第四章 原子吸收分光光度法

合集下载

第四章 原子吸收分光光度法

第四章 原子吸收分光光度法

优点:温度高,且可控;试样用量少(μg 或μl级),可直接测固体样; 原子化效率高;灵敏度高。 缺点:精度差,分析速度慢,共存化合物分子吸收,干扰较大。
低温原子化法
汞蒸汽原子化(测汞仪) 试样中汞化合物用还原剂(SnCl2)还原为汞蒸汽,并通过Ar 或N2 将其带入 吸收池进行测定。 Hg2++Sn2+ 氢化物原子化 AsCl3+4NaBH4+HCl+8H2O = AsH3+4NaCl+4HBO2+13H2 主要用于As、Bi、Ge、Sb、Se、Te的测定。 特点: 可将待测物从大量基体中分离出来,检测限比火焰法低1-3个数量级,选 择性好,且干扰小。 Sn4++Hg

3)该法可消除基体效应带来的影响,但不能消除背景吸收。

4)加入标准溶液的浓度应适当,曲线斜率太大或太小都会引起较大误差。

1. 原子吸收光谱法测定元素M,由未知试样溶液得到的吸光度为 0.435,而在9mL 未知液中加入1mL溶液为100mg/L的M标准溶液后,混合溶液在相同条件下测得的 吸光度为0.835。计算未知试样溶液中M的浓度? 2. 采用原子吸收分光光度法分析尿样中的铜,测定结果见下表。试计算样品中铜的含 量?
操作简便、分析速度快 准确度高:火焰法误差<1% ,石墨炉法3%-5%
第二节 原子吸收分光光度法基本原理
一、基本概念
共振吸收线:原子外层电子从基态跃迁至能量最低的激发态所产生的吸收谱线 第一共振线:元素最灵敏线,通常用作元素分析线
二、基态与激发态原子分配
Ni gi e N0 g0
Ax Cx As Ax Cs
2)作图法
1

原子吸收分光光度法

原子吸收分光光度法

原子吸收分光光度法1原子吸收分光光度法基本原理:原子吸收光谱分析是利用分析处于基态的待测原子蒸汽对特征辐射的吸收来测定样品中该元素含量的一种办法。

2共振吸收线:原子从基态激发到能量最低的激发态,产生的谱线称为共振吸收线。

由于元素的原子结构和外层电子排布不同,吸收的能量不同,共振吸收线各具有特征性,这种共振线称为元素的特征谱线,是元素所有谱线中最灵敏的谱线。

3原子吸收谱线轮廓和谱线宽度:谱线轮廓是指谱线具有一定频率范围和形状。

吸收线轮廓常用吸收系数K v随频率(或波长)的变化曲线来描述,而原子吸收线的特点是用谱线中心频率(由各原子能级分布特征所决定)、半宽度(最大吸收系数一半处峰的频率差)和强度来表征。

4原子吸收分光光度计:主要部件:瑞线光源、原子化器、单色器、检测器。

①光源:作用是发射待测元素的特征曲线,发射辐射波长的半宽度要明显小于吸收线的宽度,辐射强度大,稳定且背景信号小。

常用空心阴极灯。

②原子化器:将试样中的待测元素转变成原子蒸气。

主要有火焰原子化器和无火焰原子化器两类。

③单色器:衍射光栅是常用的分光元件。

单色器的作用是将所需的共振吸收线与邻近干扰线分离。

④检测系统:作用是将单色器分出的光信号进行光电转换,常用光电倍增管。

4仪器类型:①单光束原子吸收分光光度计:光源辐射不稳定引起基线漂移,仪器需预热。

②双光束原子吸收分光光度计:一束光通过火焰照样品,另一束光照参比,不通过火焰直接经单色器投射到光电元件上。

可克服光源的任何漂移及检测器灵敏度的变动。

5干扰及其消除:①电离干扰:某些易电离元素在原子化条件下电离,致使基态原子数减少,测定结果降低。

消除方法:加入消电剂。

②物理干扰:试样的物理性质(如表面张力、黏度、比重、温度等)变化影响吸收强度,导致测定误差。

标准加入法是常用的消除方法。

③光学干扰:主要指光谱线干扰和背景干扰。

谱线干扰是试样中共存元素的吸收线与被测元素的分析线相近而产生的干扰,使分析结果偏高。

原子吸收分光光度法的基本原理

原子吸收分光光度法的基本原理

原子吸收分光光度法的基本原理一、引言原子吸收分光光度法是一种常用的化学分析方法,用于测定溶液中金属元素的含量。

其基本原理是利用原子吸收光谱仪测量样品中金属元素原子在特定波长的光线下的吸收程度,通过测定吸光度来推断样品中金属元素的浓度。

本文将介绍原子吸收分光光度法的基本原理和仪器结构,以及其在实际应用中的一些注意事项。

二、原理原子吸收分光光度法的基本原理是利用金属元素原子对特定波长的光线的吸收特性。

当金属元素原子处于激发态时,它们会吸收特定波长的光线,使原子处于激发态能级上的电子跃迁到高能级。

而当金属元素原子处于基态时,它们不会吸收这些特定波长的光线。

通过测量样品溶液中特定波长的光线经过吸收后的光强度变化,可以推断出样品中金属元素的浓度。

三、仪器结构原子吸收分光光度法的仪器主要包括光源、光切割器、样品室、光路系统和检测器等部分。

光源产生特定波长的光线,光切割器用于选择特定波长的光线,样品室用于容纳待测样品溶液,光路系统将光线引导到样品室中,检测器测量经过样品溶液后的光线强度。

通过调节光切割器选择不同的波长,并测量不同波长下的吸光度,可以得到样品中金属元素的浓度信息。

四、注意事项在使用原子吸收分光光度法进行分析时,需要注意以下几点:1. 样品的制备:样品的制备对于分析结果的准确性至关重要。

样品应该经过适当的预处理,如酸溶解、稀释等,以保证样品中金属元素的浓度在合适的范围内。

2. 标准曲线的绘制:在分析过程中,需要绘制标准曲线来确定样品中金属元素的浓度。

标准曲线应该覆盖待测样品浓度范围,并包括多个浓度点,以提高分析结果的准确性。

3. 仪器的校准:在进行分析之前,需要对仪器进行校准,以保证测量结果的准确性。

校准可以通过使用已知浓度的标准溶液进行,根据标准溶液的吸光度和浓度的关系绘制标准曲线。

4. 光路系统的清洁:光路系统是原子吸收分光光度法中的关键部分,需要保持清洁以避免杂质对测量结果的影响。

定期清洁光路系统,以确保光线传输的准确性。

仪器分析第四章AAS

仪器分析第四章AAS


1
e-K0L
= lgeK0L = 0.43K0L


将⑥式代入⑧式得:A=0.43KN0L=K’N0L




又N0≈N(原子蒸气相中基态原子数近似等 于总原子数)。 而在给定的实验条件下,被测元素的浓度c 与N成正比,即N =αc,并代入⑨式得: A=K’αLc 当实验条件一定时,K’ 、α和L均为常数, 因此上式可简化为:
锐线光源→原子化器→分光系统→检测系统
→处理显示系统 下面简要介绍各部分的功能及工作原理

一、光源
作用:是发射被测元素的特征共振辐 射。AAS中常用光源有空心阴极灯和 无极放电灯。 1.空心阴极灯的结构、工作原理及特点 (1)结构



阴极:钨棒作成圆 筒形,筒内熔入被 测元素 阳极:钨棒装有钛、 锆、钽金属作成的 阳极 管内充气:氩或氖 称载气,极间加压 300--500伏,要求稳 流电源供电。





(1)将试样溶液中待测元素原子化; (2)要有一个光强稳定,能够给出待测元 素原子特征的光辐射光源,使之通过待测 元素原子区域; (3)测量吸光度,计算待测元素的含量。 AAS是一种重要的成分分析法,可对70多种 元素进行定量分析,不用于定性分析。该 法具有灵敏度高、选择性好、准确度高、 操作简便、分析速度快等特点,在许多部 门得到广泛的应用。

4.2原子吸收光谱法基本原理

一、原子吸收光谱的产生 1.产生过程 当有辐射通过自由原子蒸气,且入射辐射 的频率等于原子中的电子由基态跃迁到较 高能态(一般情况下都是第一激发态)所 需要的能量频率时,原子就要从辐射场中 吸收能量,产生共振吸收,电子由基态跃 迁到激发态,同时伴随着原子吸收光谱的 产生。

原子吸收分光光度法

原子吸收分光光度法

消除方法:
可通过配制与试样组成相近的对照品或采用标准加入
法来消除。
光学干扰
原子光谱对分析线的干扰。包括光谱线干扰和非吸收
线干扰。
光谱线干扰: 现象 光谱线干扰是试样中共存元素的吸收线与待测元素的分 析线相近(吸收线重叠)而产生的干扰。
消除方法:
另选波长或用化学方法分离干扰元素。
非吸收线干扰


气体使用之后,必须关掉截止阀和主阀。
当乙炔瓶内压力低于 0.5Mp时必须更换,否则乙炔钢瓶内溶 解物会溢出,进入管道,造成仪器内乙炔气路堵塞,不能点火。

样品舱的光路窗口和空心阴极灯的石英窗会受到灰尘或 指纹的污染。当发现元素灯的噪声变大,分析结果的重 复性变差此时可以使用蘸有甲醇或乙醇水溶液的软的擦 镜纸进行清洗。
并传导给石墨管,使其产生高达3000℃的高温,将置于
管中的被测元素变为基态的原子蒸汽。 保护系统分为气体与冷却水保护。气体使用惰性气体, 保证石墨管在高温的状态下不会被氧化。冷却水保证石 墨炉在开始第二次测试前可以迅速冷却到室温状态。
石墨炉原子化器原子化效率高,灵敏度优于火焰原子
化方法。
石墨炉的加热: 干燥阶段,管加热到约 100℃,样品中的水完全蒸发。 灰化阶段,管加热到 400 ℃ ~ 1000 ℃ ,有机物质 和其他共存物质分解和蒸发。 原子化阶段,加热到 1400 ℃ ~ 3000 ℃ ,留在管中 的金属盐类原子化。

定期的拆下石墨管检查石墨管保护器的情况,确保其内
腔和进样孔区域没有疏松的碳粒子和残留的样品。
四、仪器维护及注意事项

实验用器皿:使用前用10%~20%的硝酸浸泡过夜。 乙炔作为燃烧气,需要检查钢瓶和仪器之间的连接器以防泄 漏,特别是更换钢瓶之后需要使用肥皂水或专用的泄漏检测 器进行检测。

0406 原子吸收分光光度法

0406 原子吸收分光光度法

0406 原子吸收分光光度法❶原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是基于测量蒸气中原子对特征电磁辐射的吸收强度进行定量分析的一种仪器分析方法㊂原子吸收分光光度法遵循分光光度法的吸收定律,一般通过比较对照品溶液和供试品溶液的吸光度,计算供试品中待测元素的含量㊂对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源㊁原子化❶药典一部和二部共有的附录,目前仅有一处修改㊂❷‘原子吸收光谱分析法通则“(G B /T15337-2008)明确规定, 采用标准曲线法时,在仪器可能的条件下,需配制五个以上不同浓度的校准溶液,以保证校准曲线误差符合分析要求㊂器㊁单色器㊁背景校正系统㊁自动进样系统和检测系统等组成㊂1.光源 常用待测元素作为阴极的空心阴极灯㊂2.原子化器 主要有四种类型:火焰原子化器㊁石墨炉原子化器㊁氢化物发生原子化器及冷蒸气发生原子化器㊂(1)火焰原子化器 由雾化器及燃烧灯头等主要部件组成㊂其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥㊁蒸发㊁离解供试品,使待测元素形成基态原子㊂燃烧火焰由不同种类的气体混合物产生,常用乙炔-空气火焰㊂改变燃气和助燃气的种类及比例可控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度㊂(2)石墨炉原子化器 由电热石墨炉及电源等部件组成㊂其功能是将供试品溶液干燥㊁灰化,再经高温原子化使待测元素形成基态原子㊂一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送试样蒸气㊂(3)氢化物发生原子化器 由氢化物发生器和原子吸收池组成,可用于砷㊁锗㊁铅㊁镉㊁硒㊁锡㊁锑等元素的测定㊂其功能是将待测元素在酸性介质中还原成低沸点㊁易受热分解的氢化物,再由载气导入由石英管㊁加热器等组成的原子吸收池,在吸收池中氢化物被加热分解,并形成基态原子㊂(4)冷蒸气发生原子化器 由汞蒸气发生器和原子吸收池组成,专门用于汞的测定㊂其功能是将供试品溶液中的汞离子还原成汞蒸气,再由载气导入石英原子吸收池进行测定㊂3.单色器 其功能是从光源发射的电磁辐射中分离出所需要的电磁辐射,仪器光路应能保证有良好的光谱分辨率和在相当窄的光谱带(0.2n m )下正常工作的能力,波长范围一般为190.0~900.0n m ㊂4.背景校正系统 背景干扰是原子吸收测定中的常见现象㊂背景吸收通常来源于样品中的共存组分及其在原子化过程中形成的次生分子或原子的热发射㊁光吸收和光散射等㊂这些干扰在仪器设计时应设法予以克服㊂常用的背景校正法有以下四种:连续光源(在紫外区通常用氘灯)㊁塞曼效应㊁自吸效应㊁非吸收线等㊂在原子吸收分光光度分析中,必须注意背景以及其他原因等对测定的干扰㊂仪器某些工作条件(如波长㊁狭缝㊁原子化条件等)的变化可影响灵敏度㊁稳定程度和干扰情况㊂在火焰法原子吸收测定中可采用选择适宜的测定谱线和狭缝㊁改变火焰温度㊁加入络合剂或释放剂㊁采用标准加入法等方法消除干扰;在石墨炉原子吸收测定中可采用选择适宜的背景校正系统㊁加入适宜的基体改进剂等方法消除干扰㊂具体方法应按各品种项下的规定选用㊂5.检测系统 由检测器㊁信号处理器和指示记录器组成,应具有较高的灵敏度和较好的稳定性,并能及时跟踪吸收信号的急速变化㊂测定法第一法(标准曲线法) 在仪器推荐的浓度范围内,除另有规定外,制备含待测元素不同浓度的对照品溶液至少5份❷,浓度依次递增,并分别加入各品种项下制备供试品溶液的相应试剂,同时以相应试剂制备空白对照溶液㊂将仪器按规定启动后,依次测定空白对照溶液和各浓度对照品溶液的吸光度,记录读数㊂以每一浓度3次吸光度读数的平均值为纵坐标㊁相应浓度为横坐标,绘制标准曲线㊂按各品种项下的规定制备供试品溶液,使待测元素的估计浓度在标准曲线浓度范围内,测定吸光度,取3次读数的平均值,从标准曲线上查得相应的浓度,计算被测元素含量㊂绘制标准曲线时,一般采用线性回归,也可采用非线性拟合方法回归㊂第二法(标准加入法) 取同体积按各品种项下规定制备的供试品溶液4份,分别置4个同体积的量瓶中,除(1)号量瓶外,其他量瓶分别精密加入不同浓度的待测元素对照品溶液,分别用去离子水稀释至刻度,制成从零开始递增的一系列溶液㊂按上述标准曲线法自 将仪器按规定启动后 操作,测定吸光度,记录读数;将吸光度读数与相应的待测元素加入量作图,延长此直线至与含量轴的延长线相交,此交点与原点间的距离即相当于供试品溶液取用量中待测元素的含量(如图),再以此计算供试品中待测元素的含量㊂㊃56㊃0406 原子吸收分光光度法图 标准加入法测定图示当用于杂质限量检查时,取供试品,按各品种项下的规定,制备供试品溶液;另取等量的供试品,加入限度量的待测元素溶液,制成对照品溶液㊂照上述标准曲线法操作,设对照品溶液的读数为a ,供试品溶液的读数为b ,b 值应小于(a -b )㊂㊃66㊃0406 原子吸收分光光度法。

简述原子吸收分光光度法的基本原理

简述原子吸收分光光度法的基本原理

简述原子吸收分光光度法的基本原理原子吸收分光光度法是一种常用的化学分析方法,用于测量物质的吸收光谱。

其基本原理是,当物质吸收光子时,其分子或原子会与光子相互作用,导致分子或原子振动并改变其能量。

根据能量与波长的关系,物质的吸收光谱可以被记录下来,并用于确定物质的吸收程度和化学性质。

原子吸收分光光度法使用一种称为原子吸收装置的设备。

原子吸收装置中包含一个光源(如LED或激光)和一个吸收剂(如气体或液体)。

当光源发出光子时,这些光子会被吸收剂吸收,并激发原子或分子。

这些原子或分子随后振动并释放光子,这个过程被称为原子吸收。

根据原子吸收光谱的波长范围,吸收剂可以吸收不同波长的光子,导致其光谱变化。

原子吸收分光光度法的基本步骤包括:1. 光源发出光子,被吸收剂吸收。

2. 原子或分子被激发并释放光子。

3. 测量释放光子的波长,并计算出吸收剂的吸收光谱。

4. 根据吸收光谱确定吸收剂的吸收程度和化学性质。

原子吸收分光光度法的基本原理可以应用于许多领域,如分析化学、有机合成、环境科学、生物学等。

例如,在化学分析中,原子吸收分光光度法可以用于检测化合物的吸收光谱,以确定其化学性质和结构。

在有机合成中,原子吸收分光光度法可以用于检测有机化合物的吸收光谱,以确定其结构和活性。

在环境科学中,原子吸收分光光度法可以用于检测污染物的吸收光谱,以确定其毒性和来源。

除了基本的原子吸收装置外,原子吸收分光光度法还可以使用多个技术和设备,如多孔板分光光度法、荧光分光光度法等,以满足不同的应用需求。

随着技术的发展,原子吸收分光光度法在化学分析、环境科学和生命科学等领域中的应用越来越广泛。

现代仪器分析.AAS and AFS

现代仪器分析.AAS and AFS

第四章原子吸收光谱法(Atomic Absorption Spectrometry, AAS)§4-1 概述原子吸收光谱分析原子吸收分光光度法原子吸收法基于物质产生的原子蒸汽对特定谱线(通常是待测原子的特征谱线)的吸收来进行元素定量分析的一种方法。

如图: 测定试液中Mg2+的含量原于吸收分析示意图原子吸收法和分光光度法在基本原理上是相同的,都是基于物质对光的吸收。

但吸光物质的状态不同,一个是基态原子的吸收,一个是溶液中分子或离子的吸收。

原子蒸气对光的吸收程度也是符合朗伯比耳定律的。

仪器的基本结构也与一般光度计类似。

§4-2 原子吸收光谱法基本原理一、共振发射线与共振吸收线原子在两个能态之间的跃迁伴随着能量的发射和吸收。

最外层电子由基态跃迁到第一激发态时,所产生的吸收谱线称为共振吸收线。

跃回到基态时,则发射出同样频率的光,称为共振发射线。

发射吸收E0E1共振线:共振发射线和共振吸收线的波长相同,简称为共振线。

各种元素的原子结构和外层电子排布不同,各能级的能量不同,不同元素的原子在基态和第一激发态间跃迁能量不同——共振线具有特征性。

各种元素的基态和第一激发态间跃迁最易发生——最灵敏线。

hν在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源发射的共振发射线的吸收来进行分析的。

共振线的特点:①是元素的特征谱线;②一般是元素所有谱线中最灵敏的谱线。

二、热激发时基态原子数与激发态原子数之间的分配原子化过程:MO Mn+ Mj在适当条件下,基本不发生,且应尽量防止发生。

在适当条件下,基本不发生,且应尽量防止发生。

热力学平衡时,激发态与基态原子数之比服从玻尔兹曼(Boltzmann )分布定律:式中:Nj和N0 ——激发态和基态原子数;Pj和PO ——激发态和基态的统计权重;k ——玻尔兹曼常数;T——热力学温度。

T一定,比值一定。

温度升高或共振线的波长越长,比值越大。

通常比值<1%,Nj<<N0,N0≈N,故可用基态原子数代表待测元素的原子总数。

原子吸收分光光度法

原子吸收分光光度法

四、单色器
monochromators
五、检测器
detector
20:17:18
单色器在火焰与 检测器之间 (3)原子化系统
20:17:18
二、光源
1.作用
(动画)
提供待测元素的特征光谱。获得较高的灵敏度和准确度。 光源应满足如下要求; (1)能发射待测元素的共振线; (2)能发射锐线; (3)辐射光强度大,稳定性好。
20:17:18
二、定量分析方法
标准曲线法
(动画)
配制一系列不同浓度的标准试样,由低到高依次分析, 将获得的吸光度A数据对应于浓度作标准曲线,在相同条件下 测定试样的吸光度A数据,在标准曲线上查出对应的浓度值; 或由标准试样数据获得线性方程, 将测定试样的吸光度A数据带入计算。 注意在高浓度时,标准曲线易发生 弯曲,压力变宽影响所致;
孰先孰后呢? (动画)
20:17:18
二、原子吸收光谱仪的使用与调校—以Cu为例
1.初步固定的测量条件 波长:324.75nm,灯电流:2mA,狭缝宽度:0.4mm,空气流量: 50L/min,压力:0.2MPa,C2H2流量:1.6L/min,压力:0.08MPa, 燃烧头高度,高压 2. 波长的调节 微调,使信号值达最大 3.空心阴极灯 预热15min; 灯位置的调节:使信号值最大
20:17:18
第四章 原子吸收光谱 分析法
atomic absorption spectrometry,AAS
一、分析条件选择 二、原子吸收光谱仪的 使用与调校 三、定量分析方法
第三节 分析条件的选择 与应用
choice of analytical condition and application
20:17:18

2020版药典,四部,0406 原子吸收分光光度法

2020版药典,四部,0406 原子吸收分光光度法

2020年版药典-原子吸收分光光度法一、前言随着科学技术的不断发展,原子吸收分光光度法在医学、药学等领域中得到了广泛应用。

为了保证药品的质量和安全性,药典中对原子吸收分光光度法的相关标准也在不断更新和完善。

而2020年版药典中的原子吸收分光光度法内容更是经过了严格的审查和修改,以确保检测结果的准确性和可靠性。

二、原子吸收分光光度法概述原子吸收分光光度法是一种利用原子对特定波长的光吸收的分析方法。

它适用于测定各种元素的含量,特别是对微量元素的测定有着独特的优势,因此被广泛应用于药品的质量控制以及环境、食品等领域。

三、2020年版药典中的原子吸收分光光度法更新内容1. 样品的处理要求根据2020年版药典的要求,对于药品样品的处理必须更加严格和规范。

在进行原子吸收分析前,必须对样品进行适当的前处理,以保证样品的稳定性和可测性。

2. 仪器设备的要求药典对原子吸收仪器的性能和规格做出了更为详细和严格的规定。

对于仪器的精密度、灵敏度等方面都有了更为具体的要求,以确保测试结果的准确性和可靠性。

3. 实验操作的要求2020年版药典中对原子吸收分光光度法的实验操作也做出了详细的规定,包括了实验环境的要求、仪器操作的步骤等,以确保实验过程的标准化和规范化。

四、结语2020年版药典中的原子吸收分光光度法内容的更新和完善,为药品质量控制提供了更为严格和可靠的依据。

随着科学技术的不断进步和发展,相信在未来的药典中,原子吸收分光光度法的标准会继续得到完善和提高,以更好地保障人们的用药安全和健康。

随着生产制造技术的不断进步和创新,药品的制备工艺也在不断改进和优化。

在2020年版药典中对原子吸收分光光度法的更新内容还包括了对药品样品的处理要求。

在药品生产过程中,常常会出现一些成分的变化或者变异,这就需要对样品进行更加严格的前处理。

对于液体药剂的样品处理,可能需要使用特殊的前处理方法,以保证样品中需要检测的元素的稳定性和准确性。

实验四原子吸收分光光度法测定金属元素含量

实验四原子吸收分光光度法测定金属元素含量

兰州理工大学现代生物仪器分析实验指导书(四年制生物工程、食品科学与工程专业)王永刚编写生命科学与工程学院二零一二年十月目录实验一、紫外吸收光谱法同时测定Vc和VE (3)实验二气相色谱法测定酒或酊中C2H5OH含量 (5)实验三高效液相色谱法测定维生素B1含量 (7)实验四原子吸收分光光度法测定金属元素含量 (10)实验一、紫外吸收光谱法同时测定Vc和VE一、实验目的1.掌握Cary 50紫外可见分光光度计的使用;2.学会用解联立方程组的方法,定量测定吸收曲线相互重叠的二元混合物。

二、方法原理维生素C(抗坏血酸)和维生素E(生育酚)起抗氧剂作用,即它们在一定时间内能防止油酯变酪。

两者结合在一起比单独使用的效果更佳,因为它们在抗氧剂性能方面是“协同的”。

因此,它们作为一种有用的组合试剂用于各种食品中。

抗坏血酸是水溶性的,生育酚是酯溶性的,但它们都能溶于无水乙醇,因此,能用在同一溶液中测定双组分的原理来测定它们。

根据朗伯—比尔定律,用紫外—可见分光光度法很容易定量测定在此光谱区内有吸收的单一成分。

由两种组分组成的混合物中,若彼此都不影响另一种物质的光吸收性质,可根据相互间光谱重叠的程度,采用相对应的方法来进行定量测定。

如:当两组分吸收峰部分重叠时,选择适当的波长,仍可按测定单一组分的方法处理;当两组分吸收峰大部分重叠时,则宜采用解联立方程组或双波长法等方法进行测定。

解联立方程组的方法是以朗伯—比尔定律及吸光度的加合性为基础,同时测定吸收光谱曲线相互重叠的二元组分的一种方法。

从图中可以看出,混合组分在λ1的吸收A组分和B 组分分别在λ1的吸光度之和Aλ1A+B,即Aλ1A+B=κλ1A bc A+κλ1B bc B同理,混合组分在λ2的吸光度之和Aλ2A+B应为Aλ2A+B=κλ2A bc A+κλ2B bc B若首先用A,B组分的标样,分别测得A,B两组分在λ1和λ2处的摩尔吸收系数κλ1A,κλ2A 和κλ1B,κλ2B,当测得未知试样在λ1和λ2的吸光度Aλ1和Aλ2后,解下列二元一次方程组:Aλ1=κλ1A bc A+κλ1B bc BAλ2=κλ2A bc A+κλ2B bc B即可求得A,B两组分各自的浓度c A和c B。

4原子吸收光谱法习题答案

4原子吸收光谱法习题答案

第四章 原子吸收光谱法习题答案1.原子吸收光谱分析的基本原理是什么?简要说明原子吸收光谱定量分析基本关系的应用条件。

原子吸收是基态原子受激吸收跃迁的过程,当有辐射通过自由原子蒸气,且入射辐射的频率等于原子中外层电子由基态跃迁到较高能态所需能量的辐射时,原子就产生共振吸收。

原子吸收分光光度法就是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。

当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性吸收,透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气中该元素的基态原子浓度成正比。

当实验条件一定时,蒸气中的原子浓度与试样中该元素的含量(浓度)成正比。

因此,入射辐射减弱的程度与试样中该元素的含量(浓度)成正比。

入射辐射减弱的程度用吸光度表示。

所以,A=KC (A是吸光度,K为常数)。

基本应用条件为,采用锐线光源(发射线半宽度远小于吸收线半宽度的光源,并且发射线与吸收线的中心频率一致)。

2.简述原子吸收分光光度计的组成及各部件作用。

原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、分光系统和检测系统。

光源的作用是发射被测元素的特征共振辐射。

在原子吸收光谱中采用空心阴极灯作为锐线光源。

原子化器的作用是使各种形式的试样解离出基态原子,并使其进入光源的辐射光程。

常用的原子化器有火焰原子化器和无火焰原子化器。

分光系统由入射狭缝、出射狭缝、反射镜和色散元件组成,其作用是把复合光分解为单色光,即起分光作用。

检测系统的作用是将经过原子蒸汽吸收和单色器分光后的微弱光信号转换为电信。

常用检测方法有摄谱法和光电法。

摄谱法是用感光板记录光谱信号,光电法是用光电倍增管等光电子元件检测光谱信号。

3. 什么叫锐线光源?在AAS分析中为什么要采用锐线光源?能发射出谱线强度大、宽度窄而又稳定的辐射源叫锐线光源。

在原子吸收光谱(AAS)分析中,为了进行定量分析,需要对吸收轮廓线下所包围的面积(即积分吸收)进行测定,这就需要分辨率高达50万的单色器,该苛刻的条件一般是难以达到的。

原子吸收分光光度法原理

原子吸收分光光度法原理

原子吸收分光光度法原理原子吸收分光光度法(Atomic Absorption Spectroscopy,AAS)是一种经典的分析方法,广泛应用于化学、环境、农业、医药等领域中,用于定性和定量分析。

它基于原子的特性,利用原子在特定波长的光束照射下吸收特定元素的能量,从而实现对元素浓度的测定。

原子吸收分光光度法的基本原理是原子在吸收能量的过程中产生共振。

当外界的电磁辐射(通常是可见光)与原子的外层电子进行相互作用时,电子处于量子态上的一个高能级和低能级之间的跃迁。

这个跃迁过程需要满足一定的能量差,由能级差决定跃迁需要的光子的能量。

当外界的电磁辐射能量恰好等于原子跃迁所需能量时,发生共振吸收,电子从低能级跃迁到高能级,完成能量的吸收。

原子吸收分光光度法的实验装置主要由光源、样品室、狭缝、衍射光栅、光电倍增管等组成。

光源产生特定波长的电磁辐射,经狭缝调整光束的强度和宽度,并通过样品室照射待测样品。

样品室内的原子吸收部分电磁辐射,其余光被收集并传输到光电倍增管中,转化为相应电信号进行放大和处理。

在实际操作中,需要注意以下几点:1. 选择合适的光源波长:根据不同元素的能级结构,确定合适的波长以实现共振吸收。

一般而言,选择与元素的主量子数相关的波长,能够获得较高的灵敏度和选择性。

2. 样品的制备:样品的制备对AAS分析结果的准确性和可重复性起着至关重要的作用。

一般而言,样品需要将固体样品溶解成可测量的溶液,并进行适当的稀释。

对于液体样品,则需要通过滤液等方法去除悬浮物和杂质。

3. 标准曲线的建立:为了进行定量分析,需要先建立标准曲线。

通过制备不同浓度的标准溶液,测量其对应的吸光度和浓度,绘制标准曲线。

通过拟合标准曲线,可以根据待测样品的吸光度值确定其浓度。

4. 消除干扰:在实际样品中,可能存在其他离子或分子对分析结果的影响。

常见的干扰有基体干扰、化学干扰和光谱干扰等。

为了准确测定目标元素的浓度,需要通过样品预处理和选择合适的峰线进行干扰校正。

《中国药典》2015版通则0406原子吸收分光光度法

《中国药典》2015版通则0406原子吸收分光光度法

0406原子吸收分光光度法原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是基于测量蒸气中原子对特征电磁辐射的吸收强度进行定量分析的一种仪器分析方法。

原子吸收分光光度法遵循一般分光光度法的吸收定律,一般通过比较标准品和供试品的吸收度,计算供试品中待测元素的含量。

对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器、背景校正系统、自动进样系统和检测系统等组成。

1.光源常用待测元素作为阴极的空心阴极灯。

2.原子化器主要有四种类型:火焰原子化器、石墨炉原子化器、氢化物发生原子化器及冷蒸气发生原子化器。

(1)火焰原子化器由雾化器及燃烧灯头等主要部件组成。

其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥、蒸发、离解供试品,使待测元素形成基态原子。

燃烧火焰由不同种类的气体混合物产生,常用乙炔-空气火焰。

改变燃气和助燃气的种类及比例可以控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度。

(2)石墨炉原子化器由电热石墨炉及电源等部件组成。

其功能是将供试品溶液干燥、灰化,再经高温原子化使待测元素形成基态原子。

一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送试样蒸气。

(3)氢化物发生原子化器由氢化物发生器和原子吸收池组成,可用于砷、锗、铅、镉、硒、锡、锑等元素的测定。

其功能是将待测元素在酸性介质中还原成低沸点、易受热分解的氢化物,再由载气导入由石英管、加热器等组成的原子吸收池,在吸收池中氢化物被加热分解,并形成基态原子。

(4)冷蒸气发生原子化器由汞蒸气发生器和原子吸收池组成,专门用于汞的测定。

其功能是将供试品溶液中的汞离子还原成汞蒸气,再由载气导入石英原子吸收池,进行测定。

单色器其功能是从光源发射的电磁辐射中分离出所需要的电磁辐射,仪器光路应能保证有良好的光谱分辨率和在相当窄的光谱带(0.2nm)下正常工作的能力,波长范围一般为190.0~900.0nm。

原子吸收光谱法

原子吸收光谱法

结构 工作原理
《仪器分析》第四章原子吸收光谱法
石墨炉原子化系统
基本原理:利用大电流(数百安培)通过高阻值的石墨管所产 生的高温,使管中少量试液或固体试样蒸发和原子化。
电源:12~24V 0~500 A 直流电
《仪器分析》第四章原子吸收光谱法
石墨炉原子化步骤
四个阶段: 1.干燥 (去除溶剂) 2.灰化(去除基体) 3.原子化 4.净化(去除残渣),
石墨炉升温示意图
《仪器分析》第四章原子吸收光谱法
元 最 高 灰 化 最高原子化温 线性范围 推荐的改进剂
素 温 度 度(℃)
( ppb )
(℃)
Ag 800 Al 1200 As 1200
1500
1-15 0.005mgPd+0.03mgMg(NO3)2
反2230应0000物和产5物5--的1800熔0 沸0同.点0A1g5或mgSMe g(NO3)2
• f-----振子强度, N0----单位体积内的基态原子数, • e----为电子电荷, m--- -个电子的质量.
《仪器分析》第四章原子吸收光谱法
积分吸收的限制
要对半宽度(∆v)约为10-3 nm的吸收谱线进行积分, 需要极高分辨率的光学系统和极高灵敏度的检测器, 目前还难以做到。 这就是早在19世纪初就发现了原子吸收的现象, 却难以用于分析化学的原因。
Kv~v曲线反映出原子核外层电子 对不同频率的光辐射具有选择性
吸收特性。
《仪器分析》第四章原子吸收光谱法
影响原子谱线宽度的因素
由原子本身性质决定 由外界影响决定
①. 自然宽度ΔλN( Δ υ N)
它与原子发生能级间跃迁时激发态原子的有限寿命
有关。 一般情况下约相当于10-4 Å (10-5nm)

4-1原子吸收解析

4-1原子吸收解析

n
N 0 N N 0
Nj
j 1
温度低:所以吸收光谱受T影响少, 精确度高,且灵敏度高, 可用基态原子数N0代表吸 收辐射的原子总数。
三、原子吸收线的轮廓 原子吸收光谱线很窄,但并不是
一条严格单色的理想几何线,而是占 据着有限的,相当窄的频率或波长范 围,即谱线实际具有一定的宽度,具 有一定的轮廓。
(二)多普勒(Doppler)变宽 原子在空间作无规则热运动
所引起的变宽,称为热变宽或多普 勒变宽,用符号 △λ D (或 △ν D 表示) 表示
一个运动着原子发出的光
红移 dν
ν
ν
ν
紫移
ν- dν ν+dν dν
如果运动方向离开观察者(仪器
的检测器如光电倍增管)在观察者看
来,其频率较静止原子所发出的光的
K , dv
一条吸收线
Kν 吸 收 系
ν

图4-3 积分吸收原理示意图 (a)吸收线; (b)积分吸收曲线
其结果便是谱线轮廓内的总面积 而代表整个原子线的吸收,称为 “积分吸收”。
原子吸收的测量
Kv 图如下:
Kv
谱线轮廓内的总面积代表整个原子线的
吸收称为积分吸收,用 K d 表示
根据经典色散理论,谱线的积分吸 收与火焰中基态原子数的关系为:
原子量 小 D 大 △D可达 1103 ~ 5103 nm
是制约原子吸收谱线宽度的主要因素
(三)碰撞变宽 是指吸收原子与原子或分子相碰撞 而引起的谱线变宽。 1)共振变宽,被测元素激发态原子 与同种原子(处于基态)发生碰 撞引起的谱线变宽。在通常的原 子吸收测定条件下,被测元素的 原子蒸气压力很少超过 0.1Pa变 宽效应可以不予考虑。

原子吸收

原子吸收

Ca 422.67 3 2.932 1.22×10-7 3.67×10-6 3.55×10-5
Fe 371.99 - 3.382 2.29×10-9 1.04×10-7 1.31×10-6
Ag 328.07 2 3.778 6.03×10-10 4.84×10-8 8.99×10-7
Cu 324.75 2 3.817 4.82×10-10 4.04×10-8 6.65×10-7
第四节 干扰及其消除
干扰主要表现在二个方面: A. 其它谱线干扰分析线,如光谱干扰和背
景干扰 B.干扰待测元素的原子化程度,如化学干扰、电离干扰和物理干扰。一、 Nhomakorabea谱干扰:
当测定某一元素时,另一元素的光谱线相距 很近,亦参与吸收,干扰测定。
消除办法:另选分析线
二、背景干扰:由于背景吸收造成。
1. 背景干扰的来源 A. 共存元素在高温下形成化合物(氧化物,氢氧
3000K
Cs 852.11 2 1.455 4.31×10-4 2.33×10-3 7.19× 10-3
K 766.49 2 1.617 1.68×10 -4 1.10×10-3 3.84×10-3
Na 589.00 2 2.104 0.99×10-5 1.44×10-4 5.83×10-4
Ba 553.56 3 2.289 6.83×10-4 3.19×10-5 5.19×10-4
化物,盐类等)而造成分子吸收。 B.火焰气体的吸收 C. 光散射 D.试样中高浓度盐类、无机酸分子吸收 2.背景干扰的消除办法 A.化学消除法 分离干扰杂质或富集并分离被测元素后测定。
B.氘灯连续光源扣除法 C.利用塞曼效应扣除背景
三、化学干扰:待测元素与共存物在火焰 中发生化学反应而引起原子化程度的改 变。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档