(完整word版)at89c51单片机中文资料
AT89C51单片机简介
![AT89C51单片机简介](https://img.taocdn.com/s3/m/78cd462eed630b1c59eeb52f.png)
4.1 AT89C51 简介:AT89C51(如图2-10所示)是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
AT89C51单片机示意图(4-2-1)VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH 编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
AT89C51单片机简介
![AT89C51单片机简介](https://img.taocdn.com/s3/m/0854b63010661ed9ad51f384.png)
AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
(完整)AT89C51单片机的概述
![(完整)AT89C51单片机的概述](https://img.taocdn.com/s3/m/d90528057c1cfad6185fa7e4.png)
AT89C51单片机的概述(1)AT89C51单片机的结构AT89C51单片机是美国Atmel公司生产低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(EPROM)和128 bytes的随机存取数据存储器(RAM),器件采用Atmel公司的高密度、非易失性存取技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash 存储单元,功能强大[3]。
AT89C51单片机可提供许多高性价比的应用场合,可灵活应用于各种控制领域。
上图为AT89C51单片机的基本组成功能方块图.由图可见,在这一块芯片上,集成了一台微型计算机的主要组成部分,其中包括CPU、存储器、可编程I/O口、定时器/计数器、串行口等,各部分通过内部总线相连。
下面介绍几个主要部分。
外时钟源外部事件计数外中断控制并行口串行通信AT89C51 功能方块图(2)AT89C51的管脚说明ATMEL公司的AT89C51是一种高效微控制器.采用40引脚双列直插封装形式。
AT89C51单片机是高性能单片机,因为受引脚数目的限制,所以有不少引脚具有第二功能。
VCC:供电电压.GND:接地.P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入.P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FLASH编程时,P0 口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部必须被拉高.P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故.在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写1时,其管脚被内部上拉电阻拉高,且作为输入。
89C51单片机中文资料
![89C51单片机中文资料](https://img.taocdn.com/s3/m/2798e0c32cc58bd63186bdfd.png)
89C51单片机中文资料AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz ·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL 门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH 编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
AT89C51单片机简单介绍
![AT89C51单片机简单介绍](https://img.taocdn.com/s3/m/50692064dc36a32d7375a417866fb84ae55cc34d.png)
简单的程序
• LOOP: SETB P10; 让P10灯灭 LCALL DELAY; //长跳转指令 (当遇到RET,则回到此下行程
序) CLR P10; //让灯P10亮 LCALL DELAY; AJMP LOOP; //绝对跳转到LOOP
AT89C51
AT89C51是美国ATMEL公司生产的低 电压,高性能CMOS8位单片机,片内含4K bytes的可反复擦写的只读程序存储器和 128bytes的随机存取数据存储器(RAM), 器件采用ATMEL公司的高密度、非易失性 存储技术生产,兼容标准MCS-51指令系统, 片内置通用8位中央处理器(CPU)和flash 存储单元。
FLASH编程和校验时,P1口作为第八位地址接收。
P2口
• P2口:P2口为一个内部上拉电阻的8位双向I/O口, P2口缓冲器可接收,输出4个TTL门电流,当P2 口被写“1”时,其管脚被内部上拉电阻拉高,且 作为输入。并因此作为输入时,P2口的管脚被外 部拉低,将输出电流。这是由于内部上拉的缘故。 P2口当用于外部程序存储器或16位地址外部数据 存储器进行存取时,P2口输出地址的高八位。在 给出地址“1”时,它利用内部上拉优势,当对外 部八位地址数据存储器进行读写时,P2口输出其 特殊功能寄存器的内容。P2口在FLASH编程和校 验时接收高八位地址信号和控制信号。
放大器的输入和输出。该反向放大
器可以配置为片内振荡器。石晶振
荡和陶瓷振荡均可采用。如采用外
部时钟源驱动器件,XTAL2应不接。
有余输入至内部时钟信号要通过一
个二分频触发器,因此对外部时钟
AT89C51系列单片机介绍
![AT89C51系列单片机介绍](https://img.taocdn.com/s3/m/b21633f6afaad1f34693daef5ef7ba0d4a736d8c.png)
3.1 AT89C51系列单片机介绍3.1.1 AT89C51系列基本组成及特性AT89C51是一种带4k字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。
而在众多的51系列单片机中,要算 ATMEL 公司的AT89C51更实用,也是一种高效微控制器,因为它不但和8051指令、管脚完全兼容,而且其片内的4K程序存储器是FLASH工艺的,这种工艺的存储器,用户可以用电的方式达到瞬间擦除、改写。
而这种单片机对开发设备的要求很低,开发时间也大大缩短。
AT89C51基本功能描述如下:AT89C51是一种低损耗、高性能、CMOS八位微处理器,而且在其片种还有4k字节的在线可重复编程快擦快写程序存储器,能重复写入/擦除1000次,数据保存时间为十年。
它与MCS-51系列单片机在指令系统和引脚上完全兼容,不仅可完全代替MCS-51系列单片机,而且能使系统具有许多MCS-51系列产品没有的功能。
AT89C51可构成真正的单片机最小应用系统,缩小系统体积, 增加系统的可靠性,降低了系统成本。
只要程序长度小于4k, 四个I/O口全部提供给用户。
可用5V电压编程,而且写入时间仅10毫秒, 仅为8751/87C51 的擦除时间的百分之一,与8751/87C51的12V电压擦写相比, 不易损坏器件, 没有两种电源的要求,改写时不拔下芯片,适合许多嵌入式控制领域。
AT89C51 芯片提供三级程序存储器锁定加密,提供了方便灵活而可靠的硬加密手段, 能完全保证程序或系统不被仿制。
另外,AT89C51 还具有MCS-51系列单片机的所有优点。
128×8 位内部RAM, 32 位双向输入输出线, 两个十六位定时器/计时器, 5个中断源, 两级中断优先级, 一个全双工异步串行口及时钟发生器等。
AT89C51有间歇、掉电两种工作模式。
间歇模式是由软件来设置的, 当外围器件仍然处于工作状态时, CPU可根据工作情况适时地进入睡眠状态, 内部RAM和所有特殊的寄存器值将保持不变。
AT89C51芯片介绍完整中英文翻译
![AT89C51芯片介绍完整中英文翻译](https://img.taocdn.com/s3/m/8ac9f12add88d0d233d46ae5.png)
DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51™ instruction set and pinout. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.Features:• Compatible with MCS-51™ Products• 4K Bytes of In-System Reprogrammable Flash Memory• Endurance: 1,000 Write/Erase Cycles• Fully Static Operation: 0 Hz to 24 MHz• Three-Level Program Memory Lock• 128 x 8-Bit Internal RAM• 32 Programmable I/O Lines• Two 16-Bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• Low Power Idle and Power Down ModesThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin Description:VCC Supply voltage.GND Ground.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification. Port 2Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I IL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by theinternal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access toexternal data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit. XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.Idle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write toa port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Status of External Pins During Idle and Power Down ModesPower Down ModeIn the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power down mode is terminated. The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below:Lock Bit Protection ModesWhen lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value,and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly. Programming the FlashThe AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed.The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal.The low voltage programming mode provides a convenient way to program the AT89C51 inside the user’s system, while the high-voltage programming mode is compatible with conventional third party Flash or EPROM programmers.The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.The AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Programmable and Erasable Read Only Memory, the entire memory must be erased using the Chip Erase Mode. Programming Algorithm:Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figures 3 and 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object reached.Data PollingThe AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated. Ready/BusyThe progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program VerifyIf lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.Chip EraseThe entire Flash Programmable and Erasable Read Only Memory array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.Reading the Signature BytesThe signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programmingProgramming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.描述AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4Kbytes的快速可擦写的只读程序存储器(PEROM)和128bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51产品指令系统,片内置通用8位中央处理器(CPU)和flish存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
(完整word版)at89c51单片机中文资料
![(完整word版)at89c51单片机中文资料](https://img.taocdn.com/s3/m/987c8f8ecaaedd3382c4d3e3.png)
AT89C51的概况1 AT89C51应用单片机广泛应用于商业:诸如调制解调器,电动机控制系统,空调控制系统,汽车发动机和其他一些领域.这些单片机的高速处理速度和增强型外围设备集合使得它们适合于这种高速事件应用场合。
然而,这些关键应用领域也要求这些单片机高度可靠。
健壮的测试环境和用于验证这些无论在元部件层次还是系统级别的单片机的合适的工具环境保证了高可靠性和低市场风险.Intel 平台工程部门开发了一种面向对象的用于验证它的AT89C51 汽车单片机多线性测试环境.这种环境的目标不仅是为AT89C51 汽车单片机提供一种健壮测试环境,而且开发一种能够容易扩展并重复用来验证其他几种将来的单片机。
开发的这种环境连接了AT89C51。
本文讨论了这种测试环境的设计和原理,它的和各种硬件、软件环境部件的交互性,以及如何使用AT89C51。
1。
1 介绍8 位AT89C51 CHMOS 工艺单片机被设计用于处理高速计算和快速输入/输出。
MCS51 单片机典型的应用是高速事件控制系统.商业应用包括调制解调器,电动机控制系统,打印机,影印机,空调控制系统,磁盘驱动器和医疗设备。
汽车工业把MCS51 单片机用于发动机控制系统,悬挂系统和反锁制动系统。
AT89C51 尤其很好适用于得益于它的处理速度和增强型片上外围功能集,诸如:汽车动力控制,车辆动态悬挂,反锁制动和稳定性控制应用。
由于这些决定性应用,市场需要一种可靠的具有低干扰潜伏响应的费用—效能控制器,服务大量时间和事件驱动的在实时应用需要的集成外围的能力,具有在单一程序包中高出平均处理功率的中央处理器。
拥有操作不可预测的设备的经济和法律风险是很高的.一旦进入市场,尤其任务决定性应用诸如自动驾驶仪或反锁制动系统,错误将是财力上所禁止的。
重新设计的费用可以高达500K 美元,如果产品族享有同样内核或外围设计缺陷的话,费用会更高。
另外,部件的替代品领域是极其昂贵的,因为设备要用来把模块典型地焊接成一个总体的价值比各个部件高几倍。
AT89C51单片机简介
![AT89C51单片机简介](https://img.taocdn.com/s3/m/6b98ba0b6c85ec3a87c2c5aa.png)
AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
at89c51中文资料_数据手册_参数
![at89c51中文资料_数据手册_参数](https://img.taocdn.com/s3/m/d5533f362af90242a895e57c.png)
AT89C51是一种低功耗、高性能的CMOS 8位微型计算机,具有4Kbytes的Flash可编程只读 存储器(PEROM)。该设备使用Atmel的高密度非易失性存储器技术制造,与工业标准的 MCS-51指令集和pinout兼容。芯片上的闪存可以让程序内存在系统内重新编程,也可以 由一个召集人的非易失性内存程序员来重新编程。Atmel AT89C51是一种功能强大的微型 计算机,它将一个多用途的8位CPU与闪存芯片结合在一起,为许多嵌入式控制应用程序 提供了一种高灵活性和高性价比的解决方案。AT89C51提供了以下标准特性:4Kbytes的 Flash, 128字节的RAM, 32个I/O行,两AT89C51个16位的计时器/计数器,一个五个矢量的 二级中断架构,一个完整的双工串口,片上振荡器和时钟圈-cuitry。此外,AT89C51采用 静态逻辑设计,可将操作频率降至零,支持两种软件可选择的节能模式。空闲的适当操 作CPU,同时允许RAM、计时器/计数器、串行端口和中断系统继续运行。电源关闭模式 保存RAM内容,但冻结振荡器禁用所有其他芯片功能,直到下一个硬件复位。销 DescriptionVCCSupply voltage.GNDGround。端口0Port 0是一个8位开路双向I/O端口。作为 输出端口,每个引脚可以接收8个TTLAT89C51输入。当1被写入端口0时,这些引脚可以 作为高阻抗输入。端口0也可以配置为在访问外部pro-gram和数据内存期间的多路低阶地 址/数据总线。在这种模式下,P0具有内浆。端口0也在Flash编程期间接收代码字节,并 输出代码字节du环编程验证。AT89C51在程序验证过程中需要外部的pullups。端口1是一 个8位双向I/O端口,具有内部pullups。端口1输出缓冲区可以接收/源4个TTL输入。当1s被 写入端口1引脚时,它们被内部的脉冲拉高,并可作为输入。作为输入,外部被拉低的端 口1引脚会因为内部的pullups而变酸(IIL)。端口1也在flasups的8位双向I/O端口。端口2输出缓冲区可以接收/ 源4个TTL输入。当1s被写到端口2时,它们被内部的pullups拉得很高,可以用作输入。作 为输入,外部被拉低的端口2引脚会因为内部的脉冲而变酸。端口2在从外部程序内存获 取和访问使用16位地址的外部数据内存(MOVX @DPTR)期间发出高阶地址字节。在这个 应用中,当发射1s时,它使用强的内部拉升。在访问使用8位地址(MOVX @ RI)的外部数 据存储器时,端口2发出P2专AT89C51用函数寄存器的核心。端口2还在Flash编程和验证 过程中接收高阶地址位和somecontrol信号。端口3Port 3是一个8位双向I/O端口,具有内部 pullups。端口3输出缓冲区可以接收/源四个TTL输入。当1s被写到端口3时,它们被内部的 pullups拉得很高,可以用作输入。作为输入,外部被拉低的端口3引脚会因为pullups而变 酸(IIL)。端口3还具有AT89C51的各种特殊功能,如下所示在每次访问外部数据时都跳过 了pulse。如果需要,可以通过设置sfr位置8EH的0位来禁用ALE操作。在位集上,ALE只 在一个MOVX或MOVC指令中活动。否则,大头针就会弱拉高。如果微控制器处于外部 执行模式,则设置禁用“禁用”的位就没有效果。PSENProgram Store启用的是read strobe 到外部的pro-AT89C51gram内存。当AT89C51执行来自外部pro-gram内存的代码时,每个 machinecycle都会激活PSEN两次,除了在每次访问外部数据内存时跳过两次PSEN激 活。EA / VPPExternal访问启用AT89C51。必须将EA绑定到GND,以使设备能够从从从 0000H到FFFFH的外部pro-gram内存位置获取代码。然而,请注意,如果锁位1被编 程,EA将在复位时被内部锁住。EA应该绑定到VCC以执行内部程序。在Flash编程中,这 个pin还能接收12伏的编程实现volt-age (VPP),这是需要12伏VPP的部件。XTAL1Input输入到逆变振荡器放大器,输入到内部时 钟运行电路。XTAL2Output逆变振荡器放大器的输出。振荡器特性sxtal1和XTAL2分别是 逆变放大器的输入和输出,可以配置为使用asan片上振荡器,如图1所示。可以使用石英 晶体或陶瓷谐振器。要从外部时钟源驱动设备,XTAL2应该保持左连接,而XTAL1应该 被驱动,如图2所示。在外部时钟信号的工作周期中没有要求,因为内部时钟电路的输入 是通过两个触发器,但是最小和最大的电压高AT89C51和低的时间规格必须被观察。在 空闲模式下,CPU自动进入休眠状态,而所有的片上外围设备仍然处于活动状态。模式 是由软件调用的。在此模式下,片上RAM的内容和所有的spe函数寄存器都保持不变。空 闲模式可以通过任何启用的中断或硬件重置来终止。应该注意的是,当空闲被硬件 AT89C51重置终止时,设备通常会恢复程序执行,从它停止的地方开始,直到内部复位 算法控制之前的两个机器周期。在这种情况下,芯片上的硬件存储限制了对内部RAM的 访问,AT89C51但是对端口引脚的访问是不受限制的。为了消除AT89C51在空闲时对端口 pin进行意外写入的可能性,可以通过重置来终止,调用idleshnd的指令后面的指令不应该 是写入端口pin或外部内存的指令
at89c51中文资料_数据手册_参数
![at89c51中文资料_数据手册_参数](https://img.taocdn.com/s3/m/d5533f362af90242a895e57c.png)
万联芯城 电子元器件物料全国供应,专业提 供电子元器件原装现货产品,1 片起订,价格优势明显,电子元 器件采购网万联芯城目前为长电科技,顺络电子,先科 ST 等多 家知名原厂的指定授权代理商,专为客户提供电子元器件配单业 务,提交物料清单即可当天报价当天发货,点击进入万联芯城。
AT89C51是一种低功耗、高性能的CMOS 8位微型计算机,具有4Kbytes的Flash可编程只读 存储器(PEROM)。该设备使用Atmel的高密度非易失性存储器技术制造,与工业标准的 MCS-51指令集和pinout兼容。芯片上的闪存可以让程序内存在系统内重新编程,也可以 由一个召集人的非易失性内存程序员来重新编程。Atmel AT89C51是一种功能强大的微型 计算机,它将一个多用途的8位CPU与闪存芯片结合在一起,为许多嵌入式控制应用程序 提供了一种高灵活性和高性价比的解决方案。AT89C51提供了以下标准特性:4Kbytes的 Flash, 128字节的RAM, 32个I/O行,两AT89C51个16位的计时器/计数器,一个五个矢量的 二级中断架构,一个完整的双工串口,片上振荡器和时钟圈-cuitry。此外,AT89C51采用 静态逻辑设计,可将操பைடு நூலகம்频率降至零,支持两种软件可选择的节能模式。空闲的适当操 作CPU,同时允许RAM、计时器/计数器、串行端口和中断系统继续运行。电源关闭模式 保存RAM内容,但冻结振荡器禁用所有其他芯片功能,直到下一个硬件复位。销 DescriptionVCCSupply voltage.GNDGround。端口0Port 0是一个8位开路双向I/O端口。作为 输出端口,每个引脚可以接收8个TTLAT89C51输入。当1被写入端口0时,这些引脚可以 作为高阻抗输入。端口0也可以配置为在访问外部pro-gram和数据内存期间的多路低阶地 址/数据总线。在这种模式下,P0具有内浆。端口0也在Flash编程期间接收代码字节,并 输出代码字节du环编程验证。AT89C51在程序验证过程中需要外部的pullups。端口1是一 个8位双向I/O端口,具有内部pullups。端口1输出缓冲区可以接收/源4个TTL输入。当1s被 写入端口1引脚时,它们被内部的脉冲拉高,并可作为输入。作为输入,外部被拉低的端 口1引脚会因为内部的pullups而变酸(IIL)。端口1也在flash编程和验证过程中接收低阶地址 字节。端口2Port 2是一个带有内部pullups的8位双向I/O端口。端口2输出缓冲区可以接收/ 源4个TTL输入。当1s被写到端口2时,它们被内部的pullups拉得很高,可以用作输入。作 为输入,外部被拉低的端口2引脚会因为内部的脉冲而变酸。端口2在从外部程序内存获 取和访问使用16位地址的外部数据内存(MOVX @DPTR)期间发出高阶地址字节。在这个 应用中,当发射1s时,它使用强的内部拉升。在访问使用8位地址(MOVX @ RI)的外部数 据存储器时,端口2发出P2专AT89C51用函数寄存器的核心。端口2还在Flash编程和验证 过程中接收高阶地址位和somecontrol信号。端口3Port 3是一个8位双向I/O端口,具有内部 pullups。端口3输出缓冲区可以接收/源四个TTL输入。当1s被写到端口3时,它们被内部的 pullups拉得很高,可以用作输入。作为输入,外部被拉低的端口3引脚会因为pullups而变 酸(IIL)。端口3还具有AT89C51的各种特殊功能,如下所示在每次访问外部数据时都跳过 了pulse。如果需要,可以通过设置sfr位置8EH的0位来禁用ALE操作。在位集上,ALE只 在一个MOVX或MOVC指令中活动。否则,大头针就会弱拉高。如果微控制器处于外部 执行模式,则设置禁用“禁用”的位就没有效果。PSENProgram Store启用的是read strobe 到外部的pro-AT89C51gram内存。当AT89C51执行来自外部pro-gram内存的代码时,每个 machinecycle都会激活PSEN两次,除了在每次访问外部数据内存时跳过两次PSEN激 活。EA / VPPExternal访问启用AT89C51。必须将EA绑定到GND,以使设备能够从从从 0000H到FFFFH的外部pro-gram内存位置获取代码。然而,请注意,如果锁位1被编 程,EA将在复位时被内部锁住。EA应该绑定到VCC以执行内部程序。在Flash编程中,这 个pin还能接收12伏的编程实现volt-age (VPP),这是需要12伏VPP的部件。XTAL1Input输入到逆变振荡器放大器,输入到内部时 钟运行电路。XTAL2Output逆变振荡器放大器的输出。振荡器特性sxtal1和XTAL2分别是 逆变放大器的输入和输出,可以配置为使用asan片上振荡器,如图1所示。可以使用石英 晶体或陶瓷谐振器。要从外部时钟源驱动设备,XTAL2应该保持左连接,而XTAL1应该 被驱动,如图2所示。在外部时钟信号的工作周期中没有要求,因为内部时钟电路的输入 是通过两个触发器,但是最小和最大的电压高AT89C51和低的时间规格必须被观察。在 空闲模式下,CPU自动进入休眠状态,而所有的片上外围设备仍然处于活动状态。模式 是由软件调用的。在此模式下,片上RAM的内容和所有的spe函数寄存器都保持不变。空 闲模式可以通过任何启用的中断或硬件重置来终止。应该注意的是,当空闲被硬件 AT89C51重置终止时,设备通常会恢复程序执行,从它停止的地方开始,直到内部复位 算法控制之前的两个机器周期。在这种情况下,芯片上的硬件存储限制了对内部RAM的 访问,AT89C51但是对端口引脚的访问是不受限制的。为了消除AT89C51在空闲时对端口 pin进行意外写入的可能性,可以通过重置来终止,调用idleshnd的指令后面的指令不应该 是写入端口pin或外部内存的指令
AT89C51单片机
![AT89C51单片机](https://img.taocdn.com/s3/m/8515401db7360b4c2e3f64e6.png)
一、AT89C51单片机1、AT89C51简介:AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
外形及引脚排列如图所示2、本段主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器·寿命:1000写/擦循环·数据保留时间:10年·全静态工作:0Hz-24MHz·三级程序存储器锁定·128×8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路3、本段管脚说明VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
AT89C51单片机简介
![AT89C51单片机简介](https://img.taocdn.com/s3/m/b0da37b91a37f111f1855bb3.png)
AT89C51单片机简介AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
AT89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。
AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL 门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
单片机简介_AT89C51中文资料
![单片机简介_AT89C51中文资料](https://img.taocdn.com/s3/m/4781e033a200a6c30c22590102020740bf1ecd48.png)
单片机简介_AT89C51中文资料单片机是嵌入式系统中重要的组成部分,它是一种具有特定功能并带有输入输出端口的微型计算机系统。
单片机的内部集成了CPU、RAM、ROM、I/O接口等部件,具有小体积、低功耗和高集成度等优点,被广泛应用于各种工业控制、家具控制以及电子仪表等领域。
AT89C51是一种常见的单片机,下面将对它进行详细介绍。
一、AT89C51的基本介绍AT89C51是一款由Atmel公司生产的8位单片机,它采用CMOS技术制造,具有16KB FLASH程序存储器和512B RAM数据存储器。
该单片机支持包括ISP(In-System-Programming)、IAP(In-Application-Programming)、DebugWire在内的多种编程方式,可用于各种应用领域,如汽车电子、家用电器、计算机外围设备、物流跟踪等。
AT89C51的主要特征:1、8位8051微控制器架构;2、具有16KB程序存储器和512B数据存储器;3、支持ISP、IAP和DebugWire等多种编程方式;4、支持12MHz内部晶体振荡器和外接振荡器,外接时钟频率为0~24MHz;5、支持一般I/O和特殊功能I/O,如双重中断、三重定时器等;6、可升级固件程序。
AT89C51共有40个引脚,分别是VCC、GND、P0.0~P0.7、P1.0~P1.7、P2.0~P2.7、P3.0~P3.7、RST、ALE、EA、PSEN、XTAL1、XTAL2,其中VCC是芯片的正电源,GND是芯片的负电源。
1、ISP编程方式:ISP编程即在芯片内部直接进行编程,无需将芯片取出进行编程。
这种编程方式需要使用ISP编程器和软件,将芯片与编程器连接后,在电脑上设置好所需的程序,即可进行编程。
2、IAP编程方式:IAP编程即在芯片内部进行程序更新、修改等操作,无需替换整个芯片。
该编程方式适用于已经安装在板子上的芯片,如果需要更新程序,直接通过串口通信上传新程序即可,无需拆卸芯片。
AT89C51单片机简介
![AT89C51单片机简介](https://img.taocdn.com/s3/m/509a7f767ed5360cba1aa8114431b90d6c858912.png)
AT89C51单片机简介at89c51单片机简介2021/05/2503:35at89c51单片机简介AT89C51是一种具有4K字节的闪存可编程可擦除只读存储器(fperom―falshprogrammableanderasablereadonlymemory)的低电压,高性能cmos8位微处理器,俗称单片机。
at89c2051是一种带2k字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用atmel高密度非易失存储器制造技术制造,与工业标准的mcs-51指令集和输出管脚相兼容。
由于将多功能8位cpu和闪烁存储器组合在单个芯片中,atmel的at89c51是一种高效微控制器,at89c2051是它的一种精简版本。
at89c单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
图片见下图:要查看轮廓图和大图,请单击此处1.主要特性:与MCS-51兼容4k字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年全静态工作:0hz-24hz三级程序存储器锁定128*8位内部ram32可编程i/o线两个16位定时器/计数器5个中断源可编程串行通道低功耗的闲置和掉电模式片上振荡器和时钟电路2.管脚说明:VCC:电源电压。
接地:接地。
p0口:p0口为一个8位漏级开路双向i/o口,每脚可吸收8ttl门电流。
当p1口的管脚第一次写1时,被定义为高阻输入。
p0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在fiash编程时,p0口作为原码输入口,当fiash进行校验时,p0输出原码,此时p0外部必须被拉高。
端口P1:端口P1是一个具有内部上拉电阻的8位双向I/O端口。
端口P1的缓冲器可以接收输出的4ttl栅极电流。
P1端口的引脚写入1后,它在内部被拉高,可以用作输入。
P1端口被外部拉低至低电平,并将输出电流,这是由于内部上拉。
在闪存编程和验证期间,P1端口作为第八位地址接收。
AT89C51单片机
![AT89C51单片机](https://img.taocdn.com/s3/m/ced9e1f95ff7ba0d4a7302768e9951e79b896931.png)
AT89C51单片机英文名:AT89C51 Microcontroller AT89C51是一个低电压,高性能CMOS 8位单片机,片内含4k bytes的可反复擦写的Flash 只读程序存储器和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,内置功能强大的微型计算机的AT89C51提供了高性价比的解决方案。
AT89C51是一个低功耗高性能单片机,40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,2个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,也可以在线编程。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
AT89C51具有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。
DIP40封装 AT89C51单片机AT89C51引脚图管脚说明: VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
AT89C51单片机详解
![AT89C51单片机详解](https://img.taocdn.com/s3/m/ecab6228770bf78a64295467.png)
AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
1.主要特性:·与MCS-51 兼容·4K字节可编程闪烁存储器寿命:1000写/擦循环数据保留时间:10年·全静态工作:0Hz-24Hz·三级程序存储器锁定·128*8位内部RAM·32可编程I/O线·两个16位定时器/计数器·5个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路2.管脚说明:VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AT89C51的概况1 AT89C51应用单片机广泛应用于商业:诸如调制解调器,电动机控制系统,空调控制系统,汽车发动机和其他一些领域。
这些单片机的高速处理速度和增强型外围设备集合使得它们适合于这种高速事件应用场合。
然而,这些关键应用领域也要求这些单片机高度可靠。
健壮的测试环境和用于验证这些无论在元部件层次还是系统级别的单片机的合适的工具环境保证了高可靠性和低市场风险。
Intel 平台工程部门开发了一种面向对象的用于验证它的AT89C51 汽车单片机多线性测试环境。
这种环境的目标不仅是为AT89C51 汽车单片机提供一种健壮测试环境,而且开发一种能够容易扩展并重复用来验证其他几种将来的单片机。
开发的这种环境连接了AT89C51。
本文讨论了这种测试环境的设计和原理,它的和各种硬件、软件环境部件的交互性,以及如何使用AT89C51。
1.1 介绍8 位AT89C51 CHMOS 工艺单片机被设计用于处理高速计算和快速输入/输出。
MCS51 单片机典型的应用是高速事件控制系统。
商业应用包括调制解调器,电动机控制系统,打印机,影印机,空调控制系统,磁盘驱动器和医疗设备。
汽车工业把MCS51 单片机用于发动机控制系统,悬挂系统和反锁制动系统。
AT89C51 尤其很好适用于得益于它的处理速度和增强型片上外围功能集,诸如:汽车动力控制,车辆动态悬挂,反锁制动和稳定性控制应用。
由于这些决定性应用,市场需要一种可靠的具有低干扰潜伏响应的费用-效能控制器,服务大量时间和事件驱动的在实时应用需要的集成外围的能力,具有在单一程序包中高出平均处理功率的中央处理器。
拥有操作不可预测的设备的经济和法律风险是很高的。
一旦进入市场,尤其任务决定性应用诸如自动驾驶仪或反锁制动系统,错误将是财力上所禁止的。
重新设计的费用可以高达500K 美元,如果产品族享有同样内核或外围设计缺陷的话,费用会更高。
另外,部件的替代品领域是极其昂贵的,因为设备要用来把模块典型地焊接成一个总体的价值比各个部件高几倍。
为了缓和这些问题,在最坏的环境和电压条件下对这些单片机进行无论在部件级别还是系统级别上的综合测试是必需的。
Intel Chandler 平台工程组提供了各种单片机和处理器的系统验证。
这种系统的验证处理可以被分解为三个主要部分。
系统的类型和应用需求决定了能够在设备上执行的测试类型。
1.2 AT89C51提供以下标准功能:4k 字节FLASH 闪速存储器,128 字节内部RAM,32 个I/O 口线,2 个16 位定时/计数器,一个5 向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。
同时,AT89C51 降至0Hz 的静态逻辑操作,并支持两种可选的节电工作模式。
空闲方式体制CPU 的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。
掉电方式保存RAM 中的内容,但振荡器体制工作并禁止其他所有不见工作直到下一个硬件复位。
图1-2-1 AT89C51 方框图1.3引脚功能说明·Vcc:电源电压·GND:地·P0 口:P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用。
作为输出口用时,每位能吸收电流的方式驱动8 个TTL 逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。
在Flash 编程时,P0 口接受指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。
·P1 口:P1 是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作为输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
Flash 编程和程序校验期间,P1 接受低8 位地址。
·P2 口:P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作为输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
在访问外部程序存储器或16 位四肢的外部数据存储器(例如执行MOVX @DPTR指令)时,P2 口送出高8 位地址数据,在访问8 位地址的外部数据存储器(例如执行MOVX @ RI 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中R2 寄存器的内容),在整个访问期间不改变。
Flash 编程和程序校验时,P2 也接收高位地址和其他控制信号。
·P3 口:P3 是一个带有内部上拉电阻的8 位双向I/O 口,P3 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。
作为输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。
·RST:复位输入。
当振荡器工作时,RST 引脚出现两个机器周期以上高电平将使单片机复位。
·ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。
即使不访问外部存储器,ALE 仍以时钟振荡频率的1/6 输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。
要注意的是,每当访问外部数据存储器时将跳过一个ALE 脉冲。
对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。
如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元D0 位置位,可禁止ALE 操作。
该位置位后,只有一条MOVX 和MOVC 指令ALE 才会被激活。
此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 无效。
·PSEN:程序存储允许输出是外部程序存储器的读选通型号,当89C51 由外部存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。
在此期间,当访问外部数据存储器,这两次有效的PSEN 信号不出现。
·EA/VPP:外部访问允许。
欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。
需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA 端状态。
如EA 端为高电平(接Vcc 端),CPU 则执行内部程序存储器中的指令。
Flash 存储器编程时,该引脚加上+12v 的编程允许电源Vpp,当然这必须是该器件使用12v 编程电压Vpp。
·XTAL1:振荡器反相放大器及内部时钟发生器的输入端。
·XTAL2:振荡器反相放大器的输出端。
89C51 中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1 和XTAL2分别是该放大器的输入端和输出端。
这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图5。
外接石英晶体或陶瓷谐振器及电容C1、C2 接在放大器的反馈回路中构成并联振荡电路。
对电容C1、C2 虽没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程度及温度稳定性,如果使用石英晶体,我们推荐电容使用30Pf±10 Pf,而如使用陶瓷谐振器建议选择40Pf±10Pf。
用户也可以采用外部时钟。
这种情况下,外部时钟脉冲接到XTAL1 端,即内部时钟发生器的输入端XTAL2 则悬空。
·掉电模式:在掉电模式下,振荡器停止工作,进入掉电模式的指令是最后一条被执行的指令,片内RAM 和特殊功能寄存器的内容在终止掉电模式前被冻结。
推出掉电模式的唯一方法是硬件复位,复位后将重新定义全部特殊功能寄存器但不改变RAM 中的内容,在Vcc 恢复到正常工作电平前,复位应无效,且必须保持一定时间以使振荡器重启动并稳定工作。
89C51 的程序存储器阵列是采用字节写入方式编程的,每次写入一个字符,要对整个芯片的EPROM 程序存储器写入一个非空字节,必须使用片擦除的方法将整个存储器的内容清楚。
2 编程方法编程前,设置好地址、数据及控制信号,编程单元的地址加在P1 口和P2 口的P2.0—P2.3(11 位地址范围为0000H——0FFFH),数据从P0口输入,引脚P2.6、P2.7 和P3.6、P3.7 的电平设置见表6,PSEB 为低电平,RST保持高电平,EA/Vpp 引脚是编程电源的输入端,按要求加上编程电压,ALE/PROG引脚输入编程脉冲(负脉冲)。
编程时,可采用4—20MHz 的时钟振荡器,89C51 编程方法如下:在地址线上加上要编程单元的地址信号在数据线上加上要写入的数据字节。
激活相应的控制信号。
在高电压编程方式时,将EA/Vpp 端加上+12v 编程电压。
每对Flash 存储阵列写入一个字节或每写入一个程序加密位,加上一个ALE/PROG 编程脉冲。
改变编程单元的地址和写入的数据,重复1—5 步骤,知道全部文件编程结束。
每个字节写入周期是自身定时的,通常约为1.5ms。
·数据查询89C51 单片机用数据查询方式来检测一个写周期是否结束,在一个写周期中,如需要读取最后写入的那个字节,则读出的数据的最高位(P0.7)是原来写入字节的最高位的反码。
写周期开始后,可在任意时刻进行数据查询。
2.1Ready/Busy:字节编程的进度可通过Ready/Busy 输出信号检测,编程期间,ALE 变为高电平“H”后P3.4(Ready/Busy)端被拉低,表示正在编程状态(忙状态)。
编程完成后,P3.4 变为高电平表示准备就绪状态。
·程序校验:如果加密位LB、LB2 没有进行编程,则代码数据可通过地址和数据线读回原编写的数据,采用下图的电路,程序存储器的地址由P1 口和P2 口的P2.0—P2.3 输入,数据由P0 口读出,P206、P2.7 和P3.6、P3.7 的控制信号见表6,PSEN 保持低电平,ALE、EA 和RST 保持高电平。
校验时,P0 口必须接上10k 左右的上拉电阻。
图2-1-1 编程电路图2-2-2 校验电路2.2芯片擦除:利用控制信号的正确组合(表6)并保持ALE/PROG 引脚10ms 的低电平脉冲宽度即可将EPROM 阵列(4k 字节)和三个加密位整片擦除,代码阵列在片擦除操作中将任何非空单元写入”1”,这步骤需在编程之前进行。