时间序列的平稳性检验
学术研究中的平稳性检验
学术研究中的平稳性检验摘要:平稳性检验是时间序列数据分析中非常重要的一步,它可以帮助我们确定时间序列数据是否具有稳定性,从而避免由于非平稳数据导致的统计误判。
本文将对平稳性检验的方法、原理和应用进行详细介绍。
一、引言在时间序列数据分析中,平稳性是一个非常重要的概念。
如果一个时间序列数据是平稳的,那么我们就可以对其进行一系列的统计分析和预测。
反之,如果一个时间序列数据是非平稳的,那么我们就需要采取一些措施来消除其非平稳性,否则会导致统计误判和预测误差。
因此,平稳性检验是时间序列数据分析中非常重要的一步。
二、平稳性检验的方法1.单位根检验(Augmented Dickey-Fuller Test)单位根检验是一种常用的平稳性检验方法,它可以通过建立时间序列数据的回归模型来检验其是否具有单位根。
如果回归模型的系数不显著,则说明该时间序列数据是平稳的;反之,如果回归模型的系数显著,则说明该时间序列数据是非平稳的。
常用的单位根检验方法有ADF检验和PP检验等。
2.协整检验(Cointegration Test)协整检验是一种用于检验两个或多个非平稳时间序列数据之间是否存在长期均衡关系的统计方法。
如果两个或多个时间序列数据之间存在协整关系,那么它们之间就可以建立回归模型进行分析和预测。
常用的协整检验方法有Kao检验和Johansen检验等。
三、平稳性检验的原理平稳性检验的原理是利用时间序列数据的特性进行分析。
在统计学中,平稳时间序列是指其均值、方差和自相关系数都是常数,也就是说,该时间序列数据具有稳定性。
如果一个时间序列数据是非平稳的,那么它的统计特性就会发生变化,从而影响统计分析和预测的准确性。
因此,在进行时间序列数据分析之前,必须对数据进行平稳性检验,以确保数据的稳定性和可靠性。
四、平稳性检验的应用1.经济领域中的应用在经济学中,平稳性检验被广泛应用于各种经济指标的时间序列数据分析中。
例如,通货膨胀率、失业率、国内生产总值等指标都是常用的经济指标,它们的变化趋势往往受到多种因素的影响。
时间序列的平稳性及其检验
19
伪回归spurious regression
如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化
时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式
确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明
自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点
⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。
平稳序列检验方法
平稳序列检验方法平稳序列检验是判断一个时间序列是否具有平稳性的方法。
平稳序列是指序列的统计特性在时间上不发生变化,即均值、方差和自协方差与时间无关。
判断一个序列是否平稳很重要,因为只有平稳序列才能进行许多经济和统计分析。
平稳序列检验方法主要有单位根检验、ADF检验和KPSS检验等。
单位根检验是最常用的平稳序列检验方法之一,其基本思想是判断一个序列是否具有单位根。
单位根的存在意味着序列是非平稳的。
ADF检验是单位根检验的一种常用方法,它是在一个线性回归模型的基础上构建的。
具体而言,假设要检验的序列为Yt,则在ADF检验中,我们构建以下的回归模型:Yt = α+ β*t + γ*Yt-1 + δ1(ΔYt-1) + δ2(ΔYt-2) + …+ δp(ΔYt-p) + et其中,ΔYt表示序列的一阶差分,α、β、γ和δ分别是模型中的系数,et是随机误差项。
在ADF检验中,我们假设序列Yt具有单位根,即H0:γ=0,然后通过假设检验来判断是否拒绝原假设。
如果在检验的过程中发现γ显著不等于0,则拒绝原假设,即序列Yt是平稳的。
ADF检验的统计量是基于t统计量计算的,一般会提供临界值用于判断统计量的显著性。
如果统计量的值小于临界值,则拒绝原假设,序列是平稳的。
除了ADF检验外,还有KPSS检验也是一种用于判断平稳序列的方法。
与ADF 检验不同的是,KPSS检验是在原假设下进行的,即假设序列是平稳的。
KPSS检验的原假设是H0:序列是平稳的,备择假设是H1:序列是非平稳的。
具体而言,KPSS检验是基于单位根检验的思想,即检验序列的观测值是否围绕一个常数进行波动。
如果序列的波动围绕一个常数,则序列是平稳的;如果波动围绕着一个随时间增长的函数,则序列是非平稳的。
KPSS检验的统计量也是基于t统计量计算的,一般会提供临界值用于判断统计量的显著性。
如果统计量的值大于临界值,则拒绝原假设,序列是非平稳的。
除了单位根检验,还有一些其他的平稳序列检验方法,如Ljung-Box检验和ARCH检验等。
时序预测中的时间序列平稳性检验方法详解(六)
时序预测中的时间序列平稳性检验方法详解时序预测是指根据已有的时间序列数据,通过建立数学模型来预测未来的趋势和变化规律。
而在进行时序预测时,首先需要对时间序列数据进行平稳性检验,以确保模型的准确性和可靠性。
本文将就时序预测中的时间序列平稳性检验方法进行详细的介绍。
一、简介时间序列是指按时间先后顺序排列而成的一组数据。
在实际应用中,时间序列数据往往受到各种因素的影响,如季节性、趋势性和周期性等。
而平稳性是指时间序列数据在一定时期内的均值和方差保持不变,即不存在明显的趋势和周期性。
二、平稳性检验方法1. 统计图检验法统计图检验法是通过绘制时间序列数据的统计图来观察其均值和方差是否随时间发生显著变化。
常用的统计图包括简单折线图、散点图和自相关图等。
通过观察这些统计图,可以初步判断时间序列数据是否具有平稳性。
2. 单位根检验法单位根检验法是通过检验时间序列数据中是否存在单位根来判断其平稳性。
常用的单位根检验方法包括ADF检验(Augmented Dickey-Fuller Test)和PP检验(Phillips-Perron Test)。
这些检验方法可以进一步验证时间序列数据的平稳性,对于非平稳时间序列数据的处理具有重要意义。
3. 傅立叶变换法傅立叶变换法是通过将时间序列数据转换到频域来观察其频谱分布。
通过分析频谱图,可以判断时间序列数据是否存在明显的周期性和趋势性,从而验证其平稳性。
4. 平稳性转化法平稳性转化法是通过对时间序列数据进行差分、对数变换或者其他数学变换来消除其非平稳性。
通过对原始数据进行适当的变换,可以使其满足平稳性的要求,从而方便后续的建模和预测。
5. 检验法比较综合利用多种平稳性检验方法可以更加全面地评估时间序列数据的平稳性。
不同的检验方法具有不同的优缺点,结合多种方法进行比较可以更加准确地判断时间序列数据的平稳性。
三、实例分析为了更好地理解时间序列平稳性检验方法的应用,我们以某股票价格的时间序列数据为例进行分析。
时间序列分析中的平稳性与非平稳性
时间序列分析中的平稳性与非平稳性时间序列分析是一种用来研究时间数据的统计方法,它可以揭示出时间序列数据的模式和趋势,并预测未来的发展。
在进行时间序列分析时,我们经常会遇到平稳性和非平稳性的问题,本文将重点讨论这两个概念及其在时间序列分析中的重要性。
1. 什么是平稳性?平稳性是指时间序列在统计特性上具有不变性,即其均值和方差不随时间的推移而发生改变。
具体而言,平稳时间序列的均值在时间维度上是稳定的,方差也不会随时间变化而增加或减小。
此外,平稳时间序列的自协方差只与时间间隔有关,而与特定时间点无关。
2. 平稳性的判断方法为了判断一个时间序列是否具有平稳性,我们可以使用一些统计检验方法。
常见的方法有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
ADF检验通常用于检验平稳性,其原假设是时间序列具有单位根(非平稳),如果检验结果拒绝了原假设,则可以得出时间序列是平稳的结论。
3. 非平稳性的表现形式非平稳性的时间序列可能会呈现出明显的趋势、季节性或周期性变化。
趋势是时间序列长期的、持续的上升或下降,季节性是指时间序列在特定时间点上出现的周期性波动,周期性是指时间序列存在长期的、不规则的上升或下降。
4. 非平稳性的处理方法如果时间序列是非平稳的,我们需要对其进行处理,以使其具备平稳性。
常见的处理方法有差分法、对数变换等。
差分法可以通过计算相邻时间点的差值来消除趋势和季节性,对数变换则可以通过对时间序列取对数来减少其波动性。
5. 平稳性的重要性平稳性在时间序列分析中非常重要,具有以下几个方面的意义: - 简化模型:平稳时间序列的统计特性稳定,可以简化模型的建立和预测。
- 降低误差:平稳时间序列的随机误差具有恒定的方差,使得模型的预测更准确。
- 提高可靠性:基于平稳时间序列建立的模型具有更好的可靠性和稳定性,可以更好地应对未来的变化。
时间序列中的时间序列平稳性检验
时间序列中的时间序列平稳性检验时间序列平稳性是时间序列分析中的重要概念,对时间序列模型和预测有着重要的影响。
时间序列平稳性指的是时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化的性质。
本文将介绍时间序列平稳性检验的相关理论与方法。
一、时间序列平稳性检验的基本理论在进行时间序列分析前,需要先确定该时间序列是否具有平稳性。
时间序列平稳性则是指时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化,比如说均值、方差、自相关系数等都不应该与时间有关。
若时间序列不具有平稳性,则其分析结果会受到时间变量的影响,预测结果也不够准确。
对于时间序列平稳性的检验,主要考虑3个方面,即序列的均值、序列的方差、序列的自相关。
时间序列平稳性检验的基本理论是根据大数定理和中心极限定理进行的。
在此基础上,常用的做法是,检验序列均值是否随时间变化而变化、检验方差是否随时间变化而变化、检验自相关系数是否与时间有关。
二、时间序列平稳性检验的方法1.图示法:通过绘制时间序列图、自相关图、偏自相关图可以直观地了解时间序列的平稳性。
时间序列图是反映序列随时间变化时的整体变化趋势的图形;自相关图表达的是序列在不同时滞下的线性相关程度,若相关系数呈现规律性或趋势性,则序列不平稳;偏自相关图是用来判断序列是否具有趋势或季节性,若序列的偏自相关系数在超过置信度时突破界限,则序列不具有平稳性。
2.计量经济学检验法:常用的计量经济学检验法有DF检验、ADF检验、KPSS检验等,其中ADF检验最为常用。
ADF检验分为一般ADF检验、增广ADF检验、阶数选择ADF检验等,在跨期比较和模型选择方面有效,而且误判率较低。
3.波动函数法:通过测量时间序列各部分的波动函数,从而判断序列是否平稳。
包括周期波动函数法、空间波动函数法等。
周期波动函数法是通过加权平均数对序列进行周期性处理,得到波动函数,然后计算波动函数的标准偏差,以此来判断序列平稳性;空间波动函数法则是通过空间均方差来判断时间序列的平稳性。
时序预测中的时间序列平稳性检验方法详解(Ⅲ)
时序预测中的时间序列平稳性检验方法详解时间序列分析在各个领域都有着广泛的应用,如经济学、气象学、医学等。
而时间序列平稳性检验是时间序列分析中的重要一环,它可以帮助我们确认时间序列数据是否稳定,从而选择合适的模型进行预测。
本文将详细介绍时间序列平稳性检验的方法和原理。
一、平稳性的定义在进行时间序列分析时,我们通常假设时间序列是平稳的。
平稳性是指时间序列在统计特性上的稳定性,即均值和方差在时间上都是恒定的。
如果时间序列不满足平稳性的要求,将会导致预测结果不准确。
因此,平稳性检验在时间序列分析中至关重要。
二、时间序列平稳性的检验方法1. 直观法直观法是最简单的一种检验方法,它通过观察时间序列的均值和方差是否随时间变化而确定序列的平稳性。
如果均值和方差不随时间变化,则可以初步认定序列是平稳的。
然而,直观法往往不够准确,因为很难只通过肉眼观察就确定序列的平稳性。
2. 统计方法在统计方法中,有许多用于时间序列平稳性检验的经典方法,如ADF检验、PP检验、KPSS检验等。
这些方法都是通过建立统计模型,对序列的均值和方差进行检验,从而判断序列的平稳性。
ADF检验(Augmented Dickey-Fuller Test)是最常用的一种检验方法,它的原假设是时间序列具有单位根(非平稳),备择假设是时间序列是平稳的。
通过对序列进行单位根检验,ADF检验可以判断序列的平稳性。
如果p值小于显著性水平(通常为),则拒绝原假设,认为序列是平稳的。
PP检验(Phillips-Perron Test)是另一种常用的单位根检验方法,它与ADF检验类似,也是通过检验序列的单位根来判断序列的平稳性。
与ADF检验的区别在于PP检验对序列的自相关结构和序列长度的敏感性较低。
KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin Test)则是一种反向的检验方法,它的原假设是序列是平稳的,备择假设是序列具有单位根。
时间序列的平稳性检验方法比较论文素材
时间序列的平稳性检验方法比较论文素材时间序列的平稳性检验方法比较时间序列分析是一种广泛应用于经济学、金融学、统计学等领域的统计分析方法,它的核心是对时间序列数据进行建模和预测。
在进行时间序列分析之前,需要对时间序列数据的平稳性进行检验,因为只有平稳的时间序列数据才能有效地应用各种统计模型进行分析和预测。
平稳性是指时间序列数据在统计属性上没有显著变化的特性,包括均值、方差和自相关性等。
在实际应用中,常常需要对时间序列数据进行平稳性检验,以确定是否满足时间序列分析的基本假设。
本文将对几种常用的时间序列平稳性检验方法进行比较,包括ADF 检验、PP检验、KPSS检验以及DF-GLS检验等。
1. ADF检验(Augmented Dickey-Fuller Test)ADF检验是一种常用的单位根检验方法,它的原假设是时间序列数据存在单位根,即非平稳。
如果根据ADF检验的结果拒绝原假设,则可以认为时间序列数据是平稳的。
ADF检验的步骤包括选择合适的滞后阶数、构建广义差分模型、计算ADF统计量以及对统计量进行显著性检验等。
根据ADF检验的结果,可以得到一个关于平稳性的显著性水平,比如5%或10%的显著水平。
2. PP检验(Phillips-Perron Test)PP检验是另一种常用的单位根检验方法,它与ADF检验类似,但在计算ADF统计量时使用了修正项,使得统计量的分布更具鲁棒性。
PP检验的原假设和拒绝原假设与ADF检验相同。
与ADF检验相比,PP检验提供了更强的鲁棒性和准确性,特别适用于样本量较小或存在异方差性的情况。
3. KPSS检验(Kwiatkowski–Phillips–Schmidt–Shin Test)与ADF检验和PP检验不同,KPSS检验的原假设是时间序列数据是平稳的,即不存在单位根。
如果根据KPSS检验的结果拒绝原假设,则可以认为时间序列数据是非平稳的。
KPSS检验的步骤包括选择合适的滞后阶数、构建局部线性趋势模型、计算KPSS统计量以及对统计量进行显著性检验等。
时序预测中的时间序列平稳性检验方法详解(八)
时序预测中的时间序列平稳性检验方法详解时间序列分析是一种统计方法,用于分析时间序列数据的模式和趋势,以便预测未来的趋势。
时间序列预测是在一定时间范围内对未来数据进行估计和预测,而时间序列的平稳性检验是进行时间序列预测的第一步。
在本文中,我将详细解释时序预测中的时间序列平稳性检验方法。
时间序列的平稳性是指时间序列在统计特性上不随时间发生显著变化的性质。
在时间序列分析中,平稳性是一个非常重要的性质,因为只有平稳的时间序列才能应用于许多经典的时间序列模型。
下面我们将介绍一些常见的时间序列平稳性检验方法。
1. 绝对值单位根检验绝对值单位根检验是一种检验时间序列平稳性的方法。
它的基本思想是对时间序列进行绝对值转换,然后应用单位根检验。
如果单位根检验的结果表明时间序列的绝对值是平稳的,那么原始时间序列也是平稳的。
2. ADF检验ADF(Augmented Dickey-Fuller)检验是一种常用的检验时间序列平稳性的方法。
它的原假设是时间序列具有单位根,即不平稳。
如果经过ADF检验,可以拒绝原假设,那么就可以认为时间序列是平稳的。
3. PP检验PP(Phillips-Perron)检验也是一种检验时间序列平稳性的方法。
它与ADF 检验类似,都是基于单位根检验的原理。
PP检验的优点是可以处理具有序列相关性和异方差性的时间序列数据。
4. KPSS检验KPSS(Kwiatkowski-Phillips-Schmidt-Shin)检验是一种用于检验时间序列平稳性的方法。
与ADF检验相反,KPSS检验的原假设是时间序列是平稳的,因此如果检验结果表明拒绝原假设,那么就可以认为时间序列是不平稳的。
以上是一些常见的时间序列平稳性检验方法,每种方法都有其适用的场景和局限性。
在实际应用中,可以根据时间序列的特点和数据的分布情况选择合适的方法进行平稳性检验。
在进行时间序列预测时,平稳性检验是非常重要的一步,只有在时间序列平稳的情况下,才能应用于各种经典的时间序列模型,从而得到准确的预测结果。
时间序列的平稳非平稳协整格兰杰因果关系
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
时间序列分析的基本概念是什么如何进行时间序列的平稳性检验
时间序列分析的基本概念是什么如何进行时间序列的平稳性检验时间序列分析是一种应用广泛的统计分析方法,用于研究随时间变化的数据序列的规律性和特征。
时间序列数据是按照时间顺序排列的观测值序列,常见的包括股票价格、气温、销售额等。
时间序列分析的基本概念是对时间序列数据进行模型拟合和预测。
它的主要目的是揭示数据的内在规律和特征,为未来的预测和决策提供依据。
下面将介绍时间序列分析的基本概念和时间序列的平稳性检验。
一、时间序列分析的基本概念1. 趋势分析:指时间序列数据在长期内的增长或下降趋势。
趋势分析可以采用移动平均法和指数平滑法等方法进行预测和拟合。
2. 季节性分析:指时间序列数据在短期内的重复周期。
季节性分析可以使用季节指数法和季节自回归移动平均法等方法来对季节性进行分析和预测。
3. 循环分析:指时间序列数据在长期内的周期性波动。
循环分析可以利用时间序列的滞后项构建循环指标,并对周期性进行拟合和预测。
4. 不规则分量分析:指不能被趋势、季节性和循环等因素解释的随机变动。
不规则分量包含各种无法归类的随机因素,可以通过随机过程模型进行分析和预测。
二、时间序列的平稳性检验时间序列的平稳性是进行时间序列分析的基本要求,平稳性包括严平稳和弱平稳两个概念。
严平稳要求时间序列的联合概率分布不随时间的变化而改变,即均值和方差等参数在时间序列的不同阶段保持不变。
严平稳序列可以使用统计工具进行参数估计和假设检验。
弱平稳是指时间序列的均值和自相关性不随时间的变化而改变,但方差可能会随时间的变化而改变。
弱平稳序列可以通过差分进行处理,将非平稳序列转化为平稳序列。
进行时间序列的平稳性检验可以使用统计学方法,常用的方法包括ADF检验、单位根检验和KPSS检验等。
这些方法通过检验序列的单位根特征或自回归模型的稳定性来判断序列的平稳性。
ADF检验(Augmented Dickey-Fuller Test)是一种常用的平稳性检验方法,其原理是对序列进行单位根检验,并根据检验统计量与临界值的比较来判断序列的平稳性。
时间序列分析实验平稳性
时间序列数据(一)平稳性检验实验指导一、实验目的:理解经济时间序列存在的不平稳性,掌握对时间序列平稳性检验的步骤和各种方法,认识利用不平稳的序列进行建模所造成的影响。
二、基本概念:如果一个随机过程的均值和方差在时间过程上都是常数,并且在任何两时期的协方差值仅依赖于该两个时期间的间隔,而不依赖于计算这个协方差的实际时间,就称它是宽平稳的。
时序图ADF检验PP检验三、实验内容及要求:1、实验内容:用Eviews5.1来分析1964年到1999年中国纱产量的时间序列,主要内容:(1)、通过时序图看时间序列的平稳性,这个方法很直观,但比较粗糙;(2)、通过计算序列的自相关和偏自相关系数,根据平稳时间序列的性质观察其平稳性;(3)、进行纯随机性检验;(4)、平稳性的ADF检验;(5)、平稳性的pp检验。
2、实验要求:(1)理解不平稳的含义和影响;(2)熟悉对序列平稳化处理的各种方法;(2)对相应过程会熟练软件操作,对软件分析结果进行分析。
四、实验指导(1)、绘制时间序列图时序图可以大致看出序列的平稳性,平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。
如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列,现以1964-1999年中国纱年产量序列(单位:万吨)来说明。
在EVIEWS中建立工作文件,在“Workfile structure type”栏中选择“Dated-regular frequency”,在右边的“Datespecification”中输入起始年1964,终止年1999,点击ok则建立了工作文件。
找到中国纱年产量序列的excel文件并导入命名该序列为sha,见图1-2。
图1-1 建立工作文件图1-2创建新序列SHA,如图1-2。
点击主菜单Quick/Graph就可作图,见图1-3,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。
时序预测中的时间序列平稳性检验方法详解(七)
时序预测中的时间序列平稳性检验方法详解时间序列分析是指对一定时间间隔内的数据进行观察、分析和建模的一种统计分析方法。
其中,时序预测是时间序列分析的一个重要应用方向,通过对历史数据的分析和模型构建,来预测未来一段时间内的数据走势。
而时间序列的平稳性是时序预测中的重要前提条件,下面将详细讨论时间序列平稳性的检验方法。
一、平稳性概念及其重要性所谓平稳性,是指时间序列在不同时间点上的统计特性不发生显著的变化。
具体来说,时间序列的均值、方差和自相关性不随时间变化而发生显著变化。
平稳性对于时序预测至关重要,因为只有在时间序列平稳的情况下,我们才能够基于历史数据进行有效的预测。
二、时间序列平稳性的检验方法1. 直观法直观法是一种最简单直接的方法,即通过观察时间序列图来初步判断序列是否平稳。
如果时间序列的均值和方差在不同时间段内基本保持不变,那么可以初步认定序列具有平稳性。
然而,直观法并不够严谨,往往需要结合其他方法进行验证。
2. 统计检验法统计检验法是通过一些统计指标来检验时间序列的平稳性。
常用的方法包括ADF检验、单位根检验、KPSS检验等。
ADF检验是一种通过单位根检验来判断时间序列是否平稳的方法,其基本原理是对原始时间序列进行单位根检验,若序列平稳则对应的p值应当小于显著性水平。
而KPSS检验则是一种基于单位根检验的方法,其原理是对原始序列进行单位根检验,若序列显著偏离平稳则对应的p值应当大于显著性水平。
通过这些统计检验方法,我们可以更加客观准确地判断时间序列的平稳性。
3. 时间序列差分法时间序列差分法是一种通过对时间序列进行差分运算来消除非平稳性的方法。
具体来说,我们可以对原始时间序列进行一阶差分或二阶差分运算,然后对差分后的序列进行平稳性检验。
若差分后的序列满足平稳性条件,则可以认定原始序列具有平稳性。
4. 线性回归法线性回归法是一种利用线性回归模型来检验时间序列平稳性的方法。
具体来说,我们可以建立一个线性回归模型,将时间序列的观测值作为因变量,时间作为自变量,然后对回归系数进行显著性检验。
时间序列的平稳、非平稳、协整、格兰杰因果关系
时间序列的平稳、非平稳、协整、格兰杰因果关系步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。
如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
1.单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。
常用的ADF检验包括三个模型方程。
在李子奈的《高级计量经济学》上有该方法的全部步骤,即从含趋势项、截距项的方程开始,若接受原假设,则对模型中的趋势项参数进行t 检验,若接受则进行对只含截距项的方程进行检验,若接受,则对一阶滞后项的系数参数进行t检验,若接受,则进行差分后再ADF检验;若拒绝,则序列为平稳序列。
2.当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3.当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验:(1)EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性;(2)JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)。
4.当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别。
5.格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。
时间序列分析中的平稳性检验
时间序列分析中的平稳性检验时间序列分析是统计学中重要的研究领域,它用于研究随时间变化的数据,并预测未来的趋势。
平稳性检验是时间序列分析的关键步骤之一,它用于确定时间序列数据是否具有平稳性。
本文将介绍时间序列分析中的平稳性检验的基本概念、方法和应用。
一、平稳性的概念在时间序列分析中,平稳性是指时间序列数据的统计特性在不同时间段内保持不变。
具体而言,平稳性要求时间序列的均值、方差和自相关函数在时间上不发生显著的变化。
如果时间序列数据具有平稳性,那么我们可以利用历史数据对未来进行可靠的预测。
二、平稳性检验的方法为了检验时间序列数据的平稳性,常用的方法包括观察法、单位根检验和ADF检验。
1. 观察法观察法是最简单的平稳性检验方法,它通过观察时间序列数据的图表和统计指标来判断数据是否具有平稳性。
如果时间序列数据的均值和方差在不同时间段内保持相对稳定,且自相关函数衰减较快,那么可以初步认为数据具有平稳性。
2. 单位根检验单位根检验是一种常用的平稳性检验方法,它基于时间序列数据是否具有单位根来判断数据的平稳性。
常用的单位根检验方法包括ADF检验、PP检验和KPSS 检验。
其中,ADF检验是最常用的单位根检验方法之一。
3. ADF检验ADF检验(Augmented Dickey-Fuller test)是一种常用的单位根检验方法,它基于Dickey-Fuller回归模型来判断时间序列数据是否具有单位根。
ADF检验的原假设是时间序列数据具有单位根,即非平稳性;备择假设是时间序列数据不具有单位根,即平稳性。
ADF检验的关键统计量是ADF统计量,它的值与临界值进行比较来判断数据的平稳性。
如果ADF统计量的值小于临界值,那么可以拒绝原假设,认为数据具有平稳性;如果ADF统计量的值大于临界值,那么接受原假设,认为数据不具有平稳性。
三、平稳性检验的应用平稳性检验在时间序列分析中具有广泛的应用。
首先,平稳性检验是进行时间序列建模的前提条件,只有具有平稳性的数据才能进行可靠的建模和预测。
时间序列平稳性和单位根检验
结合其他统计和经济模型,深入 研究时间序列数据的特征和趋势, 以更好地理解和预测经济运行情
况。
针对时间序列数据的非平稳性, 探索更为有效的分析和预测方法, 以提高经济预测的准确性和可靠
性。
THANKS
感谢观看
• 帕克-帕朗检验(PP检验):PP检验与ADF检验类似,也是基于回归模型进行 单位根检验。它通过比较原始序列与一阶差分序列的方差来构建统计量,以判 断是否存在单位根。
• 扩展迪基-富勒检验(ADF-GLS检验):ADF-GLS检验是ADF检验的一种扩展, 考虑了异方差性问题,提高了检验的准确性。它通过对模型残差进行广义最小 二乘法(GLS)处理来纠正异方差性。
时间序列平稳性和单位根 检验
• 引言 • 时间序列平稳性 • 单位根检验 • 时间序列模型 • 时间序列平稳性和单位根检验的应用 • 结论
01
引言
主题简介
时间序列平稳性
时间序列数据随时间变化而呈现出一定的趋势和周期性。平稳性是指时间序列 数据的统计特性不随时间而变化,即数据的均值、方差和自相关函数等特征保 持恒定。
要点二
意义
在金融、经济、社会和自然等领域中,许多时间序列数据 都具有非平稳性,如股票价格、经济增长、气候变化等。 通过进行平稳性和单位根检验,可以揭示这些数据背后的 动态机制和长期趋势,有助于制定更加科学合理的经济政 策、投资策略和社会发展计划。同时,这些检验方法在统 计学、计量经济学和时间序列分析等领域也具有重要的理 论价值。
模型稳定性
平稳性有助于建立稳定和 可靠的统计模型,因为模 型参数不会随时间而变化。
数据分析基础
平稳性是许多统计分析方 法的前提条件,如回归分 析、时间序列分析和经济 计量分析等。
5.2 时间序列的平稳性及其检验
模型2的估计
结论: 中国实际居民消费 总量增长率序列 GY是平稳的。
检验对数序列lnY
• 首先对lnY的水平序列进行检验,三个模型中参数估计值的统计量的值 均大于各自的临界值,因此不能拒绝存在单位根的零假设,即中国实 际居民消费总量的对数序列是非平稳的。
• 再对lnY的1阶差分序列进行检验,自动选择检验模型滞后项,确定滞 后阶数为0,得到模型3的估计结果:
零假设 H0:=0 备择假设 H1:<0
模型1 模型2 模型3
ADF检验模型
• 检验过程
• 实际检验时从模型3开始,然后模型2、模型1。 • 何时检验拒绝零假设,即原序列不存在单位根,为平稳序列,何时停止检
验。 • 否则,就要继续检验,直到检验完模型1为止。
• 检验原理与DF检验相同,只是对模型1、2、3进行检验时,有各自相 应的临界值表。
• 现实经济生活中只有少数经济指标的时间序列表现为平稳的,如利率等;
• 大多数指标的时间序列是非平稳的,例如,以当年价表示的消费额、收 入等常是2阶单整的,以不变价格表示的消费额、收入等常表现为1阶 单整。
• 大多数非平稳的时间序列一般可通过一次或多次差分的形式变为平稳的。
• 但也有一些时间序列,无论经过多少次差分,都不能变为平稳的。这种 序列被称为非单整的(non-integrated)。
四、平稳性的单位根检验
1、DF检验(Dicky-Fuller Test)
X t X t1 t X t X t1 t
随机游走,非平稳
对该式回归,如果确实发现ρ=1,则 称随机变量Xt有一个单位根。
X t ( 1) X t1 t X t1 t
等价于通过该式判断是否存在 δ=0。
• 通过上式判断Xt是否有单位根,就是时间序列平稳性的单位根检验。
计量经济学-第6章⑴时间序列的平稳性及其检验精品文档
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
-0.031 0.157 0.264 -0.191 -0.616 -0.229 -0.385 -0.181 -0.521 -0.364 -0.136 -0.451 -0.828 -0.884 -0.406 -0.162 -0.377 -0.236 0.000
(b)
图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
• 注意:
确定样本自相关函数rk某一数值是否足够接近 于0是非常有用的,因为它可检验对应的自相关 函数k的真值是否为0的假设。
Bartlett曾证明:如果时间序列由白噪声过程生成, 则对所有的k>0,样本自相关系数近似地服从以0 为均值,1/n 为方差的正态分布,其中n为样本数。
也可检验对所有k>0,自相关系数都为0的联合 假设,这可通过如下QLB统计量进行:
例如:如果有两列时间序列数据表现出一致的变 化趋势(非平稳的),即使它们没有任何有意义的 关系,但进行回归也可表现出较高的可决系数。
在现实经济生活中:
情况往往是实际的时间序列数据是非平稳的,而 且主要的经济变量如消费、收入、价格往往表现为 一致的上升或下降。这样,仍然通过经典的因果关 系模型进行分析,一般不会得到有意义的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由式(11.2.7)两边各减去yt-1,得到
yt – yt-1 = ρyt-1 – yt-1 + ut
即
Δyt = δyt-1 + ut (11.2.10)
(11.2.10)式中差分Δyt = yt – yt-1 ,δ = ρ – 1 。 绝大多数经济变量的时间序列相关系数ρ都取正
值且小于1,因此,假设(11.2.9)可以改写为:
就是带趋势项的随机游走过程。
(二)单位根检验的基本思想
在(11.2.6)式中,若α = 0,则式(11.2.6)可以
写成:
yt = ρyt-1 + ut
(11.2.7)
式(11.2.7)称为一阶自回归过程,记作AR(1),可以
证明当| ρ | <1时是平稳的,否则是非平稳的。
AR(1)过程也可以写成算符形式:
§11.2时间序列的平稳性检验 由于大多数宏观经济变量,如GDP、消费总额、 货币供应量M2等的时间序列都不是平稳的,随 着 时间的位移而持续地增长,也就是说有一种增 长 趋势的特征。但是当经济出现突发性振荡(如 石 油价格猛增、或金融危机等)后,受到冲击的 这
若呈现随机游走状态,一方面如果还是用OLS进 行回归,这时会导致伪回归(这是因为随机游走 不是有限方差,高斯-马尔可夫定理不再成立, OLS估计的参数不再是一致的)。另一方面,由 于这种冲击对变量的影响不会在短期内消失,所 以随机游走状态也可能是持久的,所以对变量的 平稳性的检验有着极其重要的意义。
(11.2.5)
(11.2.5)式成为一个带趋势项的随机游走过程。
以上三种情况,其数据生成过程都可以概括写成如
下形式:
yt = α + ρyt-1 + ut
(11.2.6)
当α = 0,ρ =1时,式(11.2.6)就是随机游走过程;
当α =μ,ρ =1时,式(11.2.6)就是带飘移项的随
机游走过程;当α =μ+ βt,ρ =1时,式(11.2.6)
图11.2.1 y 的散点图
二、利用样本自相关函数进行稳定性判断 不同时间序列具有不同形式的自相关函数,因此可以 从时间序列的自相关函数的图形来判断时间序列的 稳定性。
在实际应用中,采用样本自相关函数来判断时间 序列是否为平稳过程。 一般地,由样本数据计算出样本自相关函数
T k
( yt y)(ytk y)
ˆ 1 T Vˆ (ˆ )
或
T
ˆ Vˆ (ˆ)
(11.2.12)
(11.2.12)式中 Vˆ (ˆ ) 和 Vˆ (ˆ)分别为参数估计量
ˆ 和 ˆ 的方差估计值。
但是,这里的问题是(11.2.12)式中的统计量Tρ和 Tδ 不服从t分布,而是一个非标准的非对称的分布, 它具有Dickey-Fuller(1979)提出的分布(简称DF分布) ,相应的检验就是我们下面要介绍的著名的Dickey -Fuller(简称DF)检验。
(1-ρL)yt = ut
(11.2.8)
yt平稳的条件是特征方程1-ρz = 0 根的绝对值大于1。
显然,此方程仅有一个根 z = 1/ρ,由 | z | >1, 知平
稳性要求 | ρ | < 1 。
因此,检验 yt 的平稳性的原假设和备择假设为 H0: | ρ| ≥ 1 ;H1: | ρ | <1 (11.2.9)
ˆ k t1
T
(
yt
y
)2
t 1
(11.2.1)
当k逐渐增大时,迅速衰减,则认为该序列是平稳的;
如果它衰减非常缓慢,则认为该序列是非平稳的。
三、单位根检验(Dickey-Fuller — DF检验)
(一)单位根过程
单位根过程是较随机游走更为一般的非平稳过程,
假定有增长趋势的变量 yt 的数据生成过程可写成:
(1-L) yt = α + ut
(11.2.2)
其中ut是平稳过程,α可取不同的值,L 是滞后算
子Lyt = yt-1。由于其特征方程
1- z = 0有一个单位根 z = 1,所以称(11.2.2)式为单
位根过程。根据α取值不同,单位根过程可以有以
下三种不同形式:
1.当α = 0 时,(11.2.2) 可写成
一、利用散点图判断平稳性
利用时间序列的散点图判断平稳性,是一种最简单 的方法。首先画出该时间序列的散点图,然后观察 散点是否是围绕其均值上下波动的曲线,如果是的 话,可以判断该时间序列是一个平稳时间序列。否 则的话,该时间序列是非平稳的。
例如,时间序列{yt , t = 1,2, …},观测点在其均值水平 线上下波动,如图11.2.1所示,则可以认为该样本来 自平稳序列{yt , t = 1,2, …}。
yt = yt-1 + ut
(11.2.3)
(11.2.3)式成为一个纯随机游走过程。
2. 当α = μ 时,(11.2.2)式可写成
yt = μ + yt-1 + ut
(11.2.4)
(14.2.4)式成为一个带飘移的随机游走过程。
3. 当 α = μ + βt 时,(11.2.2)式可写成
yt = μ + βt + yt-1 + ut
(三)DF检验 (Dickey-Fuller Test) 1.DF检验 DF检验的具体作法是用传统方法计算出的参数的T— 统计量,不与t 分布临界值比较而是改成DF分布临界 值表。
DF检验的具体做法如下:
第一步:对式
Δyt = δyt-1 + ut
H0:δ = 0 ;H1:δ < 0 (11.2.11) 当δ = 0 时,原假设H0为真,则相应的随机过程为 是非平稳的。可以看出,非平稳性问题或单位根问
题,可以表序列 yt 的非平稳性的问题 简化成在模型(11.2.7)中,检验回归参数ρ = 1是 否成立,或者在模型(11.2.10)中,检验回归参数 δ = 0是否成立。按照以前参数检验的做法,我们可 以分别用两个t检验进行: