对数运算法则公式及其练习题

合集下载

对数及其运算的练习题(附答案)

对数及其运算的练习题(附答案)

姓名_______ §2.2.1 对数与对数运算一、课前准备 1,。

对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

2.对数的运算性质及换底公式.如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)nm mn b a =log (3)log aMN= ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b aba=log (7)ba b a nn log 1log =考点一: 对数定义的应用例1:求下列各式中的x 的值; (1)23log27=x; (2)32log 2-=x ; (3)9127log =x (4)1621log =x例2:求下列各式中x 的取值范围; (1))10(2log-x (2)22)x )1(log +-(x (3)21)-x )1(log (+x例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log3=x (2)6log 64-=x (3)9132-= (4)1641=x )(考点二 对数的运算性质1.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-)0(),2()1(log )0(),4(2x x f x f x x ,则f(3)的值为__________2.计算下列各式的值: (1)245lg 8lg 344932lg 21+- (2)8.1lg 10lg 3lg 2lg -+3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值4.计算: (1))log log log 582541252++()log log log 812542525++( (2)3473159725log log log log ∙∙+)5353(2log --+(3)求0.3252log 4⎛⎫ ⎪ ⎪⎝⎭的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.随堂练习:1.9312-=⎪⎭⎫⎝⎛写成对数式,正确的是( ) 2log .319-=A 2log .931-=B 9log .2-31=)(C 31log .2-9=)(D 2.=34349log( )A.7B.2C.32D.23 3.成立的条件yx xy 33)(3log log log +=( ) A.x>0,y>0 B.x>0,y<0 C.x<0.y>0 D.R y R x ∈∈, 4.,0,0,1,0>>≠>y x a a 若下列式子中正确的个数有( )①)(log log log y x a y a x a +=∙ ②)-(log log -log y x a y a x a = ③y ax a y x alog log log ÷= ④y a x a xy a log log log ∙= A.0 B.1 C.2 D.35.已知0log)2(log 3log 7=⎥⎦⎤⎢⎣⎡x ,那么21-x =( )A.31 B.321 C.221 D.3316已知x f x =)10(,则f(5)=( )A.510B.105C.105logD.lg57.若16488443log log log log =∙∙m ,则m=( ) A.21 B.9 C.18 D.278.设638323log 2log ,log -=则a ,用a 表示的形式是( )A.a-2B.2)1(3a +-C.5a-2D.132-+-a a 9.设a 、b 、c 均为正实数,且c b a 643==,则有( )A.b a c 111+=B.b a c 112+=C.b a c 2111+=D.ba c 212+=10若方程05lg 7lg lg )5lg 7(lg )lg 2=∙+++x x (的两根为βα,,则βα∙=( ) A.5lg lg7∙ B.35lg C.35 D.351 二.填空题11.若4123log =x ,则x=________ 12.已知______)21(,)lo (2==f x g f x 则13.已知lg2=0.3010,lg3=0.4771,lgx=-2+0.7781,则x=_________ 三.选做题(三题中任选两道)14.已知lgx+lgy=2lg(x-2y),求yx2log 的值15.已知2014log 4)3(32-=x f x ,求f(2)+f(4)+f(8)+.....+)2(1007f 的值 16.设a 、b 、c 均为不等于1的正数,且0111,=++==zyxc b a z y x ,求abc 的值附答案: 考点一:例1:1,x=9 2,223=x 3,32-=x 4,x=-4例2:1,x>0; 2,21≠>x x 且 3,101-≠≠>x x x 且且例3:1,33)(=x , 2,646=-x 3,2log 913-= 4,x =1641log 考点二:1,-2 2,(1)21 (2)213,x:y=1:2或x:y=3:1(x>0,y>0) 4, (1)13, (2)-1 (3)-21 (4)12+++a ab aab 随堂练习:一选择题:1B;2D;3A;4A;5C;6D;7B;8A;9C;10D(注意原方程的根为x,不是lgx,别弄错了) 二.三.填空题:11,91 12,2 13, 0.06三选做题:14, 4 15,2014 16,1。

对数运算练习及答案

对数运算练习及答案

对数运算法则训练题1、lg 5·lg 8000+06.0lg 61lg )2(lg 23++ 2、 lg 2(x +10)-lg(x +10)3=4.3、23log 1log 66-=x .4、9-x -2×31-x =275、x )81(=128.6、5x+1=123-x .7、10log 5log )5(lg )2(lg 2233++·.10log 188、 (1)lg 25+lg2·lg50; (2)(log 43+log 83)(log 32+log 92). 9、求121log 8.0--=x x y 的定义域.10、log 1227=a,求log 616. 11、已知f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1), 确定x 的取值范围,使得f(x)>g(x).12、已知函数f(x)=321121x x ⎪⎭⎫ ⎝⎛+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0.13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数.14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值.16、log 2(x -1)+log 2x=1 17、4x +4-x -2x+2-2-x+2+6=018、24x+1-17×4x +8=0 19、22)223()223(=-++-x x ±220、01433214111=+⨯------x x21、042342222=-⨯--+-+x x x x22、log 2(x -1)=log 2(2x+1)23、log 2(x 2-5x -2)=224、log 16x+log 4x+log 2x=725、log 2[1+log 3(1+4log 3x)]=126、6x -3×2x -2×3x +6=027、lg(2x -1)2-lg(x -3)2=228、lg(y -1)-lgy=lg(2y -2)-lg(y+2)29、lg(x 2+1)-2lg(x+3)+lg2=030、lg 2x+3lgx -4=0部分答案2、解:原方程为lg 2(x +10)-3lg(x +10)-4=0,∴[lg(x +10)-4][lg(x +10)+1]=0.由lg(x +10)=4,得x +10=10000,∴x=9990.由lg(x +10)=-1,得x +10=0.1,∴x=-9.9.检验知: x=9990和-9.9都是原方程的解.3、解:原方程为36log log 626=x ,∴x 2=2,解得x=2或x=-2. 经检验,x=2是原方程的解, x=-2不合题意,舍去.4、解:原方程为2)3(x --6×3-x -27=0,∴(3-x +3)(3-x -9)=0.∵3-x +3≠0,∴由3-x -9=0得3-x =32.故x=-2是原方程的解.5、 解:原方程为x 32-=27,∴-3x=7,故x=-37为原方程的解. 6、解:方程两边取常用对数,得:(x +1)lg5=(x 2-1)lg3,(x +1)[lg5-(x -1)lg3]=0. ∴x +1=0或lg5-(x -1)lg3=0.故原方程的解为x 1=-1或x 2=1+5log 3. 8、 (1)1;(2)45 9、 函数的定义域应满足:⎪⎩⎪⎨⎧>≥-≠-,0,01log ,0128.0x x x 即⎪⎪⎩⎪⎪⎨⎧>≥≠,0,1log ,218.0x x x解得0<x ≤54且x ≠21,即函数的定义域为{x|0<x ≤54且x ≠21}. 10、 由已知,得a=log 1227=12log 27log 33=2log 2133+,∴log 32=a a 23- 于是log 616=6log 16log 33=2log 12log 433+=aa +-3)3(4. 11、 若a >1,则x <2或x >3;若0<a <1,则2<x <312、 (1)(-∞,0)∪(0,+∞);(2)是偶函数;(3)略.13、 2个14、 设log 927=x,根据对数的定义有9x =27,即32x =33,∴2x=3,x=23,即log 927=23.15、 对已知条件取以6为底的对数,得a 2=log 63, b1=log 62, 于是a 2+b1=log 63+log 62=log 66=1. 16、x=2 17、x=0 18、x=-21或x=23 19、x=±120、x=37 21、x=23 22、x ∈φ 23、x=-1或x=6 24、x=16 25、x=3 26、x=127、x=829或x=1231 28、y=2 29、x=-1或x=7 30、x=10或x=10-4。

对数函数加减运算法则公式

对数函数加减运算法则公式

对数函数加减运算法则公式好的,以下是为您生成的文章:咱们今天来好好聊聊对数函数的加减运算法则公式,这玩意儿在数学里可重要着呢!先给您讲讲对数函数的基本概念哈。

就说对数函数y = logₐx ,其中a 是底数,x 是真数。

这底数 a 得大于 0 且不等于 1 ,真数 x 也得大于0 。

您可别嫌我啰嗦,把这些基础弄清楚了,后面理解运算法则就容易多啦。

那咱们进入正题,说说对数函数的加减运算法则。

logₐM + logₐN = logₐ(MN) ,这就好比把两个数的对数加起来,就等于这两个数相乘的对数。

举个例子吧,比如说 log₂4 + log₂8 ,咱们先分别算出 log₂4 = 2 ,log₂8 = 3 ,那按照这个法则,log₂4 + log₂8 就等于 log₂(4×8) =log₂32 = 5 。

再看这个法则logₐM - logₐN = logₐ(M/N) ,这就是说两个数的对数相减,等于这两个数相除的对数。

我给您讲个我曾经遇到的事儿,有一次我在课堂上讲这个知识点,有个同学特别较真儿,就问我:“老师,这法则到底咋用啊?”我就给他举了个例子,我说假如你有 8 个苹果,要平均分给 4 个人,那每人能分到几个?这就是 8÷4 = 2 嘛。

那换成对数函数,log₂8 - log₂4 就等于 log₂(8÷4) = log₂2 = 1 。

这么一解释,那同学恍然大悟。

咱们接着说哈,在运用这些法则的时候,一定要注意底数得相同。

要是底数不同,那得先想办法把底数变成相同的,这就可能要用到换底公式啦。

还有啊,有时候题目里给的不是对数的形式,而是指数的形式,那您就得灵活转换。

比如说 a^m = N ,那logₐN = m 。

这就像变魔术一样,换个形式,问题可能就迎刃而解啦。

总之,对数函数的加减运算法则公式虽然看起来有点复杂,但只要您多做几道题,多琢磨琢磨,肯定能掌握得牢牢的。

就像学骑自行车,一开始可能摇摇晃晃,但练得多了,就能骑得又稳又快!相信您在数学的海洋里,也能凭借这些法则乘风破浪,勇往直前!。

对数运算法则公式及其练习题

对数运算法则公式及其练习题
对数运算法则公式

7、
1、求值:
1、log89log2732 2、
3、 4、
5、 6、
7、 8、log427·log94+log4 ;
9、(log2125+log425+log85)(log52+log254+log1258)
10、log932·log6427+log92·log4 .
3、月球是距离地球最近的星球直径大约是地球的1/4,质量大约是地球的1/80,月球体积大约是地球的1/49,月球引力大约是地球的1/6。9.利用对数恒等式 ,求下列各式的值:
23、我国是世界上公认的火箭的发源地,早在距今1700多年前的三国时代的古籍上就出现了“火箭”的名称。(1)
一、填空:
(2)
10.已知 , ,用 、 的代数式表示 =________.

将其中正确等式的代号写在横线上______________.
8.化简下列各式:
22、绿色植物的一些细胞能进行光合作用,制造养料,它们好像是一个个微小的工厂。(1) (2)
15、在显微镜下,我们看到了叶细胞中的叶绿体,还看到了叶表皮上的气孔。(3)
11、显微镜的发明,是人类认识世界的一大飞跃,把有类带入了一个崭新的微观世界。为了看到更小的物体,人们又研制出了电子显微镜和扫描隧道显微镜。电子显微镜可把物体放大到200万倍。
1. 的值是
2. 的值是
3. 的值是
4.若 时,则 与 的关系是
A. B.
C. D.
5. 的值是
11、火药是我国的四大发明之一,我国古代的黑火药是硝石、硫黄、木炭以及一些辅料等粉末状物质的均匀混合物。迄今为止,可以考证的最早的火药配方是“伏火矾法”。A.0 B.1 C. D.

对数的运算法则及公式例题

对数的运算法则及公式例题

对数的运算法则及公式例题
对数的运算法则主要包括以下几个方面:
1. 对数的乘法法则:
logₐ(MN) = logₐM + logₐN
2. 对数的除法法则:
logₐ(M/N) = logₐM - logₐN
3. 对数的幂法法则:
logₐMᵇ= b * logₐM
4. 对数的换底法则:
logₐM = logᵦM / logᵦa
公式例题:
1. 求log₃(9)的值。

解:根据对数的定义,3的多少次方等于9,很明显3的2次方等于9,即log₃(9) = 2。

2. 求log₄(16)的值。

解:同样根据对数的定义,4的多少次方等于16,显然4的2次方等于16,因此log₄(16) = 2。

3. 求log₂(8)的值。

解:根据对数的定义,2的多少次方等于8,很明显2的3次方等于8,即log₂(8) = 3。

4. 求log₈(2)的值。

解:根据对数的定义,8的多少次方等于2,很明显8的-1次方等于2,因此log₈(2) = -1。

5. 求log₅(25)的值。

解:根据对数的定义,5的多少次方等于25,很明显5的2次方等于25,因此log₅(25) = 2。

对数函数的运算法则

对数函数的运算法则

对数函数的运算法则对数函数是数学中的重要概念,广泛应用于各个领域,具有许多重要的运算法则。

在本文中,将详细介绍对数函数的运算法则,包括对数的乘法法则、对数的除法法则、对数的幂法法则以及对数的换底法则。

1.对数的乘法法则:对数的乘法法则是指,在相同底数下,两个数的对数的和等于这两个数的乘积的对数。

具体表达式为:log_a(x * y) = log_a(x) + log_a(y)。

例如,log_2(4 * 8) = log_2(4) + log_2(8) = 2 + 3 = 52.对数的除法法则:对数的除法法则是指,在相同底数下,两个数的对数的差等于这两个数的商的对数。

具体表达式为:log_a(x / y) = log_a(x) - log_a(y)。

例如,log_2(16 / 4) = log_2(16) - log_2(4) = 4 - 2 = 23.对数的幂法法则:对数的幂法法则是指,在相同底数下,一个数的对数与这个数的幂之间存在关系。

具体表达式为:log_a(x^b) = b * log_a(x)。

例如,log_3(4^2) = 2 * log_3(4)。

4.对数的换底法则:对数的换底法则是指,可以通过换底公式将一个底数为a的对数转化为底数为b的对数。

具体表达式为:log_a(x) = log_b(x) / log_b(a)。

例如,log_2(16) = log_10(16) / log_10(2)。

通过运用以上的对数函数的运算法则,可以简化对数函数的运算和求解过程。

对数函数的运算法则在数学的各个领域中都有广泛的应用,特别是在解决指数增长、复利计算、数据压缩等问题中具有重要作用。

此外,还有一些其他的对数函数的运算法则值得注意,包括:- 对数的对数法则:log_a(log_a(x)) = 1,即对数的反函数是指数函数。

-对数函数的性质:对数函数的图像为一条增长缓慢的曲线,且在定义域内满足单调性和有界性。

对数的运算及换底公式2012.10.27

对数的运算及换底公式2012.10.27
对数的运算及换底公式
关系: 1.关系: a b = N
指数式
b = log a N
对数式
a
指数式 a b = N 对数式 log a N = b 底数 对数的底数
N
幂 真数
b
指数 对数
2.特殊对数:1)常用对数 — 以10为底的对数;lg N 特殊对数: ) 为底的对数; 特殊对数 为底的对数 2)自然对数— 以 e 为底的对数;ln N )自然对数 为底的对数; 3.重要结论:1)log a a = 1;2)log a 1 = 0 重要结论: ) 重要结论 ; ) 4.对数恒等式:a log a N = N 对数恒等式: 对数恒等式
n N = log a N m
n
(a, c ∈ (0,1) U (1,+∞), N > 0) a, b ∈ (0,1) U (1,+∞)
1、计算: (1) log 5 35 -2log 5 、计算:
7 + log 5 7 -log 5 1. 8 3
(2) lg 2 5 + lg 2 lg 5 + lg 2
解法一: 解法一: 解法二: 解法二:
7 7 lg 14 − 2 lg + lg 7 − lg 18 lg 14 − 2 lg + lg 7 − lg 18 3 3 7 7 2 = lg 14 − lg( ) + lg 7 − lg 18 = lg(2 × 7) − 2 lg 3 3 2 + lg 7 − lg(2 × 3 ) 14 × 7 = lg 7 2 = lg 2 + lg 7 − 2(lg 7 − lg 3) ( ) × 18 3 + lg 7 − (lg 2 + 2 lg 3) = lg 1 = 0 =0

对数的运算及对数函数

对数的运算及对数函数

§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。

对数及其运算基础知识及例题

对数及其运算基础知识及例题

对数及其运算基础知识及例题1、定义:对数是指用一个数b(b>0且不等于1)作为底数,将一个正数a表示成幂b的指数的形式,即a=b^x(x为实数),则x称为以b为底a的对数,记作logb a。

2、性质:①logb 1=0(b>0且不等于1)②logb b=1(b>0且不等于1)③logb (mn)=logb m+logb n(m>0,n>0,b>0且不等于1)④logb (m/n)=logb m-logb n(m>0,n>0,b>0且不等于1)⑤logb m^k=klogb m(m>0,b>0且不等于1,k为任意实数)3、对数的运算性质:①logb (mn)=logb m+logb n②logb (m/n)=logb m-logb n③logb m^k=klogb m④logb (a^k)=klogb a⑤logb a=logc a/logc b(b>0,且不等于1,c>0,且不等于1)4、换底公式:XXX b(b>0,且不等于1,c>0,且不等于1)5、对数的其他运算性质:①logb a=logb c,则a=c②logb a=logc a/logc b=logd a/logd b6、常用对数和自然对数:常用对数:以10为底数的对数,记作XXX。

自然对数:以自然常数e(e≈2.)为底数的对数,记作ln。

典型例题】类型一、对数的概念例1.求下列各式中x的取值范围:1)log2(x-5)≥0;(2)log(x-1)-log(x+2)0.改写为:1)x≥5;2)x>1且x<2;3)x>1且x1且x>1.类型二、指数式与对数式互化及其应用例2.将下列指数式与对数式互化:1)log2 16=4;(2)log1/27=-3;(3)log3 1/2= -1/log2 3;(4)53=125;(5)2^-1=1/2;(6)(1/3)^x=9.改写为:1)2^4=16;2)1/27=3^-3;3)3^-1/2=2/log2 3;4)5^3=125;5)2^-1=1/2;6)x=log(1/3)9/log(1/3)2.类型三、利用对数恒等式化简求值1+log5 77=log5 500.类型四、积、商、幂的对数例4.用loga x,loga y,loga z表示下列各式:1)loga (xy/z)=loga x+loga y-loga z;2)loga (xy)=loga x+loga y;3)loga (x^2/y^3z)=2loga x-3loga y-loga z;4)loga (x^2y^3/z)=2loga x+3loga y-loga z。

对数及其运算的练习题(附答案)

对数及其运算的练习题(附答案)

姓名_______ §2.2.1 对数与对数运算一、课前准备 1,。

对数:定义:如果a N a a b=>≠()01且,那么数b 就叫做以a 为底的对数,记作b Na =l o g (a 是底数,N 是真数,lo g a N 是对数式。

) 由于N a b=>0故lo g a N 中N 必须大于0。

2.对数的运算性质及换底公式.如果 a > 0,a ≠ 1,b>0,M > 0, N > 0 ,则:(1)log ()a MN = ; (2)nm mn b a =log (3)log aMN= ;(4) log n a M = . (5) b a b a =log 换底公式log a b = . (6) b aba=log (7)ba b a nn log 1log =考点一: 对数定义的应用例1:求下列各式中的x 的值; (1)23log27=x; (2)32log 2-=x ; (3)9127log =x (4)1621log =x例2:求下列各式中x 的取值范围; (1))10(2log-x (2)22)x )1(log +-(x (3)21)-x )1(log (+x例3:将下列对数式化为指数式(或把指数式化为对数式) (1)3log3=x (2)6log 64-=x (3)9132-= (4)1641=x )(考点二 对数的运算性质1.定义在R 上的函数f(x )满足f(x)=⎩⎨⎧>---≤-)0(),2()1(log )0(),4(2x x f x f x x ,则f(3)的值为__________2.计算下列各式的值: (1)245lg 8lg 344932lg 21+- (2)8.1lg 10lg 3lg 2lg -+3.已知)lg(y x ++)32lg(y x +-lg3=lg4+lgx+lgy,求x:y 的值4.计算: (1))log log log 582541252++()log log log 812542525++( (2)3473159725log log log log ∙∙+)5353(2log --+(3)求0.3252log 4⎛⎫ ⎪ ⎪⎝⎭的值 (4):已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.随堂练习:1.9312-=⎪⎭⎫⎝⎛写成对数式,正确的是( ) 2log .319-=A 2log .931-=B 9log .2-31=)(C 31log .2-9=)(D 2.=34349log( )A.7B.2C.32D.23 3.成立的条件yx xy 33)(3log log log +=( ) A.x>0,y>0 B.x>0,y<0 C.x<0.y>0 D.R y R x ∈∈, 4.,0,0,1,0>>≠>y x a a 若下列式子中正确的个数有( )①)(log log log y x a y a x a +=∙ ②)-(log log -log y x a y a x a = ③y ax a y x alog log log ÷= ④y a x a xy a log log log ∙= A.0 B.1 C.2 D.35.已知0log)2(log 3log 7=⎥⎦⎤⎢⎣⎡x ,那么21-x =( )A.31 B.321 C.221 D.3316已知x f x =)10(,则f(5)=( )A.510B.105C.105logD.lg57.若16488443log log log log =∙∙m ,则m=( ) A.21 B.9 C.18 D.278.设638323log 2log ,log -=则a ,用a 表示的形式是( )A.a-2B.2)1(3a +-C.5a-2D.132-+-a a 9.设a 、b 、c 均为正实数,且c b a 643==,则有( )A.b a c 111+=B.b a c 112+=C.b a c 2111+=D.ba c 212+=10若方程05lg 7lg lg )5lg 7(lg )lg 2=∙+++x x (的两根为βα,,则βα∙=( ) A.5lg lg7∙ B.35lg C.35 D.351 二.填空题11.若4123log =x ,则x=________ 12.已知______)21(,)lo (2==f x g f x 则13.已知lg2=0.3010,lg3=0.4771,lgx=-2+0.7781,则x=_________ 三.选做题(三题中任选两道)14.已知lgx+lgy=2lg(x-2y),求yx2log 的值15.已知2014log 4)3(32-=x f x ,求f(2)+f(4)+f(8)+.....+)2(1007f 的值 16.设a 、b 、c 均为不等于1的正数,且0111,=++==zyxc b a z y x ,求abc 的值附答案: 考点一:例1:1,x=9 2,223=x 3,32-=x 4,x=-4例2:1,x>0; 2,21≠>x x 且 3,101-≠≠>x x x 且且例3:1,33)(=x , 2,646=-x 3,2log 913-= 4,x =1641log 考点二:1,-2 2,(1)21 (2)213,x:y=1:2或x:y=3:1(x>0,y>0) 4, (1)13, (2)-1 (3)-21 (4)12+++a ab aab 随堂练习:一选择题:1B;2D;3A;4A;5C;6D;7B;8A;9C;10D(注意原方程的根为x,不是lgx,别弄错了) 二.三.填空题:11,91 12,2 13, 0.06三选做题:14, 4 15,2014 16,1。

对数的运算法则及公式

对数的运算法则及公式

对数的四则运算法则
总结词
对数的四则运算法则是 log(M)+log(N)=log(MN),log(M)log(N)=log(M/N), log(M)*log(N)=log(M)+log(N), log(M)/log(N)=log(M)-log(N),其中M和 N都为正数。
详细描述
对数的四则运算法则包括加法、减法、乘法 和除法。在加法中,
例题二:对数的换底公式应用题
要点一
总结词
要点二
详细描述
换底公式是解决对数应用题的重要工具。
换底公式是log_b(a) = log_c(a) / log_c(b),其中c可以是 任何正实数,但通常取为10或自然对数e。利用换底公式 可以将不同底数的对数转化为同底的对数,从而简化计算 。
例题三:对数的四则运算法则应用题
对数的运算性质
换底公式
log(a)b=log(c)a/log(c)b,其 中c为任意正实数,但通常取e
或10。
对数的乘法法则
log(a)b+log(a)c=log(a)b×c。
对数的除法法则
log(a)b/c=log(a)b-log(a)c。
复合对数
对于形如log(a)(b)×log(a)(c)的 式子,可以转化为
对数的书写规范
01
在数学符号中,对数的书写要 规范,如log_b(N)中,底数b 不能省略不写。
02
对数的书写顺序一般为先写底 数,后写真数,如log_a(N)。
03
当底数为10时,常用lg表示, 当底数为e时,常用ln表示。
对数的单位转换
对数的单位转换是指将不同底的对数转换为同一底 的对数。
对数的单位转换可以通过换底公式实现,换底公式 为:log_b(N) = log_c(N) / log_c(b),其中c为任意 正实数。

对数、指数的运算练习及答案

对数、指数的运算练习及答案

高一对数的运算公式,幂的运算公式.1.幂的有关概念:(1)正整数指数幂:na = (*n N ∈). (2)零指数幂: 01(a a =≠ ). (3)负整数指数幂:p a -= *(0,)a p N ≠∈.(4)正分数指数幂:m n a = *(0,,n 1)a m N n >∈>且 (5)负分数指数幂:m na-= *(0,,n 1)a m N n >∈>且(6)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.根式:(1)如果一个数的n 次方等于a ()*1n n N >∈且,那么这个数叫做a 的n 次方根.(2)0的任何次方根都是0,0=.(3),n 叫做根指数,a 叫做被开方数.(4)n= .(5)当n 为奇数时= . (6)当n 为偶数时, = = .3.指数幂的运算法则:(1)rsa a ⋅= (0,,)a r s R >∈. (2)rs a a= (0,,)a r s R >∈.(3)()rab = (0,0,)a b r R >>∈. (4)()sra= (0,,)a r s R >∈.二.对数1.对数的定义:如果(0ba N a =>≠且a 1),那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做 , 叫做真数.2.对数的运算法则:若0a >≠且a 1,0,0M N >>,那么(1)MN a log = . (2)MNa log = . (3)nM a log = . 3.特殊对数:(1)1a log = ; (2)a a log = . (其中0a >≠且a 1) 4.对数的换底公式及对数恒等式(1)Naa log = (对数恒等式). (2)NN a=b a b log log log (换底公式);(3)1b a=a b log log ; m N =n a log (换底公式的推论)【基础练习】1.对于0,1a a >≠,下列说法中,正确的是( ) C (1)若M=N,则log log a a M N =; (2)若log log a a M N =,则M=N; (3)若22log log a a M N =,则M=N; (4)若M=N,则22log log a a M N =.A.(1)(3)B.(2)(4)C.(2)D. (1)(2)(3)(4) 2.若0,1a a >≠,且x>0,y>0,x>y,则下列式子中正确的个数有( ) A (1)()log log log a a a x y x y ⋅=+;(2)()log log log a a a x y x y -=+; (3)log log log a a a x x y y ⎛⎫=÷⎪⎝⎭;(4)()log log log a a a xy x y =⋅ A.0个 B.1个 C.2个 D.3个3.下列各式中成立的一项是( ) DA.7177n n m m ⎛⎫= ⎪⎝⎭B.()34x y =+=4.= . 21a 【典例分析】题型一:指数幂的运算例1. 化简下列各式:(1) 1.5230.027-⎛⎫ ⎪⎝⎭100027(2)12133113344x y z x y z ---⎛⎫⎛⎫⋅⋅⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ 2xz-12a-变式训练1⎛⎝251212a-例2 . 化简132111333311111x x x xx x x x-+-+-+++-13x-变式训练2:化简(1)()()()()33334411a a a a a a a a----⎡⎤+-÷++-⎣⎦1a a-+ (2)()111221x x x x--⎛⎫++-⎪⎝⎭3322x x--题型二:对数式的运算例3.计算(log3123)2-3log23-+log0.2514+9log23l o g92变式训练3: 化简或求值:(1)()266661log3log2log18log4⎡⎤-+⋅÷⎣⎦ 1(2) 4例4.已知18log 9,185b a ==,求36log 25(用a,b 表示).22ba-.变式训练4:设603,605,a b ==试求12(1)12a b b ---的值. 2题型三:综合应用例5.若正整数m 满足-151210210m m <<,则 m= ()lg20.3010≈. 155变式训练5:(1)已知35abc ==,且112a b+=,则c 的值为( ) B(2)方程的111122log (95)log 32x x ---=-解是 . 3log 15【当堂检测】1. 求值:()222lg 5lg8lg 5lg 20lg 23++⋅+ 32.111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭1ab -3.已知11225x x-+=,求21x x+的值. 234. 求值:((2log 2 -1【自我检测】(C 级) 1.设137x=则( ) AA.-2<x<-1B. -3<x<-2C. -1<x<0D. 0<x<1(C 级) 2. 已知2log 3,37b a ==,求log (用a,b 表示)()22a aba b +++(B 级) 3.已知0<x<1,且235log log log x y z ==,则将111352,,x y z 按从小到大的顺序排列为 15z ,12x ,13y(C 级) 4. 求值:()2lg 5lg 50lg 2+⋅ 1(C 级) 5. 求值:()()3948log 2log 2log 3log 3+⋅+ 54(B 级)6.已知函数()xxf x a a -=+(0,1a a >≠),且f(1)=3,则f(0)+f(1)+f(2)的值是 .12(B 级)7.设函数()log a f x x = (0,1a a >≠)且,若122007()8f x x x ⋅⋅= ,则222122007()()()f x f x f x +++ 的值等于( )A.4B.8C.16D.2log 8a c(A 级)8.若1928,93x y y x +-==则x+y= ( )A.18B.24C.27D.21 c9. (2011·重庆高考文科)设11332124a log ,b log ,c log ,233===则c b a ,,的大小关系是( )(A) c b a << (B) a b c << (C) c a b << (D) a c b <<10.(2011·四川高考理科)计算121(lg lg 25)1004--÷= .。

对数与对数的运算

对数与对数的运算

对数与对数运算基础知识扫描:1、概念:一般地,如果ba N =)1,0(≠>a a ,那么数b 叫做以a 为底 N 的对数. 记作 ,其中a 叫做对数的底数,N 叫做真数.2、重要公式:⑴负数与零没有对数; ⑵log 1________a =,log a a =⑶对数恒等式log __________________.a N a =n a na =log 3、对数的运算法则:如果 a >0,a ≠ 1,M >0, N >0 有:=)(log MN a ,=NMalog ,=n a M log .log a N n=nlog a N (n ∈R)知识点一 对数的概念 1、如果a 的b 次幂等于N : ,其中隐藏条件为a >0, a ≠1 N >0 2、常用对数:通常把常用对数10log N 简记为lg N 例如:5log 10简记作lg5;3、自然对数: 以e=2.71828……e 为底的对数叫自然对数,并把自然对数N e log 简记作N ln 例1、求使对数)5(log 2a b a -=-有意义的a 取值范围.例2、将下列指数式写成对数式,对数式写成指数式.(1)62554=; (2)73.531=m)( ; (3)416log 21-= ; (4)303.210ln =知识点二 对数的化简、求值 例3、求下列各式中的x 的值.(1)32log 64-=x ; (2)68log =x ; (3)x =100lg ; (4)x e =-2ln例4、计算.(1)27log 9; (2)81log 3; (3)125log 5; (4)()()32log 32-+例5、计算.(1) 18lg 7lg 37lg 214lg -+-; (2) 5lg 2lg )5(lg 2⋅+.例6、已知3010.02lg =,4771.03lg =, 求108lg ._____(01)a b c =>≠换底公式:log 且c log log 1a b b a ∙=log log m na a nN N m=⇔=N a b例7、计算. (1);25log 20lg 100+ (2) 3log 12.05+; (3)4log 16log 327.例8、已知 2log 3 = a , 3log 7 = b ,用b a ,表示42log 56.巩固练习一:一、选择题 1、25)(log 5a -(a ≠0)化简得结果是( ) A 、-aB 、a 2C 、|a |D 、a2、log 7[log 3(log 2x )]=0,则21-x 等于( )A 、31B 、321 C 、221 D 、3313、nn ++1log(n n -+1)等于( )A 、1B 、-1C 、2D 、-24、已知32a=,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a - 5、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 6、若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b 二、填空题8、若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________ 9、若lg2=a ,lg3=b ,则log 512=________ 11、若2log 2,log 3,m na a m n a+===___________________12、lg25+lg2lg50+(lg2)2= 三、解答题13、222522122(lg )lg lg (lg )lg +⋅+-+14、若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(ba ab ⋅的值。

对数函数题型例题及练习

对数函数题型例题及练习

对数与对数函数例题及习题一、对数 (一)、对数的基本知识点1、定义: 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a 即有:⇔=N a b )1,0(log ≠>=a a N b a2、性质:①零与负数没有对数 ②01log =a ③1log =a a ;3、恒等式:N a N a =log ;b a b a =log )1,0(≠>a a4、运算法则:N M MN a a a log log log )1(+=N M NMa a a log log log )2(-=M n M a n a log log )3(= 其中a>0,a≠0,M>0,N>0 5、换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 (二)、题型题型一.对数式的化简和运算 例1 计算:练习 求下列各式的值:例2 用x a log ,y a log ,z a log 表示下列各式:;(1)log zxya 32log )2(zyx a例3计算:(1)1log 2log 2a a +; (2)33log 18log 2-; (3)1lg lg 254-;(4)552log 10log 0.25+; (5)522log 253log 64+; (6)22log (log 16)。

换底公式的应用: a b b c c a log log log ==ablg lg (0>a ,且1≠a ;0>c ,且1≠c ;0>b )1.设a =2lg ,b =3lg ,试用a 、b 表示12log 5。

2.设a =7log 14,514=b ,试用a 、b 表示28log 35题型二:指数与对数的互化即:N x N a a x log =⇔= (10≠>a a 且) 反函数1 概念:函数y=f (x )的定义域为A ,值域为c ,由y=f (x )得x=φ(y ) 函数y=φ(x )是y=f (x )的反函数。

对数与对数运算专题

对数与对数运算专题

对数与对数运算第一部分:知识清单 1.几个对数恒等式:(1)负数和零没有对数;(2)log a 1=0(a >0,且a ≠1); (3)log a a =1(a >0,且a ≠1). (4)对数恒等式a log a N =N 2.对数的运算性质如果a >0,且a ≠1,M >0,N >0那么: (1)log a (M ·N )=log a M +log a N . (2)log a M N=log a M -log a N . (3)log a M n =n log a M (n ∈R). 3.换底公式log a b =log c blog c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 牢记换底公式的三个常用推论(1)推论一:log a c ·log c a =1.此公式表示真数与底数互换,所得的对数值与原对数值互为倒数.(2)推论二:log a b ·log b c ·log c a =1.(3)推论三:log a m b n =n mlog a b .此公式表示底数变为原来的m 次方,真数变为原来的n 次第二部分:微题快测一、对数的定义域(注:学生在解对数不等式、方程的时候常常忽略定义域) 1.若b =log a (5-a ),则( )A.⎩⎨⎧a >0,5-a >0, B.⎩⎨⎧a ≠1,5-a >0,C.⎩⎨⎧a >0,5-a ≠1,5-a >0,D.⎩⎨⎧a >0,a ≠1,5-a >0,答案:D2.若b =log a (1+a ),则( )A.⎩⎨⎧a >0,1+a >0,B.⎩⎨⎧a >0,a ≠1,1+a >0,C.⎩⎨⎧a >0,1+a >0,D.⎩⎨⎧a >0,1+a ≠1,1+a >0,答案:B3.若b =log (a -1)a ,则( )A.⎩⎪⎨⎪⎧a >0,a-1>0,a ≠1 B.⎩⎨⎧a >0,a-1≠1,a-1>0, C.⎩⎨⎧a >0,a-1>0, D.⎩⎨⎧a ≠1,1+a >0,答案:B4.若b =log (a -2)a ,则( )A.⎩⎪⎨⎪⎧a >0,a-2>0,a ≠1B.⎩⎪⎨⎪⎧a ≠1,a-2>0,C.⎩⎪⎨⎪⎧a >0,a-2≠1,D.⎩⎪⎨⎪⎧a >0,a-2>0,a-2≠1答案:D5.若b =log (a -2)(6-a ),则( )A.⎩⎪⎨⎪⎧a-2>0,6-a >0,a-2≠1B.⎩⎪⎨⎪⎧a-2≠1,6-a >0,C.⎩⎪⎨⎪⎧a-2>0,6-a >0,6-a ≠1D.⎩⎪⎨⎪⎧a-2>0,6-a ≠1,答案:A6.若a =log (b+8)b ,则( )A.⎩⎪⎨⎪⎧b+8>0,b >0,b+8≠1B.⎩⎪⎨⎪⎧b+8≠1,b >0,C.⎩⎪⎨⎪⎧b+8>0,b ≠1,D.⎩⎪⎨⎪⎧b+8>0,b >0,b ≠1答案:A 7.若b =log1x-1(6-x ),则( )A.⎩⎨⎧1x-1>0,6-x >0,6-x ≠1B.⎩⎨⎧1x-1≠1,6-x >0,C.⎩⎨⎧6-x >0,1x-1≠1,D.⎩⎪⎨⎪⎧1x-1>0,6-x >0,1x-1≠1答案:D8.若m =log(n +1)n ,则( )A.⎩⎪⎨⎪⎧n +1>0,n >0,n ≠1B.⎩⎪⎨⎪⎧n +1>0,n >0,n +1≠1C.⎩⎪⎨⎪⎧n >0,n +1≠1D.⎩⎪⎨⎪⎧n +1>0,n ≠1,答案:B9.若m =log(a 2-1)a ,则( )A.⎩⎪⎨⎪⎧a 2-1>0,a >0,a ≠1B.⎩⎪⎨⎪⎧a 2-1>0,a >0,a 2-1≠1C.⎩⎪⎨⎪⎧a >0,a 2-1>0D.⎩⎪⎨⎪⎧a 2-1>0,a ≠1,B.答案:B10.若a=log ⎝ ⎛⎭⎪⎫2x x-2(6-x )3,则( ) A.⎩⎨⎧2xx-1>0,(6-x )3>0,(6-x )3≠1B.⎩⎨⎧2x x-1≠1,(6-x )3>0,C.⎩⎪⎨⎪⎧2xx-1>0,(6-x )3>0,2x x-1≠1 D.⎩⎨⎧(6-x )3>0,2x x-1≠1,答案:C二、同底法解对数方程(注:同底法解对数方程算是一个必拿分的知识点,然而学生对此遗忘频率非常高,失分非常严重) 1.若log 2x =1,则x =( )A. 1B. 2C. 4D.-1 答案:B2.若log 3x =-1,则x =( )A. 3B. 13 C.4 D. 9答案:B3.若lg x=1,则x=()A. 10B.1100C.110D.1e答案:A4.若ln x=0,则x=()A. 1B.1100C.110D.1e答案:A4.若ln x=1,则x=()A. eB. 0C. -eD. 1e答案:A5.若log2x=1024,则x=()A. 2B. 1024C. 21024D. 10 答案:C7.若log2x=3,则x=()A. 5B. 9C. 6D. 8答案:D8.若log2x=3,则x=()A. 5B. 9C. 6D. 8答案:D9.若log2x+1 =2,则x=()A. 15B. 8C. 3D. 0答案:A10.若lg x=2,则x=()A. 10B. 100C.110 D.1100答案:B11.若log2(x-1)=2,则x=()A. 3B. 5C. 7D. 9 答案:B12.若log3||x=2,则x=()A. 3B. ±3C.9D. ±9 答案:D13.若log2||x-1=2,则x=()A.-3或5B.3或-1C.±5D.2或0 答案:A14.若log2错误!=1,则x=()A. 2B.± 2C.22D.±22答案:B三、对数的加减运算(注:对数的运算法则是一个必拿分的知识点,然而学生对此遗忘频率非常高,失分非常严重)1.计算log510-log52等于( )A.log58 B.lg 5 C.1 D.2 答案:C2.计算log52+log53等于( )A.log56 B.log55 C.lg6 D.ln6答案:A3.计算log x2+log x3等于( )A.log x6 B.log x 5 C.lg6 D.ln6 答案:A4.计算log22+log28等于( )A.log210 B. 6 C.4 D.2 答案:C5.计算lg100+lg10等于( )A.1000B.10C.3D.1答案:C6.计算lg100-lg10等于( )A.1000B.10C.3D.1 答案:D7.计算lg2+lg5等于( )A.10B.lg7C.lg ⎝ ⎛⎭⎪⎫25 D.1答案:D8.计算ln e+ln(2e )等于( )A.1+ln2B.1-ln2C.2+ln2D.ln(2e ·e ) 答案:C9.计算log 23+log 25+log 21等于( )A.log 215B.log 29C.4D.log 28 答案:A10.计算log 2(2x +2)-log 2(x +1)等于( )A.log 2(x +1)B.log 2(3x +3)C.log 23D.1 答案:D11.下列各式计算结果为log 2⎝ ⎛⎭⎪⎫57的是( )A.log 25-log 27B.log 25+log 27C.log 52-log 72D.log 52+log 72 答案:A12.计算lg e +lg2等于( )A.lg(2e )B.log 2 e C .lg ()e 2 D.lg ⎝ ⎛⎭⎪⎫e 2答案:A13.计算lg6-lg2+lg 13等于( )A.1B.0C.lg 133D.lg 43答案:B14.计算log 2()x 2-1-log 2()x -1-log 2()x+1等于( ) A.log 2()x -1 B.log 2()x+1 C.1 D.0 答案:D15.计算log 4(x+1)-log 4(x -1)等于( )A.log 42B.log 4⎝ ⎛⎭⎪⎫x+1x -1C.log 4()2xD.log 4()x 2-1答案:B16.下列各式计算结果为log 2错误!的是( ) A.log 2()x -1+log 2(x +1)+log 2(x 2+1)B.log 2()x -1+log 2(x +1)-log 2(x 2+1)C.log 2()x -1-log 2(x +1)-log 2(x 2+1)D.-log 2()x -1-log 2(x +1)-log 2(x 2+1)答案:A四、对数的乘法运算(注:用换底公式计算对数的乘法运算是一个必拿分的知识点,然而学生对此遗忘频率非常高,失分非常严重) 1.log 35·log 59等于( )A .log 1545B .log 814C .1D .2 答案:D2.log 95·log 253等于( )A .2B .4C .12D .14答案:D3.log 29·log 38等于( )A .2B .4C .6D .8 答案:C4.log 38·log 227等于( )A .1B .3C .6D .9 答案:D5.log 98·log 23等于( )A .32B .23C .34D .43答案:A6.log 38·log 83等于( )A .0B .1C .-1D .4 答案:B7.log 38·log 89·log 93等于( )A .0B .1C .-1D .±1 答案:B8.log 23·log 34·log 45·log 52等于( ) A .0 B .1 C .-1 D .4 答案:B9.log 34·log 1627等于( )A .32B .23C .94D .49答案:A 10.log 4127·log 32等于( ) A .32 B .23 C .-32 D .-23答案:C11.log 23·log 38·log 416等于( ) A .2 B .4 C .6 D .8 答案:C12.log (x -1)2·log 8(x 2-2x +1)等于( ) A .23 B .32 C .-23 D .-32答案:A13.log (x +1)16·log 4(x 3+3x 2+3x +1)等于( ) A .23 B .32 C .-6 D .6答案:D五、推论三:log a m b n=nmlog a b 的应用(注:考查用推论化简底数、真数中的幂和根式,是大多数学生失分的重灾区) 1.lg1000等于( )A .1B .2C .3D .13答案:C2.log 832等于( )A .1B .2C .53D .35答案:C3.lg0.01等于( )A .0.1B .100C .-2D .-e 答案:C4.log 5325等于( )A .1B .23C .53D .35答案:B4.log 21024等于( )A .4B .6C .8D .10 答案:D5.lne 5等于( )A .3B .4C .5D .6 答案:C6.log 10248等于( )A .310B .103C .1128 D .128答案:A7.log 279等于( )A .32B .23C .13D .3答案:B8..log 644等于( )A .3B .23C .13D .-13答案:C9.log 1614等于( )A .13B .-23C .12D .-12答案:D10.log a b +log a 1b等于( )A .1B .-1C .12 D .0答案:D11.log 279-log 1664等于( )A .-23B .23C .-56D .56答案:C12.log 279·log 1664等于( )A .-1B .0C .1D .2 答案:C13.已知(log a b+log b a )2=4,且a >b ,则log a b 等于( ) A .-1 B .0 C .1 D .1或-1 答案:A14.((2log 2-等于( )A .-1B .0C .1D .2 答案:A 15.lg110·lg 1100+lg 11000+lg 110000A.-1 B.0 C.-5 D.1答案:C组题说明:1.针对性:每一组题针对一个知识点,比如上面的第一组题针对的是对数的定义域,第二组针对的是同底法解对数方程,第三组针对的是对数的加减运算,第四组针对的是对数的乘法运算,第五组针对的是推论三:log a m b n=nmlog a b的应用;2.最小阻力原则:要最大限度简化运算,降低阻力,使学生以最小的阻力、最快的速度体验公式的结构、性质和用法;3.有效重复原则:每个知识点尽量组织20个左右的微题,让学生有充分亲身体验的机会,也避免了学生死记答案或互相抄袭4.原创性:尽量原创,避免学生上网搜答案,从而保证学生课外使用的效度与可信度.。

对数运算性质换底公式

对数运算性质换底公式
1.针对具体问题,选择好底数. 2.注意换底公式与对数运算法则结合使用. 3.换底公式的正用与反用.
解:因为log23 = a,则
, 又∵ log3 7 = b,

例3计算:①

解:①原式 =
②原式 =
例3设 1 求证
且 3x=4y=6z ; 2 比较
的大小
例3设 1 求证
且3x=4y=6z ; 2 比较
Hale Waihona Puke 的大小证明1:设∵

取对数得: ,


例3设

1 求证
; 2 比较
证明1:设

取对数得: ,


• 2 •∴


的大小 ∴
例4 已知 logax= logac+b,求x
分析:由于x作为真数,故可直接利用对数定义求解;另外,由 于等式右端为两实数和的形式,b的存在使变形产生困难, 故可考虑将 logac移到等式左端,或者将b变为对数形式
请大家解决 。
四、小结
利用换底公式“化异为同”是解决有关对数问 题的基本思想法,它在求值或恒等变形中作了重 要作用,在解题过程中应注意:
3.计算: (1) 解法一:
解法二:
提高练习: ⑴若
⑵ ⑶
2
的值为______
(一)复习
积、商、幂的对数运算法则: 如果 a > 0,a 1,M > 0, N > 0 有:
二、新课: 1.对数换底公式:
( a > 0 ,a 1 ,m > 0 ,m 1,N>0) 证明: 设 logaN=x ,则 ax= N,两边取以m为底的对数:
从而得: ∴

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

对数运算公式总结+题型归纳总结(完美训练)

对数运算公式总结+题型归纳总结(完美训练)

第 1 讲 对数的由来1.对数的定义:一般地,如果)10(≠>a a a 且的b 次幂等于N , 即b a N = 那么数叫做a 为底N 的对数,记作________,叫做对数的_____,叫做______. 2.对数式与指数式幂底数 ← a → ____________ 指数 ← b → ____________ 幂 ← N → ____________ 3.对数的性质(1)负数和零没有对数; (2)________1log =a ; (3)________log =a a ;(4)对数恒等式:________log ______,log ==n a N a a a . 4.两类特殊的对数:(1).常用对数:以10为底的对数N 10log 简记为__________。

(2).自然对数:以无理数 2.71828e ≈为底数N e log .简记为__________。

b a N例1 求下列各式中x 的取值范围。

(1))10(2log -x (2))5(log )2(x x --指数式、对数式互相转化 例2 将下列指数式写成对数式 (1) 27133=- (2)155=a例3 对数式写成指数式. (1)3271log 31= (2)11.0lg -= (3)利用指数对数的关系求未知数 例4求下列各式中x 的值161log )1(21=x42log )2(21-=x 38log )3(-=x21ln e=对数的性质 例5求下列根式的值 (1)5100lg(2)1130.017log 4log 2log 23107+-例6 如果0)](log [log log 237=x ,那么21-x等于( )A .31B .321 C .221 D .331【习题精练】1.下列说法中错误的是( )A .零和负数没有对数B .任何一个指数式都可以化成对数式C .以10为底的对数叫做常用对数D .以e 为底的对数叫做自然对数 2.以下四个结论中正确的是( )(1)0)10lg(lg =; (2)0)lg(ln =e ;(3)若x lg 10=,则10=x ;(4)若x e ln =,则 2e x =A .(1)(3)B .(2)(4)C .(1)(2)D .(3)(4) 3.对于1,0≠>a a ,下列说法中,正确的是 ( )①若N M =则N M a a log log =; ②若则;③若则M N =;④若则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档