17.整式的乘法与除法(含答案)-

合集下载

整式的乘除法

整式的乘除法

整式的乘除法整式是指由数字、字母和运算符号(加减乘除和括号)组成的代数式。

在数学中,整式的乘除法是学习代数运算的重要一环。

本文将介绍整式的乘法和除法,并提供相应的解题方法和技巧。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到一个新的整式。

在进行整式的乘法时,需要注意以下几点:1. 符号相乘:当两个整式相乘时,需要根据乘法法则对各项进行符号相乘。

同号相乘得正,异号相乘得负。

2. 同类项合并:在得到乘积后,需要对乘积中的同类项进行合并。

即将相同指数的字母项合并,并将系数相加。

下面通过一个示例来展示整式的乘法:例题:计算乘积 $(3x-4y)(2x+5)$。

解答:按照乘法法则,我们将每一项进行符号相乘,得到乘积:$$6x^2+15x-8xy-20y$$然后,我们将乘积中的同类项进行合并:$$6x^2+15x-8xy-20y$$至此,我们得到了乘积的最简形式。

二、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余数的过程。

在进行整式的除法时,需要遵循以下几个步骤:1. 确定除数和被除数:将要除以的整式称为除数,被除的整式称为被除数。

2. 用除法定律进行整式的除法:将整式的除法转化为有理数的除法。

3. 化简商式:对除法得到的商式进行化简,即将商式中的同类项合并。

4. 找到余式:将化简后的商式与被除数相乘,得到乘积后减去除数,得到余式。

下面通过一个示例来展示整式的除法:例题:计算商和余数 $\frac{4x^3-7x^2+10}{x-2}$。

解答:按照除法的步骤,我们首先确定除数为 $x-2$,被除数为$4x^3-7x^2+10$。

然后,我们用除法定律进行整式的除法:```4x^2 -5x___________________x-2 | 4x^3 -7x^2 +10- (4x^3 -8x^2)_______________x^2 +10- (x^2 -2x)____________12x +10- (12x -24)__________34```化简商式得到商 $4x^2-5x+1$,余数为 $34$。

初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)

初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)

初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母

~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法整式是指由常数、变量及它们的乘积和积的和差组成的代数式。

整式的乘法与除法是代数学中重要的运算,本文将从定义、性质及计算方法等方面进行探讨。

一、整式的定义整式是由常数、变量及它们的乘积和积的和差组成的代数式。

常数称为零次整式,单个变量称为一次整式,以此类推。

整式可以表示为:f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀其中,a₀、a₁、...、aₙ为系数,n为自然数,x为变量。

二、整式的乘法整式的乘法是将两个或多个整式相乘得到一个新的整式。

要进行整式的乘法,需要遵循以下规则:1. 同类项相乘:将相同指数的项的系数相乘,并将指数保持不变。

例如:(3x²)(4x³) = 12x⁵。

2. 多项式相乘:将一个整式中的每一项都与另一个整式的每一项相乘,然后将结果相加。

例如:(3x + 2)(4x + 5) = 12x² + 22x + 10。

3. 分配律:整式的乘法满足分配律。

例如:a(b + c) = ab + ac。

三、整式的除法整式的除法是将一个整式除以另一个整式,得到商式和余式。

要进行整式的除法,需要注意以下几点:1. 除数不为零:除数不为零,否则除法无意义。

2. 长除法:使用长除法的步骤进行计算,以下以一个例子作说明:例如:(2x³ + 3x² - 4x + 1) ÷ (x - 1)首先将被除式按降幂排列:2x³ + 3x² - 4x + 1然后进行第一步的除法,将2x³ ÷ x进行计算,得到2x²,并将结果写在商式上。

然后将2x²与(x - 1)相乘,并进行减法得到2x³ + 2x²。

依次进行下一步的除法计算,直到无法再继续进行为止。

四、整式乘法与除法的性质1. 乘法的交换律与结合律:整式的乘法满足交换律与结合律,即a ·b = b · a,(a · b) ·c = a · (b · c)。

七年级数学-第02讲 整式的乘法(解析版)

七年级数学-第02讲 整式的乘法(解析版)

2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。

代数知识点

代数知识点

整式乘除一、整式的乘法与除法1、同底数幂的乘法:m n m n a a a ++=(m,n 都是正整数)即:同底数幂相乘,底数不变,指数相加;2、幂的乘方:()n m mn a a =(m,n 都是正整数) 即:幂的乘方,底数不变,指数相乘; 3、积的乘方:()n n nab a b =(n 是正整数)即:积的乘方,等于把积的每一个因式分别乘方,再把所得幂相乘;4、整式的乘法:①单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;②单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加; ③多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得 的积相加;4、整式的除法:(1)同底数幂的除法:m n m n a a a -÷=(a ‡0 , m , n 都是正整数,并且m>n )即:同底数幂相除,底数不变,指数相减;(2)规定:01(0)a a =≠即:任何不等于0的数的0次幂都等于1;(3)整式的除法:①单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则把连同它的指数作为商的一个因式;②多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得商相加; 二、整式的乘方(1)平方差公式:()()22a b a b a b +-=-即:两个数的和与这两个数的差的积,等于这两个数的平方差;(2)完全平方公式:222222()2()2a b a ab b a b a ab b +=++-=-+即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍;(3)添括号:①如果括号前面是正号,括到括号里的各项都不变符号;②如果括号前面是负号,括到括号里的各项都改变符号;因式分解一、知识点(1)因式分解:把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解因式);(2)公因式:多项式的各项都有的一个公共因式;(3)因式分解的方法:提公因式法:关键在于找出最大公因式因式分解:平方差公式:a² -b² =(a + b)(a - b)公式法完全平方公式:(a + b)² = a² + 2ab +b²(a - b)² = a² + 2ab +b²知识点一分式及其运算1、分式的概念及性质:2、约分:(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.3、最简分式:分子、分母没有公因式的分式叫做最简分式。

整式的乘法(含例题)

整式的乘法(含例题)

1.同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】(1)同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).(2)同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数).2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. (2)幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】(1)幂的乘方的法则可推广为[()]m n p mnp a a =(m ,n ,p 都是正整数). (2)幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数).3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3. 积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn abab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()n n n ab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘.4.单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(1)只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. (2)单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. (3)单项式乘单项式的结果仍然是单项式.【注意】(1)积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. (2)相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算.5.单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】(1)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.(2)计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. (3)对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果.6.多项式与多项式相乘(1)法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.(2)多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc .【注意】(1)运用多项式乘法法则时,必须做到不重不漏.(2)多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.7.同底数幂的除法同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】(1)同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). (2)同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ).8.零指数幂的性质零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】(1)底数a 不等于0,若a =0,则零的零次幂没有意义.(2)底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. (3)a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0.9.单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性.10.多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】(1)多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.(2)多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项.(3)多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.K知识参考答案:1.相加2.相乘3.乘方4.相乘5.相加6.相加7.相减8.1 9.相除10.相加K—重点幂的运算,整式的乘法,整式的除法K—难点多项式与多项式相乘K—易错同底数幂的乘法一、同底数幂的乘法1.同底数幂的乘法法则只有在底数相同时才能使用.2.单个字母或数字可以看成指数为1的幂.3.底数不一定只是一个数或一个字母,也可以是单项式或多项式.【例1】计算(-a)4·a的结果是A.-a5 B.a5 C.-a4 D.a4【答案】B【解析】(-a)4·a=a4·a=a4+1=a5,故选B.【例2】计算-(a-b)3(b-a)2的结果为A.-(b-a)5 B.-(b+a)5 C.(a-b)5 D.(b-a)5【答案】D【解析】-(a-b)3(b-a)2=(b-a)3(b-a)2=(b-a)5,故选D.二、幂的乘方与积的乘方1.每个因式都要乘方,不能漏掉任何一个因式.2.要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略. 【例3】计算24()a 的结果是 A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D . 【例4】下列等式错误的是 A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D三、整式的乘法1.单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.2.单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式. 【例5】计算:3x 2·5x 3的结果为 A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D . 【例6】下列各式计算正确的是 A .2x (3x -2)=5x 2-4x B .(2y +3x )(3x -2y )=9x 2-4y 2 C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误;B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确;C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .四、同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列. 【例7】计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A . 【例8】计算:22(1510)(5)x y xy xy --÷-的结果是 A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy x y x y x y ------÷-=+=+.故选B .五、整式的化简求值1. 化简求值题一般先按整式的运算法则进行化简,然后再代入求值.2.在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来. 【例9】先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.。

17.整式的乘法与除法(含答案)-(可编辑修改word版)

17.整式的乘法与除法(含答案)-(可编辑修改word版)

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4 个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n, 学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展, 方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3= . (第14 届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6 展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0= .思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6 的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x 的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365⎩【例 2】已知 25x =2000,80y =2000,则 1 + 1等于().x y1 3 A.2 B.1 C.D.(第 11 届“希望杯”邀请赛试题)221 1 x + y思路点拨 因 x 、y 为指数,我们目前无法求 x 、y 的值, + =,其实只需求 x y xy出 x+y 、•xy 的值或它们的关系,自然想到指数运算律.解:选 B 提示:25xy =2000y ①,80xy =2000x ②,①×②得(25×80)xy =2000x+y ,得 xy=x+y. 【例 3】设 a 、b 、c 、d 都是自然数,且 a 5=b 4,c 3=d 2,a-c=17,求 d -b 的值.(上海市普陀区竞赛题)思路点拨 设 a 5=b 4=m 20,c 3=d 2=n 6,这样 a,b 可用 m 的式子表示,c 、d 可用 n 的式子表示, 减少字母的个数,降低问题的难度.解:提示:设 a 5=b 4=m 20,c 3=d 2=n 6(m,n 为自然数),则 a=m 4,b=m 5,c=n 2,d=n 3,由已知得 m 4- n 2=17,即(m 2+n)(m 2-n)=17因 17 是质数 m 2+n 、m 2-n 是自然数,且 m 2+n>m 2-n⎧⎪m 2+ n = 17 故⎨⎪m 2- n = 1 解得 m=3,n=8,所以,d -b=n 3-m 5=83-35=269【例 4】已知 x 2-xy -2y 2-x -7y-6=(x -2y+A)(x+y+B),求 A 、B 的值.思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于 A 、B 的等式.【例 5】是否存在常数 p 、q 使得 x 4+px 2+q 能被 x 2+2x+5 整除?如果存在,求出 p 、q•的值,否则请说明理由.思路点拨 由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式× 商式”,运用待定系数法求出 p 、q 的值,所谓 p 、q 是否存在,其实就是关于待定系数的 方程组是否有解.解:提示:假设存在满足题设条件的 p 、q 值,设(x 4+px 2+q)=(x 2+2x+5)(x 2+mx+n),•⎪ ⎪⎪⎪y 2yx4x 2x4y客厅厨房卧室卫生间即x4+px2+q=x4+(m+2)x3+(5+n+2m)x2+(2n+5m)x+5n,得⎧m + 2 = 0⎪5 +n + 2m =p⎨2n + 5m = 0 ⎪⎩5n =q⎧m =-2⎪n = 5解得⎨p = 6⎪⎩q=25故存在常数p,q 且p=6,q=25,使x4+px2+q 能被x2+2x+5 整除.学力训练一、基础夯实1.(2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖, 如果他选用地砖的价格是a 元/米2,则买砖至少需要元(用含a、x、y 的代数式表示).2.若2x+5y-3=0,则4x·32y= . (2002 年绍兴市竞赛题)3.满足(x-1)200>3300 的x 的最小正整数为. (2003 年武汉市选拨赛试题)4.a、b、c、d 都是正数,且a2=2,b3=3,c4=4,d5=5,则a、b、c、d•中,•最大的一个是. (“英才杯”竞赛题)5.(2001 年TI 杯全国初中数学竞赛题)化简2n+4-2(2n)2(2n+3 )得( ).A.2n+1-18 B.-2n+1 C.7D.78 46.已知a=255,b=344,c=533,d=622,那么a、b、c、d 从小到大的顺序是( ).A.a<b<c<dB.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0 的整数,并且关系x 的方程ax=2a3-3a2-5a+4 有整数根,则a•的值共有( ).A.1个B.3 个C.6 个D.9 个8.计算(0.04)2003×[(-5)2003]2 得( ).1 1A.1B.-1C.52003 D.-52003(2003 年杭州市中考题)9.已知6x2-7xy-3y2+14x+y+a=(2x-3y+b)(3x+y+c),试确定a、b、c 的值.10.设a、b、c、d 都是正整数,并且a5=b4,c3=d2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数2x9 y =2x·9y ,试确定2x9 y -x(x2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8 与多项式ax+bx+11 的乘积中,没有含x4 的项,也没有含x3•的项则,a2+b= .13.若多项式3x2-4x+7 能表示成a(x+1)2+b(x+1)+c 的形式,则a= ,b= ,•c= .14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4= . (2003 年北京市竞赛题)15.如果多项式(x-a)(x+2)-1 能够写成两个多项式(x-3)和(x+b)的乘积,那么a= ,b= .16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d 的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M 与N 的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999 的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x 的整系数二次三项式ax2+bx+c,当x 取1,3,6,8 时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1 时,ax2+bx+c=1B.当x=3 时,ax2+bx+c=5C.当x=6 时,ax2+bx+c=25D.当x=8 时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999 的值.2a 5 + 3a 4 + 3a 3 + 9a 2 - 5a +121.已知 a 是方程 2x 2+3x -1=0 的一个根,试求代数式的值.3a -122.已知 2a ·5b =2c ·5d =10,求证:(a -1)(d -1)=(b -1)(c -1).三、综合创新9 23. 是否存在整数 a 、b 、c,满足a ·( 10 )b ·( 16 )c =2?若存在,求出 a 、b 、c 的值;若不存在•,说明理由.( )8 9 1524.当自然数n 的个位数分别为0,1,2,……,9 时,n2,n3,n4,n5 的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n 为自然数,和数1981n+1982n+1983n+1984n 不能被10 整除,那么n 必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62 的大小7.C 提示:x=2a2-3a-5+ 4,a│4 8.A 9.a=4,b=4,c=1 a提示:•参见例5•10.75711.提示:由条件得2│2x9 y 且9│2x9 y ,则y 的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3 的系数分别为 2b-5a,7a-5b+22,由2b-5a=0 及7a-5b+22=0 得 a=4,b=1013.3,-10,14 14.-120 令x=±1 代入15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D 提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),( 8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+2002(2a2+ 3a -1)(a3+ 2a -1) + 5a3 21.提示:2a2+3a-1=0,3a-1=-2a2 原式=3a -1 =5a2=-5 -2a2 222.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)⎩23.原式可化为 32a ·2-3a ·2b ·5b ·3-2b ·24c ·3-c ·5-c =2,即 2-3a+b+4c ·32a-2b-c ·5b-c =21×30×50 ⎧-3a + b + 4c = 1 ⎪故⎨2a - 2b - c = 0 ⎪b - c = 0 24.(1)以下解答仅供参考:,解得 a=3,b=2,c=2①n 5 的个位数与 n 的个位数相等;②个位数是 0,1,5,6 的自然数的任何次幂,其个位数不变;③个位数是 4,9 的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分 n=4k,4k+1,4k+2,4k+3 为讨论(k 为自然数)当 n=4k 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,6,1,6,则 1981n +•1982n +1983n +1984n 的个位数字为 4,故 10(1981n +1982n +1983n +1984n );当 n=4k+1 时,1981n 、1982n 、1983n 、1984n 的个位数字分别为 1,•2,•3,•4,•则 1981n +1982n +1983n +1984n 的个位数字为 0,故 10│(1981n +1982n +1983n +1984n ),同理,当 n=4k+2、4k+3 时,10│(1981n +1982n +1983n +1984n )故当且仅当 n=4k,即 n 是 4 的倍数时,和数 1981n +1982n +1983n +1984n 不能被 10 整除.。

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

北师大版本七年级下册第一单元《整式的乘除》全章知识讲解+经典练习

《整式的乘除》全章复习与巩固【要点梳理】要点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加. 2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘. 3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1. 6.负指数幂:1n na a -=(a ≠0,n 是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;需灵活地双向应用运算性质.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.2.单项式乘以多项式单项式与多项式相乘,就是根据分配率用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项包含前面的“+”“-”号.根据多项式的乘法,能得出一个应用广泛的公式:()()()2x a x b x a b x ab ++=+++. 4.单项式相除单项式相除、把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点三、乘法公式1.平方差公式:22()()a b a b a b +-=-两个数和与这两个数差的积,等于这两个数的平方差. 要点诠释:1.在这里,a b ,既可以是具体数字,也可以是单项式或多项式.2.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是三项,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、已知:2m +3n =5,则4m •8n =( )A .16B .25C .32D .64 【解答】解:4m •8n =22m •23n =22m +3n =25=32,故选:C .2.下列各式正确的有( )①x 4+x 4=x 8;②﹣x 2•(﹣x )2=x 4;③(x 2)3=x 5;④(x 2y )3=x 3y 6;⑤(﹣3x 3)3=﹣9x 9;⑥2100×(﹣0.5)99=﹣2;A .1个B .2个C .3个D .4个【解答】解:①x 4+x 4=2x 4,此计算错误;②﹣x 2•(﹣x )2=﹣x 4,此计算错误;③(x 2)3=x 6,此计算错误;④(x 2y )3=x 6y 3,此计算错误;⑤(﹣3x 3)3=﹣27x 9,此计算错误;⑥2100×(﹣0.5)99=2×299×(﹣0.5)99=2×(﹣0.5×2)99=2×(﹣1) =﹣2,此计算正确;故选:A .3、阅读下列两则材料,解决问题:材料一:比较322和411的大小.解:∵411=(22)11=222,且3>2∴322>222,即322>411小结:指数相同的情况下,通过比较底数的大小,来确定两个幂的大小材料二:比较28和82的大小解:∵82=(23)2=26,且8>6∴28>26,即28>82小结:底数相同的情况下,通过比较指数的大小,来确定两个幂的大小【方法运用】(1)比较344、433、522的大小(2)比较8131、2741、961的大小(3)已知a 2=2,b 3=3,比较a 、b 的大小(4)比较312×510与310×512的大小【解答】解;(1)∵344=(34)11=8111,433=(43)11=6411,522=(52)11=2511, ∵81>64>25,∴8111>6411>2511,即344>433>522;(2)∵8131=(34)31=3124,2741=(33)41=3123,961=(32)61=3122,∵124>123>122,∴3124>3123>3122,即8131>2741>961;(3)∵a 2=2,b 3=3,∴a 6=8,b 6=9,∵8<9,∴a 6<b 6,∴a <b ;(4)∵312×510=(3×5)10×32,310×512=(3×5)10×52,又∵32<52,∴312×510<310×512.类型二、整式的乘除法运算1、要使()()621x a x -+的结果中不含x 的一次项,则a 等于( )A.0B.1C.2D.3【答案】D ;【解析】先进行化简,得:,要使结果不含x 的一次项,则x 的一次项系数为0,即:62a -=0.所以3a =.【总结升华】代数式中不含某项,就是指这一项的系数为0.2.如图,一个边长为(m +2)的正方形纸片剪去一个边长为m 的正方形,剩余的部分可以拼成一个长方形,若拼成的长方形的一边长为2,则另一边长为 2m +2 .【解答】解:设另一边长为x ,根据题意得,2x =(m +2)2﹣m 2,解得x =2m +2.故答案为:2m +2.3.如图,现有A ,C 两类正方形卡片和B 类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+2b),宽为(a+b)的长方形,那么需要B类长方形卡片5张.【解答】解:长为3a+2b,宽为a+b的长方形的面积为:(3a+2b)(a+b)=3a2+5ab+2b2,∵A类卡片的面积为a2,B类卡片的面积为ab,C类卡片的面积为b2,∴需要A类卡片3张,B类卡片5张,C类卡片2张,故答案为:5.类型三、乘法公式1.如果x2﹣2(m+1)x+4是一个完全平方公式,则m=.【解答】解:∵x2﹣2(m+1)x+4是一个完全平方公式,∴﹣2(m+1)=±4,则m=﹣3或1.故答案为:﹣3或1.2、用简便方法计算:(1)1002﹣200×99+992(2)2018×2020﹣20192 (3)计算:(x﹣2y+4)(x+2y﹣4)【解答】解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.(3)原式=x2﹣(2y﹣4)2=x2﹣4y2+16y﹣16;3.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称抽)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()A.ab B.a2+2ab+b2C.a2﹣b2D.a2﹣2ab+b2【解答】解:图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a +b ,∴正方形的面积为(a +b )2,∵原矩形的面积为4ab ,∴中间空的部分的面积=(a +b )2﹣4ab =a 2﹣2ab +b 2.故选:D .4、已知222246140x y z x y z ++-+-+=,求代数式2012()x y z --的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出,,x y z .【答案与解析】解:222246140x y z x y z ++-+-+= ()()()2221230x y z -+++-= 所以1,2,3x y z ==-=所以20122012()00x y z --==.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.类型四、综合类大题1.在前面的学习中,我们通过对同一面积的不同表达和比较,利用图①和图②发现并验证了平方差公式和完全平方公式,不仅更清晰地“看到”公式的结构,同时感受到这样的抽象代数运算也有直观的背景.这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.请你利用上述方法解决下列问题:(1)请写出图(1)、图(2)、图(3)所表示的代数恒等式(2)试画出一个几何图形,使它的面积能表示(x+y)(x+3y)=x2+4xy+3y2【拓展应用】提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:几何建模步骤原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.请你参照上述几何建模步骤,计算57×53.要求画出示意图,写出几何建模步骤(标注有关线段)归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):证明上述速算方法的正确性.【解答】解:(1)图(1)所表示的代数恒等式:(x+y)•2x=2x2+2xy,图(2)所表示的代数恒等式:(x+y)(2x+y)=2x2+3xy+y2图(3)所表示的代数恒等式:(x+2y)(2x+y)=2x2+5xy+2y2.(2)几何图形如图所示:拓展应用:(1)①几何模型:②用文字表述57×53的速算方法是:十位数字5加1的和与5相乘,再乘以100,加上个位数字3与7的积,构成运算结果;即57×53=(50+10)×50+3×7=6×5×100+3×7=3021;十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;故答案为十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果;2.阅读下列材料并解决后面的问题材料:对数的创始人是苏格兰数学家纳皮尔(J.Npler,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler,1707﹣﹣1783)才发现指数与对数之间的联系,我们知道,n个相同的因数a相乘a•a…,a记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28,即log28=3一般地若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b,即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381,即log381=4.(1)计算下列各对数的值:log24=,log216=,log264=(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是;(3)拓展延伸:下面这个一股性的结论成立吗?我们来证明log a M+log a N=log,a MN(a>0且a≠1,M>0,N>0)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m•a n=a m+n=M•N,∴log a MN=m+n,又∵log a M=m,log a N=n,∴log a M+log a N=log a MN(a>0且a≠1,M>0,N>0)(4)仿照(3)的证明,你能证明下面的一般性结论吗?log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)计算:log34+log39﹣log312的值为.【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6;故答案为:2,4,6;(2)通过观察(1)中三数log24、log216、log264之间满足的关系式是:log24+log216=log264;(4)证明:设log a M=m,log a N=n,由对数的定义得:a m=M,a n=N,∴a m÷a n=a m﹣n=,∴log a=m﹣n,又∵log a M=m,log a N=n,∴log a M﹣log a N=log a(a>0且a≠1,M>0,N>0)(5)log34+log39﹣log312,=log3,=log33,=1,故答案为:1.。

初中数学-:整式的乘除法综合-教师版

初中数学-:整式的乘除法综合-教师版

整式的乘除法综合在整式及其加减运算后,进一步学习整式的乘除,是对整式运算的延展和补充.整式的乘除法的基础是同底数籍的乘法和除法,籍的乘方和积的乘方,单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式等运算.通过这节课的学习,一方面加强对整式乘除运算的进一步理解,另一方面也为后期学习分式的运算奠定基础.P[整式的乘法整式的乘除法1、单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数籍分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按”先乘方、再乘法的顺序进行例如•2xv2 23X2v 4X2v43X2v 12X4v51XA H J //」乂 L |」•\/ .4/'H •c x y u x y *t x y u x y ic x y.2、单项式与多项式相乘法则:单项式与多项式相乘,用单项式乘以多项式的每一项.再把所得的积相加.例如:m a b c=ma mb mc.3、多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.用公式表示为: (m n)(a b) (m n)a (m n)b ma na mb nb .4、同底数籍的除法法则:同底数籍相除,底数不变,指数相减.用式子表不■为:a m a n a m n (m、n都是正整数且m n , a 0).5、规定a0 1 a 0 ; a p $ (a 0 , p是正整数).6、单项式除以单项式的法则:两个单项式相除,把系数、同底数籍分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.7、多项式除以单项式的法则:多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.一、选择题1.下列运算中结果正确的是( ).- - - 一一一 3 _A 336D 224八 2 5 cx x x ; B、3x 2x 5x ; C、x x ; D 、2 2 2x y x y .【难度】★【答案】A【解析】B正确答案为:3x2 2x2 5x2;C正确答案为x23 x6;D正确答案为x y 2x22xy y2 .【总结】本题主要考查对整式的运算法则的理解和运用.2.在下列的计算中正确的是().A 2x 5y 5xy B、a a 2 a2 4G a2 ab a3b 2x 6x 9【答案】C【解析】A的两个单项式不能合并; 正确答案为D正确答案为x 32 x2 6x 9【总结】本题主要考查对整式的运算法则的理解和运用.3.下列运算中正确的是().A 6 c 3 c 2 A、6x 3x 2x B、8x8,2 c 64x 2x2xy xyC、3xy 23x yA 、 abB. abC. D.b【解析】A 正确答案为6x 6 3x 3 2x 3 ;C 正确答案为223xy 3x 3xy ;D 正确答案为x 2y 2 xy 2 1.【总结】本题主要考查对整式的除法则的理解和运用.【总结】本题属于混合运算,计算时注意对相关运算法则的准确运用.5.如果4a 2 3ab M 4a 3b ,那么单项式M 等于().4.计算 4ab 的结果是().A 、4B 、A 2ab【答案】C【解析】原式=a 2 b 22ab a 2 b 2 2ab 4ab4ab 4ab 1【难度】【答案】C【解析】4a 2 3ab a 4a 3b a 4a 3b , /. M a .【总结】本题主要考查对整式的除法则的理解和运用.6.设M 是一个多项式,且M 5 x 2y2x 2y 4 —x ,那么M 等于().32【难度】★★【答案】Cf 皿 士匚 1…2 43 5 2 2 45 23 5 2 104 55 3M 2x y — x -x y 2xy — xy-x-xy— x y -x y2332332【总结】本题主要考查对整式的除法则的理解和运用.645943x y —x y B 、6 3 -y 55 2xy10 4 5 3xy2xy10 4 5i xy2xy7.已知x2 kxy 64y2是一个完全平方式,贝U k的值是().【难度】★★【答案】D【总结】本题主要考查对完全平方公式的理解和运用.8.如下图(1),边长为a 的大正方形中一个边长为b 的小正方形, 小明将图(1)的阴影部分拼成了一个矩形,如图(2).这一过程 可以验证().【解析】图1中,阴影部分的面积为a 2 b 2,图2中,阴影部分为长方形,长为a b ,宽为a b ,A 、8B 、±8C 、16【解析】X 2 kxy 64 y 2 x 2 kxy228y =x 28 xy28yA a 2 b 2 2abB 、a 2 b 2 2ab a b 2 ;G 2a 2 3ab b 22a b a- bDk a 2 b 2 a b a b【难度】★★【答案】D面积为【总结】本题通过图形面积的转化加强对平方差公式的理解.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:b n 2a b ;④ 2am 2an bm bn ,你认为其中正确的有()A、①②B、③④C、①②③ D>①②③④【难度】★★【答案】D【解析】图中①②③④中各个代数中表示图中长方形的面积.【总结】本题主要是通过图形的面积加强对整式乘法的理解.10.已知P — m 1 , Q m2—m (m为任意实数),则P、Q的大小关系15 15Dk不能确B、P Q【难度】★★★【答案】C【解析】Q P m28 —m 7 —m 1 m2m 1 m 1 2 3 015 15 2 4【总结】本题主要考查通过作差法来比较两个数的大小.二、填空题11.若5x 3y 2 0 , I05x 103y .【难度】★【答案】100【解析】;5x 3y 2 0 , 5x 3y 2 , /. 105x 103y=105x3y 102【总结】本题主要考查对同底数籍相除的法则的逆用.12.已知m n 2, mn 2,贝!j 1 m 1 n .【难度】★【答案】-3【解析】1 m 1 n 1 m n mn 1 mn 1 2 2【总结】本题一方面考查整式的乘法,另一方面考查整体代入思想的运用.13.若m2 n2 6 ,且m n 3 ,贝!J m n .【难度】★【答案】2.【解析]•/ m2 n2 m n m n 6 , m n 3 , m n 2 .【总结】本题主要考查对平方差公式的运用.14.方程x 3 2x 5 2x 1 x 8 41 的解是.【难度】★【答案】x 3.【解析】x 3 2x 5 2x 1 x 8 41 ,二2x2 5x 6x 15 2x2 16x x 8 41 ,即16x 48【总结】本题通过利用整式的乘法来进行方程的求解.15.已知x2 5x 1,那么x2 W x【难度】★★【答案】272【解析】x2 5x 1 , x 1 5 . x 125,x xx2二 2 25 . x2 4 27 .x x【总结】当两个数互为倒数时,已知它们的和或者差,都可以利用完全平方公式求出它们的平方和.16.设4x2 2 m 3 x 121是一个完全平方式,贝m=.【难度】【答案】19或-25【解析】•/ 4x2 2 m 3 x 121 2x 2 2 m 3 x 11 2 ,. 2m 3 44 , m为19 或-25 .【总结】本题主要考查对完全平方公式的理解和运用.17.计算2x 3xy 2 x2y ‘的结果是.【难度】★★【答案】18x9y5f础居,c c 223CC22 6 3 . o 9 5I用牛忻1 2x 3xy x y 2x 9x y x y 18x y .【总结】本题主要考查对单项式乘以单项式法则的理解和运用.18.已知5x与一个整式的积是25x2 15x3y 20x4 ,则这个整式= ______________________【难度】★★【答案】5x 3x2y 4x3 .x 3和 x 1 满足 4x 3 9x 2 mx n 0 .【解析】 - 2 3 4 - 2 325x 15x y 20x 5x 5x 3x y 4x .【总结】本题主要考查对整式的除法的法则的理解和运用.19.若一三角形的底为4a 2 [,高为16a 4 2a 2【,则此三角形的面积为2 4【难度】★★★ 【答案】 6 132a16 【解析】 1 4a 2 - 16a 4 2a 2 1 1 64a 6 8a 4 a 2 8a 4 a 2 -32a 6 — 2 2 4 2 816【总结】本题主要是利用整式的乘法来求解几何图形的面积.20.已知x 2 2x 3能整除4x 3 9x 2 mx n,求n\ n 的值.【难度】★★★【答案】m 10, n 3.1【解析】..• 4x39x2mx n x22x 3 A x 3 x 1 A, x 3和x 1 满足4x3 9x2 mx n 0 .4 3 3 93 2 3m n 0 则 』c 』2 c '4191 m n 0 【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.三、简答题21.计算:x2y 2【总结】本题主要考查对整式运算中的相关法则的运用.22.计算:32 2x y 2xy 1m 10 n 3 【解析】原式 =x 2y 2 2xy x 2 y 2 2y 2 2xy . 2x 3y 3(2) 6m 2n 6m 2n 23m 2 3m 2【难度】【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .2 3T角贫*斥】<1、百7^ —2X3V2XV2X3V2X24X6V22xvRx'v32x2L用牛仙1 V 1 / 赛工J —2x y 2xy 2x y 2x4x y 2x y 8x y2x73 73 732x y 4x y 6x y -(2)原式—6m2n 3m26m2n23m23m23m22n 2n2 1 .【总结】本题主要考查对整式运算中的相关法则的运用.23.计算: x25x 6 x 6【难度】★【答案】x 1【解析】x 6 x 1 x 6 x 1 .【总结】本题主要是利用因式分解进行多项式除以多项的计算.24.计算:(1)x 4y 2x 3y (xy) ;(2) 6a b c 3a b c 2a b c .【难度】★【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .【答案】(1) 2x25xy 12y2x y; (2) -1 .【解析】(1)原式—2x23xy 8xy 12y2x y 2x2 5xy 12y2x y;(2)原式=2a3b3c3 2a3b3c31.【总结】本题是整式的混合运算,计算时注意法则的准确运用.25.计算:2 2 2(1) a 2b 1 ; (2) 2x 3x 4x 1 3x 2x 3 ;2 2(3)2a 3b 2a b 2a b ; (4) x y y 2x y 8x 2x【难度】★【答案】(1) a2 4ab 4b2 2a 4b 1 ; (2) x2 2x ;1(3)10b212ab ; (4) §x 4 .【解析】(1)原式=a 2b2 2 a 2b 1 a2 4ab 4b2 2a 4b 1 ;(2)原式=6x38x2 2x 6x39x2 6x3 8x2 2x 6x3 9x2x22x;(3)原式=4a2 9b2 12ab 4a2 b210b2 12ab ;(4)原式=x2y22xy 2xy y28x 2x x2 8x 2x —x 4 .2【总结】本题是整式的混合运算,计算时注意法则的准确运用.26.计算下列各题:(1) m na3m 2namn 5a(2)2 3 2 5xy37xy2 3 3y2 2 3y【难度】 ★★【答案】(1)2mn .a ,(2)3x 3 521 —xy 2y •【解析](1)原式=a mn a 6mn a 5mn a 2mn ;【总结】本题是整式的混合运算,计算时注意法则的准确运用.27.若 3m 6,9n 2 求 32m4n1 的值.【难度】★★【答案】27【解析】32m 4n 132m 34n 3 3m 2 9n 2 3 62 22 3 27 .【总结】本题是对籍的运算的综合运用.(2)原式斗y27xy 32 3 2 23 3 21-y -y -x 3 —xy y .3 3 5 228.解不等式: x 1 x 3 8x x 5 x 5 2【难度】★★【答案】x 52【解析】x2 x 3x 3 8x x2 25 2 ,512x 30 , x 5 .2【总结】本题主要是利用整式的乘法来求解不等式的解集.29.已知:2x 3 0 ,求代数式x x2 x +x25 x 9的值.【难度】★★【答案】0【解析】... 2x 3 0 . •,.原式=x3 x2 5x2 x3 9 4x2 9 (2x 3)(2x 3) 0 .【总结】本题主要是对整体代入思想的运用.30.先化简,再求值:xy 2 xy 2 2x 2y 2 4 xy (其中 X =10, y —).25【难度】★★【答案】z5【解析】原式=x 2y 2 4 2x 2 y 2 4 xy x 2y 2 xy xy .1 2当X =10, y 云时,原式=1025 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准 确运用.【答案】1331.先化简,再求值:2a b 2 a 1 ba 1b a 1 2 其中 a - , b 2 .2【解析】原式=4a2 b2 4ab a 1 2 b2 a 1 2 4a2 2b2 4ab)2当 a ! , b 2 时,原式=4 1 2 2 2 4 1 2 13.【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.32.先化简,再求值:a -b 2 b a -b ,其中a 2 , b -.2【难度】★★【答案】5【解析】原式=a2 2ab b2 ab b2 a2 ab ,当 a 2 , b ;时,原式=22 2 2 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.33.先化简,再求值: 3x 2 3x 2 5x x 1 2x 1 2,其中x【难度】★★【答案】-8【解析】原式=9x2 4 5x2 5x 4x2 4x 1 9x 5 ,1当x:时,原式=9o 5 8 .3 3【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.2 c3 »34.先化简,再求值:2x y 2x y y 2x ,其中x 2, y 1【难度】★★【答案】5【解析】原式=2x y13 2x y6 2x y 6 2x y ,当x 2,y 1时,原式=2 2 1 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.35. 一个多项式除以x2 2x 3,得商为x 1,余式为2x 5,求这个多项式.【难度】★★【答案】x3 x2 3x 2 .,左刀2 3 2 2 3 2【解初J x22x 3 x 1 2x 5 x3x22x2 2x 3x 3 2x 5 x3x23x 2 . 【总结】本题主要是考查对题目的理解能力.36.已知一个三角形的面积是4a3b 6a2b212ab3, 一边长为2ab ,求该边上的高. 【难度】★★【答案】4a2 6ab 12b2 .224a 6ab 12b .即该边上的高为4a2 6ab 12b2 .,左刀3223 3 2 23【角牛析】2 4a3b 6a2b212ab32ab 8a3b 2ab 12a2b2 2ab 24ab32ab【总结】本题主要是考查对题目的理解能力.37.若3x 2y 10 0无意义,且2x y 5 ,求x,y的值.【难度】★★【答案】x 0, y 5.【解析】由题意可知:3x 2y 10 0.又2x y 5 , x 0 , y 5 .【总结】本题主要考查a0有意义的条件.38.若x2mx 8 x23x n的展开式中不含x2和x3项,求m和n的值.【难度】★★【答案】m 3, n 17.【解析】原式=x4 3x3 nx2 mx3 3mx2 mnx 8x2 24x 8n 4 3 2x m 3 x n 3m 8 x mn 24 x 8n .,展开式中不含x2和x3项,m 3 0 , n 3m 8 0 , m3, n 17.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.39.若a=2005, b=2006, c=2007,求a2 b2 c2 ab bc ac 的值.【难度】★★【答案】3【解析】原式=1 a b2 a c2 c b2 1 6 3.2 2【总结】本题主要是对完全平方公式的综合运用.40.说明代效式(x y)2 x y x y 2y y的值,与y的值无关.【难度】★★【答案】见解析.【解析】原式x2 y2 2xy x2 y22y y 2y2 2xy 2y y y x y x ,. ••此代数式的值与y的值无关.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.41.一个正方形的边长增加3cm,它的面积增加了45cm2.求这个正方形原来的边长.若边长减少3cmi它的面积减少了45cm,这时原来边长是多少呢【难度】★★【答案】6cm 6cm【解析】设原来正方形的边长为x cm则x 3 2 x2 45 ,解得:x 6 .正方形原来的边长为6 cm.设原来正方形的边长为ycm则y 32 y2 45 ,解得:y 6 .正方形原来的边长为6 cm.【总结】本题主要考查整式的乘法在实际问题中的运用.42.如图所示,长方形ABCDT阳光小区”内一块空地,已知AB=2a,BG3b,且E为AB边的中点,CF 1BC ,现打算在阴影部分种植一3片草坪,求这片草坪的面积.【难度】★★【答案】2ab .【解析】1 2a 3b 1 a 2b 2ab .2 2【总结】本题主要考查整式的乘法在实际问题中的运用.43.如图,某市有一块长为3a b米,宽为2a b米的长方形地块,规划部门计划将阴影部分进行绿化, 的面积是多少平方米并求出当a 的绿化面积. 【难度】★★【答案】5a2 3ab; 63.【解析】3a b 2a b a b 2_2_ 2 2 26a23ab 2ab b2a22ab b2_ 2 —5a 3ab .当a 3 , b 2时,原式=5 32 3 3【总结】本题主要考查整式的运算在实际问题中的运用.2 63.44.“光明”中学为了改善校园建设,计划在长方形的校园中间修一个正方形的花坛,预计正方形花坛的边长比场地的长少8米,比它的宽少6米,并且场地的总面积比花坛的面积大104平方米,求长方形的长和宽.【难度】★★★【答案】场地的长为12米,宽为10米.【解析】设正方形的边长为X,则场地的长为X 8米,宽为x 6米.则x 8 x 6 x2 104 ?解得:x 4场地的长为12米,宽为10米.【总结】本题主要考查整式的运算在实际问题中的运用.45.某城市为了鼓励居民节约用水,对白来水用户按如下标准收费:若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2 m元计算.现有一居民本月用水x吨,则应交水费多少元【难度】★★★【答案】见解析.【解析】当x a ,应交水费为am ;当x a ,应交水费为am x a 2m 2mx am .【总结】本题主要考查整式的运算在实际问题中的运用.46.求证:无论x、y为何值,4x2 12x 9y2 3 30y 35的值恒为正.21 1 2n2 n34 2n 1 n 1 〔222 1 3 2 3侦牛忻 1 - 一xyz m -x y z 5x y z , - - -xyz m 一x y z .3 3 9 15【难度】★★★【答案】见解析.v A-i-t r w 2 2 2 2【命军析]•/ 4x 12x 9y 30 y 35= 2x 3 3y+5 1 0,无论x、y为何值,4x2 12x 9y2 30y 35的值恒为正.【总结】本题主要利用配方来说明代数式的正负性.四、解答题1 12n2 n34 2n1n1 口、,甲._.x z 147.U 大口 : - xyz m - x y z 5x yz , F. I「.修钗x、z 7两人E: 2 372 ,3 3求m的值.【难度】★★【答案】玄.5m -1x3y2z3 1x2y2z2 2xz15 9 5..•正整数x、z 满足:2x 3z 1 72 , x 3 , z 1 2 .x 3, z 3, m § 3 3 27 .5 5【总结】本题是整式的混合运算,计算时注意法则的准确运用.48. 已知f x 5 39x 8x 12x2 , g x 5 6 -x64—x9求: f x 3x g x5 2一x的值.57 4一x12【答案】8 3 143 -x x5 30 2 4x【解析】f x 3x g x 5 2 —x189x58x3 12x23x 5x66 4 5—x93x48 2x2 4x33x48x35L108x3 5 143 2 』——x4x .305 2 —x 187 —x12【总结】本题是整式的混合运算,计算时注意法则的准确运用.49.已知关于x的三次多项式除以x2 1时,余式是2x 5 ;除以x2 4时,余式是3x 4,求这个三次多项式.【难度】★★【答案】5x3 3x2 ^x 8.3 3【解析】设关于x的三次多项式为:f (x) ax3 bx2 cx d(a 0),且f (x)除以x2 1与除以x2 4后,所得的商式分别为:ax m与ax n .贝(J ax3bx2cx d x21 (ax m) 2x 5 ①ax3bx2cx d x24 (ax n) 3x 4 ②. ••把x 1代入①可得:a b c d 3 , a b c d 7 .JE x 2 代入②可得:8a 4b 2c d 2 , 8a 4b 2c d 10 .解得:a - , b 3 , c 11 , d 8 .3 3关于x的三次多项式为5x3 3x2 11x 8.3 3【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.50.阅读下列题目的解题过程:已知a、b、c为ABC的三边,且满足2 2 2 2 4 4 二-fx业业匕 "一八c a c b a b ,试判断ABC日勺形状.22 22 4 4用牛. c a c b a bc2(a2b2) (a2b2)(a2b2) (B)c2a2b2(C)ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误请写出该步的代号:(2)错误的原因为:________________________________________________(3)本题正确的结论为:【答案】见解析.【解析】(1) (C);(2)因为a4 b2不能确定能不能为零.(3) AABC为直角三角形或等腰三角形.・ 2 2.2 2.2 2.2• •ca b a b a b 0 .a2 b2或a b或a b . .'a、b、c为ABC的三边,c2a2 b20 或a2 b22 2 .2caba2 b20 .. 3BC为直角三角形或等腰三角形.【总结】本题主要是对等式的基本性质的考查,等式两边同除的数一定不为零.。

数学知识点整式的乘法和除法

数学知识点整式的乘法和除法

数学知识点整式的乘法和除法整式是数学中的一个概念,是指由常数和变量及它们的乘积通过加法和减法运算而得到的代数表达式。

整式的乘法和除法是数学中的重要内容,本文将详细介绍整式的乘法和除法。

一、整式的乘法:整式的乘法是指将两个整式相乘并化简的过程。

下面以一个具体的例子来说明整式的乘法运算。

例子:将整式(2x + 3)(4x + 5)用乘法方式展开并化简。

解答:首先,我们可以利用分配律将两个整式相乘:(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5接下来,根据乘法的法则,我们可以将每一项相乘并合并同类项:= 8x^2 + 10x + 12x + 15最后,将结果进行合并化简,得到最简整式:= 8x^2 + 22x + 15这样,我们就完成了整式的乘法运算。

二、整式的除法:整式的除法是指将一个整式除以另一个整式,并求得商式和余式的过程。

下面以一个具体的例子来说明整式的除法运算。

例子:计算整式5x^3 + 4x^2 - 3x + 7除以整式x + 2的商式和余式。

解答:首先,我们需要按照除法的步骤进行演算。

Step 1: 将被除式和除式按照降幂排列。

被除式:5x^3 + 4x^2 - 3x + 7除式:x + 2Step 2: 将除式的首项与被除式的首项进行除法运算,并将结果作为商式的首项。

首项相除:(5x^3) / x = 5x^2Step 3: 将商式的首项乘以除式,并将结果与被除式相减,得到一个新的多项式。

计算:(5x^2)(x + 2) = 5x^3 + 10x^2被除式减去:(5x^3 + 4x^2 - 3x + 7) - (5x^3 + 10x^2) = -6x^2 - 3x + 7 Step 4: 重复以上步骤,直到被除式的次数小于除式的次数为止。

继续进行除法运算:次项相除:(-6x^2) / x = -6x计算:(-6x)(x + 2) = -6x^2 - 12x被除式减去:(-6x^2 - 3x + 7) - (-6x^2 - 12x) = 9x + 7再次进行除法运算:次项相除:(9x) / x = 9计算:(9)(x + 2) = 9x + 18被除式减去:(9x + 7) - (9x + 18) = -11由于被除式的次数小于除式的次数,停止除法运算。

全国初中(7年级)数学竞赛辅导:第10讲-整式的乘法与除法

全国初中(7年级)数学竞赛辅导:第10讲-整式的乘法与除法

全国初中〔初一〕数学竞赛(jìngsài)辅导第十讲整式的乘法与除法中学代数中的整式是从数的概念根底上开展起来的,因而保存着许多数的特征,研究的内容与方法也很类似.例如,整式的四那么运算就可以在许多方面与数的四那么运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最根底的局部,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法那么的根底上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法.整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析.正整数指数幂的运算法那么:(1)a M· a n=a M+n; (2)(ab)n=a n b n;(3)(a M)n=a Mn; (4)a M÷a n=a M-n(a≠0,m>n);常用的乘法公式:(1)(a+b)(a+b)=a2-b2;(2)(a±b)2=a2±2ab+b2;(4)(d±b)3=a3±3a2b+3ab2±b3;(5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.例1 求[x3-(x-1)2](x-1)展开后,x2项的系数.解 [x3-(x-1)2](x-1)=x3(x-1)-(x-1)3.因为(yīn wèi)x2项只在-(x-1)3中出现,所以只要看-(x-1)3=(1-x)3中x2项的系数即可.根据乘法公式有(1-x)3=1-3x+3x2-x3,所以x2项的系数为3.说明应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要到达正确、熟练、灵活运用的程度,这样会给解题带来极大便利.(x-2)(x2-2x+4)-x(x+3)(x-3)+(2x-1)2.解原式=(x3-2x2+4x-2x2+4x-8)-x(x2-9)+(4x2-4x+1)=(x3-4x2+8x-8)-(x3-9x)+(4x2-4x+1)=13x-7=9-7=2.说明注意本例中(x-2)(x2-2x+4)≠x3-8.例3化简(1+x)[1-x+x2-x3+…+(-x)n-1],其中n为大于1的整数.解原式=1-x+x2-x3+…+(-x)n-1+x-x2+x3+…-(-x)n-1+(-x)n=1+(-x)n.说明本例可推广为一个一般的形式:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=a n-b n.例4 计算(1)(a-b+c-d)(c-a-d-b);(2)(x+2y)(x-2y)(x4-8x2y2+16y4).分析(fēnxī)与解 (1)这两个多项式对应项或者相同或者互为相反数,所以可考虑应用平方差公式,分别把相同项结合,相反项结合.原式=[(c-b-d)+a][(c-b-d)-a]=(c-b-d)2-a2=c2+b2+d2+2bd-2bc-2cd-a2.(2)(x+2y)(x-2y)的结果是x2-4y2,这个结果与多项式x4-8x2y2+16y4相乘时,不能直接应用公式,但x4-8x2y2+16y4=(x2-4y2)2与前两个因式相乘的结果x2-4y2相乘时就可以利用立方差公式了.原式=(x2-4y2)(x2-4y2)2=(x2-4y2)3=(x2)3-3(x2)2(4y2)+3x2·(4y2)2-(4y2)3=x6-12x4y2+48x2y4-64y6.例5 设x,y,z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,解先将条件化简:左边=2x2+2y2+2z2-2xy-2yz-2xz,右边=6x2+6y2+6z2-6xy-6yz-6xz.所以条件变形为2x2+2y2+2z2-2xy-2yz-2xz=0,即(x-y)2+(x-z)2+(y-z)2=0.因为x,y,z均为实数,所以x=y=z.所以说明(shuōmíng)本例中屡次使用完全平方公式,但使用技巧上有所区别,请仔细琢磨,灵活运用公式,会给解题带来益处.我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,常用f(x),g(x),…表示一元多项式.多项式的除法比拟复杂,为简单起见,我们只研究一元多项式的除法.像整数除法一样,一元多项式的除法,也有整除、商式、余式的概念.一般地,一个一元多项式f(x)除以另一个一元多项式g(x)时,总存在一个商式q(x)与一个余式r(x),使得f(x)=g(x)q(x)+r(x)成立,其中r(x)的次数小于g(x)的次数.特别地,当r(x)=0时,称f(x)能被g(x)整除.例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).解法1 用普通的竖式除法解法2 用待定系数法.由于(yóuyú)f(x)为3次多项式,首项系数为1,而g(x)为2次,首r(x)= bx+ c.根据f(x)=q(x)g(x)+r(x),得x3-3x2-x-1比拟两端系数,得例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.解由于x2+3x+2=(x+1)(x+2),因此,假设设f(x)=x4+ax2-bx+2,假设f(x)能被x2+3x+2整除,那么x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即1+a+b+2=0,①当x=-2时,f(-2)=0,即16+4a+2b+2=0,②由①,②联立,那么(nà me)有练习十1.计算:(1)(a- 2b+c)(a+2b-c)-(a+2b+c)2;(2)(x+y)4(x-y)4;(3)(a+b+c)(a2+b2+c2-ab-ac-bc).2.化简:(1)(2x-y+z-2c+m)(m+y-2x-2c-z);(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)×(x+y-z).3.z2=x2+y2,化简(x+y+z)(x-y+z)(-x+y+z)(x+y-z).4.设f(x)=2x3+3x2-x+2,求f(x)除以x2-2x+3所得的商式和余式.本资料来源于?七彩教育网?。

(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)

(好题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(1)

一、选择题1.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的四个结论: ①2(2)6⊗-=; ②a b b a ⊗=⊗;③若0a b ⊗=,则0a =; ④若0a b +=,则()()2a a b b ab ⊗+⊗=. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4 2.若6a b +=,4ab =,则22a ab b ++的值为() A .40B .36C .32D .303.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b = D .623a a a ÷=4.若1x x -的值为1,则2215x x++的值为( ) A .7B .8C .9D .10 5.已知:2m a =,2n b =,则232m n +用a ,b 可以表示为( ) A .6abB .23a b +C .23a b +D .23a b6.如图,矩形ABCD 的周长是10cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为17cm 2,那么矩形ABCD 的面积是( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 7.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 8.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .129.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .1210.如图:用四个全等的长方形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用a ,b 分别表示矩形的长和宽(a b >),则下列关系中不正确的是( )A .12a b +=B .2a b -=C .35ab =D .2284a b +=11.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 12.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y = D .623x x x ÷=二、填空题13.计算:(﹣2x )3(﹣xy 2)=_____,(﹣23a 5b 7)÷32a 5b 5=_____. 14.已知x 满足()()22201820208x x -+-=,则()22019x -的值是___________. 15.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.16.若2421x kx ++是完全平方式,则k=_____________. 17.2(56)x x -+÷___________=3x -.18.已知29x mx ++是完全平方式,则m =_________.19.已知8m a =,2n a =.则m n a -=___________,m 与n 的数量关系为__________. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.先化简,再求值:()322484(2)(2)ab a bab a b a b -÷++-,其中a ,b 满足2(2)|1|0a b -+-=.22.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).23.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.24.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++请用以上方法解决下列问题:(计算过程要有竖式) (1)计算:()()3223102x x x x +--÷-(2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值. 25.化简:2(3)3(2)m n m m n +-+. 26.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;请根据这一规律计算: (1)()12(1)1n n n x x xx x ---+++⋅⋅⋅++;(2)1514132222221+++⋅⋅⋅+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】直接利用新定义求解即可判断选项的正误. 【详解】解:运算a ⊗b=a (1-b ), 所以2⊗(-2)=2(1+2)=6,所以①正确; a ⊗b=a (1-b ),b ⊗a=b (1-a ),∴②不正确;若a ⊗b=0,a ⊗b=a (1-b )=0,可得a=0,或b=1.所以③不正确; 若a+b=0,则(a ⊗a )+(b ⊗b )=a (1-a )+b (1-b )=a+b-(a 2+b 2)=-(a+b )2+2ab=2ab ,所以④正确,正确的两个, 故选B . 【点睛】本题考查了命题的真假的判断与应用,新定义的理解与应用,基本知识的考查.2.C解析:C 【分析】根据a+b=6,ab=4,应用完全平方公式,求出a 2+ab+b 2的值为多少即可. 【详解】解:∵a+b=6,ab=4, ∴a 2+ab+b 2 =(a+b )2-ab =36-4 =32 故选:D . 【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,应用完全平方公式时,要注意:①公式中的a ,b 可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.3.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;4.B解析:B 【分析】把1x x-进行完全平方,展开计算221x x +的值即可.【详解】∵1x x-=1, ∴21()x x-=1, ∴221x x +-2=1, ∴221x x+=3, ∴2215x x++=8, 故选B. 【点睛】本题考查了完全平方公式的展开计算,熟练运用完全平方公式是解题的关键.5.D解析:D 【分析】根据同底数幂的乘法和幂的乘方计算即可; 【详解】()()23232322222+=⨯=⨯m n m n m n ,∵2m a =,2n b =, ∴原式23a b =; 故答案选D . 【点睛】本题主要考查了幂的运算,准确计算是解题的关键.6.B解析:B 【分析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=17,2(x +y )=10,利用完全平方公式即可求出xy 的值. 【详解】解:设AB =x ,AD =y ,∵正方形ABEF 和ADGH 的面积之和为17cm 2 ∴x 2+y 2=17,∵矩形ABCD 的周长是10cm ∴2(x +y )=10, ∵(x +y )2=x 2+2xy +y 2, ∴25=17+2xy , ∴xy =4,∴矩形ABCD 的面积为:xy =4cm 2, 故选:B . 【点睛】本题考查了正方形面积、矩形面积和完全平方公式,恰当的设未知数,建立方程,设而不求,只求xy 的值是解题关键.7.D解析:D 【分析】分别根据同底数幂的乘法,幂的乘方,积的乘方法则以及同底数幂的除法法则逐一计算判断即可. 【详解】解:A 、a 2∙a 4=a 6,故选项A 不合题意; B 、(a 2)3=a 6,故选项不B 符合题意; C 、(ab 2)3=a 3b 6,故选项C 不符合题意; D 、a 6÷a 2=a 4,故选项D 符合题意. 故选:D . 【点睛】本题主要考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.8.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ ,解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.10.D解析:D 【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别求解,根据4个矩形的面积和等于两个正方形的面积的式求解即可. 【详解】解:A 、根据大正方形的面积求得该正方形的边长是12,则12a b +=,故A 选项不符合题意;B 、根据小正方形的面积可以求得该正方形的边长是2,则2a b -=,故B 选项不符合题意;C 、根据4个矩形的面积和等于大正方形的面积减去小正方形的面积,即41444140ab ,35ab =,故 C 选项不符合题意;D 、222()2144a b a b ab +=++=,所以 221442351447074a b ,故 D 选项符合题意. 故选:D . 【点睛】本题考查了代数式和图形的面积公式正确运算,熟悉相关性质是解题的关键.11.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D . 【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.12.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C .【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.二、填空题13.8x4y2【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案【详解】解:(﹣2x )3(﹣xy2)=﹣8x3•(﹣xy2)=8x4y2(﹣a5b7)÷a5b5=a5﹣5b7﹣5=故解析:8x 4y 2 249b - 【分析】直接利用积的乘方运算法则以及整式的除法运算法则分别计算得出答案. 【详解】解:(﹣2x )3(﹣xy 2)=﹣8x 3•(﹣xy 2) =8x 4y 2, (﹣23a 5b 7)÷32a 5b 5 =2233-⨯a 5﹣5b 7﹣5 =249b -. 故答案为:8x 4y 2;249b -. 【点睛】本题考查了整式的乘除运算,掌握相关运算法则是关键.14.3【分析】题目求(x-2019)2把方程中的x-2018x-2020转化为含有(x-2019)利用换元法求解即可【详解】解:方程可变形为:(x-2019)+12+(x-2019-1)2=8设x-20解析:3 【分析】题目求(x-2019)2,把方程中的x-2018、x-2020转化为含有(x-2019),利用换元法求解即可. 【详解】解:方程()()22201820208x x -+-=可变形为: [(x-2019)+1]2+[(x-2019-1)]2=8 设x-2019=y则原方程可转化为:(y+1)2+(y-1)2=8 ∴y 2+2y+1+y 2-2y+1=8 即2y 2=6 ∴y 2=3即(x-2019)2=3. 故答案为:3. 【点睛】本题考查了完全平方公式,把x-2018、x-2020转化为(x-2019+1)、(x-2019-1)是解决本题的关键.15.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此解析:7a . 【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案. 【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦ =1526()a a a -÷- =158()a a -÷- =7a . 故答案为:7a . 【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±. 故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.【分析】设要填的式子为根据题意可得利用整式的乘法计算左边各项对应即可得到答案【详解】解:设要填的式子为根据题意可得即可得解得故答案为:【点睛】本题考查整式的乘法掌握多项式乘多项式是解题的关键 解析:2x -【分析】设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+,利用整式的乘法计算左边,各项对应即可得到答案. 【详解】解:设要填的式子为ax b +,根据题意可得()()2356ax b x x x +-=-+, 即()223356ax a b x b x x +-+-=-+,可得1a =,36b -=, 解得1a =,2b =-,故答案为:2x -.【点睛】本题考查整式的乘法,掌握多项式乘多项式是解题的关键.18.【分析】根据完全平方公式的形式可得答案【详解】解:∵x2+mx+9是完全平方式∴m=故答案为:【点睛】本题考查了完全平方公式注意符合条件的答案有两个以防漏掉解析:6±【分析】根据完全平方公式的形式,可得答案.【详解】解:∵x 2+mx+9是完全平方式,∴m=2136±⨯⨯=±,故答案为:6±.【点睛】本题考查了完全平方公式,注意符合条件的答案有两个,以防漏掉.19.【分析】由同底数的除法可得:从而可得:的值由可得可得从而可得答案【详解】解:故答案为:【点睛】本题考查的是幂的乘方运算同底数幂的除法运算掌握以上知识是解题的关键解析:3m n =【分析】由同底数的除法可得:m n m n a a a -=÷,从而可得:m n a -的值,由2n a =,可得38,n a =可得3,m n a a =从而可得答案.【详解】 解:8m a =,2n a =∴ 824,m n m n a a a -=÷=÷=2n a =,()3328,n a ∴== 38,n a ∴=3,m n a a ∴=3.m n ∴=故答案为:43m n =,.【点睛】本题考查的是幂的乘方运算,同底数幂的除法运算,掌握以上知识是解题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.242a ab -,当21a b ==,时,12.【分析】先计算整式混合运算,利用非负数求出a b ,的值,在代入求值即可.【详解】解:322(48)4(2)(2)ab a b ab a b a b -÷++-,22224b ab a b =-+-,242a ab =-,∵2(2)|1|0a b -+-=,2(2),100||a b --≥≥,∴20,10a b -=-=,当21a b ==,时,原式24222116412=⨯-⨯⨯=-=.【点睛】本题考查了整式的混合运算及化简求值,非负数性质,准确进行整式混合运算是解题关键.22.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.23.22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()2320x y +-=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则.24.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.25.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.26.(1)11n x +-;(2)1621-.【分析】(1)观察题中所给的三个等式,可知等式右边第一项的次数等于左边第二个括号内最高次项的次数加1,等式右边第二项均为1,据此可解;(2)根据(1)中所得的规律,可将原式左边乘以(2-1),再按照(1)中规律计算即可.【详解】(1)()12(1)1n n n x x x x x ---+++⋅⋅⋅++11n x +=-;(2)1514132222221+++⋅⋅⋅+++1514132(21)(222221)=-+++⋅⋅⋅+++1621=-.【点睛】本题考查了平方差公式和多项式乘法公式在计算中的应用,熟练掌握相关计算法则是解题的关键.。

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面

整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。

乘法的结果称为“积”。

-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。

除法的结果称为“商”和“余数”。

-除法的除数不能为0,即被除式不能为0。

-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。

次数为0的项称为常数项,次数最高的项称为最高次项。

4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。

-除法规则:除法运算时,可以通过因式分解的方法进行计算。

5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。

-两个正整数相乘,结果为正数。

-两个负整数相乘,结果为正数。

-一个正整数与一个负整数相乘,结果为负数。

二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。

可以通过提取公因式、配方法等方式进行因式分解。

2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。

3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。

4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。

例如:a^2-b^2=(a+b)(a-b)。

5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。

例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。

7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。

整式的乘除知识点及题型复习

整式的乘除知识点及题型复习

整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。

积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。

同底数幂相除,底数不变,指数相减。

例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。

3、23132--⎛⎫-+ ⎪⎝⎭= 。

4、322(3)---⨯- = 。

5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。

A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法在初中数学中,整式的乘法与除法是一个重要的知识点。

它不仅涉及到数学运算的基本技巧,还能帮助我们解决实际问题。

本文将以实际问题为背景,通过举例、分析和说明来介绍整式的乘法与除法的应用。

一、整式的乘法整式的乘法是指两个或多个整式相乘的运算。

它的应用非常广泛,例如在代数表达式的化简、方程的解法、图形的面积计算等方面都有应用。

举例一:化简代数表达式假设有一个代数表达式:(3x + 2)(x - 5)。

我们可以使用整式的乘法运算将其展开化简。

首先,将括号中的每一项与另一个括号中的每一项相乘,得到以下结果:3x * x + 3x * (-5) + 2 * x + 2 * (-5)。

然后,将同类项相加合并,得到最简形式的代数表达式:3x^2 - 15x + 2x - 10。

最后,将同类项合并得到最终结果:3x^2 - 13x - 10。

通过整式的乘法运算,我们成功地将代数表达式化简为最简形式,从而更方便地进行后续计算或分析。

二、整式的除法整式的除法是指将一个整式除以另一个整式的运算。

它的应用也非常广泛,例如在多项式的因式分解、方程的解法、函数的图像绘制等方面都有应用。

举例二:因式分解假设有一个整式:x^3 - 8。

我们希望将其进行因式分解,以便更好地理解和分析。

首先,我们可以观察到这个整式是一个立方差式,即一个立方数减去另一个立方数。

根据立方差公式,我们可以将其因式分解为(x - 2)(x^2 + 2x + 4)。

通过整式的除法运算,我们成功地将整式进行了因式分解,得到了更简洁的表达形式。

这样,我们可以更方便地研究整式的性质和特点。

三、实际问题的应用整式的乘法与除法不仅仅是数学中的一种运算,它还能帮助我们解决实际问题。

例如,在几何中,我们可以使用整式的乘法来计算图形的面积或体积;在经济学中,我们可以使用整式的乘法来计算成本、利润等。

举例三:计算图形的面积假设有一个矩形,长为2x + 3,宽为3x - 4。

《整式的乘法》整式的乘除

《整式的乘法》整式的乘除
《整式的乘法》整式 的乘除
汇报人: 2023-11-28
contents
目录
• 整式乘除法的定义与规则 • 整式乘法的运算方法 • 整式除法的运算方法 • 整式乘除法的实际应用 • 整式乘除法在数学中的重要性 • 整式乘法的技巧和注意事项
01
整式乘除法的定义与规则
整式的乘法定义
整式乘法的定义
整式乘法是将几个整式相乘,所得的 积叫做整式的乘积。
整式乘法的运算顺序
在进行整式乘法时,应先进行单项式 的乘法运算,再合并同类项。
整式的乘法规则
同底数幂相乘
同底数幂相乘,底数不变,指 数相加。
幂的乘方
幂的乘方,底数不变,指数相 乘。
积的乘方
积的乘方,等于把积的每一个 因式分别乘方,再把所得的幂 相乘。
单项式与多项式相乘
单项式与多项式相乘,就是根 据分配律用单项式去乘多项式 的每一项,再把所得的积相加
单项式与多项式的乘法运算
要点一
总结词
要点二
详细描述
逐项处理,将单项式与多项式的每一项分别相乘,再合并 同类项。
单项式与多项式的乘法运算,需要把单项式与多项式的每 一项分别相乘,并且把所得的积相加。具体地,对于多项 式的每一项,将其系数和字母部分分别与单项式的系数和 字母部分相乘,然后合并同类项得到结果多项式的每一项 。特别地,当多项式中有一项与单项式完全相同时,则结 果多项式中该项的系数为单项式的系数乘以多项式中该项 的系数。
03
整式除法的运算方法
单项式与单项式的除法运算
总结词
简单、易于操作
详细描述
单项式与单项式的除法运算相对简单,只需将被除数除以除数,得到商即可。例 如,$10/3 = 3.33\ldots$。

整式的乘法与除法

整式的乘法与除法

整式的乘法与除法整式是由数字、变量和运算符(+、-、*、/)组成的代数表达式,而整式的乘法与除法是整式运算的两种基本操作。

了解整式的乘法与除法的规则和方法,可以帮助我们更好地理解和解决代数问题。

本文将介绍整式的乘法与除法的规则及其应用。

一、整式的乘法整式的乘法是指将两个或多个整式相乘得到的结果。

在整式的乘法中,我们需要掌握以下几个规则:1. 相同项的乘法:将同类项的系数相乘,对应变量的指数相加,并保持未知量的字母不变。

例如,(2x^2y)(3xy^2) = 6x^3y^3。

2. 不同项的乘法:将一个整式的每一项与另一个整式的每一项相乘,并将结果整理成一个整式。

例如,(2x + 3)(4x - 5) = 8x^2 - 10x + 12x -15 = 8x^2 + 2x - 15。

3. 乘法分配律:若a、b和c为任意的整数或整式,则a(b + c) = ab+ ac。

即将一个整式与另一个整式的和相乘,相当于将该整式与另一个整式的每一项分别相乘,然后将结果相加。

例如,3(2x + 5) = 6x + 15。

二、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式。

整式的除法通常使用长除法的方法进行计算,具体步骤如下:1. 将被除式与除式按照变量的指数从高到低排列。

2. 将被除数的第一个项除以除数的第一个项,得到商式的第一项。

将商式的第一项乘以除数,得到一个临时的乘积。

3. 将临时乘积与被除式进行相减,得到新的多项式。

4. 将新的多项式的第一个项除以除数的第一个项,得到商式的第二项。

将商式的第二项乘以除数,得到另一个临时的乘积。

5. 重复以上步骤,直到无法继续相减为止。

此时得到的商式为最终的商式,余式为未相减的多项式。

例如,我们将(3x^2 - 2x + 5)除以(x - 1):3x - 1_________x - 1 | 3x^2 - 2x + 5- (3x^2 - 3x)________x + 5所以,商式为3x - 1,余式为x + 5。

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)

第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。

3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.整式的乘法与除法知识纵横指数运算律是整式乘除的基础,有以下4个:a m·a n=a m+n,(a m)n=a nm,(ab)n=a n b n,a m÷a n=a m-n,学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,•方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题求解【例1】(1)如果x2+x-1=0,则x3+2x2+3=________. (第14届“希望杯”邀请赛试题)(2) (“祖冲之杯”邀请赛试题)把(x2-x+1)6展开后得a12x12+a11x11+……+a2x2+a1x+a0,则a12+a10+a8+a6+a4+a2+a0=_______.思路点拨(1)把高次项用低次多项式表示;(2)我们很难将(x2-x+1)6的展开式写出,因此想通过展开式去求出每一个系数是不实际的,事实上,上列等式在x的允许值范围内取任何一个值代入计算,等式都成立,考虑用赋值法解.解:(1)4 提示:x2=1-x,原式=x·x-2+2x3+3=x(1-x)+2x2+3=x2+x+3=1-x+x+3=4.(2)365 提示:令x=1,由已知等式得a12+a11+…+a2+a1+a0=1 ①令x=-1,由已知等式得a12-a11+…+a2-a1+a0=729 ②①+②,得2(a12+a10+…+a2+a0)=730,即a12+a10+…+a2+a0=365【例2】已知25x=2000,80y=2000,则11x y+等于( ).A.2B.1C. 12D.32(第11届“希望杯”邀请赛试题)思路点拨因x、y为指数,我们目前无法求x、y的值,11x y+=x yxy+,其实只需求出x+y、•xy的值或它们的关系,自然想到指数运算律.解:选B 提示:25xy=2000y①,80xy=2000x②,①×②得(25×80)xy=2000x+y,得xy=x+y.【例3】设a、b、c、d都是自然数,且a5=b4,c3=d2,a-c=17,求d-b的值.(上海市普陀区竞赛题) 思路点拨设a5=b4=m20,c3=d2=n6,这样a,b可用m的式子表示,c、d可用n的式子表示,减少字母的个数,降低问题的难度.解:提示:设a5=b4=m20,c3=d2=n6(m,n为自然数),则a=m4,b=m5,c=n2,d=n3,由已知得m4-n2=17,即(m2+n)(m2-n)=17因17是质数m2+n、m2-n是自然数,且m2+n>m2-n故22171m nm n⎧+=⎪⎨-=⎪⎩解得m=3,n=8,所以,d-b=n3-m5=83-35=269【例4】已知x2-xy-2y2-x-7y-6=(x-2y+A)(x+y+B),求A、B的值.思路点拨等号左右两边的式子是恒等的,它们的对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2 提示:展开比较对应项的系数,得到关于A、B的等式.【例5】是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q•的值,否则请说明理由.思路点拨由条件可推知商式是一个二次三项式(含待定系数),•根据“被除式=除式×商式”,运用待定系数法求出p、q的值,所谓p、q是否存在,其实就是关于待定系数的方程组是否有解.解:提示:假设存在满足题设条件的p、q值,设(x4+px2+q)=(x2+2x+5)(x2+mx+n),•即x 4+px 2+q=x 4+(m+2)x 3+(5+n+2m)x 2+(2n+5m)x+5n,得20522505m n m p n m n q +=⎧⎪++=⎪⎨+=⎪⎪=⎩ 解得25625m n p q =-⎧⎪=⎪⎨=⎪⎪=⎩ 故存在常数p,q 且p=6,q=25,使x 4+px 2+q 能被x 2+2x+5整除.学力训练一、基础夯实1. (2003年河北省中考题)如图,是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米),房的主人计划把卧室以外的地面都铺上地砖,•如果他选用地砖的价格是a 元/米2,则买砖至少需要_______元(用含a 、x 、y 的代数式表示).4x2y4yy2xx 卫生间厨房客厅卧室2.若2x+5y -3=0,则4x ·32y =_______. (2002年绍兴市竞赛题)3.满足(x -1)200>3300的x 的最小正整数为_______. (2003年武汉市选拨赛试题)4.a 、b 、c 、d 都是正数,且a 2=2,b 3=3,c 4=4,d 5=5,则a 、b 、c 、d•中,•最大的一个是__________. (“英才杯”竞赛题)5. (2001年TI 杯全国初中数学竞赛题)化简4322(2)2(2)n n n ++-得( ).A.2n+1-18 B.-2n+1 C. 78 D. 746.已知a=255,b=344,c=533,d=622,那么a 、b 、c 、d 从小到大的顺序是( ). A.a<b<c<d B.a<b<d<cC.b<a<c<dD.a<d<b<c (北京市“迎春杯”竞赛题)7.已知a 是不为0的整数,并且关系x 的方程ax=2a 3-3a 2-5a+4有整数根,则a•的值共有( ). A.1个 B.3个 C.6个 D.9个 8.计算(0.04)2003×[(-5)2003]2得( ). A.1 B.-1 C.200315 D.-200315 (2003年杭州市中考题)9.已知6x 2-7xy -3y 2+14x+y+a=(2x -3y+b)(3x+y+c),试确定a 、b 、c 的值.10.设a 、b 、c 、d 都是正整数,并且a 5=b 4,c 3=d 2,c-a=19,求a-b 的值. (江苏省竞赛题)11.已知四位数29x y =2x ·9y ,试确定29x y -x(x 2y-1-x y-1-1)的值. (北京市竞赛题)二、能力拓展12.多项式2x3-5x2+7x-8与多项式ax+bx+11的乘积中,没有含x4的项,也没有含x3•的项,则a2+b=________.13.若多项式3x2-4x+7能表示成a(x+1)2+b(x+1)+c的形式,则a=____,b=_____,•c=______.14.若(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a2+a4=________. (2003年北京市竞赛题)15.如果多项式(x-a)(x+2)-1能够写成两个多项式(x-3)和(x+b)的乘积,那么a=___,b=_____.16.若a=2255,b=3344,c=5533,d=6622,则a、b、c、d的大小关系是( ).A.a>b>c>dB.a>b>d>cC.b>a>c>dD.a>d>b>c17.已知a1,a2,a3,……,a1996,a1997均为正数,又M=(a1+a2+……+a1996)·(a2+a3+……+a1997),N=(a1+a2+•……+a1997)(a2+a3+……+a1996),则M与N的大小关系是( ).A.M=NB.M<NC.M>ND.关系不确定18.若3x3-x=1,则9x4+12x3-3x2-7x+1999的值等于( ).A.1997B.1999C.2001D.2003 (北京市竞赛题)19.已知关于x的整系数二次三项式ax2+bx+c,当x取1,3,6,8时,•某同学算得这个二次三项式的值分别为1,5,25,50.经检验,只有一个结果是错误的,这个错误的结果是( ).A.当x=1时,ax2+bx+c=1B.当x=3时,ax2+bx+c=5C.当x=6时,ax2+bx+c=25D.当x=8时,ax2+bx+c=5020.已知3x2-x-1=0,求6x3+7x2-5x+1999的值.21.已知a是方程2x2+3x-1=0的一个根,试求代数式543223395131a a a a aa+++-+-的值.22.已知2a·5b=2c·5d=10,求证:(a-1)(d-1)=(b-1)(c-1).三、综合创新23.是否存在整数a、b、c,满足(98)a·(109)b·(1615)c =2?若存在,求出a、b、c的值;若不存在,•说明理由.24.当自然数n的个位数分别为0,1,2,……,9时,n2,n3,n4,n5的个位数如表所示(1)从所列的表中你能发现什么规律?(2)若n为自然数,和数1981n+1982n+1983n+1984n不能被10整除,那么n必须满足什么条件?答案1.11axy2.83.7 提示:(x-1)2>334.b5.C6.D 提示:a=(25)11,b=(34)11,c=(53)11,d=(62)11,只需比较25,34,53,62的大小7.C 提示:x=2a2-3a-5+4a,a│4 8.A 9.a=4,b=4,c=1提示:•参见例5•10.75711.提示:由条件得2│29x y且9│29x y,则y的值可能为0,2,4,6,8,9│(x+y)+•11,又0≤x+y≤18,x+y=7,或x+y=16,逐一验证可得x=5,y=2,故原式=2592-5(53-5-1)=•1997.12.26 提示:x4、x3的系数分别为2b-5a,7a-5b+22,由2b-5a=0及7a-5b+22=0•得a=4,b=1013.3,-10,14 14.-120 令x=±1代入 15.-2,1 16.A 提示:作商比较17.C 提示:设a2+a3+…+a1996=x,则M=(a1+x)(x+a1997)=a1x+x2+a1a1997+a1997x.,N=(a1+x+a1997)x=a1x+x2+•a1997x, M-N=a1a1997>018.D提示:原式=(3x3-x-1)(3x+4)+200319.C 提示:由整除性质知:(n-m)[(an2+bn+c)-(am2+bm+c)],但(6-1)(25-1),(•8-6)(50-25),(8-1)│(50-1).20.2002 提示:原式=(2x+3)(3x2-x-1)+200221.提示:2a2+3a-1=0,3a-1=-2a2原式=23322 (231)(21)5553122 a a a a a aa a+-+-+==---22.提示:由已知有2a·5b=10=2×5,得2a-1·5b-1=1,故(2a-1·5b-1)d-1=1d-1. 同理可得(2c-1·5d-1)b-1=1b-1,从而2(a-1)×(d-1)·5(b-1)(d-1)=2(c-1)(b-1)·5(d-1)(b-1),即2(a-1)(d-1)=2(c-1)(b-1),故(a-1)(d-1)=(c-1)(b-1)23.原式可化为32a·2-3a·2b·5b·3-2b·24c·3-c·5-c=2, 即2-3a+b+4c·32a-2b-c·5b-c=21×30×50故341220a b ca b cb c-++=⎧⎪--=⎨⎪-=⎩,解得a=3,b=2,c=224.(1)以下解答仅供参考:①n5的个位数与n的个位数相等;②个位数是0,1,5,6的自然数的任何次幂,其个位数不变;③个位数是4,9的自然数的乘方,其个位数字交替变化;④任何自然数,乘方后的奇偶性不变等.(2)分n=4k,4k+1,4k+2,4k+3为讨论(k为自然数)当n=4k时,1981n、1982n、1983n、1984n的个位数字分别为1,6,1,6,则1981n+•1982n+1983n+1984n的个位数字为4,故10(1981n+1982n+1983n+1984n);当n=4k+1时,1981n、1982n、1983n、1984n的个位数字分别为1,•2,•3,•4,•则1981n+1982n+1983n+1984n的个位数字为0,故10│(1981n+1982n+1983n+1984n),同理,当n=4k+2、4k+3时,10│(1981n+1982n+1983n+1984n)故当且仅当n=4k,即n是4的倍数时,和数1981n+1982n+1983n+1984n不能被10整除.。

相关文档
最新文档