稀土发光材料及其发光原理)

合集下载

稀土材料发光

稀土材料发光

稀土材料发光稀土材料是一类特殊的材料,由于其特殊的电子结构和能级分布,使得它们在激发能量的作用下能够发出特殊的光谱。

这种发光现象被广泛应用于荧光材料、荧光显示器、LED照明、激光器等领域。

本文将介绍稀土材料发光的原理、应用和未来发展趋势。

稀土材料发光的原理主要是由于稀土元素的内层电子结构和外层价电子结构的特殊性质。

稀土元素的内层电子结构具有复杂的能级分布,而外层价电子结构又具有较宽的能带。

当外界能量作用于稀土材料时,稀土元素的内层电子能级发生跃迁,产生特定的光谱。

不同的稀土元素由于其内层电子结构的不同而发出不同波长的光谱,因此可以实现多彩的发光效果。

稀土材料发光在各个领域都有广泛的应用。

在荧光材料中,稀土材料可以被用于制备各种类型的荧光粉,用于荧光标记、生物成像、荧光探针等方面。

在荧光显示器和LED照明中,稀土材料可以被用于制备发光二极管,实现高效节能的照明效果。

在激光器中,稀土材料可以被用于制备激光介质,实现高功率、高效率的激光输出。

未来,随着科学技术的不断发展,稀土材料发光技术也将得到更广泛的应用和深入的研究。

一方面,人们将继续探索新的稀土材料,寻找更适合特定应用场景的发光材料。

另一方面,人们将不断改进稀土材料的制备工艺和性能,提高其发光效率和稳定性。

同时,人们还将探索新的应用领域,将稀土材料发光技术应用于更多的领域,如生物医学、信息显示、激光通信等。

总的来说,稀土材料发光技术具有广阔的应用前景和发展空间。

通过不断的研究和创新,稀土材料发光技术将为人类社会带来更多的科技成果和生活便利。

希望本文能够为读者对稀土材料发光技术有更深入的了解,也希望稀土材料发光技术能够为人类社会的发展做出更大的贡献。

稀土离子发光原理

稀土离子发光原理

稀土离子发光原理引言:稀土离子发光是一种重要的光学现象,它在许多领域都有广泛的应用,如显示技术、荧光材料、激光器等。

本文将深入探讨稀土离子发光的原理,并剖析其在实际应用中的意义。

一、稀土离子的发光机制稀土离子的发光机制是基于电子能级跃迁的原理。

当稀土离子受到外界能量激发时,其内部的电子会跃迁至一个较高的能级。

随后,电子会从高能级跃迁回低能级,并释放出光子能量,形成发光现象。

具体来说,稀土离子的发光过程包括以下几个步骤:1. 激发:稀土离子通过吸收外界能量,例如光或电子束,将电子激发到高能级。

2. 跃迁:激发后的电子会在高能级停留一段时间,然后跃迁回低能级。

这个跃迁过程可以是辐射跃迁,也可以是非辐射跃迁。

3. 发光:在电子跃迁回低能级时,会释放出光子能量,形成发光现象。

稀土离子的发光波长与电子跃迁的能级差有关,因此不同的稀土离子会产生不同的发光颜色。

二、稀土离子的应用稀土离子的发光特性使其在许多领域得到了广泛应用。

1. 显示技术:稀土离子可以发出各种颜色的光,因此被广泛应用于液晶显示器、荧光屏幕和LED背光源等。

通过控制不同的稀土离子的激发和跃迁过程,可以实现多彩的显示效果。

2. 荧光材料:稀土离子可以被用作荧光材料,用于制造荧光粉、荧光墨水等。

这些荧光材料可以发出明亮的光,用于照明、显示和标记等领域。

3. 激光器:稀土离子在激光器中也起到关键作用。

通过将稀土离子与适当的激光介质结合,可以实现激光的发射。

不同的稀土离子可以产生不同波长的激光,满足不同应用的需求。

4. 生物医学:稀土离子的发光特性使其在生物医学领域有着广泛的应用。

例如,稀土离子可以用于荧光探针,用于细胞成像、分子探测和药物输送等。

结论:稀土离子发光原理的研究和应用为我们提供了许多新的可能性。

通过对稀土离子的深入理解,我们可以开发出更高效、更环保的显示技术、荧光材料和激光器等。

同时,稀土离子的发光特性也为生物医学研究和应用带来了新的机遇。

稀土发光材料发光原理

稀土发光材料发光原理

稀土发光材料发光原理
稀土发光材料是一种能够在受到激发后发出可见光的材料,其发光原理是通过
稀土元素的能级跃迁来实现的。

稀土元素是指原子序数为57至71的元素,它们在周期表中位于镧系元素的最后一行,因此也被称为镧系元素。

稀土元素具有特殊的电子结构和能级分布,使得它们在激发后能够发出特定波长的可见光。

稀土发光材料的发光原理主要包括激发过程和发光过程两个方面。

首先,当稀
土发光材料受到外部能量的激发时,其内部的稀土元素会吸收能量并将电子激发到高能级。

这个激发过程可以通过光、电、热等方式来实现,其中最常见的是通过光激发。

当稀土元素的电子处于高能级时,它们会在短时间内重新排列,电子跃迁到低能级,释放出光子能量。

这些光子能量就是可见光,其波长和颜色取决于稀土元素的种类和能级结构。

稀土元素的能级结构是决定其发光性质的关键因素。

由于稀土元素的电子结构
复杂,其能级分布也非常丰富,因此可以发出多种不同波长的可见光。

这使得稀土发光材料在荧光显示、LED照明、激光器件等领域具有广泛的应用前景。

同时,
通过调控稀土元素的能级结构和掺杂浓度,可以实现对发光材料发光性能的调控和优化,从而满足不同应用场景的需求。

总的来说,稀土发光材料的发光原理是通过稀土元素的能级跃迁来实现的,激
发过程和发光过程是其发光机制的核心。

稀土元素的特殊电子结构和能级分布决定了其发光性质的多样性和可调控性,为其在光电器件领域的应用提供了广阔的空间。

随着科学技术的不断发展,相信稀土发光材料将会在更多领域展现出其独特的魅力和价值。

稀土材料高效光致发光技术研究

稀土材料高效光致发光技术研究

稀土材料高效光致发光技术研究稀土材料是指含有稀土元素的材料,是一种重要的功能材料。

其中,稀土离子的发光性质尤为引人注目,一些稀土离子可以较高效率地将电能转化为光能,这种光致发光技术已经广泛应用于发光材料、激光材料、光传感器等领域。

稀土材料的光致发光技术对于新型材料的研究和发展,以及提高各种器件的性能,具有重要的意义。

1. 稀土材料发光原理稀土元素电子最外层的电子结构是f电子不完全填充的稀土离子,在材料中具有良好的光致发光性能。

稀土离子有着由于f电子的电子配置所带来的强烈的电偶极矩和磁偶极矩,这些所谓的“内在性质”使稀土离子在与光子或其他离子相互作用的过程中表现出独特的发光性质。

这种发光过程主要分为两种类型:吸收光激发发光和室温发光。

2. 发光效率的提高稀土材料的光致发光效率受到多种因素的影响,其中最主要是其结构和氧化还原态之间的转换。

一些稀土离子在固态中的发光效率较低,其主要原因是其氧化还原态之间的转换较困难,造成了离子之间的复合,同时也限制了其表面活性,从而影响其发光效率。

因此,研究氧化还原态之间的转换规律对于提高稀土材料的发光效率至关重要。

3. 稀土材料在LED领域的应用LED是一种高效、高亮度的半导体发光体,其广泛应用于照明、显示、通讯等领域。

然而,一些常规的半导体材料不具备足够的亮度和长寿命,因此需要借助功能材料来增强其发光性能。

利用稀土材料作为发光材料,不仅可以增强LED的发光性能,还可以降低其成本和环境污染。

4. 新型稀土材料的研究近年来,随着人们对新型功能材料的需求不断增加,新型稀土材料的研究也逐渐成为了研究热点。

例如,探索稀土材料的储氢性能、电导性能、磁特性等等,都将为材料科学的发展做出重要贡献。

同时,针对稀土材料自身缺陷和应用需求,制备出新型稀土材料,将有利于其广泛应用于更多领域。

总之,稀土材料的高效光致发光技术对于实现新型材料的研究和发展,提高各种器件的性能,以及推动人类社会的进步和发展,具有极为重要的意义。

稀土发光材料

稀土发光材料

稀土发光材料稀土发光材料是一类具有特殊发光性能的材料,其发光机理主要是由于材料中的稀土离子在受激激发后发生跃迁而产生的。

稀土元素是指化学元素周期表中镧系元素和锕系元素,它们具有特殊的电子结构和能级分布,因此在材料中具有独特的光学性能,被广泛应用于发光材料领域。

稀土发光材料具有多种发光方式,包括荧光、磷光、发光等。

其中,荧光是指材料在受到紫外光等激发光源的照射后,产生可见光的现象。

而磷光是指材料在受到激发后,经过一段时间后才发出光线。

发光则是指材料在受到激发后能立即发出光线。

这些不同的发光方式使稀土发光材料在不同领域有着广泛的应用。

稀土发光材料在照明领域有着重要的应用。

由于其高效的发光性能和长寿命,稀土发光材料被广泛应用于LED照明、荧光灯、荧光屏等领域。

其中,LED照明是目前最为常见的应用之一,稀土发光材料在LED中起着至关重要的作用,能够提高LED的发光效率和色彩表现。

除了照明领域,稀土发光材料还在显示领域有着重要的应用。

例如,在液晶显示器中,稀土发光材料被用作背光源,能够提供均匀的背光效果,并且具有较高的亮度和色彩饱和度。

此外,稀土发光材料还被应用于激光显示、荧光屏等领域,为显示技术的发展提供了重要支持。

在生物医学领域,稀土发光材料也有着重要的应用。

由于其发光性能稳定、光谱范围宽,稀土发光材料被应用于生物标记、生物成像等领域。

利用稀土发光材料标记生物分子,能够实现对生物体内部结构和功能的高灵敏检测,为生物医学研究提供了重要的工具。

总的来说,稀土发光材料具有独特的发光性能和广泛的应用前景,其在照明、显示、生物医学等领域有着重要的作用。

随着科技的不断进步,稀土发光材料的研究和应用将会得到进一步的推动,为人类社会的发展和进步做出更大的贡献。

稀土掺杂的纳米发光材料的制备和发光

稀土掺杂的纳米发光材料的制备和发光

稀土掺杂的纳米发光材料的制备和发光
稀土掺杂的纳米发光材料是一种现代科技产品,它具有良好的发光性能,广泛应用于生物医学、光电器件、环保和安全等领域。

稀土掺杂的纳米发光材料的制备主要依赖于稀土掺杂剂的合成。

目前,主要有三种合成方法:即湿法合成、固体相反应法和气相反应法。

湿法合成也称水热法,是利用溶液中的溶解度和表面张力,将原料以金属氰酸盐形式溶解于湿态溶液中,利用溶液内部的形成、析出、增溶等物理化学原理使稀土掺杂剂形成,并使稀土掺杂剂在低温下成膜形成,最终获得不同粒度的稀土掺杂剂。

固体相反应法,即利用原料在固体中形成、析出、增溶等物理化学变化,使稀土掺杂剂形成,并在低温下使稀土掺杂剂成膜。

通常,高温烧结是实现固体反应的方法,可以获得较大粒度的稀土掺杂剂。

气相反应法,也称气体反应法,所采用的原料是固体、液体或气体,以及熔解在溶剂中。

在反应温度和压力适当的情况下,稀土掺杂剂在气相中形成,可以获得高粒度的稀土掺杂剂。

稀土掺杂的纳米发光材料的发光特性可以归结于量子级的跃迁发射原理,按照稀土3d 5d 4f能隙发光机制,稀土掺杂的纳米发光材料可以发射出蓝色、绿色、黄色和紫色等多种颜色的光,可以根据不同应用需求,采用多种不同的掺杂方法生产出不同的产品,如采用稀土元素可以扩散紫外线发光,以及采用非稀土元素可以发射出白光等。

稀土掺杂的纳米发光材料可以实现更高效的发光,并且发光同时具有良好的耐久性和稳定性,有助于其在微电子技术领域的广泛应用。

浅述稀土发光材料

浅述稀土发光材料

浅述稀土发光材料浅述稀土发光材料日新月异的现代技术的发展需要很多新型材料的支持。

自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。

新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。

材料科学现已发展成为一门跨学科的综合性学科。

根据我国当前及未来发展的实际情况,新材料领域值得注意的新发展方向主要有半导体材料、结构材料、无机发光材料、有机/高分子材料、敏感与传感转换材料、纳米材料、生物材料及复合材料。

1. 稀土发光材料简介1.1 稀土发光材料的电子组态特征稀土离子的发光特性来源于其电子构型的特殊性。

发射与激发主要源于4f能级间或5d-4f能级间的电子跃迁。

研究稀土发光材料,实际是研究4f轨道上与f电子的物理性质相关的材料。

稀土原子和离子的电子组态具有下列特征:(1) 中性La系原子中,没有4f电子的La (4f0), 4f电子半充满的Gd (4f7)和4f电子全充满的Lu (4f14)都有一个5d电子,即m=1;此外,Ce原子也有一个5d电子,其他La系原子的 m 都为零。

(2) 对于一个具体的稀土元素,相对于6s和5d电子,4f 电子的能量要低一些,因此6s和5d最容易电离,如果没有5d电子,4f电子也容易电离一个,所以很容易形成三价稀土离子Re3+ (4fn).部分稀土元素除了稳定的+3价之外,也存在异常的+2和+4价态。

La3+ (4f0), Gd3+ (4f7)和Lu3+ (4f14)已处于稳定结构,获得+2和+4价态是相当困难的;Ce3+ (4f1)和Tb3+(4f8)失去一个电子即达稳定结构,因而出现+4价态;Eu3+ (4f6)和Yb3+ (4f13)接受一个电子即达稳定结构,因而易出现+2 价态。

(3) 三价La系离子的4f电子在空间上受到外层的5s25p6壳层所屏蔽,故受外界的电场,磁场和配位场等外场的影响较小,使它们的显著不同于过渡元素的离子在三价稀土离子中,没有4f电子的La3+ (4f0)及 4f 电子全充满的Lu3+(4f14)都具有充满的壳层,因此它们都是无色的离子,具有光学惰性,很适合作为发光和激光材料的基质。

稀土上转换发光材料应用文章

稀土上转换发光材料应用文章

稀土上转换发光及其光电产品推荐目录一、什么是上转换发光?二、镧系掺杂稀土上转换发光的发光原理三、稀土上转换发光材料的应用四、相关光电产品推荐五、几个容易混淆的“上转换”概念一、什么是上转换发光?斯托克斯(Stokes)定律认为材料只能受到高能量的光激发,发射出低能量的光,即经波长短、频率高的光激发,材料发射出波长长、频率低的光。

而上转化发光则与之相反,上转换发光是指连续吸收两个或者多个光子,导致发射波长短于激发波长的发光类型,我们亦称之为反斯托克斯(Anti-Stokes)。

Figure 1.常规发光和上转换发光能级跃迁图Figure 2.样品被绿光激光激发之后产生荧光(左边样品为Stokes emission,右边样品为Anti-stokes emission)上转换发光在有机和无机材料中均有所体现,但其原理不同。

有机分子实现光子上转换的机理是能够通过三重态-三重态湮灭(Triplet-triplet annihilation,TTA),典型的有机分子是多环芳烃(PAHs)。

无机材料中,上转换发光主要发生在镧系掺杂稀土离子的化合物中,主要有NaYF4、NaGdF4、LiYF4、YF3、CaF2等氟化物或Gd2O3等氧化物的纳米晶体。

NaYF4是上转换发光材料中的典型基质材料,比如NaYF4:Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。

本应用文章我们着重讲讲稀土掺杂上转换发光材料(Upconversion nanoparticles,UCNPs)。

二、镧系掺杂稀土上转换发光的发光原理无机材料有三个基本发光原理:激发态吸收(Excited-state absorption, ESA),能量传递上转换(Energy transfer upconversion, ETU)和光子雪崩(Photon avalanche, PA)。

Figure 3.稀土上转换发光材料的发光原理(a)激发态吸收激发态吸收过程(ESA)是在1959年由Bloembergen等人提出,其原理是同一个离子从基态通过连续多光子吸收到达能量较高的激发态的过程,这是上转换发光最基本的发光过程。

稀土配合物的发光原理

稀土配合物的发光原理

稀土配合物的发光原理
稀土配合物的发光原理主要基于4f电子的跃迁。

具有未充满4f壳层的稀土原子或离子拥有大约30000条可观察到的谱线,这些谱线可以发射从紫外光、可见光到近红外光区的各种波长的电磁辐射。

由于稀土原子具有5s5p 轨道的屏蔽作用,内部4f电子的跃迁几乎不受外部环境的影响,使得其发射谱带窄、色纯度高。

在稀土配合物的发光过程中,配体受到激发后产生的单重激发态激子经系间窜越跨越到三重激发态激子,然后三重激发态激子的能量传递给稀土离子,进而稀土离子辐射发光。

稀土配合物的发光可利用单重态和三重态激子的能量,理论上可以实现100%的量子效率,因而稀土配合物被视为理想的发光材料。

以上内容仅供参考,如需更全面准确的信息,可以查阅化学专业书籍或咨询相关化学专家。

稀土发光材料及其发光原理综述

稀土发光材料及其发光原理综述

2020/2/29
2
稀土发光材料-阴极射线发光材料
目前在投影电视需要的荧光体比较少,红色荧光体
主要为前面所述的掺铕硫氧化钇,蓝色荧光体主要有
ZnS:Ag , 绿 色 荧 光 体 种 类 较 多 , 有 钇 铝 镓 石 榴 石 系
(Y3(Al,Ga)5O12),如YAG:Tb,Y(Al,Ga)G:Tb等;卤氧化 镧体系(LaOX),如LaOBr:Tb,LaOCl:Tb等;正硅酸氧钇
5D4→7F5跃迁产生的,颜色为黄绿色,与标准绿色有较 大差距。
2020/2/29
3
稀土发光材料-光致发光材料
光致发光材料早前主要用于隐蔽照明、紧急照明以
及飞机的仪表盘等,随着上世纪70年代能源危机的出现, 发光材料用于照明设备的研究逐渐成为热点,荧光灯稀
土材料迅速发展。荧光灯使用的三基色材料主要为发红
光 的 Y2O3:Eu3+ , 发 蓝 光 的 BaMg2Al16O27:Eu2+ 及 绿 光 的 Ce0.67Tb0.33Al11O19荧光体。由于人眼对绿光的敏感性最 强且荧光灯中绿色成分占重要地位,需要选择一种高效
的绿色发光材料。Tb3+是绿光的主要发光材料,因此通 过Tb与不同化合物的结合,晶体结构与晶体场的作用使 Tb3+更容易吸收能量进行发射。Ce3+作为敏化剂,将能 量高效的吸收传递给Tb3+。目前使用的绿色荧光体主要 有 CeMgAl11O19:Tb(CAT) , LaPO4:Ce,Tb 及 其 变 体 , Y2SiO5:Ce,Tb(正硅酸氧钇)以及REMg5BO10(稀土五硼酸 盐)等。
右图显示了部分稀土 离子与金属硫化物电 致发光材料部分能级 跃迁发射光峰值对应 的波长

稀土发光材料及其发光原理

稀土发光材料及其发光原理

6
稀土发光材料-其他稀土发光材料
稀土闪烁体是闪烁探测器的核心部分,当带电粒子、 射线或者中子通过闪烁体时激发闪烁体而发光,是研究 核物理的重要部分;目前 Gd2O2S:Pr,Ce,F 陶瓷闪烁体用 于 X射线 CT医疗的氙气电离探测器中, Gd2SiO5:Ce闪烁 体用于制作正电子灵敏探测器,CeF3和LaF3:Ce闪烁体用 于现代医学图像显示核子科学中等。 稀土转换发光材料中存在发射光子能量大于吸收光 子能量的转换发光现象,该种发光材料主要根据基质分 为四类:①稀土氟化物, LaF3,YF3 等②稀土卤氧化物, YOCl3 等③稀土硫氧化物, La2O2S 等④稀土氧化物和复 合氧化物Y2O3,NaY(WO4)2等。 稀土热释发光材料主要用于探测核辐射剂量、发射 医 学 以 及 生 物 学 等 , 目 前 比 较 成 熟 的 有 CaSO4: (Dy,Sm,Tm),CaF2:Dy,Mg2SiO4:Tb等。
右图显示了部分稀土 离子与金属硫化物电 致发光材料部分能级 跃迁发射光峰值对应 的波长
2014-12-12
5
稀土发光材料-X射线稀土发光材料
X 射线光子流穿过物体,形成一个 X 射线潜像,通 过荧光屏或增感屏上的荧光粉转化为光学图像。 X射线 发光主要靠激发过程中产生的大量次级电子直接或间接 地激发发光中心,转变为可见光辐射。 上世纪70年代,稀土X射线发光材料大量应用的有 以下几类: (1)铽激活的稀土硫氧化物 RE2O2S2:Tb(RE:Gd,La,Y)。 (2) 稀土激活的卤氧化镧 LaOX:R3+(R:Tb,Tm,Ce;X:Cl,Br) 。 (3)二价铕激活的氟卤化钡 BaFX:Eu2+(X:Cl,Br)。 (4)稀土钽酸盐 RETaO4:M(RE:La,Gd,Y;M:Tm,Nb)。

稀土发光的原理

稀土发光的原理

稀土发光的原理
稀土发光是指稀土元素在某些条件下发出特征性的发光现象。

其原理可以概括为以下几个方面:
1. 能级跃迁:稀土元素具有复杂的内电子构型,其电子在不同的能级之间跃迁可以发出特定波长的光。

当稀土元素处于激发态时,电子会从高能级跃迁至低能级,放出能量,即光子。

2. 能带结构:在晶体中,稀土元素的能带结构对其发光性质起到重要的影响。

稀土元素通常处于价带的禁带之上,而在激发态下,电子可以跃迁至传导带或价带的其他能级,放出光子。

3. 半导体材料:稀土元素往往嵌入在半导体材料中,通过掺杂等方式引入。

半导体材料能够提供稀土元素所需的能带结构和激发态的能级,使其能够实现能级跃迁和发光现象。

4. 能量转移:在某些情况下,稀土元素的发光可以通过与其他元素进行能量转移来实现。

例如,通过与氧原子的能量转移,稀土元素可以从一个激发态跃迁至另一个激发态,放出特定波长的光。

需要注意的是,稀土元素的发光性质与其离子态的结构、晶体结构、杂质等因素密切相关,因此不同的稀土元素和不同的材料条件下,发光现象会有所差异。

稀土发光的研究和应用在光学、材料科学、能源等领域具有重要的意义。

稀土发光材料发光原理

稀土发光材料发光原理

稀土发光材料发光原理
稀土发光材料发光的原理是通过激发稀土元素中的电子,使其跃迁到较高的能级,然后在自发辐射的过程中释放出光子。

这个过程可以分为两个步骤:激发和辐射。

激发是指外界能量激发稀土元素中的电子跃迁到较高的能级。

通常采用光或电子束激发的方式,通过吸收光子或电子的能量,使得电子跃迁到激发态。

在激发态,电子处于不稳定状态,因为其能量高于基态。

辐射是指处于激发态的电子自发地跃迁到较低的能级并释放出光子的过程。

这种自发辐射会导致光子的发射,从而形成所谓的发光现象。

跃迁的发生取决于电子能级的结构,具体的激发和辐射过程可通过能级示意图表示。

稀土发光材料之所以能够发出不同颜色的光,是因为稀土元素的能级结构决定了其跃迁的能量差异。

不同的能级跃迁对应不同的光子能量,而光的能量与波长成反比。

因此,稀土元素的能级结构决定了材料所发出的光的颜色。

总之,稀土发光材料的发光原理是通过激发稀土元素中的电子到较高能级,然后在自发辐射的过程中释放光子,形成发光现象。

不同的能级跃迁决定了发出的光的颜色。

稀土长余辉发光材料的发展、发光机理及应用

稀土长余辉发光材料的发展、发光机理及应用

稀土长余辉发光材料的发展、发光机理及应用
稀土长余辉发光材料是一类具有长余辉效应的发光材料,能够在被激发后持续发光一段时间。

这些长余辉发光材料由稀土元素掺杂到晶体或玻璃基质中,通过特定的激发条件,能够吸收和储存能量,当激发源移除后,可以将储存的能量以光的形式释放出来。

稀土长余辉发光材料的发展可以追溯到20世纪60年代。

最早的长余辉发光材料是利用能量位移的效应来实现长余辉发光的。

随着科学技术的发展,人们逐渐发现了其他能够实现长余辉发光的机制,例如自激发机制、激子机制等。

稀土长余辉发光材料的发光机理主要包括能量位移、自激发和激子机制。

能量位移机制是指在材料中吸收的能量以电子序列的形式储存起来,通过能级跃迁而发光。

自激发机制是指材料中存在的一些能级跃迁能够在激发源移除后自动释放能量,实现长余辉发光。

激子机制是指材料中的自由激子可以通过复合过程释放能量,从而实现长余辉发光。

稀土长余辉发光材料具有广泛的应用领域。

其中最常见的应用是夜光材料,例如夜光表、夜光标志等。

此外,稀土长余辉发光材料还可以用于光学传感器、显示器件等。

近年来,人们还通过将稀土长余辉发光材料与其他材料相结合,开发出了一些新的应用,例如发光材料的生物医学应用、发光材料的电子设备应用等。

总的来说,稀土长余辉发光材料的发展、发光机理及应用是一
个多学科交叉的研究领域,其在能源储存、光学传感、夜光材料等领域都有着重要的应用价值。

随着科学技术的不断发展,人们对这类材料的研究和应用也将进一步扩展和深化。

稀土发光材料发光原理

稀土发光材料发光原理

稀土发光材料发光原理稀土发光材料是一种能够在受到激发后发出可见光的材料,其发光原理是由于稀土离子在激发态和基态之间跃迁所致。

稀土元素是指周期表中镧系元素和锕系元素,它们具有特殊的能级结构和电子构型,因此在发光材料中具有独特的发光性能。

首先,稀土离子的能级结构对于发光材料的发光性能起着至关重要的作用。

稀土离子的能级结构呈现出复杂的分裂和交叉,这种特殊的能级结构使得稀土离子在受到外界激发后能够产生多种跃迁过程,从而实现多种发光色彩的发射。

这种多能级结构的存在为稀土发光材料提供了丰富的发光色彩选择,使其在发光领域具有广泛的应用前景。

其次,稀土离子之间的能量传递和激子形成也是稀土发光材料发光原理的重要组成部分。

在稀土发光材料中,稀土离子之间会发生能量传递和激子形成的过程,这些过程会影响稀土发光材料的发光效率和发光色彩。

通过合理设计和选择稀土离子的组合和掺杂方式,可以实现稀土发光材料的发光效率和发光色彩的优化,从而满足不同领域对于发光材料的需求。

此外,稀土发光材料的晶体结构和局域环境也对其发光性能产生着重要影响。

晶体结构的对称性和局域环境的微观结构会影响稀土离子的能级结构和跃迁概率,从而影响稀土发光材料的发光性能。

因此,通过对稀土发光材料的晶体结构和局域环境进行精密调控,可以实现对其发光性能的有效调控,从而满足不同应用领域对于发光材料的需求。

总的来说,稀土发光材料的发光原理是由稀土离子的能级结构、能量传递和激子形成、晶体结构和局域环境共同作用决定的。

通过对这些因素的深入研究和精密调控,可以实现对稀土发光材料发光性能的有效优化,从而满足不同领域对于发光材料的需求。

稀土发光材料作为一种重要的发光材料,在显示、照明、生物医学等领域具有广泛的应用前景,其发光原理的深入理解和发光性能的精密调控将为其在这些领域的应用提供重要的支撑和保障。

稀土发光材料发光原理

稀土发光材料发光原理

稀土发光材料发光原理稀土发光材料是一种具有特殊发光性能的材料,其发光原理主要是由稀土元素的激发态和基态之间的跃迁所导致的。

稀土元素是指周期表中镧系元素和锕系元素,它们在材料中的激发态和基态之间的跃迁可以产生特殊的发光效果,因此被广泛应用于发光材料中。

稀土发光材料的发光原理主要包括两种机制,一种是基于激发态的辐射跃迁,另一种是基于能级的非辐射跃迁。

在这两种机制中,激发态的辐射跃迁是主要的发光原理。

在稀土发光材料中,当外界能量作用于材料时,稀土元素的电子会被激发到高能级的激发态,形成激发态的离子。

这些激发态的离子在短时间内会通过非辐射跃迁回到基态,释放出部分能量。

而在这个过程中,部分能量会以光的形式辐射出来,形成发光效果。

这就是稀土发光材料的发光原理之一,基于激发态的辐射跃迁。

而另一种发光原理是基于能级的非辐射跃迁。

在这种机制下,稀土元素的电子被激发到高能级的激发态后,会在非辐射跃迁的过程中释放出部分能量。

虽然这部分能量不以光的形式辐射出来,但是在一些特殊情况下,这部分能量会转化为光的能量而发光。

这种发光机制在一些特殊的稀土发光材料中也得到了应用。

除了这两种主要的发光原理外,稀土发光材料的发光效果还受到一些其他因素的影响,比如稀土元素的种类、晶体结构、杂质离子的影响等。

这些因素都会对稀土发光材料的发光效果产生一定的影响。

总的来说,稀土发光材料的发光原理是基于稀土元素的激发态和基态之间的跃迁所导致的。

这种特殊的发光原理使得稀土发光材料在发光效果上具有独特的优势,因此在LED、荧光材料、激光材料等领域得到了广泛的应用。

对于稀土发光材料的发光原理的深入研究,不仅有助于提高发光材料的性能,还可以拓展其在各种领域的应用,具有重要的科学研究和工程应用价值。

稀土发光材料

稀土发光材料

稀土发光材料稀土发光材料是一种非常特殊和具有重要应用价值的材料。

它们具有较高的发光效率、发光色彩丰富、发光稳定性好等特点,在照明、显示、生物标记、激光和光电器件等领域有着广泛的应用。

稀土元素是指化学周期表中第57至第71号元素,也包括锕系元素中放射性的钚、镅和锎。

这些元素在自然界中分布相对较少,因此被称为稀土元素。

它们的外层电子结构的特殊性使得稀土元素具有特殊的物理和化学性质,这也决定了稀土元素可以产生发光现象。

稀土发光材料的发光原理是基于稀土离子在材料中的特殊能级结构。

稀土离子的能级结构可以由外层电子结构的特殊性和晶体场效应来解释。

在材料中引入适量的稀土离子,可以使其处于不同能级,当激发能量施加到材料上时,稀土离子从较低能级跃迁到较高能级,再经过非辐射跃迁返回基态时释放出光能,产生发光现象。

稀土发光材料的种类很多,常见的有氧化物发光材料、碱金属卤化物发光材料和硫化物发光材料等。

每种材料由不同的稀土元素组成,可以发射出不同波长的光。

例如,镧系元素可以发射出红、橙、黄、绿、蓝、紫等色彩的光,而铒系元素则可以发射出红外光。

稀土发光材料在照明领域有着广泛的应用。

由于其较高的发光效率和发光稳定性好,稀土发光材料可以用于制造高效节能的荧光灯、LED灯和照明装饰品,有效替代传统的白炽灯和荧光灯。

稀土发光材料还可以用于显示器件,例如液晶显示器和有机发光二极管(OLED)。

此外,稀土发光材料还可以应用于生物标记。

通过在稀土发光材料上引入特定的功能分子,可以将其用于细胞和生物分子的标记和探测。

这种材料可以在低激发能量下发射出特定波长的光,用于细胞和生物分子的成像和检测。

在激光领域,稀土发光材料也起到了重要的作用。

稀土离子在材料中的激发能级结构使得其可以产生激光效应,被广泛应用于激光器件的制造。

例如,钕掺杂的氧化物和磷酸盐材料被广泛用于激光器中,发射出具有较高功率和较短波长的激光。

总之,稀土发光材料是一种非常重要的材料,具有较高的发光效率、发光色彩丰富、发光稳定性好等特点。

稀土发光材料 1

稀土发光材料  1

稀土发光材料摘要:亘古至今,人类就喜好光明而厌恶黑暗,梦想着有一天能随意地控制光。

而今,我们已发明了很多实用的发光材料。

稀土元素在这些发光材料中起了很大的作用,远远超过了其它元素。

稀土发光是由稀土4f电子在不同能级间跃迁而产生的。

稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外线的光谱,特别在可见光区有很强的发射能力等优点。

稀土发光材料已经在新光源、显示显像、X射线增光屏等各个方面上广泛应用了。

稀土化合物的功能和应用技术是21世纪化学化工的重要研究课题,而发光是稀土化合物光、电、磁三大功能中最突出的功能,因此稀土发光材料的研究具有格外重要的意义。

关键词:稀土元素稀土发光材料 4f电子1.稀土发光材料的发光机理及特性1.1稀土发光材料的发光机理稀土化合物的发光是基于它们4f电子层在f-f组态之内或f-d组态之间的跃迁。

具有未充满的4f壳层的稀土原子或离子,其光谱中大约有30000条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。

稀土离子丰富的能级和4f电子的跃迁特性使稀土成为巨大的发光宝库,从中可以发掘出更多新型的发光材料[1]。

1. 2稀土发光材料的发光特性稀土发光材料的发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;而且荧光寿命从纳秒到毫秒,达到6个数量级;材料的物理和化学性能稳定,耐高温,能承受大功率电子束,高能辐射和强紫外光的作用。

正是这些优异的性能,使稀土化合物成为探寻高技术材料的主要研究对象[2]。

2.稀土发光材料的分类根据激发源的不同,稀土发光材料可分为光致发光、电致发光、阴极射线发光、放射性发光、X射线发光、摩擦发光、生物发光以及化学发光材料等。

下面主要介绍光致发光材料、电致发光材料和阴极射线发光材料。

2.1光致发光材料因为稀土离子本身所具有的独特结构和性质,使得其在与有机配体配合后,具有能发出稀土离子发光强度高、颜色纯正的荧光和有机发光化合物所需能量低、荧光效率高、易溶于有机介质的优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/3/26
4
稀土发光材料-电致发光材料
电致发光是将电能直接转换为光能的现象。目前应 用 稀 土 电 致 发 光 的 主 要 为 交 流 薄 膜 电 致 发 光 (ACTFEL) 与粉末直流电致发光(DCEL)。ACTFEL发光材料主要有 三价稀土氟化物掺杂的ZnS和ZnSe,比如说红色发光材 料 是 ZnS:NdF3 、 ZnS:SmF3 和 ZnS:EuF3 , 绿色 发 光材料 ZnS:TbF3、ZnS:ErF3和ZnS:HoF3,蓝色为ZnS:TmF3等; 碱 土 金 属 方 面 主 要 是 稀 土 离 子 激 活 的 CaS 和 SrS 材 料 。 DCEL主要是稀土氯化物激活的CaS和SrS材料。
上世纪70年代,稀土X射线发光材料大量应用的有 以下几类: (1)铽激活的稀土硫氧化物 RE2O2S2:Tb(RE:Gd,La,Y)。 (2)稀土激活的卤氧化镧 LaOX:R3+(R:Tb,Tm,Ce;X:Cl,Br)。 (3)二价铕激活的氟卤化钡 BaFX:Eu2+(X:Cl,Br)。 (4)稀土钽酸盐 RETaO4:M(RE:La,Gd,Y;M:Tm,Nb)。
光 的 Y2O3:Eu3+ , 发 蓝 光 的 BaMg2Al16O27:Eu2+ 及 绿 光 的 Ce0.67Tb0.33Al11O19荧光体。由于人眼对绿光的敏感性最 强且荧光灯中绿色成分占重要地位,需要选择一种高效
的绿色发光材料。Tb3+是绿光的主要发光材料,因此通 过Tb与不同化合物的结合,晶体结构与晶体场的作用使 Tb3+更容易吸收能量进行发射。Ce3+作为敏化剂,将能 量高效的吸收传递给Tb3+。目前使用的绿色荧光体主要 有 CeMgAl11O19:Tb(CAT) , LaPO4:Ce,Tb 及 其 变 体 , Y2SiO5:Ce,Tb(正硅酸氧钇)以及REMg5BO10(稀土五硼酸 盐)等。
5D4→7F5跃迁产生的,颜色为黄绿色,与标准绿色有较 大差距。
2020/3/26
3
稀土发光材料-光致发光材料
光致发光材料早前主要用于隐蔽照明、紧急照明以
及飞机的仪表盘等,随着上世纪70年代能源危机的出现, 发光材料用于照明设备的研究逐渐成为热点,荧光灯稀
土材料迅速发展。荧光灯使用的三基色材料主要为发红
2020/3/26
1
稀土发光材料-阴极射线发光材料
光C组通三和用R浓距传到后种成特的体常T显进下度离递阴彩发的性是、为示入一,猝小极电光,改铕彩Y器一V个即灭于发的材善其激色O用个中光荧从:临料中,活投4:多猝E心材 光一界激发红图的影u功灭料屏·射色像距个活,硫仪能中.主是锐红色离中离Y.氧荧..荧心2.要由线色彩心子,(O化光光,3用红谱荧不传浓它发:钇E体体导于绿光失,u递度们生磷、,等致显蓝粉真谱到较就能光终。Y发示三是线。下大会量体2端光O设基激色目一时产迁2。的显S备色活纯前个生移,:在E猝示荧,态度彩u中级中)Y灭。器光的如高电2心联心直O。彩用粉含彩显,2到能间,S电荧有铕电示亮中最量的再使光化规用屏度,用体合则红普与Eu以以物排色遍电3+荧列使及上饱,的 发级度光温中发的射,的度心光色峰随5D猝晶效度在着1,5灭格率。D6E2u2:弛降6发浓n豫 低温m射度处增。度产增,强升生加属,高的,于无,绿绿E辐晶光光u射格3和和+的跃振蓝蓝5迁动D光光0几加→影发率剧7响射F增,2红猝能大发色灭级,光荧,跃光保迁体证;的了高色能红
体系(Y2SiO5),如Y2SiO5等。绿色荧光体主要是以激活 Tb3+的稀土发光材料,而投影电视绿色荧光体的主要材
料是钇铝镓石榴石体系。
Tb3+的5D3→7F1主要发射蓝光,5D4→7F1主要发射绿 光 。 5D3 在 Tb3+ 浓 度 低 的 时 发 光 , 浓 度 高 时 存 在 (5D3 → 5D4) → (7F6 → 7F0) 的 交 叉 驰 豫 而 消 光 。 高 浓 度 (1%mol) 的 Tb3+ , 其 发 光 主 发 光 带 是 550nm 区 域 , 是 光
稀土发光材料及其发光原理
2020/3/26
冶金与环境学院
稀土发光材料
发光是物质中能量的吸收、存贮、传递和转换的 结果;根据发光方式的不同分为光致发光、阴极射线 发光电致发光、放射发光和X射线发光等。稀土离子中, Ce3+和Eu2+发光光谱是宽谱带,其它三价离子都是锐线 谱。三价稀土离子外层电子组成满壳层(5s2p6),当内层 4f电子吸收能量后跃迁到激发态,再次跃迁至低能级时 释放能量,发射光谱。目前稀土发光材料已广泛应用 于显示显像、新光源、X射线增感器、核物理与核辐射 探测、医学放射图像摄影技术,并向其它高技术领域 拓展。
荧光体 颗粒形状 发射峰/nm 发光颜色
CaWO4 多面体
430 蓝紫
BaFCl:Eu 片状
390 蓝紫
Gd2O2S:Tb 多面体
545/490 绿
LaOBr:Tb 片状
462/374 蓝
LaOBr:Tm 片状
483/405 蓝紫
M’YTaO4:Tm 多面体
410 蓝紫
2020/3/26
6
稀土发光材料-其他稀线或者中子通过闪烁体时激发闪烁体而发光,是研究
右图显示了部分稀土 离子与金属硫化物电 致发光材料部分能级 跃迁发射光峰值对应 的波长
2020/3/26
5
稀土发光材料-X射线稀土发光材料
X射线光子流穿过物体,形成一个X射线潜像,通 过荧光屏或增感屏上的荧光粉转化为光学图像。X射线 发光主要靠激发过程中产生的大量次级电子直接或间接 地激发发光中心,转变为可见光辐射。
2020/3/26
2
稀土发光材料-阴极射线发光材料
目前在投影电视需要的荧光体比较少,红色荧光体
主要为前面所述的掺铕硫氧化钇,蓝色荧光体主要有
ZnS:Ag , 绿 色 荧 光 体 种 类 较 多 , 有 钇 铝 镓 石 榴 石 系
(Y3(Al,Ga)5O12),如YAG:Tb,Y(Al,Ga)G:Tb等;卤氧化 镧体系(LaOX),如LaOBr:Tb,LaOCl:Tb等;正硅酸氧钇
相关文档
最新文档