1.1.2《集合间的基本关系》课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.空集
我们知道,方程x 1 0没有实数根,所以,方程
2
x 1 0的实数组成的集合没有元素.
2
我们把不含任何元素的集合叫做空集,记为 并规定:空集是任何集合的子集 .
空集是任何非空集合的真子集.
4.集合之间的基本关系.
()任何一个集合是它本身的子集,即 1 A A ( )对于集合A、B、C,如果A B,B C,那么 2 A C.
解: A, 当B ,有a 1 2a 1, 即a 2 2 a 1 a 1 当B 时,有a 1 -2 2 a 1 5 2 a 3 综上所述,a的取值范围a 3.
课堂练习
1 设集合A={x|1≤x≤3},B={x|x-a≥0} 若A是B的真子集,求实数a的取值范围。
1.1.2集合间的基本关系
思考
实数有相等关系、大小关 系,如5=5,5<7,5>3, 等等,类比实数之间的关系, 你会想到集合之间的什么关 系?
观察下面几个例子,你能发现两个集合之间 的关系吗?
⑴ A={1,2,3} , B={1,2,3,4,5};
⑵设A为新华中学高一(2)班女生的全体组成的集合,
B
A
2.集合相等与真子集的概念
如果集合A是集合B的子集(A B),且集合B是 集合A的子集(B A),此时,集合A与集合B中 的元素是一样,因此,集合A与集合B相 等, 记作 A=B
如果集合A B,但存在元素x B,且x A,我 们称集合A是集合B的真子集,记作 A B (或B A)
y-3 2.设x, y R,A {(x, y) | y - 3 x - 2}, B {(x, y) | 1}, x-2 则A,B的关系是______.
3.已知A { x | 2 x 5}, B { x | a 1 x 2a 1}, B A, 求实数a的取值范围.
2 2
由韦达定理得 - 2(a 1) 4 2 a 解得 a 1
(2)当B A时,又可分为: (a) B 时,即B {0} ,或B {-4} , 4(a 1)2 4(a 2 1) 0, 解得a 1 B {0}满足条件; (b)B 时, 4(a 1) 4(a 1) 0, 解得a 1




4、设集合 A 1, 2,3,...,10 , 求集合的所有非空子集 元素的和 。 9 解:含有1的子集有 2 个; 含有2的子集有 29 个; 含有3的子集有 29 个;…, 含有10的子集有 29 个, ∴ (1 2 3 ... 10) 29 28160
B为这个班学生的全体组成的集合;
⑶ 设C={x|x是两条边相等的三角形},D={x|x是 等腰三角形}.
1.子集的概念
一般地,对于两个集合A、B, 如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个 集合有包含关系,称集合A为集合B的子集. 记作 A B ( 或B A) 读作 “A含于B”( 或“B包含A” )
2 2
综合(1)、 知,所求实数a的值a 1, 或a 1. (2)
2、 设A={x,x2,xy}, B={1,x,y},且 A=B,求实数x,y的值.
3、 已知集合 P {x | x 2 x 6 0} 与集合 Q {x | ax 1 0}, 满足Q 求a的取值组成的集合A P
作业布置
1.教材P.12 A组 5 B组2. 2. 若A={x |-3≤x≤4}, B={x | 2m-1≤x≤m+1},当B A时, 求实数m的取值范围. 1 3.已知 A B, A C , B ,2,3,5,
.
C 0,2,4,8, 求A
本节小结
子集、真子集的定义 集合之间的关系 空集是任何集合的子集,是任何非空集合的 真子集
几个结论
①空集是任何集合的子集Φ A ②空集是任何非空集合的真子集 Φ A (A ≠ Φ ) ③任何一个集合是它本身的子集,即 AA ④对于集合A,B,C,如果 A B, 且BC,则A C
5.反馈演练
1、下列命题: 空集没有子集; 任何集合至少有两个 (1) (2) 子集; 空集是任何集合的真子集; 若 A,则A (3) (4) .其中正确的有( A.0个 ) D.3个 B.1个 C.2个
2 设A={1,2},B={x|xA},问A与B有什 么关系?并用列举法写出B?
典型例题讲解 1、设集合A {x | x 2 4x 0}, B {x | x 2 2(a 1)x a 2 - 1 0, a R}, 若B A,求实数a的值.
解: A {0,4} B A,于是可分类处理. - , (1)当A B时,B {0,4}. 由此知: - 4是方程x 2(a 1) a 1 0的两根, 0,
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
wk.baidu.com
补充例题
例4
写出集合{a,b,c}的所有的子 集及真子集 解:集合{a,b,c}的所有的子集是 φ,{a},{b},{c},{a,b},{b,c}, {c,a},{a,b,c}.其中 φ,{a},{b},{c},{a,b},{b,c}, {c,a}是真 子集.

集合的子集及真子集的个数:
一个元素的集合:子集共有2个、真子集有2-1 个。 两个元素的集合:子集共有4个、真子集有4-1 个。 三个元素的集合:子集共有8个、真子集有8-1 个。

结论:含n个元素的集合的所有子集的个
数是2n, 所有真子集的个数是2n-1, 非空真子集数为2n-2.
相关文档
最新文档