤≤≥(2) P {X <0}=P {X =-1}=0.15;(3) P {X <2}= P {X =-1}+P {X =0}+P {X =1}=1; (4) P {-2≤x <1}=P {X =-1}+P {X =0}=0.35. 2. 设随机变量X 的分布函数为F (x ) = A +B arctan x -∞<x <+∞.试求: (1) 常数A 与B ; (2) X 落在(-1, 1]内的概率.解 (1) 由于F (-∞) = 0, F (+∞) = 1, 可知()0112,.2()12A B A B A B πππ⎧+-=⎪⎪⇒==⎨⎪+=⎪⎩ (2) {11}(1)(1)P X F F -<=--≤1111(arctan1)(arctan(1))22ππ=+-+-11111().24242ππππ=+⋅---=3. 设随机变量X 的分布函数为F (x )=0, 0,01,21,1,,x xx x <<⎧⎪⎪⎨⎪⎪⎩ ≤ ≥求P {X ≤-1}, P {0.3 <X <0.7}, P {0<X ≤2}.解P {X 1}(1)0F -=-=≤,P {0.3<X <0.7}=F (0.7)-F {0.3}-P {X =0.7}=0.2,P {0<X ≤2}=F (2)-F (0)=1.习题2-41.选择题 (1) 设2, [0,],()0, [0,].x x c f x x c ∈=∉⎧⎨⎩如果c =( ), 则()f x 是某一随机变量的概率密度函数.(A)13. (B) 12. (C) 1. (D) 32. 本题应选(C ).(2) 设~(0,1),X N 又常数c 满足{}{}P X c P X c =<≥, 则c 等于( ). (A) 1. (B) 0. (C) 12. (D) -1. 本题应选(B).(3) 下列函数中可以作为某一随机变量的概率密度的是( ).(A) cos ,[0,],()0,x x f x π∈=⎧⎨⎩其它. (B) 1,2,()20,x f x <=⎧⎪⎨⎪⎩其它.(C) 22()2,0,()0,0.≥x x f x x μσ--=<⎧⎩ (D) e ,0,()0,0.≥x x f x x -=<⎧⎨⎩本题应选(D).(6) 设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1},P X P Y μμ-<>-<则下式中成立的是( ).(A) σ1 < σ2. (B) σ1 > σ2. (C) μ1 <μ2. (D) μ1 >μ2. 答案是(A).(7) 设随机变量X 服从正态分布N (0,1), 对给定的正数)10(<<αα, 数αu 满足{}P X u αα>=, 若{}P X x α<=, 则x 等于( ).(A) 2u α . (B) 21α-u. (C) 1-2u α. (D) α-1u .答案是(C).2. 设连续型随机变量X 服从参数为λ的指数分布,要使1{2}4P k X k <<=成立, 应当怎样选择数k ?解X 其分布函数为1e ,0,()0,0.≤x x F x x λ-->=⎧⎨⎩由题意可知221{2}(2)()(1e )(1e )e e 4k k k k P k X k F k F k λλλλ----=<<=-=---=-.于是ln 2k λ=.3.设随机变量X 有概率密度34,01,()0,x x f x <<=⎧⎨⎩其它,要使{}{}≥P X a P X a =<(其中a >0)成立, 应当怎样选择数a ?解由条件变形,得到1{}{}P X a P X a -<=<,可知{}0.5P X a <=, 于是304d 0.5a x x =⎰,因此a =4. 设连续型随机变量X 的分布函数为20,0,()01,1,1,,≤≤x F x x x x <=>⎧⎪⎨⎪⎩求: (1) X 的概率密度; (2){0.30.7}P X <<.解 (1) 由()()F x f x '=得2,01,()0,其它.x x f x <<⎧=⎨⎩(2) 22{0.30.7}(0.7)(0.3)0.70.30.4P X F F <<=-=-=.5. 设随机变量X 的概率密度为f (x )=2,01,0,x x ⎧⎨⎩ ≤≤ 其它,求P {X ≤12}与P {14X <≤2}. 解{P X ≤12201112d 2240}x x x ===⎰;1{4P X <≤12141152}2d 1164x x x ===⎰. 6. 设连续型随机变量X 具有概率密度函数,01,(),12,0,x x f x A x x <=-<⎧⎪⎨⎪⎩≤≤其它.求: (1) 常数A ;(2) X 的分布函数F (x ).解 (1) 由概率密度的性质可得12221121111d ()d []122x x A x x xAx x A =+-=+-=-⎰⎰,于是2A =;(2) 由公式()()d x F x f x x -∞=⎰可得〔过程简略〕220,0,1()221, 2.1,021,12x F x x x x x x x =->⎧⎪⎪<⎪⎨⎪-<⎪⎪⎩≤≤,≤,7. 设随机变量X 的概率密度为1(1),02,()40,x x f x ⎧⎪⎨⎪⎩+<<=其它, 对X 独立观察3次, 求至少有2次的结果大于1的概率.解2115{1}(1)d 48P X x x >=+=⎰.所以, 3次观察中至少有2次的结果大于1的概率为223333535175()()()888256C C +=. 8.设~(0,5)X U , 求关于x 的方程24420x Xx ++=有实根的概率.解若方程有实根, 则21632X -≥0, 于是2X ≥2. 故方程有实根的概率为P {2X ≥2}=21{2}P X -<1{P X =-<<11d 5x =-15=-.10. 设随机变量2~(2,)X N σ, 若{04}0.3P X <<=, 求{0}P X <.解因为()~2,X N σ2,所以~(0,1)X Z N μσ-=. 由条件{04}0.3P X <<=可知02242220.3{04}{}()()X P X P ΦΦσσσσσ---=<<=<<=--,于是22()10.3Φσ-=, 从而2()0.65Φσ=.所以{{}2020}P P X X σσ==--<<22()1()0.35ΦΦσσ-=-=.习题2-52. 设~(1,2),23X N Z X =+, 求Z 所服从的分布与概率密度.解若随机变量2~(,)X N μσ, 则X 的线性函数Y aX b =+也服从正态分布, 即2~(,()).Y aX b N a b a μσ=++这里1,μσ==所以Z ~(5,8)N .概率密度为()f z=2(5)16,x x ---∞<<+∞.3. 已知随机变量X 的分布律为(1) 求Y =2解 (1)(2)4.已知随机变量()X f x =1142ln 20x x <<⎧⎪⎨⎪⎩, , , 其它,且Y =2-X , 试求Y 的概率密度.解)(y F Y ={P Y ≤}{2y P X =-≤}{y P X =≥2}y -1{2}P X y =-<-=1-2()d yX f x x --∞⎰.于是可得Y 的概率密度为121,2(2)ln 20, ,()其它.Y y y f y -<<-⎧⎪=⎨⎪⎩5. 设随机变量X 服从区间(-2,2)上的均匀分布, 求随机变量2Y X =的概率密度.解因为对于0<y <4,(){Y F y P Y =≤2}{y P X =≤}{y P =X (X X F F =-.于是随机变量2Y X =的概率密度函数为()Y fy (X X f f =0 4.y =<<即()04,0,.其它f y y =<<⎩。
概率论与数理统计(经管类)第二章课后习题答案
2.设离散型随机变量X的分布律为:
X
-1
2
3
P
0.25
0.5
0.25
求X的分布函数,以及概率 , .
解:
则X的分布函数F(x)为:
3.设F1(x),F2(x)分别为随机变量X1和X2的分布函数,且F(x)=a F1(x)-bF2(x)也是某一随机变量的分布函数,证明a-b=1.
证:
4.如下4个函数,哪个是随机变量的分布函数:
注:可知X为从2到12的所有整数值.
可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36,故
P(X=2)=(1/6)*(1/6)=1/36(第一次和第二次都是1)
P(X=3)=2*(1/36)=1/18(两种组合(1,2)(2,1))
P(X=4)=3*(1/36)=1/12(三种组合(1,3)(3,1)(2,2))
求: (1) ; (2)
解:
(1)
(2)(2)
5.设K在(0,5)上服从均匀分布,求方程 (利用二次式的判别式)
解: K~U(0,5)
方程式有实数根,则
故方程有实根的概率为:
6.设X ~ U(2,5),现在对X进行
解:
至少有两次观测值大于3的概率为:
7.设修理某机器所用的时间X服从参数为λ=0.5(小时)指数分布,求在机器出现故障时,在一小时内可以修好的概率.
(1)Y=2X+1; (2) (3)
解: (1)Y=g(x)=2X+1,
X的概率密度为:
即
(2)
即
(3)
,
即
6.X~N(0,1),求以下Y的概率密度:
(1)
解: (1)
经济数学基础-概率统计课后习题答案
习 题 一写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m }掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F的关系.解 由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率: A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”, H =“颜色全不相同”,I =“颜色不全相同”. 解 #Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证 ∵B ⊃A∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解 因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解 由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率. 解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B ) ⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解 设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率. 解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436P (A m )=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中;(3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率. 解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率. 解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少? 解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)(由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为{}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解 根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e!m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有 ∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P= (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, … (2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x cx x f cx ,> 其中c >0,问f (x )是否为密度函数,为什么? 解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得 b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解 4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解 π|arcsin d 1111211c x c x x c ==-⎰=-- c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解 连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P . 解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(其他⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为 )0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布. 证 设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b , ab +b ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布. 34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y y y f Y 在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解 当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解 由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解 根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中图2-1(1) 3.122014220934492431=⨯+⨯+⨯+⨯=EX(2) 3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑⋅==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解 设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解 EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解 当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?其他 其他解 11d d )(10=+=⎰=⎰∞+∞-b cx cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解 在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46在第40题中,已计算出EX =137300,c cn n c n EX n n 15515122=∑=⨯∑====137900 DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解 在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 2212=⎰=x xx EX DX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解 EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π21022=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解 依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解 EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x x DX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X , 求EY 和DY .解 EY =σ1( EX -μ ) =0 DY = 2σDX=151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次试验的成功率为0.8,重复试验4次,失败次数记为X ,求X 的概率分布 . 解 X 可以取值0, 1, 2, 3, 4 .相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯-- ( m=0, 1, 2, 3, 4 )计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则 X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p = 65,其X 的最可能值为[ np + p ]=0{}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解 根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9 . {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解 由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得 q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解 随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解 X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.60.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即 λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{ 63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率.解 设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P 解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解 EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===3 2 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解 3(3)0.998P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={} 71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值:(1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解 (1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2。
经济数学基础_概率统计课后习题答案
习 题 一写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m }掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+C B A B A A C B A ++=++ C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解 由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”, H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证 ∵B ⊃A∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解 因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解 由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为#Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率. 解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B ) ⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解 设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率. 解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436 P (A m )=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中;(2)最多有一人投中; (3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率. 解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率. 解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少? 解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P nn n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k nq p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)(由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为{}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n,n =1, 2, 3, …, 求p 的值.解 根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n, n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e!m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .完美整理解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有 ∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P= (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, … (2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x cx x f cx ,> 其中c >0,问f (x )是否为密度函数,为什么?解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由.解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a 由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得 b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x完美整理632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率.解 4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解 π|arcsin d 1111211c x c x x c ==-⎰=-- c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-x x x X P23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解 连续型随机变量X 的分布函数是连续函数,F (1)=F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,ee x x A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xx x x d e 1e d e e 12A A x 2πe a r c t a n==∞∞- 因此 A =π2,xt xt tt x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(其他完美整理⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为 )0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n}=,,2,1,31 =n nY =l gX ,求Y 的概率分布. 解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证 设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b , ab +b ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布. 34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) =211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x, Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x在(0 , 1)内单调 , x =ln y 可导,且x′y = y1 , f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解 当x > 0时,y =x 单调,其反函数为x = y 2, x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解 由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫ ⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,完美整理π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z1, x′z=21z -. 因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解 根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:图2-121412=⨯==np EX在第5题中(1) 3.122014220934492431=⨯+⨯+⨯+⨯=EX(2) 3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑⋅==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解 设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2?解 EX =P { X =1 } =0.8,( EX )2=0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n,n 为正整数.解 当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n(n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n45. 随机变量X ~f ( x ) ,其他完美整理⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么? 解 11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解 在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46在第40题中,已计算出EX =137300,c cn n c n EX n n 15515122=∑=⨯∑====137900 DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解 在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 2212=⎰=x xx EX DX = EX 2- ( EX )2 =454 在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解 EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y 其他DY =222π28ππ421-=- 49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解 依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解 EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x x DX =6150. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X , 求EY 和DY .解 EY =σ1( EX -μ ) =0 DY = 2σDX=1 51. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次试验的成功率为0.8,重复试验4次,失败次数记为X ,求X 的概率分布 . 解 X 可以取值0, 1, 2, 3, 4 .相应概率为P ( X =m ) =m m m C 2.08.0444⨯⨯-- ( m=0, 1, 2, 3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则 X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P=1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p = 65,其X 的最可能值为[ np + p ]=0{}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解 根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9 . {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何?解 由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得 q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX,计算随机变量Y 的期望EY 和方差DY .解 随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解 X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.60.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即 λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{ 63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率.解 设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P 解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解 EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===3 2 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解 3(3)0.9987P X Φ≤=={}2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={} 71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
c 40. PX n , n 1,2,3,4,5, 确定C 的值并计算EX . n
PX 3
PX 4
3 2 9 9 12 11 10 220
3 2 1 9 1 12 11 10 9 220
44
PY 2
PY 3
44 PX 3 9 220 1 P X 4 220
6、上题盒中球的组成不变,若一次取出3个,求取得新球数目 X的概率分布。
解
c c c c c 137c c 1 2 3 4 5 i 1 n 60
5
60 因此c 137 c 300 EX n 5c n i 1 137
5
41.随机变量X 只取 1, 1三个值,且相应概率的 0, 比为 1: 3,计算EX . 2:
解
n 9
3 n 3 3 12
(n=0,1,2,3)
7、已知PX n p n,n=1,2,3,……,求p的值
解:根据 pX n 1
n 1
p(1 p n ) lim p i lim 1 ,有 n i 1 n 1 p
n
p 1 有 1 p
34.随机变量 服从0, 上的均匀分布 cos X , 求Y 的 X Y 2 概率密度 fY ( y ).
解
y cos x 在 0, 上单调,在( 1 0, )上, 2 1 h( y ) x arccos y 有 h( y ) 1 y2 2 有 f X [h( y )]
P X k 0.6 k 0.4, ( k 0,1,2,3) 公式 法: 4 P X 4 0.6
2 x, a x a 2 17. f ( x) 其它 0, 问f ( x )是否为 密度函数,若是 定a值;若不是 说明理由 确 .
解:X可取0, 2, 4,X 0表示第一个路口就遇红 1, 3, 、黄灯, X 4表示一路绿灯 .
PX 0 0.4, PX 1 0.6 0.4 0.24, PX 2 0.6 0.6 0.4 0.144, PX 3 0.6 0.6 0.6 0.4 0.0864, PX 4 0.6 0.6 0.6 0.6 0.1296,
因此 2 , 0 y1 f Y ( y) 1 y 2 其他. 0,
36.随机变量 X ~ f ( x ), e x , f ( x) 0, Y x0 x 0.
X , Z X 2 , 分别计算随机变量 与Z的概率密度 Y . 解 当x 0时,y x 单调,其反函数为 y 2 , x 2 y , x y
PX 2
1 2 1 ( ) 16 4
4、第2题中若改为重复抽取,每次一件,直到取得优质品为止, 求抽取次数X的概率分布
解:X可以取1,2,……可列个值。
1 3 n 1 PX n ( ) 4 4
n=1,2……
5、盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不 放回抽取,每次一个直到取得新球为止,求下列随机变量的 概率分布。 (1)抽取次数X; (2)取到的旧球个数Y。 解(1)X可以取1,2,3,4各值。 (2)Y可以取0,1,2,3各值。 3 3 PX 1 PX 1 PY 0 4 4 3 9 X 2 12 11 9 P PY 1 PX 2 9
x
2
arctan e x
29.随 机 变 量 X ~ f ( x ), 2x 2 , 0 xa f ( x) 0, 其 他. 试 定 a的 值 并 求 分 布 函 数 ( x ). F
解 由 1 0
a
2x
当 0 x
x
dx 2
x
2 a 2 0
解
X 2仍服从0 1分布,且 X 2 0 PX 0 0.3 P P X 2 1 PX 1 0.7
X 22 X 的取值为 1与0,
P X 2 2 X 0 PX 0 0.3 P X 2 2 X 1 1 PX 0 0.7
100 n 1
解: cn c(1 2 ... 100) 5050c 1
1 c 5050
14.一条公共汽车线路的两 站之间,有四个路口设 有信号灯,假定汽车经 过每个路口时,遇到绿 灯可通过,概率为.6,遇到红、黄灯则停, 0 概率 为0.4,求汽车开出后,在第 一次停车之前已通过的 路口数X的概率分布 .
解: X可以取0,1,2三个值,有古典概型公式可知
m 2 C 5 C15 m PX m ( m 0,1,2)
2 C 20
3、上题中若采用重复抽取,其他条件不变,设抽取的两件产品 中,优质品为X件,求随机变量X的概率分布。 解:X的取值仍是0,1,2 3 2 9 3 1 1 ( ) P X 0 P X 1 C 2 ( )( ) 6 16 4 4 4 16
时
a2
2
因此 a
F ( x ) 0
2t
2
dt
x2
2
0, x 0, 2 x F ( x) 2 , 0 x , 1, x .
31.随机变量 服从参数为0.7 的0 1分布,求 2, X 22 X X X 的概率分布 .
1
dx c
1
1
1 1 x2
dx
1
c arcsin x 1 c ,
1 2
c
1 2
1
1 1 2 1 P X dx arcsin x 2 1 1 x 2 3 0
2
23.设连续型随机变量 的分布函数 ( x )为 X F 0, x 0 F ( x) A x , 0 x 1 1, 1 x 确定系数 A;求 P{0 X 0.25};求概率密度 ( x ). f
8、已知 P
X n p
1 p 2
n
,n=2,4,6,……,求p得值。
2 p2 (舍去) 2
p2 2 解:p 2 p 4 p 6 ...... 1 p1 1 p2 2
9、已知 PX n cn, n 1,2,...,100,求c的值。
解:串联电路正常工作 的充要条件是, 3个元件都正常工作, 3个元件的寿命是相互独 立,同分布的随机变量 , 故串联电路正常工作, 3个元件都正常工作的概 即 率为:
[ PX 150]3
100 100 2 而PX 150 2 dx x 150 3 150 x
解: F () 0 1, 不能是分布函数 .
确 定a值 ; 求 分布 函数 ( x ); 计 算P x 1. F
a 26. 随 机变 量 ~ f ( x ) X , 2 (1 x )
a a 解 : f ( x )dx 1 dx arctan x a 2 (1 x )
1、已知随机变量X服从0-1分布,并且PX 0 0.2 求X的概率分布。 解:X只取0与1两个值,
PX 0 PX 0 PX 0 0.2
PX 1 1 PX 0 0.8
2、一箱产品20件,其中有5件优质品,不放回地抽取,每次一件, 共抽取两次,求取到的优质品件数X的概率分布。
解:若 ( x )是密度函数,则 ( x ) 0, 即a 0, 此时 f f
a2 a
f ( x )dx 2 xdx x
a
a2
2 a2 a
4a 4 1
与 f ( x )dx 1矛盾,故f ( x )不是密度函数 .
19. 某 种电 子 元件 寿 命 是 随机 变 量, 概 率密 度 X 为 100 , x 100 f ( x) x 2 0, x 100 3个 这种 元 件串 联 在一 个 路 线 中 , 计 算这 个 元件 使 用了 小 3 150 时 后仍 能 使线 路 正常 工 的概 率 作 .
解: 连续型随机变量 的分布函数是连续函数 X , F (1) F (1 0), 故A 1
P{0 X 0.25} F (0.25) F (0) 0.5
1 ,0 x 1 ( x ) 2 x f ( x) F 0, 其它
25.函数(1 x 2 ) 1 可否为连续型随机变量 的分布函数,为什么?
1 arctan x 2 0
2
1
27.设 随 机 变 量 X 的 分 布 函 数 ( x )为 F A 1 2 , x 2 F ( x) x 0, x 2. 试 确 定 常 数 A, 并 求 P {0 X 4}.
解 由 F (2 0) F (2)
得 A4
A 有 1 0, 4
P{0 X 4} P{0 X 4} F (4) F (0) 0.75.
A 28.设随机变量X ~ f ( x ), f ( x ) x , 确定A的值; x e e 求分布函数 ( x ). F
A ex 解 由 1 x dx A dx x 2x 1 e e e x Aarctan e A 2 2 因此 A 2 2 x F ( x ) dt arctan e t t t (e e )