过程控制系统课程设计报告报告实验报告

合集下载

过程控制系统课程设计报告报告实验报告1

过程控制系统课程设计报告报告实验报告1

过程控制系统课程设计报告报告实验报告成都理工大学工程技术学院《过程控制系统课程设计实验报告》名称:单容水箱液位过程控制班级:2011级自动化过程控制方向姓名:学号:目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。

首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。

通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。

其次,工程实训的内容应一定程度地体现技术发展的时代特征。

为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。

应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。

第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。

以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。

通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。

过程控制实验报告

过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。

2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。

过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。

过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。

3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。

实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。

(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。

(3) 将执行器与控制器连接,并调试执行器的控制参数。

(4) 在控制软件中设置控制策略和控制目标,并启动控制器。

(5) 监测被控制物理过程的状态,并记录相关数据。

(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。

4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。

实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。

5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。

通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。

在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。

过程控制系统课程设计报告

过程控制系统课程设计报告

~过程控制系统课程设计报告·题目:温度控制系统设计姓名:学号:班级:指导教师:`)温度控制系统设计一、设计任务设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。

二、预期实现目标通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。

(三、设计方案(一)系统数学模型的建立要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。

数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。

在本系统中,被控量是温度。

被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。

在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。

在整个实验过程中,水量是不变的。

经过试验,得到下表所示的时间-温度表:表1 采样时间和对应的温度值采样时间t 8 》910 11 12 13 温度值℃64·7279869398以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: <图1 时间-温度曲线采用实验法——阶跃响应曲线法对温箱系统进行建模。

将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。

从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。

因此我们选用()1ske G s Ts τ-=+(式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。

(1)k 的求法:k 可以用下式求得:()(0)y y k x ∞-=(x :输入的阶跃信号幅值)](2)过程时间常数T 和滞后时间τ可用两点法求得:T=)](1ln[)](1ln[2*1*12t y t y t t ---- τ=)](1ln[)](1ln[)](1ln[)](1ln[2*1*2*11*2t y t y t y t t y t ------ 选取系统终值100℃,t 1=90s ,对应)(1*t y =,t 2=300s ,对应)(2*t y =得到K=,T=, τ=系统开环传递函数:K=11388.0+S^(二)基于MATLAB 的PID 仿真(1)PID 控制算法目前大部分温度控制器还是采用PID 控制算法,PID 控制是比例—积分—微分控制,PID 控制是最早发展起来的、应用领域至今仍然广泛的控制策略之一。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告实验报告:过程控制系统一、引言过程控制系统是指对工业过程中的物理、化学、机械等变量进行监控和调节的系统。

它能够实时采集与处理各种信号,根据设定的控制策略对工业过程进行监控与调节,以达到所需的目标。

在工业生产中,过程控制系统起到了至关重要的作用。

本实验旨在了解过程控制系统的基本原理、组成以及操作。

二、实验内容1.过程控制系统的组成及原理;2.过程控制系统的搭建与调节;3.过程控制系统的优化优化。

三、实验步骤1.复习过程控制系统的原理和基本组成;2.使用PLC等软件和硬件搭建简单的过程控制系统;3.设计一个调节过程,如温度控制或液位控制,调节系统的参数;4.通过修改控制算法和调整参数,优化过程控制系统的性能;5.记录实验数据并进行分析。

四、实验结果与分析在本次实验中,我们搭建了一个温度控制系统,通过控制加热器的功率来调节温度。

在调节过程中,我们使用了PID控制算法,并调整了参数,包括比例、积分和微分。

通过观察实验数据,我们可以看到温度的稳定性随着PID参数的调整而改变。

当PID参数调整合适时,温度能够在设定值附近波动较小,实现了较好的控制效果。

在优化过程中,我们尝试了不同的控制算法和参数,比较了它们的性能差异。

实验结果表明,在一些情况下,改变控制算法和参数可以显著提高过程控制系统的性能。

通过优化,我们实现了更快的响应时间和更小的稳定偏差,提高了系统的稳定性和控制精度。

五、结论与总结通过本次实验,我们了解了过程控制系统的基本原理、组成和操作方法。

我们掌握了搭建过程控制系统、调节参数以及优化性能的技巧。

实验结果表明,合理的控制算法和参数选择可以显著提高过程控制系统的性能,实现更好的控制效果。

然而,本次实验还存在一些不足之处。

首先,在系统搭建过程中,可能由于设备和软件的限制,无法完全模拟实际的工业过程。

其次,实验涉及到的控制算法和参数调节方法较为简单,在实际工程中可能需要更为复杂和精细的控制策略。

《过程控制系统》实验报告

《过程控制系统》实验报告

《过程控制系统》实验报告一、实验目的过程控制系统实验旨在通过实际操作和观察,深入理解过程控制系统的组成、工作原理和性能特点,掌握常见的控制算法和参数整定方法,培养学生的工程实践能力和解决实际问题的能力。

二、实验设备1、过程控制实验装置包括水箱、水泵、调节阀、传感器(液位传感器、温度传感器等)、控制器(可编程控制器 PLC 或工业控制计算机)等。

2、计算机及相关软件用于编程、监控和数据采集分析。

三、实验原理过程控制系统是指对工业生产过程中的某个物理量(如温度、压力、液位、流量等)进行自动控制,使其保持在期望的设定值附近。

其基本原理是通过传感器检测被控量的实际值,将其与设定值进行比较,产生偏差信号,控制器根据偏差信号按照一定的控制算法计算出控制量,通过执行机构(如调节阀、电机等)作用于被控对象,从而实现对被控量的控制。

常见的控制算法包括比例(P)控制、积分(I)控制、微分(D)控制及其组合(如 PID 控制)。

四、实验内容及步骤1、单回路液位控制系统实验(1)系统组成及连接将液位传感器安装在水箱上,调节阀与水泵相连,控制器与传感器和调节阀连接,计算机与控制器通信。

(2)参数设置在控制器中设置液位设定值、控制算法(如 PID)的参数等。

(3)系统运行启动水泵,观察液位的变化,通过控制器的调节使液位稳定在设定值附近。

(4)数据采集与分析利用计算机采集液位的实际值和控制量的数据,绘制曲线,分析系统的稳定性、快速性和准确性。

2、温度控制系统实验(1)系统组成与连接类似液位控制系统,将温度传感器安装在加热装置上,调节阀控制加热功率。

设置温度设定值和控制算法参数。

(3)运行与数据采集分析启动加热装置,观察温度变化,采集数据并分析。

五、实验数据及结果分析1、单回路液位控制系统(1)实验数据记录不同时刻的液位实际值和控制量。

(2)结果分析稳定性分析:观察液位是否在设定值附近波动,波动范围是否在允许范围内。

快速性分析:计算液位达到设定值所需的时间。

过程控制系统实验报告

过程控制系统实验报告

《过程控制系统实验报告》院-系:专业:年级:学生姓名:学号:指导教师:2015 年6 月过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验一单容水箱液位定值控制实验学时课程名称过程控制系统实验与课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以与震荡曲线。

2、使用比例积分控制进行流量控制,能够得到稳定曲线。

设定不同的积分参数,进行比较。

3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。

设定不同的积分参数,进行比较。

三、实验原理(1)控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

控制策略使用PI、PD、PID调节。

测量或控测量或控制量使用PLC端使用ADAM端四、实验内容与步骤1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。

注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。

5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。

6、启动计算机,启动组态软件,进入测试项目界面。

过程控制课程设计报告

过程控制课程设计报告

过程控制课程设计报告一、课程设计目的:1.熟识并娴熟掌控组态王软件;2.通过组态王软件的运用,进一步掌控了解过程掌握理论基础知识;3.了解典型工业生产过程(锅炉设备)的工艺流程和掌握要求;4.加强对课堂理论知识的理解与综合应用技能,提高解决实际工程问题的技能;5.培育自主查找资料、收索信息的技能以及实践动手技能与合作精神。

二、组态王简介:“组态王”是运行于 Microsoft Windows 200/NT4.0.*P 中文平台的中文界面软件,充分利用了 windows 图形功能完备、界面全都性好、易学易用的特点,并且采纳了多线程。

COM 组件等新技术,实现了实时多任务,软件运行稳定牢靠。

“组态王”软件包括由工程浏览器(TouchE*plorer) 、工程管理器 (Proj-Manager)和画面运行系统〔TouchVew〕三大部分组成。

在工程阅览中可以查看工程的各个组成部分,也可以完成数据库构造、定义外部设备等工作;工程管理器中内嵌了画面管理系统,用于新工程的创建和已有工程的管理。

画面的开发和运行由工程阅览器调用画面制作系统 touchMak 和运行系统 touchVew 来完成。

三、锅炉设备的的掌握原理及工艺流程:锅炉是过程工业中不可缺少的动力设备,它所产生的蒸汽不仅能够为蒸馏、化学反应、干燥、蒸发等过程提供热源,而且,还可以作为风机、压缩机、泵类驱动透平的动力源。

随着石油化学工业生产规模不断强化,生产设备不断革新,作为全厂动力和热源的锅炉,亦向着大容量、高参数、高效率方向进展。

为确保安全,稳定生产,对锅炉设备的自动掌握就显得非常重要。

为实现调整任务,将锅炉设备掌握划分为假设干个掌握系统,主要掌握系统有:〔1〕给水自动掌握系统〔即锅炉汽包水位的掌握〕操纵变量是给水流量,它主要考虑汽包内部的物料平衡,使给水量适应蒸汽量,维持汽包中水位在工艺允许范围内。

维持汽包中水位在给定范围内是保证锅炉、汽轮机安全运行的须要条件,使锅炉正常运行的主要标识之一。

过程控制课程设计报告

过程控制课程设计报告

过程控制课程设计报告-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN过程控制与自动化仪表课程设计报告实验名称:调节规律对单容液位控制系统的影响专业:测控技术与仪器班级:组员:指导老师:目录目录 (3)一、设计目的 (4)二、设计原理 (4)三、设计过程 (5)四、设计数据 (6)五、设计数据分析: (9)六、设计总结 (9)一、设计目的1、通过实验熟悉过程控课程实验方法以及单回路反馈控制系统的组成和工作原理。

2、研究系统分别用P、PI和PID调节器时的阶跃响应。

3定性地分析P、PI和PID调节器的参数变化对系统性能的影响。

二、设计原理单容液位控制系统原理单容液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。

PID控制调节在工程实际中,应用最为广泛的调节器控制规律为比例积分微分控制,简称PID控制,又称PID调节。

其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要和可靠的技术工具。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它设计技术难以使用,系统的控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

比例调节(P) 一种简单控制方式,,其输入与输出偏差信号的积分成比例关系。

系统一旦出现了偏差,比例环节就立即进行反应来减少偏差。

比例调节的作用设置的越大,调节的速度就越快;但比例作用过大时,会使系统的稳定性下降。

过程控制 实验报告

过程控制 实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种通过监测和调节系统中的变量,以保持系统稳定运行的技术。

在工业生产中,过程控制对于提高生产效率、降低成本、确保产品质量至关重要。

本实验旨在通过对一个简单的过程控制系统进行实验,探索过程控制的基本原理和应用。

实验目的:1. 理解过程控制的基本原理和方法;2. 学习使用控制器进行过程调节;3. 掌握过程控制系统的参数调节方法。

实验器材和材料:1. 过程控制实验装置;2. 控制器;3. 传感器;4. 计算机。

实验步骤:1. 搭建过程控制实验装置:将传感器与被控对象连接,将控制器与传感器连接,将计算机与控制器连接。

2. 设置控制器参数:根据实验要求,设置控制器的比例、积分和微分参数。

3. 开始实验:启动实验装置,并记录被控对象的初始状态。

4. 监测和调节:通过传感器实时监测被控对象的状态,并将数据传输给控制器。

控制器根据设定的参数,计算出相应的控制信号,通过执行器对被控对象进行调节。

5. 数据记录和分析:记录实验过程中的数据,并分析控制效果。

6. 结束实验:实验结束后,关闭实验装置并整理实验数据。

实验结果:通过实验,我们观察到被控对象在开始时处于不稳定状态,随着控制器的调节,被控对象逐渐趋于稳定。

我们还发现,不同的控制器参数会对控制效果产生不同的影响。

比例参数的增大可加速系统的响应速度,但可能引起过冲;积分参数的增大可减小稳态误差,但可能引起系统的超调;微分参数的增大可提高系统的稳定性,但可能引起系统的震荡。

因此,在实际应用中,需要根据具体的要求和系统特性来选择合适的控制器参数。

实验总结:通过本次实验,我们深入了解了过程控制的基本原理和方法。

过程控制在工业生产中起着至关重要的作用,能够提高生产效率、降低成本,并确保产品质量。

在实际应用中,我们需要根据具体的系统要求和特性来选择合适的控制器和参数,以实现系统的稳定运行。

实验的局限性:本实验是基于一个简单的过程控制系统进行的,实际应用中的过程控制系统可能更加复杂。

过程控制实验报告

过程控制实验报告

过程控制实验报告实验目的:1.理解进程控制的基本概念和原理;2.掌握进程调度算法的原理和实现方式;3.掌握进程间通信的方法和实现方式。

实验仪器和材料:1.计算机;2. 操作系统(Windows、Linux等);3.编程语言C或C++。

实验过程:在操作系统的支持下,实现了一个简单的进程调度和通信的模拟程序。

1.进程的创建和管理通过调用操作系统提供的系统调用函数,实现进程的创建和管理。

首先,编写一个创建进程的函数createProcess,该函数通过调用系统调用函数fork创建一个新的进程,并通过调用系统调用函数exec加载并执行一个可执行文件。

创建的进程可以通过调用系统调用函数wait等待其他进程的结束,并通过调用系统调用函数exit退出当前进程。

2.进程调度算法实现了三种常见的进程调度算法:先来先服务(FCFS)、最短作业优先(SJF)和时间片轮转算法(RR)。

首先,编写一个函数schedule,该函数根据调度算法从就绪队列中选择一个进程,并调用操作系统提供的系统调用函数进行进程切换。

调度算法的选择通过用户输入进行控制。

3.进程间通信实现了两种常见的进程间通信方法:管道和共享内存。

首先,编写一个函数createPipe,该函数通过调用系统调用函数pipe创建一个管道,用于实现进程间的通信。

然后,编写一个函数createSharedMemory,该函数通过调用系统调用函数shmget创建一块共享内存,用于实现进程间的共享数据。

实验结果:在实验过程中,使用C语言编写了一个模拟进程调度和通信的程序。

通过调用系统调用函数,在操作系统的支持下,成功实现了进程的创建和管理、进程调度算法的实现以及进程间通信的功能。

实验结果显示,不同的进程调度算法对进程执行的顺序和时间有不同的影响;而进程间通信的方法可以实现进程之间的数据交换和共享。

实验总结:通过本次实验,理解了进程控制的基本概念和原理,掌握了进程调度算法和进程间通信的实现方法。

《过程控制系统》实验报告(最新版)

《过程控制系统》实验报告(最新版)

实验一、单容水箱特性的测试一、实验目的1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。

2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。

二、实验设备1. THJ-2型高级过程控制系统实验装置2. 计算机及相关软件3. 万用电表一只三、实验原理图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。

根据物料平衡关系,在平衡状态时Q1-Q2=0 (1)动态时,则有Q1-Q2=dv/dt (2)式中V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与H 的关系为dV=Adh ,即dV/dt=Adh/dt (3)A 为水箱的底面积。

把式(3)代入式(2)得Q1-Q2=Adh/dt (4)基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为Q1-h/RS=Adh/dt即ARsdh/dt+h=KQ1或写作H(s)K/Q1(s)=K/(TS+1) (5)式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。

式(5)就是单容水箱的传递函数。

对上式取拉氏反变换得(6)当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当t=T 时,则有h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2 所示。

当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。

该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。

如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A 点。

过程控制系统课程设计报告.doc

过程控制系统课程设计报告.doc

目录第一章概述 (1)1.1 设计目的 (1)1.2 具体任务 (1)1.3 氧化铝生产的意义 (2)第二章氧化铝高压溶出工序介绍 (3)2.1 铝工业的国内外现状 (3)2.2 氧化铝生产过程 (4)2.3 高压溶出工序 (9)第三章氧化铝高压溶出工序生产设备及控制要求 (12)3.1 双程预热器 (12)3.2 溶出器 (12)3.3 自蒸发器 (13)3.4 蒸汽缓冲器 (14)第四章氧化铝高压溶出工序3#溶出器温度控制系统设计 (16)4.1 方案论证 (16)4.2 硬件设计 (17)4.3 控制算法 (20)4.4 软件设计 (21)第五章总结 (24)5.1 方案评价及改进方向 (24)5.2 收获及体会 (24)参考文献 (26)第一章概述现代工业生产过程,随着生产规模的不断扩大,生产过程的强化,对产品质量的严格要求,以及各公司的激烈竞争,人工操作与控制已远远不能满足现代化生产的要求,工业过程控制系统已成为工业生产过程必不可少的设备,因为,它是保证现代企业安全、优化、低功耗和高效益生产的主要技术手段。

由于工业生产过程各种各样而且非常复杂,工业生产过程可分连续的生产过程和离散的生产过程。

因此,在设计工业生产过程控制系统时,必须花大量的时间和精力了解该工业生产过程的基本原理、操作过程和过程特性,这是设计和实现一个工业生产过程控制系统的首要条件。

工业生产过程由简单到复杂,规模由小到大。

至今,已有各种各样的生产工业过程,生产出各种各样的产品满足人们的生活需要。

作为工业生产过程的一部分的工业过程控制系统也在不断发展和提高。

在工业生产过程中,通常需要测量和控制变量有:温度、压力、流量、物位(液位)、物质成分和物性(PH值)等。

1.1 设计目的经过一个学期的过程控制系统课程的学习,对过程控制有了一个基本的了解。

然而仅仅在理论方面是远远不够的,需要将所学的应用于实际生产过程中,只有这样才能真正的对过程控制有一个比较深入的认识,为以后的学习和工作打下一个良好的基础。

过程控制系统实验报告

过程控制系统实验报告

南京工程学院实验报课程名称:过程控制系统 ____________ 实验项目名称:单容对象的控制及参数整定双容对象的控制及参数整定串级系统的控制及参数整定实验学生班级:________________________________ 实验学生学号:________________________________ 实验时间:____________________________________ 实验地点:____________________________________实验成绩评定:________________________________ 指导老师签字:________________________________自动化学院实验一单容对象的控制及参数整定、实验目的1熟悉单容对象的数学模型及其阶跃响应曲线。

2、根据由实际测得的单容对象的阶跃响应曲线,用相关的方法确定对象参数。

3、根据经验整定法确定单容对象控制器参数。

、实验设备PC机、MatLab软件三、实验原理一阶惯性环节的响应曲线是一单调上升的指数函数,如下图所示。

当由实验求得图中所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是单容对象的时间常数T,该时间常数T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T O同样的,输入输出的比值就可以确定对象增益。

从而确定单容对象的参数。

经验整定法,书本p110。

四、实验内容和步骤1、使用MatLab进行模拟仿真。

仿真图如下:2、系统稳定后(测量值基本不变化),改变操作量值,获取单容对象的响应曲线如下图。

3、根据经验整定方法,确定系统的 P, Pl , PID 控制器。

在实验界面中控制器部分设置相应参数,同样获取系统的阶跃响应曲线。

①P 控制器► - IrOOOT 丽篇I ―3 鸟囲固⑨ *迥囿 飞DeriVatr ⅛reStePGain1I□115s÷1 ■ ISCD^e-k^>GainIIntegratDrCde45Gaiπ2LO0 4ILI W二口∙υE匚二^「H 窗虔⅜Θ1印刁 7豈幣理⑥ΞΘ9£西P口%□U Xpweylr**SS I÷J⅛⅛J; IS国首彖国用雷F 0如■* 丁G』匚T卸已因口兽磚孕QId ©五、实验结果分析1、从实验结果分析单容对象控制中P,PI,PID 控制器的特点?2、实验的收获和体会实验二双容对象的控制及参数整定一、实验目的1熟悉双容对象的数学模型及其阶跃响应曲线。

过程控制系统实验报告

过程控制系统实验报告

过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。

本系统设计本着培养工程化、参数化、现代化、开放性、综合性人材为出发点。

实验对象采用当今工业现场常用的对象,如水箱、锅炉等。

仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS 工控组态软件。

对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开辟,如PLC 控制、DCS 控制开辟等。

学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。

同时该系统也为教师和研究生提供一个高水平的学习和研究开辟的平台。

本实验装置由过程控制实验对象、智能仪表控制台及上位机PC 三部份组成。

由上、下二个有机玻璃水箱和不锈钢储水箱串接, 4.5 千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。

用,透明度高,有利于学生直接观察液位的变化和记录结果。

水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。

二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。

锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。

做温度定值实验时,可用冷却循环水匡助散热。

加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。

采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。

整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。

为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。

检测上、下二个水箱的液位。

其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5 。

输出信号:4~20mA DC。

LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。

过程控制系统实验报告

过程控制系统实验报告

过程控制系统实验报告
控制系统是指自动地完成规定的工作,用来保证生产过程的安全、正常进行。

它包括检测设备、反馈装置以及输入信号和操纵控制阀门等部件组成。

现代化的生产设备越来越多采用自动化仪表及设施,并由此发展成为一个自动控制系统。

因此,人们将这些自动控制装置称之为“自动控制系统”。

一般地说,凡是具有确切的被控变量、测量值、反馈值和控制值(即控制对象)的独立的随动系统,都可看做是控制系统。

本次实验课是以 PID 控制系统为例,对 PID 控制系统做深入探讨,从而使学生能够理论联系实际,真正提高分析问题和解决问题的能力,培养严谨求实的科学态度。

过程控制系统中主要有:1、被控对象参数测量单元2、控制器3、执行器4、检测装置与反馈装置5、通讯网络与计算机控制系统分为
闭环控制和开环控制两大类。

开环控制系统只依靠输出量测量结果来校正偏差,然后利用调节手段去修正被控量,直到满足给定值。

开环控制适应性强,但抗干扰能力弱;闭环控制则相反。

最简单的闭环控制方法就是比例-积分控制( P—微分—比例+积分)。

也叫 PID 控制或比例-积分式控制。

- 1 -。

过程控制系统实验报告.

过程控制系统实验报告.

《过程控制系统实验报告》院-系:专业:年级:学生姓名:学号:指导教师:2015 年6 月过程控制系统实验报告部门:工学院电气工程实验教学中心实验日期:年月日姓名学号班级成绩实验名称实验一单容水箱液位定值控制实验学时课程名称过程控制系统实验及课程设计教材过程控制系统一、实验仪器与设备A3000现场系统,任何一个控制系统,万用表二、实验要求1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。

2、使用比例积分控制进行流量控制,能够得到稳定曲线。

设定不同的积分参数,进行比较。

3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。

设定不同的积分参数,进行比较。

三、实验原理(1)控制系统结构单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。

水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。

被调量为水位H。

使用P,PI , PID控制,看控制效果,进行比较。

控制策略使用PI、PD、PID调节。

(2)控制系统接线表使用ADAM端口测量或控制量测量或控制量标号使用PLC端口锅炉液位LT101 AI0 AI0调节阀FV101 AO0 AO0四、实验内容与步骤1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。

这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。

3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。

注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。

对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。

4、打开设备电源。

包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。

5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。

过程控制系统实习报告

过程控制系统实习报告

过程控制系统实习报告学院:班级:学号:姓名:小组成员:指导老师:实习日期:1、前言这学期我们主要学习了可编程控制器S7-200,熟悉了plc的编程。

在学期最后的四周时间里,我们进行的是过程控制系统实习。

首先第一周我们用S7-200的实训装置进行实验,本次实习我们主要学习的西门子S7-200系统有小皮带线单元、机械手单元、小车定位单元、小锅炉单元,主要包括PLC与传感器综合实训、PLC与步进电机定位实训。

这些小实验的目的主要是实训前对设备的熟悉,以及编程实现相关功能,以让我们对过程温度控制系统的编程有所了解。

接下来就是用S7-300实现对过程温度控制系统的控制了。

所以我们开始自学S7-300的内容,和同伴一起慢慢摸索,解决问题。

就这样,从零开始用S7-300编程去实现简单功能。

2、S7-200实训介绍西门子S7-200系列PLC是一种小型整体结构形式的PLC,主要应用于小型系统中,它的编程软件是STEP 7 MICRO\ WIN第一章小皮带线单元本系统各单元采用西门子CPU226作为控制部件,各单元之间可以互相通讯。

在系统中采用了大量的气动原件、传感器、步进电机和异步电机等。

CPU226简介:CPU226 集成24输入/16输出共40个数字量I/O点。

可连接7个扩展模块,最大扩展至248路数字量I/O点或35路模拟量I/O点。

26K字节程序和数据存储空间。

6个独立的30KHz高速计数器,2路独立的20KHz高速脉冲输出,具有PID控制器。

2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力,I/O端子排可很容易地整体拆卸。

用于较高的控制系统,具有更多的输入/输出点,更强的模块扩展能力,更快的运行速度和功能更强的内部集成特殊功能。

可完全适用于一些复杂的中小型控制系统。

第二章机械手单元本系统各单元采用西门子CPU226作为控制部件。

在系统中采用了气动元件、电磁阀、传感器、直流电机、继电器等。

过程控制系统课程设计报告

过程控制系统课程设计报告

1.概述课程设计的目的了解具体过程控制系统设计的基本步骤和方法,加深对过程控制系统基本原理的理解和对S7-300PLC与S7-200PLC编程的实际应用能力,培养运用WINCC组态软件和计算机设计过程控制系统的实际能力。

课程设计的内容用S7-300PLC与S7-200PLC主-从站进行单回路流量过程控制。

要实现的目标(1)明确控制要求,设计出系统结构图、方框图、电气接线图、程序流程图等。

(2)S7-200PLC从站程序设计①采用模块程序设计,控制程序包括主程序OB1、子程序SBR_0和中断程序INT_0。

②流量给定700升。

③采用定时中断SMB35,来调用流量采样定时中断程序INT_0,把实时检测的管路流量反馈到S7-200PLC的模拟量输入口,与流量给定量进行比较算出误差e。

④采用指令系统中的PID控制算法,整定好PID参数,计算出的实时控制量通过S7-200PLC的模拟量输出口输出,来控制电动执行器和阀门的开度。

⑤所有信号要转换为4-20mACD信号,并与流量物理量0-2500升建立对应关系。

⑥采用状态表进行各变量的监视与修改,系统有启动、停止按钮操作功能。

(3)S7-300PLC主站程序设计①要求采用SFC14和SFC15指令进行主-从站的数据交换,通过S7-300PLC 主站进行写操作(如系统启动/停止等),并能读取S7-200PLC从站的参数;S7-200PLC能接受S7-300PLC主站的指令;实现主-从站读/写(接收/发送)操作。

(4)性能指标要求无超调量,稳态误差为3%,加随机扰动能克服掉。

(5)上位监控要求:采用WINCC上位监控软件,设计出单回路流量一阶的上位监控系统,包括建立通讯,数据变库组态、工艺图形组态、数据组态与显示、趋势组态与显示、报表组态与显示等功能。

2.S7-300PLC与200PLC主-从站单回路流量系统硬件设计方案2.1主-从站单回路流量过程控制系统硬件组成原理该实验过程控制系统的控制器选用S7—300PLC作为主站控制器,由电源模块307—1BA00—00AA00、CPU模块315—2AG10—0AB0、模拟量输入模块331—5HF02—0AB0、模拟量输出模块332—5HF02—0AB0、数字量输入/输出模块323—1BH01—0AA0组成,PC机与300PLC采用MPI(CP5611)通讯。

过程控制实验报告

过程控制实验报告

过程控制实验报告第一篇:过程控制实验报告电子科技大学自动化学院标准实验报告(实验)课程名称:过程控制系统学生姓名:学号:指导教师:庄朝基实验地点:清水河主楼 C2-110实验时间:2011年11月实验报告一、实验室名称:智能控制实验室二、实验项目名称:三、实验学时:四、实验原理:五、实验目的:六、实验内容:七、实验器材(设备、元器件):八、实验步骤:九、实验数据及结果分析:十、实验结论:十一、总结及心得体会:十二、对本实验过程及方法、手段的改进建议:第二篇:模糊控制实验报告模糊控制系统实验报告学院:班级:姓名:学号:一、实验目的1.通过本次实验,进一步了解模糊控制的基本原理、模糊模型的建立和模糊控制器的设计过程。

2.提高有关控制系统的程序设计能力;3.熟悉Matlab语言以及在智能控制设计中的应用。

设计一个采用模糊控制的加热炉温度控制系统。

被控对象为一热处理工艺制作中的加热炉,加热设备为三相交流调压供电装置,输入控制信号电压为0-5V,输出相电压为0-220V,输出最大功率180kW,炉内变化室温~625℃。

三、实验过程及步骤1.用Matlab中的Simulink工具箱,组成一个模糊控制系统,如图所示2.采用模糊控制算法,设计出能跟踪给定输入的模糊控制器,对被控系统进行仿真,绘制出系统的阶跃响应曲线。

(1)模糊集合及论域的定义对误差E、误差变化EC机控制量U的模糊集合及其论域定义如下:E、EC和U的模糊集合均为:{NB、NM、NS、0、PS、PM、PB}E和EC的显示范围为:[-66]结果如下图所示打开Rule编辑器,并将49条控制规则输入到Rule编辑器中利用编辑器的”View→Rules”和”View→Surface”得到模糊推理系统的模糊规则和输入输出特性曲面,分别如下图所示从图中可以看出,输出变量U是关于两个输入变量E、EC的非线性函数,输入输出特性曲面越平缓、光滑,系统的性能越好。

将FIS嵌入SimulinkR(t)=400℃时系统阶跃响应系数Ke变小时的系统阶跃响应通过本设计可以知道,模糊控制具有能够得到良好的动态响应性能,并且不需要知道被控对象的数学模型,适应性强,上升时间快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都理工大学工程技术学院《过程控制系统课程设计实验报告》名称:单容水箱液位过程控制班级:2011级自动化过程控制方向姓名:学号:目录前言一.过程控制概述 (2)二.THJ-2型高级过程控制实验装置 (3)三.系统组成与工作原理 (5)(一)外部组成 (5)(二)输入模块ICP-7033和ICP-7024模块 (5)(三)其它模块和功能 (8)四.调试过程 (9)(一)P调节 (9)(二)PI调节 (10)(三)PID调节 (11)五.心得体会 (13)前言现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。

首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。

通过对基础训练设施的集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。

其次,工程实训的内容应一定程度地体现技术发展的时代特征。

为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。

应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。

第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。

以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

本次工程实践就是针对单容水箱液位进行恒高度控制通过调试,来熟悉THJ-2型高级过程控制实验装置。

通过本次工程实践,来熟悉工业过程控制的工作流程以及其控制原理。

一过程控制概述在工业生产中,有一类按照一定的工艺流程(或程序)进行连续不间断的生产的工业生产过程,例如电力、石油、化工、冶金等,这些工业在经济发展中占有举足轻重的地位,我们称之为连续过程工业。

与其他工业(称为离散过程工业或间断过程工业)相比,连续过程工业的控制问题有其完全不同的特点,形成了控制技术中的一个分支,称为生产过程控制或过程控制。

过程控制的任务,就是要经过自动化技术,提高产品的质量和产量,节能降耗,降低成本,减少污染,提高劳动生产率,增强企业对市场需求的适应性。

过程控制主要有以下几个特点:(1)连续工业生产过程是与化学反应、生化反应、物理反应、相变过程、能量的转换过程、传热传质过程等复杂的反应或过程相伴随的。

这些过程或反应的进行,必须满足一定的内部和外部条件。

满足这些条件,并且使这些条件保持稳定,生产过程就能正常、稳定地进行,产品的产量和质量就能得到保证。

所以,过程控制主要是对决定生产过程是否正常进行控制,以保证整个生产过程的正常进行。

过程控制中最常见的就是压力控制、流量控制、温度控制、液位或料位控制、成分控制、PH值控制等,这些控制多数都是定值调节。

随着大规模生产的需求及科学技术的发展,更多的参数将被纳入到控制的范围之内。

过程控制在生产中的地位将变得更加重要。

(2)连续生产过程工业是一个庞大的工业系统,设备多样化,工作机理各不相同,因而被控对象形式复杂多变,具有惯性大、延时大、时变、非线性、多变量相互耦合等特点,很难得出其精确的动态数学模型,因而控制难度较大。

(3)由于生产过程工艺复杂,要求高,过程控制的监测系统多,控制系统多,控制方案多,控制系统间既独立又相互影响。

所以必须合理协调各控制系统间相互关联、相互制约的关系,从整个生产过程的全局出发,求得整个生产过程的最优。

(4)连续生产过程的生产条件和环境往往比较特殊,如高温高压、低温真空、易燃易爆、有毒、存在放射性等。

因而必须依靠自动化技术,在正常生产、非正常工况、事故工况下,都能确保人员安全以及部队环境造成污染。

(5)连续过程工业设备多,结果复杂,所以干扰因素也多,干扰的形式较复杂。

这就要求过程控制的各个控制系统具有较强的抗干扰能力,快去克服扰动因素对生产的影响。

二THJ-2型高级过程控制实验装置这次工程实训我们要用到的装置 THJ-2型高级过程控制实验装置该类型实验装置包括不锈钢水箱、冷热水交换有机玻璃圆筒型大水箱、上下串接的有机玻璃双容上下小水箱、带有机玻璃冷却水循环夹套的小加温箱、三相电加热锅炉等,适用于控制系统组成认识实验、对象数学模型的测试实验、调节阀流量特性测试实验、位式控制实验、单回路调节实验、串级控制实验等其相似实验。

实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5KW电加热锅炉(由不锈钢锅炉内胆加温筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。

对象系统中的各类检测变送及执行装置包含有:扩散硅压力变送器三只,涡轮流量计三只,Pt100热电阻温度传感器六只。

控制模块:包含三相可控硅移相调压装置、电磁阀、电动调节阀、三菱变频器各一个;接触器位式控制装置、三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵。

上位监控PC机包含有:一台上位监控PC机,PC机上安装有工控组态软件(MCGS、组态王可选),通过RS232/485转换器、仪表控制台侧面的RS485总线接口与所有的仪表进行通讯。

我们可对下位仪表各参数进行设定、修改PID控制参数,并能观察被控参数的实时曲线、历史曲线,SV设定值、PV测量值、OP输出值,各实验都设有动态变化棒图显示和实验指导。

三系统组成与工作原理(一)外部组成图1锅炉温度控制系统工艺设备根据控制要求,将信号经过PID整定后,输出4~20mA的电流信号控制单相SCR 调压装置输出电压,达到对加热管电压大小调节,从而达到控制锅炉内胆水温的作用。

(二)输入模块ICP-7033和ICP-7024模块8通道模拟量输入模块。

表1 为ICP-7033的技术指标。

面板如图3所示,ICP-7033模块24V供电,面板上提供了3通道的输入端口。

每一通道根据功能表可输入允许范围的热电阻。

支持485通讯。

表1 ICP-7033的技术指标型号I-7033将温度变送器的电压信号通过ICP-7033模块转换为数字信号通过RS485接口送入计算机处理。

图1 ICP-7033面板上图中,a :电源开关;b :RS485接口;c :ICP-7017模块;d :4通道的输入功能模 拟 量输 入分辨率16bit 输入通道 8路差动 采样率10HzPt100-100~100℃、0~100℃0~200℃、0~600℃ Pt1000 -2000~600℃Ni-80~100℃、0~100℃接口ICP-7024是4通道模拟量输出模块,24V 供电,提供了4通道的输出端口。

每一通道根据功能表可输入允许范围的电压或电流,支持485通讯。

ICP-7024的技术指标见下表: ICP-7024模块将从计算机输出的信号加到三相SCR 调压模块4~20mA 电流控制信号输入端。

aba:电源开关;b:RS485接口;c:ICP-7014模块;d:4通道的输出接口。

图2 ICP-7024面板(三)其它模块和功能三相SCR调压模块本系统通过计算机中的组态软件MCGS进行PID整定后输出控制信号通过远程数据输出模块加到单相SCR调压装置的输入端,以此来控制加热管电流的大小MCGS (Monitor and Control Generated System,通用监控系统)是一套用于快速构造和生成计算机监控系统的组态软件,它能够在基于Microsoft的各种32位Windows平台上运行,通过对现场数据的采集处理,以动画显示、报警处理、流程控制和报表输出等多种方式向用户提供解决实际工程问题的方案,在工业控制领域有着广泛的应用。

MCGS组态软件功能强大,操作简单,易学易用,普通工程人员经过短时间的培训就能迅速掌握多数工程项目的设计和运行操作四调试过程在此次训练中,我们针对单容水箱液位进行恒高度控制。

有三种控制包括比例控制,积分控制,和微分控制。

单容水箱是个比较简单的控制系统,我们采用PID控制。

控制一个液位的高度,整个过程为采用水泵恒定抽水,改变电动调节阀的开度来控制水的流量从而控制水箱液位的高度。

并选用压力传感器对液位高度进行测量,将测量的值与系统的给定值进行比较,来确定阀的开度。

单容水箱液位PID整定的系统方框图如下1. 比例控制比例控制作用为传递函数为式中称为比例放大系数。

比例控制简称 P控制(Proportional).比例控制的输出与输入是同步变化的,没有惯性和时间上的延迟。

响应快,与输入成比例的变化,只是比例控制最突出的优点,正是由于这一特点,使比例控制成为一种最重要的基本控制规律。

所有的工业控制器都包含有比例控制比例控制也可以单独构成控制器。

使调节器工作在比例(P)调节器状态,此时系统处于开环状态。

实时曲线如下图P调节曲线2. 积分控制积分控制作用为式中为积分时间常数。

积分控制简称 I 控制(Integral).积分控制的传递函数为在单位阶跃输入下,积分控制的输出为单容水箱液位控制调试。

首先我们按实验指导书将控制面板上连线正确接出,然后进入MCGS单容水箱液位控制系统操作界面,打开水阀检查通路连通,开启控制面板电源打开电动阀电源,这时就有水进入水箱。

将操作软件中水箱的输出值设定为20。

先将控制参数值P设定为100。

观察曲线走向调节P、I 绿色曲线无限接近红色曲线说明系统稳定。

控制曲线如下图:单容水箱液位控制曲线3. 微分控制微分控制规律的输出与输入的关系为微分控制作用的传递函数为式中称为微分时间常数,简称微分时间。

微分时间又称为D控制(Derivative)。

微分控制的输出,反映了偏差变化的速度。

这可以使偏差只有变化倾向而未产生实际的变化时就产生控制作用,阻止被控变量进一步的变化,加快控制系统的响应。

微分控制的这种特性可以称为“超前控制”。

这种控制作用特别适合于惯性较大的被控对象。

微分控制作用的强弱,可以通过微分时间常数来调整。

微分控制对于恒定不变的偏差没有控制作用。

对于变化缓慢的偏差,也不会产生有效的控制作用。

所以,微分控制作用不单独作用。

式所表示的微分控制规律在物理上是不能实现的,称为理想的微分控制。

实际的微分控制作用是带有惯性环节的微分控制,其传递函数为式中称为微分放大系数。

在比例调节器控制实验的基础上,待被调量平稳后,引入积分(“I”)作用,使被调量回复到原设定值。

减小P,并同时增大I,观察加扰动信号后的被调量的动态曲线,验证在PI调节器作用下,系统的余差为零。

相关文档
最新文档