中位数与众数.ppt
合集下载
平均数、众数、中位数共21页PPT
11
1(30001600144068032)0 11
1(5600144)0 1704064(0元)
11
11
(4)去掉经理的工资后,其它员工的平均水平是:
_1 x (7005004003604340232)0
10 14044 00(元 4 )
10
☆探索与创新
问题一:某校为举行百年校庆,决定从高 二年级300名学生中挑选80人组成仪仗方 队,现随机抽测10名高二男生的身高如下
(单位:米)
1·69,1·75,1·70,1·65,1·72,1·69, 1·71,1·68,1·71,1·69
试确定参加仪仗方队学生的最佳身高值。
分析:理想的仪仗方队应由身材较高, 且高矮一致的人组成,因此身高的挑选 标准应由身高中出现次数最多的数值所 确定。
随机抽测10名高二男生的身高如下: 1·69,1·75,1·70,1·65,1·72,
1·69,1·71,1·68,171,1·69
解:上面10个数据中的众数为
,
说明全1·6年9米级身高为
的男生最1·6多9米,
估计约 人,因此将90挑选标准定为
便于组成身高1整·6齐9米的仪仗方队。
【问题二】某车间准备采取每月任务定额,超产有奖的措施, 提高工作效率,为制定一个恰当的生产定额,从该车间200名 工人中随机抽取20人统计其某月产量如下:
(4)去掉经理的工资后,其他员工的平均工资是 404 元, 是否也能反应该餐厅员工工资的一般水平?
答: 能 。
人员 人数
经理 1
厨师甲 厨师乙 会计
1
1
1
服务员 甲
4
服务员 乙
2
勤杂工 1
工资 3000 700
《平均数中位数众数》课件
中位数
将数值按大小顺序排列,取中间 位置的数值。
众数
统计每个数值出现的次数,找出 出现次数最多的数值。
总结及注意事项
1
总结
平均数、中位数和众数都是描述一组数
注意事项
2
值特征的统计量。
当数据集中有异常值或极端值时,不同
的统计量可能会产生不同的结果。
3
应用广泛
平均数、中位数和众数在各行各业的数 据分析和决策中都有广泛应用。
《平均数中位数众数》 PPT课件
这个PPT课件旨在介绍平均数、中位数和众数的概念、计算方法以及它们之间 的比较与分析。通过举例演示,帮助大家更好地理解这些重要的统计概念。
什么是平均数?
定义
平均数是一组数值的总和除以数值的个数。
ቤተ መጻሕፍቲ ባይዱ
计算方法
将所有数值相加,然后除以数值的个数。
应用
平均数常用于表示某个数据集或样本的典型数值。
什么是中位数?
定义
计算方法
中位数是将一组数值按照大小顺 序排列后,处于中间位置的数值。
如果数值个数是奇数,直接取处 于中间位置的数值;如果数值个 数是偶数,取中间两个数的平均 值。
应用
中位数常用于表示某个数据集或 样本的中心趋势。
什么是众数?
1
定义
众数是一组数值中出现次数最多的数值。
计算方法
2
统计每个数值出现的次数,找出出现次
数最多的数值即为众数。
3
应用
众数常用于表示一组数据中的最常见数 值,来描述数据的分布。
平均数 vs. 中位数 vs. 众数
1 平均数
求和后除以个数,用于表示典型值。
2 中位数
排序后中间位置的数值,用于表示中心趋势。
六年级下册数学课件6.8.2平均数、中位数和众数丨人教新课标(版)(共21张PPT)
1. 复习求平均数的方法。 怎么求一组数据的平均数? 求一组数据的平均数,要用这一组数据的总
数除以总份数。
(1)怎么求这组数据的平均数?
(1.40+1.43+1.46+1.49+1.52+1.55+1.58)÷7 (2)要求出这组数的平均数,想一想,它和上一 组求平均数有哪些地方相同?哪些地方不同?
解:(1)平均数是 (9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11 ≈ 9.55
(2)(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57 平均数与一组数据中的每个数据都有关系,极
容易受极端数据的影响,为了减分后再算 平均分,这样做比较合理。
(1)你认为这样进货合理吗?为什么? (2)你对下一次进货有什么建议?
这道题的众数和中位数都是37,说明37码的鞋 子从数量来看能代表进货和销售的一般水平。从进 货和销售数量的两组数据对比来看,尺码是35、39 和40三种型号的鞋进货有些多了,在下次进货时要 适当考虑降低进货数量。鞋店在确定进货时利用了 众数的相关知识。
三、平均数、众数、中位数的综合应用
六(1)班同学体重情况统计表
不用计算,你能发现这组数据的平均数、众 数、中位数之间的大小关系吗?你准备怎么比较?
平均数最大,众数和中位数一样大。
四、课堂练习
1.某鞋店上月女鞋进货和销售的情况如下表。
尺码 进货数量/双 销售数量/双
35 36 37 38 39 40 30 100 150 90 50 20 16 94 145 83 30 10
求这组数据的平均数用总身高÷总人数,即 (1.40×1+1.43×3+1.46×5+1.49×10+1.52×12 +1.55×6+1.58×3)÷(1+3+5+10+12+6+3)
数除以总份数。
(1)怎么求这组数据的平均数?
(1.40+1.43+1.46+1.49+1.52+1.55+1.58)÷7 (2)要求出这组数的平均数,想一想,它和上一 组求平均数有哪些地方相同?哪些地方不同?
解:(1)平均数是 (9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11 ≈ 9.55
(2)(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57 平均数与一组数据中的每个数据都有关系,极
容易受极端数据的影响,为了减分后再算 平均分,这样做比较合理。
(1)你认为这样进货合理吗?为什么? (2)你对下一次进货有什么建议?
这道题的众数和中位数都是37,说明37码的鞋 子从数量来看能代表进货和销售的一般水平。从进 货和销售数量的两组数据对比来看,尺码是35、39 和40三种型号的鞋进货有些多了,在下次进货时要 适当考虑降低进货数量。鞋店在确定进货时利用了 众数的相关知识。
三、平均数、众数、中位数的综合应用
六(1)班同学体重情况统计表
不用计算,你能发现这组数据的平均数、众 数、中位数之间的大小关系吗?你准备怎么比较?
平均数最大,众数和中位数一样大。
四、课堂练习
1.某鞋店上月女鞋进货和销售的情况如下表。
尺码 进货数量/双 销售数量/双
35 36 37 38 39 40 30 100 150 90 50 20 16 94 145 83 30 10
求这组数据的平均数用总身高÷总人数,即 (1.40×1+1.43×3+1.46×5+1.49×10+1.52×12 +1.55×6+1.58×3)÷(1+3+5+10+12+6+3)
初中数学冀教版九年级上册23.中位数和众数中位数和众数的认识课件28张
人数
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11
1
(3)该公司员工的中等收入水平大概是多少元?你是怎样
确定的?
知识点 1 中位数
怎样的数据是一组数据的中位数?
4
3
9
3
4
9
将一组数据按大小依次排列,处于中间位置的那个数,叫做
这组数据的中位数.
知识点 1 中位数
5,7,这组数据的中位数和众数分别是( B )
A.5,4
B.5,6
C.6,5
D.6,6
结构导图
中位数
中位数:中间的一个数,或中间的两
个数的平均数.
求中位数:先排序,看奇偶,再确定
中位数和
众数
众数:出现次数最多的数.
平均数、中位数、众数的特征:
平均数是最常用的指标,它表示“一
般水平”,中位数表示“中等水平”,
C.6
D.7
点拨: 根据平均数的定义得,4+5+5+x+6+7+8=6×7,
解得x=7.
从小到大排列这组数据为4,5,5,6,7,7,8,
所以中位数是6.
特别提醒:
1. 一组数据的中位数是唯一的,它可能是这组数据中的某个数,也可能
不是这组数据中的数.
2.中位数是一组数据的“中等水平”的一个代表,反应了一组数据的集
当的统计量对数据做出分析。
下表是某公司员工月收入的资料
月收入/元
人数
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11
1
(3)该公司员工的中等收入水平大概是多少元?你是怎样
确定的?
知识点 1 中位数
怎样的数据是一组数据的中位数?
4
3
9
3
4
9
将一组数据按大小依次排列,处于中间位置的那个数,叫做
这组数据的中位数.
知识点 1 中位数
5,7,这组数据的中位数和众数分别是( B )
A.5,4
B.5,6
C.6,5
D.6,6
结构导图
中位数
中位数:中间的一个数,或中间的两
个数的平均数.
求中位数:先排序,看奇偶,再确定
中位数和
众数
众数:出现次数最多的数.
平均数、中位数、众数的特征:
平均数是最常用的指标,它表示“一
般水平”,中位数表示“中等水平”,
C.6
D.7
点拨: 根据平均数的定义得,4+5+5+x+6+7+8=6×7,
解得x=7.
从小到大排列这组数据为4,5,5,6,7,7,8,
所以中位数是6.
特别提醒:
1. 一组数据的中位数是唯一的,它可能是这组数据中的某个数,也可能
不是这组数据中的数.
2.中位数是一组数据的“中等水平”的一个代表,反应了一组数据的集
当的统计量对数据做出分析。
下表是某公司员工月收入的资料
月收入/元
人数
45000 18000 5500
1
1
3
5000
7
3400 3000 1500
1
11
众数中位数平均数与频率分布直方图的关系PPT课件
用样本数字特征估计总体数字特征
众数、中位数、平均数与频率分布直方 图的关系
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛.
众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中位数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t) 例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25
2、从频率分布直方图中估计中位数
(中位数是样本数据所占频率的等分线。)
• 当最高矩形的数据组为〔a, b) 时, 设中位 数为(a+X),根据中位数的定义得知, 中位 数左边立方图的小矩形面积为0.5, 列方程 得:
1、通过频率分布直方图的估计精度低;
2、通过频率分布直方图的估计结果与数据分组 有关;
3、在不能得到样本数据,只能得到频率分布直 方图的情况下,也可以估计总体特征,而且直方图 比较直观便于形象地进行分析。
四、三种数字特征的优缺点 :
(1)众数体现了样本数据的最大集中点,但它显然对 其他数据信息的忽视使得无法客观地反映总体特征。
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表可以看 出,寿命在100h ~ 400
众数、中位数、平均数与频率分布直方 图的关系
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛.
众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中位数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t) 例题分析:月均用水量的众数是2.25t.如图所示:(2+2.5)/2=2.25
2、从频率分布直方图中估计中位数
(中位数是样本数据所占频率的等分线。)
• 当最高矩形的数据组为〔a, b) 时, 设中位 数为(a+X),根据中位数的定义得知, 中位 数左边立方图的小矩形面积为0.5, 列方程 得:
1、通过频率分布直方图的估计精度低;
2、通过频率分布直方图的估计结果与数据分组 有关;
3、在不能得到样本数据,只能得到频率分布直 方图的情况下,也可以估计总体特征,而且直方图 比较直观便于形象地进行分析。
四、三种数字特征的优缺点 :
(1)众数体现了样本数据的最大集中点,但它显然对 其他数据信息的忽视使得无法客观地反映总体特征。
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表可以看 出,寿命在100h ~ 400
中位数和众数ppt
中位数和众数在数据分布中的作用差异
中位数可以反映数据的集中趋势,即数据的平均水平,对 于异常值和极端值不敏感;而众数可以反映数据的离散程 度,即数据分布的广度,对于异常值和极端值敏感。
中位数可以用于比较不同数据的集中趋势,而众数可以用 于比较不同数据的离散程度。
中位数和众数在数据可视化中的使用区别
04
中位数和众数的应用场景
中位数在生活中的应用
描述一组数据的集中趋势
中位数可用于描述一组数据的集中趋势,例如,一个班级的学生的考试分数中位数可以反 映这个班级的平均水平。
排序数据
中位数可以对数据进行排序,例如,按照收入水平从低到高进行排序,中位数就是收入水 平排在中间的人的收入。
异常值检测
中位数可用于检测异常值,例如,一组数据中有一个数据明显高于或低于其他数据,这个 数据就被称为异常值,中位数可以帮助我们发现这些异常值。
众数反映了数据的集中趋势和多数数据的取值情况。
众数的简单性质
众数具有简单直观的性质,它反映了多数数据的取值情况。
众数可以用来判断数据的分布情况,如果众数与中位数接近 ,则说明数据分布比较对称;反之,如果众数与中位数偏离 较大,则说明数据分布存在偏态。
02
中位数的计算方法
排序后找中位数
1 2 3
在条形图、饼图等图形中,中位数通常用一条竖线或一个标记来表示,位于数据 集的中部;而众数则可以用一个突出显示的标记来表示,以强调其重要性。
在箱线图、直方图等图形中,中位数通常用一条水平线来表示,位于箱体中部; 而众数则可以用一个突出显示的标记来表示,以强调其重要性。
THANKS
使用公式计算众数
总结词
使用公式计算众数是一种较为严谨的方法,可以准确地找出一组数据中的众 数。
高中数学必修三《2.2.众数、中位数、平均数》课件
频率 组距
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
说明:
2.03这个中位数的估计值,与样本 的中位数值2.0不一样,这是因为样本数 据的频率分布直方图,只是直观地表明 分布的形状,但是从直方图本身得不出 原始的数据内容,所以由频率分布直方 图得到的中位数估计值往往与样本的 实际中位数值不一致.
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65 2 3 2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因 如此 ,与众数、中位数比较起来,平 均数可以反映出更多的关于样本数据 全体的信息,但平均数受数据中的极 端值的影响较大,使平均数在估计时 可靠性降低。
众数、中位数、平均数的 简单应用 例 某工厂人员及工资构成如下:
人数
分别求这些运动员成绩的众数,中位数与 平均数
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70; 这组数据的平均数是
《中位数和众数》精品课件22人教版
3.(5分)(凉山州中考)某班40名同学一周参加体育锻炼时间统计如表所示:
人数(人) 时间(小时)
3 17 13 7 7 8 9 10
那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( D ) A.17,8.5 B.17,9 C.8,9 D.8,8.5 4.(5分)(攀枝花中考)一组数据1,2,x,5,8的平均数是5,则该组数据的中位数是 __5__.
合作探究
新知 平均数、众数和中位数的应用
有6 户家庭的年收入分别为(单位:万元):4,5, 5,6,7,50.你认为这6户家庭的年收入水平大概是多少? 如果把数据50改成9,结果又会怎样?
(1)用平均数估计: x = 4+5+5+6+7+50 12.83 (万元);
6
(2)用中位数估计:中位数= 5+6 =5.5(万元);
(3)如果想让一半左右的营业员都能达到销售目标,你认为月
销售额定为多少合适?说明理由.
销售额/万 元
13
22
23
24
26
28 30 32
人数 1 1 5 4 3 2 3 1 1 1 2 3 1 2
解:(3)月销售额可以定为每月__1_8_万元(中位数).因为从
样本情况看,月销售额在_1_8__万元以上(含18万元)的有16人,
销售额/万 元
13
14
15
16
17
18
19
22
23
24
26
28 30
32
人数 1 1 5 4 3 2 3 1 1 1 2 3 1 2
解:(1)样本数据的众数是__1_5__,中位数是__1_8__,利用计算
众数中位数(PPT课件)
x=
1 ( x1 x2 xn ) n
3
练习: 在一次中学生田径运动会上,参加 男子跳高的17名运动员的成绩如下表所示:
成绩 (单位:米)
1.50 2
1.60 1.65 1.70 3 2 3
1.75 1.80 1.85 1.90 4 1 1 1
人数
分别求这些运动员成绩的众数,中位数与 平均数 解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间 的一个数据,即这组数据的中位数是1.70;
6
2、中位数是样本数据所占频率 的等分线,它不受少数几个极端值的 影响,这在某些情况下是优点,但它 对极端值的不敏感有时也会成为缺点。
7
3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。
也正因如此 ,与众数、中位数比较起 来,平均数可以反映出更多的关于样 本数据全体的信息,但平均数受数据 中的极端值的影响较大,使平均数在 估计时可靠性降低。
S 2的数量单位与原数据的数量单位不
一致了,因此在实际应用时常将求出的方差 再开平方,这就是标准差
(standard deviation).
标准差 方差
方差出下列四组样本数据的条形图,说明它们的异同点.
(1) 5, 5, 5, 5, 5, 5, 5, 5, 5; (2) 4, 4, 4, 5 , 5, 5, 6, 6, 6; (3) 3 , 3 , 4 , 4 , 5, 6 , 6, 7 , 7; (4) 2 , 2 , 2 , 2, 5 , 8 , 8 , 8 , 8 ;
20.平均数、中位数和众数的选用PPT课件(华师大版)
知2-讲
例2 某公司10名销售员,去年完成的销售额情况如下表: 求销售额的平均数、众数、中位数; 今年公司为了调动员工积极性,提高年销售额,准 备采取超额有奖的措施,请根据的结果,通过比较, 合理确定今年每个销售员统一的销售额标准是多少 万元?
销售额/万元 3 4 5 6 7 8 10
人数
132 1 1 1 1
若确定以中位数5万元为标准,多数人能完成 或超额完成,少数人经过努力也能完成,故以5万 元为标准较合理.
总结
知2-讲
选择具有代表一组数据特点的数据的方法: 对于一组数据,当没有极端值时,用平均数作
为这组数据的代表值;当有极端值时,用中位数或 众数作为这组数据的代表值.
知2-练
1 某公司员工的月工资如下:
知2-讲
导引:利用公式x=- (n1x1+x2+…+xn)计算平均数; 将10名销售员去年的销售额按从小到大的顺序排 列为3,4,4,4,5,5,6,7,8,10,最中间两 个数均为5,所以中位数为 5 5 =5(万元);出现 2 次数最多的数据为4,所以众数为4万元; 制定的标准要使大多数人能够完成,才能起到
知2-练
2 从甲、乙、丙三个厂家生产的同一种产品中,各抽出8件产
品,对其使用寿命进行跟踪调查,结果如下(单位:年): 甲:3,4,5,6,8,8,8,10; 乙:4,6,6,6,8,9,12,13; 丙:3,3,4,7,9,10,11,12. 三个厂家在广告中都称该产品使用寿命为8年,根据调查结 果判断厂家在广告中分别运用了平均数、众数、中位数中哪 一个反应集中趋势的特征量. 甲:________,乙:________,丙:________.
知2-讲
为准备班级的新年晚会,班长对全班同学爱吃香蕉、 橘子、柚子中的哪一种水果作了民意调查. 最终买 什么水果,显然由众数决定较好,因为它代表了全 班多数同学的意愿.
北师大版 八年级上册6.2中位数与众数课件(15张PPT)
例:3,2,5,4,3,6的众数是__3__.
3,2,5,2, 4,3,6的众数是_3_和__2_.
巩固概念
1、数据1,3,4,2,4的中位数是( B )
A.4 B.3 C.2 D.1
2、数据1,3,4,5,2,6的中位数是( C )
A.3 B.4 C.3.5 D.4.5
3、数据1,2,3,2,3,4的众数是( C )
销售商在进货时要关注各品牌手机销量的 _众___数__ 。
③为了考察某同学在一次测验中数学成绩是占上等还
是占下等水平,应关注这次数学成绩的_中__位__数_ 。
小李应聘
某公司员工的月工资如下:
问题
员工
月工 资/ 元
经理 7000
副经 理
4400
职员 A
2400
职员 B
2000
职员 C
1900
职员 D
(2)你认为哪个数据能反映小林在小 组里的学习水平?
自学课本142页—143页“议一 议”
完成学案自主学习部分
中位数概念
什么是中位数呢?
将一组数据按大小顺序排列,把处在最中间 位置的那个数(或最中间两个数据的平均数 )
叫做这组数据的中位数.
1.数据6,9,5的中位数是___6_
5, 6, 9
2.数据3, 7, 10, 8, 4的中位数是_7___. 3,4,7,8,10
众数: 90分 、中位数: 80分 。
7位同学数学速算成绩分别是: 小林
94、 98、 94、 94、 88、 10、 68
98、94、94、94、88、68、10 小林计算出小组平均分为78分,所以小 林告诉妈妈说,自己这次数学成绩在小 组内处于 “ 中上水平 ”。 (1)你认为哪个数据能反映小林在小 组里的学习水平?
3,2,5,2, 4,3,6的众数是_3_和__2_.
巩固概念
1、数据1,3,4,2,4的中位数是( B )
A.4 B.3 C.2 D.1
2、数据1,3,4,5,2,6的中位数是( C )
A.3 B.4 C.3.5 D.4.5
3、数据1,2,3,2,3,4的众数是( C )
销售商在进货时要关注各品牌手机销量的 _众___数__ 。
③为了考察某同学在一次测验中数学成绩是占上等还
是占下等水平,应关注这次数学成绩的_中__位__数_ 。
小李应聘
某公司员工的月工资如下:
问题
员工
月工 资/ 元
经理 7000
副经 理
4400
职员 A
2400
职员 B
2000
职员 C
1900
职员 D
(2)你认为哪个数据能反映小林在小 组里的学习水平?
自学课本142页—143页“议一 议”
完成学案自主学习部分
中位数概念
什么是中位数呢?
将一组数据按大小顺序排列,把处在最中间 位置的那个数(或最中间两个数据的平均数 )
叫做这组数据的中位数.
1.数据6,9,5的中位数是___6_
5, 6, 9
2.数据3, 7, 10, 8, 4的中位数是_7___. 3,4,7,8,10
众数: 90分 、中位数: 80分 。
7位同学数学速算成绩分别是: 小林
94、 98、 94、 94、 88、 10、 68
98、94、94、94、88、68、10 小林计算出小组平均分为78分,所以小 林告诉妈妈说,自己这次数学成绩在小 组内处于 “ 中上水平 ”。 (1)你认为哪个数据能反映小林在小 组里的学习水平?
6.2 中位数与众数PPT课件
解:中位数为1.96米; 众数为1.88米,1.95米, 2.04米;而平均 数为1.98米。
练一练 3.(1)你课前所调查的20名男同学 所穿运动鞋尺码的平均数、中位数、 众数分别是多少?
(2)你认为学校商店应多进哪种 尺码的男式运动鞋?
小结
用平均数作为一组数据的代表,比 较可靠和稳定,它与这组数据中的每一 个数都有关系,对这组数据所包含的信 息的反映最为充分,因此在现实生活中 较为常用,但它容易受极端值的影响。
中位数.如上表中的1900
众数的定义:
在一组数据中,出现次数最多的数据叫做这组数据的
众数. 如上表中的1800
注意1:
1、求中位数要将一组数据按大小顺序,而不必计算, 顾名思义,中位数就是位置处于最中间的一个数(或 最中间的两个数的平均数),排序时,从小到大或从 大到小都可以.
2、众数是一组数据中出现次数最多的数据,是一
全班的平均分受到了两个极端数据30分 和25分的影响,利用平均数反应问题出现 了偏差。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
你认为应该用哪个数据反映员工的平均收入更合适?
员工
经理
副经 理
职员A职员B
职员C职员D职员E职员F 杂工 G
月工资/元 7000 4400 2400 2000 1900 1800 1800 1800 1200
中位数定义:
中位数
众数
将一组数据按大小依次排列,把处在最中间位置的 一个数据(或最中间两个数据的平均数)叫做这组数据的
练一练 3.(1)你课前所调查的20名男同学 所穿运动鞋尺码的平均数、中位数、 众数分别是多少?
(2)你认为学校商店应多进哪种 尺码的男式运动鞋?
小结
用平均数作为一组数据的代表,比 较可靠和稳定,它与这组数据中的每一 个数都有关系,对这组数据所包含的信 息的反映最为充分,因此在现实生活中 较为常用,但它容易受极端值的影响。
中位数.如上表中的1900
众数的定义:
在一组数据中,出现次数最多的数据叫做这组数据的
众数. 如上表中的1800
注意1:
1、求中位数要将一组数据按大小顺序,而不必计算, 顾名思义,中位数就是位置处于最中间的一个数(或 最中间的两个数的平均数),排序时,从小到大或从 大到小都可以.
2、众数是一组数据中出现次数最多的数据,是一
全班的平均分受到了两个极端数据30分 和25分的影响,利用平均数反应问题出现 了偏差。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
你认为应该用哪个数据反映员工的平均收入更合适?
员工
经理
副经 理
职员A职员B
职员C职员D职员E职员F 杂工 G
月工资/元 7000 4400 2400 2000 1900 1800 1800 1800 1200
中位数定义:
中位数
众数
将一组数据按大小依次排列,把处在最中间位置的 一个数据(或最中间两个数据的平均数)叫做这组数据的
《中位数和众数》PPT课件
的中位数是3,则x=
。
4.数据8, 8, x, 6的众数与平均数相同,那么它们的中位数
是
。
5、10名工人某天生产同一零件,生产的件数是:
15 17 14 10 15
19 17 16 14 12
求这一天10名工人生产的零件的中位数。
总结反思,拓展升华
• ⑴中位数、众数的定义。(注意:确定中位数时要分数据个数 是奇数个还是偶数个)
众数为4,平均数为6。则这组数据是_____ _______________ 。(只写出一组)
(练习4)平均数、中位数和众数都可以作为一组
数据的代表,它们各有自己的特点,能够从不同的角 度提供信息。在实际应用中,需要分析具体问题的情 况,选择适当的量来代表数据。
选择题(选项A:平均数 B:中位数 C:众数) ①为了反映八(1)班同学的平均年龄,应关注学生 年龄的______。 ②为了资金的迅速周转和减少商品库存积压某手机 销售商在进货时要关注各品牌手机销量的 ______ 。 ③为了考察某同学在一次测验中数学成绩是占上等 还是占下等水平,应关注这次数学成绩的______ 。
练习1:下面的条形图描述了某车间36个工人加工零
件数的情况:
人数
10 8 6 4 2 0
工人日加工零件数
89
45
6 4
3 4 5 6 7 8日加工零件数
请找出这些工人日加工零件数的中位数,说明 这个中位数的意义。
问题2:一家鞋店在一段时间内销售了某种女鞋30双,
各种尺码鞋的销售量如下表所示:
尺码/厘米 销售量/双
⑴你想让一半左右的营业员能够达标,这个 目标可定为______ ;
⑵你想确定一个较高的目标,这个目标可定 ______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根与系数的关系 三、成交方法:
1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站或 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@或mmzwzy@里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系:电话13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:课件改好后我们只提供一次重改机会,请在修改要求中尽可能详细的说明 你的要求,否则因你说明不清楚造成要修改第三次的,要补交半数费用。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源()”提供下载, 官网是,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。
身高: 1。85、 1。85 、 1。86 、1。88 、 1。94 1。96 、 1。96 、 1。97 、 1。98 、 1。98 2。02 、 2。02 、 2。05 、 2。08 、 2。23
2000—2001赛季上海东方大鲨鱼篮球队队员身高的中位
数、众数分别是多少?(书上217页)
答案:
工
资
中位数:
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据 (或最中间两个数据的那个数据叫做这组数据的众数。
例题:
1、2、3、3、4、5、6、7、7、8、 9、10 这12个数中,中位数是 (5。5 ),众数是(3和7 )
5、6的平均数为5。5 众数有两个:3和7
八一双鹿队
号码 身高/米 年龄/岁
4 1.78 31
5 1.88 23
6 1.96 32
7 2.08 20
8 2.04 21
9 2.04 22
10
2
31
11 1.98 27
12 1.93 24
13 1.98 29
14 2.14 22
15 2.02 22
上海东方鲨鱼队 号码 身高/米 年龄/岁
4 1.85 24 5 1.96 21 6 2.02 29 7 2.05 21 8 1.88 21 9 1.94 29 10 1.85 24 11 2.08 34 12 1.98 18 13 1.97 18 14 1.96 23 15 2.23 21 16 1.98 24 17 1.86 26 18 2.02 16
议一议
1。为什么该公司所有员工工资的平均数比中 位数高的多?
2。你认为用哪个数据表示该公司员工收 入的“平均水平”更合适?
某公司员工的月工资如下:
员经 工理
副经 职 职员 职
理
员A B
员
C
职员 职
D
员 E
职员 杂
F
工
G
月 6000 4000 1700 1300 1200 1100 1100 1100 500
中位数是: 1.97米; 众数是 : 1.85米,1.96米,1.98米,2.02米
讨论:
平均数、中位数和众数有 那些特征?
作业与实践:
1、223页 习题 8.3 2、调查本班中学生所穿鞋的尺码,得到 平均数、中位数与众数。 选做: 3、 在某个交通路口进行一次调查,看看 哪个时段的汽车流量(或行人流量)较大。 你们是如何调查的(设计你的调查方案)?
第八章 数据的代表
中位数与众数
设计者:梧州小小
某公司员工的月工资如下:
员经 工理
副经 职 职员 职
理
员A B
员
C
职员 职
D
员 E
职员 杂
F
工
G
月 6000 4000 1700 1300 1200 1100 1100 1100 500
工
资
经理说:我公司员工收入很高,月平均工资为2000元 。
职员C说:我的工资是1200元,在公司算中等收入。 职员D说:我们好几个人工资都是1100元。
1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站或 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@或mmzwzy@里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系:电话13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:课件改好后我们只提供一次重改机会,请在修改要求中尽可能详细的说明 你的要求,否则因你说明不清楚造成要修改第三次的,要补交半数费用。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源()”提供下载, 官网是,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。
身高: 1。85、 1。85 、 1。86 、1。88 、 1。94 1。96 、 1。96 、 1。97 、 1。98 、 1。98 2。02 、 2。02 、 2。05 、 2。08 、 2。23
2000—2001赛季上海东方大鲨鱼篮球队队员身高的中位
数、众数分别是多少?(书上217页)
答案:
工
资
中位数:
一般地,n个数据按大小顺序排列,处于最中间位置的一个数据 (或最中间两个数据的那个数据叫做这组数据的众数。
例题:
1、2、3、3、4、5、6、7、7、8、 9、10 这12个数中,中位数是 (5。5 ),众数是(3和7 )
5、6的平均数为5。5 众数有两个:3和7
八一双鹿队
号码 身高/米 年龄/岁
4 1.78 31
5 1.88 23
6 1.96 32
7 2.08 20
8 2.04 21
9 2.04 22
10
2
31
11 1.98 27
12 1.93 24
13 1.98 29
14 2.14 22
15 2.02 22
上海东方鲨鱼队 号码 身高/米 年龄/岁
4 1.85 24 5 1.96 21 6 2.02 29 7 2.05 21 8 1.88 21 9 1.94 29 10 1.85 24 11 2.08 34 12 1.98 18 13 1.97 18 14 1.96 23 15 2.23 21 16 1.98 24 17 1.86 26 18 2.02 16
议一议
1。为什么该公司所有员工工资的平均数比中 位数高的多?
2。你认为用哪个数据表示该公司员工收 入的“平均水平”更合适?
某公司员工的月工资如下:
员经 工理
副经 职 职员 职
理
员A B
员
C
职员 职
D
员 E
职员 杂
F
工
G
月 6000 4000 1700 1300 1200 1100 1100 1100 500
中位数是: 1.97米; 众数是 : 1.85米,1.96米,1.98米,2.02米
讨论:
平均数、中位数和众数有 那些特征?
作业与实践:
1、223页 习题 8.3 2、调查本班中学生所穿鞋的尺码,得到 平均数、中位数与众数。 选做: 3、 在某个交通路口进行一次调查,看看 哪个时段的汽车流量(或行人流量)较大。 你们是如何调查的(设计你的调查方案)?
第八章 数据的代表
中位数与众数
设计者:梧州小小
某公司员工的月工资如下:
员经 工理
副经 职 职员 职
理
员A B
员
C
职员 职
D
员 E
职员 杂
F
工
G
月 6000 4000 1700 1300 1200 1100 1100 1100 500
工
资
经理说:我公司员工收入很高,月平均工资为2000元 。
职员C说:我的工资是1200元,在公司算中等收入。 职员D说:我们好几个人工资都是1100元。