臭氧脱硝技术方案讲解

合集下载

臭氧法脱硝技术方案

臭氧法脱硝技术方案

臭氧法脱硝技术方案1000字臭氧法脱硝技术是一种将臭氧作为氧化剂进行脱硝的技术。

其原理是将臭氧气体通过反应器中的催化剂床层,使硝化物(主要为NOx)被氧化为氮气(N2)和水(H2O)等中性物质,从而达到减少空气中氮氧化物含量的目的。

以下是臭氧法脱硝技术方案的详细介绍:技术流程:臭氧法脱硝技术的基本流程包括臭氧制备系统、脱硝反应器和尾气处理系统三部分。

其流程如下:1.臭氧制备系统将气体中的氧(常用纯氧气体)与空气按照一定比例混合,通过臭氧发生器产生臭氧气体。

2.脱硝反应器将发生的臭氧气体与带有硝化物的尾气进行反应。

3.反应结束后,剩余的臭氧气体通过尾气处理系统进一步处理,以达到环保标准的排放要求。

主要技术要点:1.臭氧制备系统:臭氧制备系统一般采用等离子体离子化技术,将氧分子分解成臭氧分子。

该体系中臭氧的制备速率与臭氧分布均匀性是比较重要的技术指标。

制备臭氧的浓度一般为3~4%。

2.反应过程:反应器中的催化剂活性组分必须具有高的选择性和活性,以保证硝化物和臭氧之间的反应速率足够快和极大化。

合适的催化剂活性组分应该满足以下特征:具有高的活性和选择性;能够承受反应条件的严峻;耐高温,耐强腐蚀,以及酸碱中性等。

催化剂的载体一般采用介孔氧化硅或氯化铝,以及氧化铝一类的中性无机物。

对于粒径的选择,尺寸约为1.0 mm左右时机械强度较好。

3.尾气处理系统:尾气处理系统主要是用来处理剩余的臭氧气体,以满足环保标准的排放要求。

ICR(Inside of control room)是国内常用的尾气处理装置之一。

它采用多级过滤技术,经过筛网过滤和喷淋等处理过程,使气体中的有害成分被彻底清除,从而达到环保要求。

技术优势:1. 高效:臭氧法脱硝技术能够在较短的反应时间内,将NOx快速转化为N2和H2O等中性物质。

臭氧在反应过程中不溶于水,不生成二氧化硫等腐蚀性气体,因此反应器的设备要求较低,且具有较高的脱硝效率。

2. 稳定:臭氧法脱硝技术能够在宽范围的氧气比例下正常运行,且对供应气体的稳定性要求不高,因此运行稳定性较高。

臭氧脱硝原理范文

臭氧脱硝原理范文

臭氧脱硝原理范文臭氧脱硝是一种利用臭氧氧化NOx(主要是NO和NO2)将其转化为氮氧化物(N2O、NO2、N2O5)从而达到脱除NOx的技术方法。

下面是对臭氧脱硝原理的详细解释。

1.氧化作用臭氧(O3)在具有氧化性的介质中可以发生分解,释放出自由氧基团(O)和单质氧(O2),这两种活性氧物种具有很强的氧化能力。

当臭氧与NO反应时,臭氧氧化可以按照如下两个步骤进行:O3+O->2O2O3+NO->O2+NO2其中,第一个反应释放出了单质氧,而第二个反应将NO氧化为NO2、其中,O2的释放对于后续的氧化反应起到了重要作用。

2.NO2的生成NO2是臭氧脱硝过程中的重要中间产物。

当NO被臭氧氧化成NO2后,可以进一步与臭氧反应生成N2O5:2NO2+O2->2NO3N2O5+H2O->HNO33.氮的生成N2O5在水存在下可以进一步分解生成HNO3,而NO3可以与另一分子NO反应生成二氧化氮(NO2):NO3+NO->2NO2此外,NO2还可以与一氧化氮(NO)反应生成一氧化氮四聚体(N2O4):2NO+O2->2NO2N2O4可以进一步分解生成NO2和NO:N2O4->2NO24.氮的脱除在上述反应过程中,氮的几种形态(N2O、NO2、N2O5)逐渐形成,但并没有实现真正的氮氧化物的脱除。

为了将氮氧化物转化为无害的氮气(N2),需要通过还原反应来实现。

而还原剂一般是水和有机物。

N2O可以被还原为N2:2NO+2H2O->N2+4H++4e-N2O+2H++2e-->N2+H2ON2O+2H++2e-->N2+H2ON2O5、NO2和HNO3可以通过还原作用生成NO和NO2,然后再通过上面的反应生成N2:N2O5+2H++2e-->2NO2+H2OHNO3+2H++2e-->NO2+2H2ONO2+NO->N2ONO+NO2->N2O+O2N2O是一个环境污染物,但相对于NOx来说,其对环境的危害更小,且几乎不具有氧化性和酸性。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案随着工业化的不断发展,环境污染成为当今社会所面临的一大挑战。

其中,大气污染是最为突出的问题之一。

臭氧脱硝技术作为一种当前被广泛关注和研究的环境治理方案,为减少大气污染提供了新的希望。

一、臭氧脱硝的原理与依据臭氧脱硝即通过利用臭氧分解大气中的氮氧化物(NOx),达到减少大气中有害气体浓度的目的。

其基本的化学反应方程如下:2NOx + O3 -> N2 + 2O2 + O2通过此反应,臭氧氧化分解了氮氧化物,并最终产生氮气和氧气。

这个过程中,臭氧充当的是氧化剂的角色,而氮氧化物则是被还原的对象。

而反应生成物的氮气和氧气对环境没有任何有害影响,因此这种臭氧脱硝技术被广泛用于环境治理领域。

二、臭氧脱硝技术的应用场景臭氧脱硝技术在不同场景中的应用具有广泛性和灵活性。

以下分别从工厂、交通运输和家庭生活三个方面进行探讨。

1. 工厂排放治理工厂作为重要的源头排放环境污染物,其大气排放一直备受关注。

臭氧脱硝技术可以针对工厂排放的氮氧化物进行治理,使排放气体达到符合环保要求的标准。

工厂常用的臭氧脱硝设备主要包括臭氧发生器和脱硝装置。

臭氧发生器通过电离和瞬时放电的方式产生臭氧,脱硝装置则将臭氧引入氮氧化物排放源,实现氮氧化物的催化分解。

2. 交通运输尾气治理交通运输是城市大气污染的主要源之一。

在交通拥堵的道路上,尾气中的氮氧化物排放量往往较高。

这时,采用臭氧脱硝技术对尾气进行治理,可以有效减少大气中有害气体的浓度。

一种常见的应用方式是在车辆的排气管中设置臭氧发生器,将产生的臭氧与尾气中的氮氧化物进行反应,达到脱硝的目的。

3. 家庭生活空气净化除了工厂和交通运输,家庭生活中也存在着一定的大气污染问题。

例如,燃煤取暖和烹饪产生的氮氧化物排放,对家庭成员身体健康造成潜在威胁。

因此,臭氧脱硝技术也可以应用于家庭生活空气净化中。

通过在室内设置臭氧发生器,对空气中的氮氧化物进行处理,可以改善室内空气质量,减少有害气体对居民的影响。

臭氧脱硝的介绍

臭氧脱硝的介绍

臭氧脱硝的介绍臭氧脱硝是一种重要的氮氧化物治理技术,它可以高效地减少工业排放所带来的氮氧化物对环境的污染。

本文将介绍臭氧脱硝的基本原理、工作机理、工艺流程、优缺点及适用范围等方面的内容。

一、臭氧脱硝的基本原理臭氧脱硝利用臭氧氧化一氧化氮(NO)或氨(NH3),生成亚硝酸和亚硝酸盐或硝酸盐,然后通过一系列反应使其还原为气态氮(N2)和水(H2O)释放出来。

臭氧氧化一氧化氮或氨的反应方程式如下:NO + O3 = NO2 + O2 + ONH3 + O3 = NO + H2O + 2O2亚硝酸/盐和硝酸盐的反应方程式如下:3NO2 + O2 = 2NO + 2NO22NO2 + 2OH- = NO2- + NO3- +H2ONO2- + 2OH- = NO3- + H2ON2 + 2O2 = 2NO22NO + 2OH- = NO2- + H2O2NO2 + 4OH- = 2NO3- + 2H2O这样,臭氧脱硝可以将一氧化氮和氨等氮氧化物转化为更易处理的亚硝酸/盐和硝酸盐,进而进行还原反应,形成氮和水。

该过程所需要的臭氧可以通过电解氧化水产生,也可以通过空气中氧气电离而产生。

二、臭氧脱硝的工作机理臭氧脱硝的工作机理主要分为三个步骤:1. 氮氧化物氧化阶段:臭氧与一氧化氮或氨等氮氧化物接触,臭氧通过氧化作用使其转化为亚硝酸/盐和硝酸盐。

2. 氮氧化物还原阶段:亚硝酸/盐和硝酸盐经过还原反应转化为氮和水,减少氮氧化物对环境的污染。

3. 臭氧再生阶段:通过对使用过的臭氧进行再生,确保臭氧脱硝系统的稳定性和持续作用。

三、臭氧脱硝的工艺流程臭氧脱硝是一种先进的氮氧化物治理技术,其工艺流程主要包括前处理、臭氧反应器、后处理等三个部分。

前处理:通过对氮氧化物的预处理,使各种氮氧化物处于最佳的反应状态。

臭氧反应器:该反应器正常运行条件下获得良好的催化效果,可以将一氧化氮或氨转化为亚硝酸盐和硝酸盐,这些化合物随后通过后处理系统进一步处理,使其发生还原反应,最终转化成无害的氮和水。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种常用的空气污染物控制技术,可有效去除烟气中的硫酸盐和硝酸盐,减少大气环境中的酸雨和光化学烟雾的生成。

本文将介绍臭氧脱硝技术的原理、工艺流程和应用场景。

技术原理臭氧脱硝技术是一种化学反应法,通过将臭氧注入烟气中,使其与烟气中的二氧化硫和氮氧化物发生反应,生成稳定的硫酸盐和亚硝酸盐。

这些生成物会随烟气一起排出烟囱,并通过烟囱排放到大气中。

臭氧脱硝技术的主要反应方程式如下:2SO2 + O3 → 2SO32NO + O3 → 2NO2技术工艺流程臭氧脱硝技术的主要工艺流程包括臭氧产生、混合反应和尾气处理三个步骤。

1. 臭氧产生臭氧可以通过给氧源加电或者光照等方式产生。

其中常用的方法是通过电解水产生臭氧,其反应方程式如下:2H2O → 4H+ + O2 + 4e^-2H2O + 4e^- → 4OH-2OH- → O2 + 2H2O + 4e^-2. 混合反应在烟气进入脱硝设备之前,臭氧需要与烟气中的二氧化硫和氮氧化物充分混合。

混合的方式可以采用喷射或循环往复流的形式,以确保臭氧与废气充分接触,提高反应效率。

3. 尾气处理脱硝反应完成后,产生的硫酸盐和亚硝酸盐会随烟气一同进入尾气处理系统。

尾气处理系统通常包括除尘装置和吸收塔。

除尘装置用于去除烟气中的固体颗粒物,吸收塔则用于将硫酸盐和亚硝酸盐捕集并形成稳定的产品。

应用场景臭氧脱硝技术适用于燃煤和燃油等工业锅炉、电厂和工业炉窑等不同场景的烟气治理。

臭氧脱硝技术具有高效、节能、环保等优点,有效地减少了大气环境中的酸雨和光化学烟雾的生成,提高了环境空气质量。

结论臭氧脱硝技术是一种常用的空气污染物控制技术,通过化学反应将烟气中的硫酸盐和亚硝酸盐转变为稳定的产品,并通过尾气处理系统进行排放。

该技术适用于不同场景的烟气治理,具有高效、节能、环保等优点。

某钢厂脱硝方案臭氧法讲述

某钢厂脱硝方案臭氧法讲述

某钢厂脱硝方案臭氧法讲述某钢厂臭氧脱硝方案技术方案唐山------公司2012年4月10日某钢厂臭氧脱硝工程技术方案目录1 总论...................................................................... . (3)1.1 项目概述...................................................................... (3)1.2 工程概况...................................................................... ......... 3 2 脱硝方案 ..................................................................... (4)2.1 设计参数...................................................................... (4)2.2 系统烟气流程 ..................................................................... .. 42.3 设计方案...................................................................... ......... 4 3 设备材料报价...................................................................... .......... 9 4 供货周期 ..................................................................... .................. 9 5 简易工艺流程...................................................................... ........ 10 6 服务与承诺 ..................................................................... (10)2 北京中科绿山环保科技有限公司某钢厂臭氧脱硝工程技术方案 1 总论1.1 项目概述某钢厂现有烟气温度在换热器后降低至150?以下,烟气中含有的氮氧化物超标,需要建设脱硝装置去除烟气中的氮氧化物,1.2 工程概况1.2.1 机组情况主体机组参数如下:序号名称型号技术参数数量单位备注 1 1 XX机组台3 北京中科绿山环保科技有限公司某钢厂臭氧脱硝工程技术方案 2 脱硝方案2.1 设计参数脱硝装置的设计参数。

臭氧脱硝方案

臭氧脱硝方案

臭氧脱硝方案引言在大气污染治理中,脱硝技术是一项重要的措施。

臭氧脱硝方案是一个高效且环保的技术,可以有效地降低氮氧化物(NOx)的排放。

本文将介绍臭氧脱硝的原理、应用和优势。

原理臭氧脱硝采用臭氧气体(O3)作为氧化剂,通过将NOx氧化为氮酸根离子(NO3-)而进行脱硝。

臭氧在反应过程中具有较强的氧化能力,可以迅速将NOx氧化为稳定的氮酸根离子,从而降低大气中的污染物浓度。

臭氧脱硝主要通过以下两个反应来完成:1.2NO + O3 → 2NO2 + O2 :臭氧和氮氧化物之间的反应。

2.NO2 + O3 → NO3- + O2 :氮酸根离子生成反应。

臭氧和氮氧化物的反应是一个自由基链式反应,因此在反应中需要一个合适的条件来控制臭氧的生成和使用,以促进脱硝效果的最大化。

应用臭氧脱硝技术广泛应用于燃煤电厂、工业锅炉、石化厂等高温燃烧过程中的烟气脱硝处理。

其适用于大气中NOx浓度较高的场所,可以显著降低氮氧化物的排放,改善空气质量。

脱硝的关键是在氧化反应中控制好气体的混合比例。

要保证脱硝效果,通常需要通过优化臭氧气体的供给和混合方式,以达到最佳的混合效果。

此外,脱硝设备的选型和设计也是关键因素之一。

优势臭氧脱硝方案相比传统的脱硝技术有以下优势:1.高效环保:臭氧具有较强的氧化能力,可以将NOx迅速氧化成稳定的氮酸根离子,有效降低大气中的污染物浓度。

2.适应性强:臭氧脱硝技术适用于高温燃烧过程中的烟气脱硝处理,适用于不同类型的燃煤电厂、工业锅炉和石化厂。

3.技术成熟:臭氧脱硝技术在实践中得到了广泛应用,已经形成了较为成熟的工程实施经验。

4.无二次污染:臭氧脱硝的主要产物是稳定的氮酸根离子,不会产生二次污染。

结论臭氧脱硝方案是一种高效且环保的技术,可以有效减少大气中的氮氧化物排放。

其原理简单清晰,应用广泛,而且具有高效环保、适应性强、技术成熟和无二次污染等优势。

在大气污染治理中,臭氧脱硝方案将发挥重要的作用,并对改善空气质量起到积极的推动作用。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案引言臭氧脱硝技术是一种用臭氧氧化氮氧化物(NOx)来减少大气污染物的排放的方法。

臭氧脱硝技术在控制大气污染、改善空气质量方面具有重要作用。

本文将介绍臭氧脱硝技术的原理、应用领域及技术方案。

原理臭氧脱硝技术是利用臭氧与NOx反应生成亚硝酸盐和硝酸盐,进一步与氨反应生成硝酸铵,并在表面活性剂的作用下与颗粒物吸附在集尘器上,达到减少NOx排放的目的。

臭氧脱硝技术的主要步骤包括: 1. 生成臭氧:臭氧发生器将氧气通过电源放电产生臭氧。

2. 氧化反应:将臭氧引入反应器中与NOx氧化反应生成亚硝酸盐和硝酸盐。

3. 还原反应:将氨注入反应器中,与亚硝酸盐和硝酸盐发生反应,生成硝酸铵。

4. 吸附分离:在表面活性剂的作用下,硝酸铵与颗粒物吸附在集尘器上。

应用领域臭氧脱硝技术被广泛应用于以下领域:1.火电厂:臭氧脱硝技术能有效降低火电厂的NOx排放量,帮助企业达到环保要求。

2.石化工厂:臭氧脱硝技术可以应用于石化工厂中的反应器,帮助减少NOx排放对环境的影响。

3.钢铁冶炼:臭氧脱硝技术可以用于炼钢过程中的烟道排放处理,减少大气污染物的排放。

4.汽车尾气治理:臭氧脱硝技术可以应用于汽车尾气处理装置中,减少尾气中的NOx排放。

臭氧脱硝技术的具体方案根据不同的应用领域和实际情况而有所差异。

一个基本的臭氧脱硝技术方案包括以下几个主要组成部分:臭氧发生器臭氧发生器是臭氧脱硝技术的核心设备。

臭氧发生器通过电源放电将氧气转化为臭氧。

常用的臭氧发生器有液氧发生器、臭氧管式发生器等,其选择要根据具体情况进行。

反应器反应器是臭氧与NOx氧化反应和还原反应的主要场所。

反应器的设计要考虑到反应器内的物料均匀性和气体流动性,以便达到最佳的反应效果。

同时,反应器材质的选择要能够耐受臭氧和颗粒物的侵蚀。

氨注入系统是将氨气引入反应器进行还原反应的关键设备。

氨气的注入要控制好注入量和注入速度,以确保反应过程的稳定性和效果。

集尘器集尘器是对反应后的硝酸铵和颗粒物进行分离的装置。

臭氧氧化吸收法脱硝原理

臭氧氧化吸收法脱硝原理

臭氧氧化吸收法脱硝原理臭氧氧化吸收法脱硝是一种常用的工业脱硝技术,通过利用臭氧的氧化性质将烟气中的氮氧化物(主要是一氧化氮和二氧化氮)转化为易于吸收和去除的硝酸根离子。

臭氧氧化吸收法脱硝的原理是利用臭氧氧化性能强,能够氧化一氧化氮和二氧化氮生成氮酸根离子的特性,使烟气中的氮氧化物转化为硝酸根离子,从而达到脱硝的目的。

臭氧氧化吸收法脱硝的工作过程主要包括以下几个步骤:1. 臭氧生成:臭氧通常是通过电晕放电法或紫外线辐射法产生的。

在电晕放电法中,通过高压电场使氧气离子化,产生臭氧。

在紫外线辐射法中,通过紫外线照射氧气,使其分解生成臭氧。

2. 氮氧化物氧化:臭氧与烟气中的一氧化氮和二氧化氮发生氧化反应,生成氮酸根离子。

臭氧的氧化能力强,能够将一氧化氮和二氧化氮氧化为硝酸根离子,反应式如下:2O3 + 2NO → 2NO2 + O2 + O3NO2 + O3 → NO3- + O23. 吸收:氮酸根离子与吸收剂(通常为碱性溶液)中的阳离子结合形成硝酸盐沉淀。

硝酸盐沉淀可通过沉淀器或过滤器进行分离和去除。

4. 再生:吸收剂中的硝酸盐沉淀可通过加热或其他方法进行再生,使其重新转化为可继续使用的吸收剂。

臭氧氧化吸收法脱硝具有以下优点:1. 脱硝效率高:臭氧氧化性能强,能够将烟气中的氮氧化物彻底氧化为硝酸根离子,使脱硝效率高达90%以上。

2. 适用范围广:臭氧氧化吸收法脱硝适用于各种工业烟气中的氮氧化物脱除,包括电力、钢铁、化工等行业。

3. 无需添加额外试剂:臭氧是一种自然存在的氧化剂,脱硝过程中无需添加额外的试剂,减少了成本和污染。

4. 对其他污染物的影响小:臭氧氧化吸收法脱硝对烟气中的其他污染物影响较小,不会产生新的污染物。

然而,臭氧氧化吸收法脱硝也存在一些不足之处:1. 能耗较高:臭氧的产生需要消耗较大的能量,增加了系统的能耗。

2. 处理成本较高:臭氧的生成和吸收剂的再生都需要一定的投入成本,增加了处理的经济成本。

臭氧脱硝工艺说明

臭氧脱硝工艺说明

臭氧方案细化一、臭氧低温氧化脱硝工艺臭氧氧化吸收脱硝方法原理主要是利用氧化反应和吸收反应。

氧化反应主要是利用臭氧的强氧化性,将不可溶的低价态氮氧化物氧化为可溶的高价态氮氧化物,然后在洗涤塔内将氮氧化物吸收,到达脱除的目的。

该脱硝系统在不同的NOx等污染物浓度和比例下,可以同时高效率脱除烟气中的NOx、二氧化硫和颗粒物等污染物,同时还不影响其他污染物控制技术,是传统脱硝技术的一个高效补充或替代技术。

按照O3对于NOx复杂的氧化反应过程,实际上最后通过N的价态变化表达出来,主要的反应如下:2NO+3O3=N2O5+3O22NO2+O3=N2O5+O2NO+O3=NO2+O2与气相中的其他化学物质如CO、SO2等相比,NOx可以很快地被臭氧氧化,这就使得NOx的臭氧氧化具有很高的选择性。

因为气相中的NOx被转化成溶于水溶液的离子化合物,这就使得氧化反应更加完全,从而不可逆地脱除了NOx,而不产生二次污染。

经过氧化反应,加入的臭氧被反应所消耗,过量的臭氧可以在喷淋塔中分解。

除了NOx之外,一些重金属,如汞及其他重金属污染物也同时被臭氧所氧化。

烟气中高浓度的粉尘或固体颗粒物不会影响到NOx的脱除效率。

吸收反应主要是被臭氧氧化成成高价态的氮氧化物在喷淋塔中被吸收液吸收,形成硝酸盐去除。

吸收液资源化,脱硫脱硝液、渣经强氧化,固液别离,溶液可蒸发结晶为复盐,无二次污染。

脱硫液中硝酸盐经与石膏及其他盐类混合结晶,经脱水随脱硫渣一同去除,脱硫废液经过中和-沉淀-澄清去除重金属盐类后,一部分用于制浆,一部分用于生产冲渣用水,全部循环使用,不经外排。

改性滤料炉渣吸附重金属及硝酸盐类处理后无害化处理作为建筑材料,用来厂区修路,以及外销用作建筑材料。

炉渣是电厂锅炉、各种工业及民用锅炉,炉窑燃烧煤炭后排出的固体废弃物。

由于煤炭在燃烧过程中进入大量空气,冷却后又逃逸,导致生成的炉渣形成多孔结构。

炉渣中含有的多种碱性氧化物(cao协LO3等)在与脱硫废水接触后能溶出部分碱性物,因而对脱硫废水中的硝酸盐、重金属、悬浮物电厂炉渣的吸附性能非常好,锅炉每天产生的炉渣xx吨,具备吸附处理脱硫脱硝废水80吨的能力,我方脱硫系统每天出渣滤液月xx吨小于炉渣处理水量,中和絮凝沉淀后约xx吨用制浆,xx吨用于冲渣,炉渣吸收带走xx的水分,经炉渣炭粒吸附去除重金属硝酸盐及重金属离子后的冲渣水经过沉淀澄清后,用于煤场加湿,实现污水零排和节约用水的双赢。

臭氧脱硝原理以及臭氧脱硝方案

臭氧脱硝原理以及臭氧脱硝方案

臭氧脱硫脱硝学问点一、关于臭氧:臭氧〔O3〕是氧气(O2)的同素异形体,它是一种具有特别气味的淡蓝色气体。

分子构造呈三角形,键角为116°,其密度是氧气的1.5 倍,在水中的溶解度是氧气的10 倍。

臭氧是一种强氧化剂,其氧化复原电位仅次于氟。

臭氧与亚铁、Mn2+ 、硫化物、硫氰化物、氰化物、氯等均发生反响。

臭氧制造设备:臭氧发生器:臭氧发生器是用于制取臭氧气体〔O3〕的装置。

臭氧易于分解无法储存,需现场制取现场使用〔特别的状况下可进展短时间的储存〕,所以但凡能用到臭氧的场所均需使用臭氧发生器。

利用高压电离(或化学、光化学反响),使空气中的局部氧气分解聚合为臭氧,是氧的同素异形转变过程;亦可利用电解水法获得。

臭氧发生器的分类按臭氧产生的方式划分,臭氧发生器主要有三种:一是高压放电式,二是紫外线照耀式,三是电解式。

臭氧浓度臭氧为混合气体其浓度通常按质量比和体积比来表示。

质量比是指单位体积内混合气体中含有多少质量的臭氧,常用单位 mg/L、mg/m3 或 g/m3 等表示。

体积比是指单位体积内臭氧所占的体积含量或百分比含量,使用百分比表示如 2%、5%、12%等。

臭氧浓度是衡量臭氧发生器技术含量和性能的重要指标。

同等的工况条件下臭氧输出浓度越高其品质度就越高。

二、臭氧脱硝原理:1.根本原理:臭氧具有仅次于氟的强氧化性,完全有力量将烟气恶劣环境中的NO 氧化成高价态,提高烟气中氮氧化物的水溶性,从而通过湿法洗脱。

其中主要包括以下反响:NO+O3→NO2+O2 〔1〕NO2+O3→NO3+O2 〔2〕NO2+NO2→N2O4 〔3〕N2O4+O3→N2O5 〔4〕NO3+NO2→N2O5 〔5〕3NO2+H2O→2HNO3+NO (6)N2O5+ H2O→2HNO3 〔7〕利用臭氧将NO 氧化为高价态的氮氧化物后,需要进一步地吸取。

常见的吸取液有Ca(OH)2、NaOH 等碱液。

不同的吸取剂产生的脱除效果会有肯定的差异。

臭氧脱硝技术方案

臭氧脱硝技术方案

臭氧脱硝技术方案臭氧脱硝技术是一种利用臭氧气氛中的活性氧分子对氮氧化物(NOX)进行高效氧化还原反应的方法,主要应用于燃煤电厂、燃气锅炉、工业炉窑、石化等大气污染源。

本文将提出一种基于臭氧脱硝技术的方案,以减少大气污染物排放,改善空气质量。

一、原理简介臭氧脱硝技术是通过臭氧与氮氧化物发生氧化还原反应,将NOX转化为氮气和水蒸汽,从而实现脱硝的效果。

臭氧分解生成的活性氧会与NOX 反应生成氮气和水蒸汽,反应过程中活性氧也会进一步催化反应,提高反应效率。

二、关键设备和工艺1.臭氧发生器:臭氧发生器是臭氧脱硝系统的核心设备,其主要功能是将氧气转化为臭氧。

常见的臭氧发生器有电解法、高频等离子法和紫外线法等。

这些方法的共同特点是能够高效地产生臭氧气体,但具体选择应根据实际情况进行。

2.反应器:反应器是将臭氧与NOX混合进行反应的装置。

根据反应器的结构不同,可以分为管式反应器和喷雾反应器。

管式反应器将臭氧气体与待处理的废气通过内部的管道进行混合反应,而喷雾反应器则是将臭氧气体喷洒到废气中进行反应。

喷雾反应器的优点是反应效率高,但对喷雾系统的控制要求高。

3.除尘器:臭氧脱硝过程中会产生一些颗粒物,因此需要配置除尘设备进行处理。

常用的除尘器有静电除尘器和布袋除尘器。

这些除尘设备能够有效地捕捉并去除颗粒物,保证排放物的合格。

三、操作流程1.前处理:原料气中的颗粒物、有毒物质等需要通过前处理设备进行去除。

前处理设备一般采用布袋除尘器、活性炭吸附器等。

2.臭氧发生:将氧气通过臭氧发生器产生臭氧气体。

臭氧发生器的选择应根据工艺要求和设备性能进行。

3.反应处理:将产生的臭氧与待处理气体进行混合反应。

反应器的设计应保证混合均匀,在反应过程中保持适当的溶液浓度和悬浮液浓度,以提高反应效率。

4.除尘处理:将反应后的气体通过除尘设备进行颗粒物的去除,保证排放物的合格。

5.废气排放:经过处理后的气体可以直接排放到大气中。

四、技术优势1.脱硝效果好:臭氧脱硝技术能够高效转化NOX为无害的氮气和水蒸汽,脱硝效果优于传统的氨法脱硝和选择性催化还原脱硝。

臭氧低温脱硫脱硝技术(LoTOx)

臭氧低温脱硫脱硝技术(LoTOx)

臭氧低温脱硫脱硝技术(LoTOx)目前烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术,其原理是向烟气中喷氨或尿素等含有NH?3自由基的还原剂,在高温下直接(或催化剂的协同下)与烟气中的NOx发生氧化还原反应,把NOx 还原成氮气和水。

但该技术也有其巨大的局限性,由于化学反应需要在高温下进行,而对于中小型锅炉以及工业锅炉来说,排烟温度远不能达到化学反应所需要的高温,因此低温烟气脱硝技术就成为市场的必须。

低温烟气脱硝技术以低温氧化技术(LoTOx)最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。

将烟气中的NO转化为高价态,需引入较强的氧化剂,在众多氧化剂中,臭氧是最环保清洁的强氧化剂,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于·OH、·HO2 等,工作环境恶劣,自由基存活时间非常短,能耗较高,O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显著降低能耗。

臭氧脱硝原理臭氧具有仅次于氟的强氧化性,完全有能力将烟气恶劣环境中的NO氧化成高价态,提高烟气中氮氧化物的水溶性,从而通过湿法洗脱。

其中主要包括以下反应:NO+O3→NO2+O2 (1)NO2+O3→NO3+O2 (2)NO2+NO2→N2O4 (3)N2O4+O3→N2O5 (4)NO3+NO2→N2O5 (5)3NO2+H2O→2HNO3+NO (6)N2O5+ H2O→2HNO3 (7)利用臭氧将NO氧化为高价态的氮氧化物后,需要进一步地吸收。

常见的吸收液有Ca(OH)2、NaOH 等碱液。

不同的吸收剂产生的脱除效果会有一定的差异。

臭氧脱硝的介绍

臭氧脱硝的介绍

臭氧脱硝的介绍一.前言目前成熟的脱硝工艺有低氮燃烧系统、选择性催化还原法(SCR)、选择性非催化还原法(SNCR)、臭氧脱硝等各种工艺。

每种工艺都有个人的优缺点和适用的条件。

对于大型的燃煤锅炉最佳的技术手段是选择性催化还原法(SCR),对于垃圾焚烧、水泥窑炉和循环流化床锅炉(CFB),选择性非催化还原法(SNCR)是一个比较经济的工艺。

除此之外还有许多机组既不适用SCR也不适用SNCR,而臭氧氧化脱硝法正好适合此类机组。

本文将从原理、化学反应过程、主要影响因素、系统构成和CFD辅助设计等方面介绍臭氧脱硝工艺。

二.臭氧脱硝原理在介绍臭氧脱硝的原理前,首先要介绍一下臭氧。

臭氧(O3)是氧的高能态存在形式,无色,有特殊臭味,极不稳定,具备奇特的强氧化性,可以有效的去除氮氧化物、二氧化硫、氯氟有机物等,同时可以灭菌、去污、漂白、除臭等,臭氧的分解化学物质的过程当中还原成(O2)或生成水(H2O),不产生二次污染。

在自然界中,主要由雷电所产生,它是“天赐的净化剂”。

由于臭氧的这种净化特性,采用人工的臭氧发生器使得臭氧在水处理行业得到了广泛的应用。

臭氧在水中对细菌、病毒等微生物杀灭率高、速度快,对有机化合物等污染物质去除彻底而又不产生二次污染,因此饮用水杀菌消毒是臭氧应用的最主要部门,自来水行业是臭氧的最大市场。

除了在水处理方面的应用,臭氧还能有效的治理氮氧化物污染,而且是无催化剂,无还原剂,零排放的循环清洁工艺。

臭氧脱除氮氧化物已经在FCC(石油化工的催化裂化)得到了广泛的应用,是具备零吸收剂,零催化剂,零污染的先进清洁工艺。

臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。

此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂。

臭氧脱硝系统采用臭氧作为脱硝的反应物,把臭氧通过臭氧格栅均匀的注入烟气中,把不溶性的氮氧化物(NO)转变成为水溶性氮氧化合物(NO2或N2O3,或N2O5)。

臭氧氧化脱硝技术介绍

臭氧氧化脱硝技术介绍

臭氧氧化脱硝技术介绍【技术名称】臭氧氧化脱硝技术【技术内容】以臭氧为氧化剂将烟气中不易溶于水的NO氧化成更高价的氮氧化物,然后以相应的吸收液对烟气进行喷淋洗涤,实现烟气的脱硝处理。

本技术脱硝效率高(90%),对烟气温度没有要求,可作为其他脱硝技术的补充,达到深度脱硝。

臭氧氧化吸收脱硝法以臭氧为氧化剂将烟气中不易溶于水的NO氧化成NO2或更高价的氮氧化物,然后以相应的吸收液(水、碱溶液、酸溶液或金属络合物溶液等)对烟气进行喷淋洗涤,使气相中的氮氧化物转移到液相中,实现烟气的脱硝处理。

经过氧化后的烟气在洗涤塔中主要发生如下反应:NO2+H2O→HNO3+NON2O5+H2O→HNO3NO+NO2+2NaOH→2NaNO2+H2O全套臭氧氧化脱硝工艺系统简单,容易在原有脱硫塔基础上改造并实现脱硫脱硝同时进行;脱硝效率高(可达90%以上);根据烟气中氮氧化物的实时监测,可实现氧化剂(臭氧)投加量的精确控制,使系统的运行效率不受锅炉运行状态影响;系统运行温度低,可实现低温脱硝处理;系统运行效率不随运行时间增加而下降,大大减少脱硝系统的停机检修时间;臭氧的氧化能力也能实现对烟气中其它有害成分(如汞)的氧化脱除,能满足将来越来越严的环保要求。

目前,该技术开始在国内石化行业应用。

其脱硝效率一般大于85%,可达90%以上;NO排放浓度可达20mg/m3以下;100万m3/h工程投资大致为5000万左右;运行成本一般低于16元(每公斤NO)。

该技术成熟、稳定,运行简单,脱硝效率高,且可以运用于温度较低的烟气脱硝中,以及燃煤电站锅炉烟气深度脱硝。

是"十一五'、"十二五'以来,在国家相关科技计划的资助下,我国在臭氧发生器放电结构和放电介质的设计研究、大功率变频谐振电源与臭氧发生器的参数研究、整体结构和放电管模块化结构的图纸设计研究、冷却系统、检测系统、PLC控制系统的研究设计以及臭氧发生系统的可靠性分析等方面取得重要进展,大幅提高了大型臭氧发生器的制造水平,使装置具有高效率、低能耗、体积小、寿命长、运行稳定可靠、价格低等显著优点。

臭氧脱硝技术方案讲解

臭氧脱硝技术方案讲解

臭氧脱硝工艺方案一、工艺说明1. 工艺原理利用臭氧发生器制备臭氧,通过布气装置把臭氧气体均布到烟气管道截面,在管道中设置烟气混合器,使臭氧与含NO的烟气在烟气管道中充分混合并发生氧化反应。

将烟气中的NO氧化为容易吸收的NO和NQ。

再利用氨法脱硫洗涤塔, 对NO和进行吸收反应,生成硝酸氨与亚硝酸氨。

最后再与硫酸盐一起富集、浓缩、干燥后,作为氮肥加以利用。

其主要反应式为:NO+C=N(2+Q2NG+Q二NO+Q2NG+2NH+HO二N4NONhNION2Q+2NH+HO =2NHNIQ2. 工艺流程图躺发生器3. 主要工艺参数-6每小时需要处理的NO的量为:60000X( 800-100 )x 10 =42kg/h二、主要设备说明1. 臭氧发生器根据烟气中NO的含量,计算所需要的臭氧设备约为2台25kg/h的臭氧发生器,两用一备,配置气源控制系统,冷却水系统及配套齐全的自动控制(PLC、检测仪器等。

至于采用何种气源(空气或氧气)的臭氧发生器系统,根据项目现场情况经与业主协商后确定。

1.1臭氧制备工艺及流程(氧气源工艺)业主提供的氧气管道气通过设置的一级减压稳压装置处理后,经过氧气过滤器进行过滤,并通过露点仪检测进气露点,通过流量计计量进气量,并与PLC 站联动。

每套系统的进气管路上设置安全阀用于泄压保护系统。

在臭氧发生室内的高频高压电场内,部分氧气转换成臭氧,产品气体为臭氧化气体,经温度、压力监测后、经出气调节阀后由臭氧出气口排出。

臭氧发生室出气管路上设有臭氧取气口,并装有电磁阀,每个设备的取气管分别通过各自的发生臭氧浓度仪检测臭氧出气浓度臭氧发生器设置1套封闭循环冷却水系统,通过板式换热器换热,为臭氧发生器提供冷却水。

并配置一台冷却循环水泵,冷却循环水泵受PLC自动控制系统监控。

冷却水进水管路设置压力传感器,用于检测并反馈到PLC自动控制系统,冷却水出水有温度变送器、流量开关等,当冷却水温度超过设定值或者流量低于设定值时报警。

臭氧法脱硝技术方案

臭氧法脱硝技术方案

xxxx有限公司2×35t链条炉臭氧脱硝改造项目技术规范书目录一、项目概况:Xxx公司现有2台35t/h链条炉,无锡华光锅炉厂产品, 2011年建成投产,锅炉现配套布袋除尘器, 2套双碱法脱硫,未配套脱硝系统;原始NOx排放浓度约300mg/Nm3;锅炉及烟气污染物排放情况如下表:现有锅炉未配套脱硝设施,为满足当前超低排放标准要求,需对现有环保设施进行脱硝改造;根据现场环保设施运行情况结合类似项目经验,本次超低排放采用臭氧氧化法脱硝工艺;二、臭氧脱硝技术要求项目建设的规模项目建设规模为2×35t/h链条锅炉脱硝工程;脱硝系统总技术要求1脱硝工艺要做到技术成熟、设备运行可靠;2根据工程的实际情况尽量减少脱硝装置的建设投资;3脱硝装置应布置合理;4脱硝剂要有稳定可靠的来源;5脱硝工艺氧化剂、水和能源等消耗少,尽量减少运行费用;设计依据三、本项目脱硝方案脱硝技术浅析一、NO的生成机理X燃煤过程中会产生氮氧化物,主要有一氧化氮与二氧化氮,这两种统称做氮氧化物NOx,燃煤过程中NOx的生成与排放量和煤燃烧的方式,尤其是温度与过量空气量等条件相关;燃煤过程中形成氮氧化物的途径主要有三个:热力型氮氧化物、快速型氮氧化物、燃料型氮氧化物以上三种类型的NOx,他们各自的生成量与煤的温度有关,在电厂机组中燃料型氮氧化物是最多的,占到氮氧化物总量的60%到80%,热力型氮氧化物其次,快速型氮氧化物最少;二、脱硝方法选择当前控制氮氧化物排放的方法可以分为三种,第一种是低氮氧化物燃烧技术,这种方法主要是通过技术手段,来抑制或者还原在燃烧过程中产生的氮氧化物,来降低氮氧化物的排放;第二种是炉膛喷射脱硝方法;第三种是烟气净化方法;烟气净化方法包括干法脱氮技术和湿法脱氮技术;下面将对他们分别进行介绍;:1、低氮燃烧技术由氮氧化物形成的条件可以知道,对氮氧化物的形成起决定性作用的为燃烧区域温度和过量空气系数;所以,低氮氧化物燃烧技术是通过对燃烧区域的温度与空气量进行控制,达到阻止氮氧化物生成从而降低排放的目的;低氮氧化物燃烧技术要求,在降低氮氧化物的同时,确保锅炉燃烧稳定,而且飞灰中的含碳量不得超标;目前经常用到的低氮氧化物燃烧技术主要有以下几种:燃烧优化、空气分级燃烧技术、燃料分级燃烧技术、烟气再循环技术、低NOx燃烧器2、炉膛喷射脱销技术这种方法是在炉膛上喷射某些物质,让它在一定的温度下还原已经生成的氮氧化物,以此来降低氮氧化物的排放量;这一过程包含喷水、喷氨和喷二次燃料等;但是喷水与喷二次燃料的方法,尚存在着如何将NO氧化为N02和解决非选择性反应的问题,因此,目前还不成熟;3、选择性催化还原法SCR选择性催化还原法SCR指通过使用催化剂,添加还原剂,还原剂分解成还原性气体如NH3和NOx,在催化作用下发生氧化还原反应,使NOx转化为氮气和水;在这三种烟气脱确工艺中,SCR工艺的脱硝效和工艺成熟度最高;我国现在已建成或拟建的烟气脱硝工程中大多采用SCR工艺;该技术的反应温度为300~40℃其反应如下:4NH3+4NO+02=4N2+6H20 14NH3+6N0=5N2+6H20 22NH3+N0+N02=2N2+3H20 38NH3+6N02=7N2+12H20 4其中上述反应式中以第一个化学反应方程式为主要反应,这是因为在烟气中95%NOx是以NO的形式存在;SCR工艺脱硝率通常可以达75%以上,可使出口烟气中排放的NOx浓度降到接近100mg/m3;还原剂的选择一般有氨水、液氨和尿素3种;SCR 工艺的催化剂一般为金属氧化物,最为常见有V 2O 5、MnO 2等.. 4、选择性非催化还原法选择性非催化还原法SNCR 指在不用催化剂的情况下,把还原剂喷进炉膛,还原剂受热分解成NH 3,与NOx 反应生成N 2和H 2O,其反应温度为800`1200℃;反应公式为:NH 3为还原剂: 4NH 3+4N0+O 2—4N 2+6H 2O 5尿素为还原剂: 2N0+C0FNH 22+1/202—2N 2+CO 2+2H 2O 6SNCR 工艺的脱硝率主要受到温度、NH 3/N0X 摩尔比、停留时间和锅炉尺寸等因素影响,对于大型电厂最多只能达到40%的去除率;SNCR 工艺的最佳温度为850~1100℃;最佳NH 3/NO X 摩尔比为1:2;当工艺的停留时间设置成为Is 时,达到最大的脱硝率82%; 3联合工艺联合工艺SNCR-SCR 有两个反应区2-4;第一个为SNCR 反应区,第二个为SCR 反应区;NOx 先进入SNCR 工艺进行一部分的去除,然后NOx 伴随着第一反应区的逃逸氨进入SCR 工艺进行进一步的去除;主要反应公式参考SNCR 与SCR 工艺的反应公式见式1、5、6;由于第一步在SNCR 工艺中预先去除部分NOx,在SCR 工艺进口NOx 浓度减小,对催化剂的依赖下降;相对于SCR 工艺,联合工艺有效减少了投资与运行费用, 相对于单独的SNCR 工艺提高了脱硝率;联合工艺最初是在日本进行实验运行研宄;运行结果表明,运用联合工艺,NOx 的去除率较单独SNCR 上升20%左右,氨逃逸降低了4倍多.图2- 4 SCR/SNCR 联合法工艺图5臭氧脱硝技术烟气中 NOx 的主要组成是 NO 占95% ,NO 难溶于水,而高价态的 NO 2、N 2O 5等可溶于水生成 HNO 2和 HNO 3,溶解能力大大提高,从而可与后期的 SO 2同时吸收,达到同时脱硫脱硝的目的;臭氧作为一种清洁的强氧化剂,可以快速有效地将 NO 氧化到高价态;电子束法和脉冲电晕法虽然能够产生强氧化剂物质,如·OH、·HO 2等,但工作环境恶劣,自由基存活时间非常短,能耗较高;O3的生存周期相对较长,将少量氧气或空气电离后产生 O3,然后送入烟气中,可显着降低能耗;1、臭氧脱硝机理臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高;此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂;低温条件下,O3与 NO 之间的关键反应如下:NO+O3→NO2+O21NO2+O3→NO3+O22NO3+NO2→N2O53NO+O+M→NO2+M 4NO2+O→NO35臭氧脱硝主要是利用臭氧的强氧化性将 NO 氧化为高价态氮氧化物, 然后在洗涤塔内将氮氧化物吸收转化为溶于水的物质,达到脱除的目的;在典型烟气温度下,臭氧对 NO 的氧化效率可达85%以上,结合尾部湿法洗涤,脱硝效率也在 O3/NO 摩尔比为时达到%;以下为臭氧脱硝工艺流程图;图2-5 臭氧氧化湿法脱硝工艺流程图2、影响因素利用臭氧脱硝的影响因素主要有摩尔比、反应温度、反应时间、吸收液性质等,这些因素对脱硝效率都有不同程度的影响;(1)摩尔比摩尔比O3/NO是指 O3与 NO 之间摩尔数的比值,它反映了臭氧量相对于一氧化氮量的高低;NO 的氧化率随 O3/NO 的升高直线上升;目前已有的研究中,在≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%;根据式1可见,O3与 NO 完全反应的摩尔比理论值为1,但在实际中,由于其他物质的干扰,可发生一系列其他反应,如式2 ~5 ,使得 O3不能100%与 NO 进行反应;2 温度由于臭氧的生存周期关系到脱硫脱硝效率的高低, 所以考察臭氧对温度的敏感性具有重要意义;在对臭氧的热分解特性的研究中得出在150℃的低温条件下,臭氧的分解率不高,只有%,但随着温度增加到250℃甚至更高时,臭氧分解速度明显加快;3 反应时间臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可,反应时间在1~10s 之间对反应器出口的 NO 摩尔数没有什么影响,而且增加停留时间并不能增大 NO 的脱除率;这主要是因为关键反应的反应平衡在很短时间内即可达到不需要较长的臭氧停留时间;4 吸收液性质利用臭氧将 NO 氧化为高价态的氮氧化物后,需要进一步地吸收;常见的吸收液有CaOH2、NaOH 等碱液;不同的吸收剂产生的脱除效果会有一定的差异;在利用水吸收尾气时, NO 和 SO2的脱除效率分别达到%和100%; 这是利用气体在水中的溶解度进行吸收;在现有脱硝技术中,其中广泛应用的是选择性催化还原法SCR ,脱除效率达90%以上;随着国家对火电厂污染物排放的要求越来越严格, 同时脱硫脱硝已成为烟气污染物控制技术的发展趋势;目前国内外广泛使用的是湿式烟气脱硫和 NH3选择催化还原技术脱硝的组合;该技术的脱硫脱硝效率虽然高,但是投资和运行成本昂贵;其他的脱硝技术还包括等离子体法、催化法、吸附法等,但只有少数进入生产应用;随着环保要求的日益严格,传统的烟气脱硝工艺将不能满足严格的减排要求,此外,传统工艺还存在设备投资高、占地面积大、系统复杂等缺点;因此开发工艺简单、可靠的脱硫脱硝工艺具有重要意义;采用臭氧的高级氧化技术不仅对 NOX具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的去除能力;其主要反应式为:NO+O3=NO2+O22NO2+O3=N2O5+O24NO2+2MO+H2O=MNO22+ MNO32N2O5+ MO +H2O = MNO32脱硝系统设计方案设计原则针对现场情况,对烟气进行氧化脱硝,工艺采用湿法的布置方法;主要设计原则如下:工艺遵循技术成熟、设备先进运行稳定、操作维护方便、自动化程度较高、运行成本较低、无二次污染原则;能够保证高可用率,而且完全符合环境保护要求;工艺充分考虑锅炉特点,系统阻力稳定;工艺与设备布置合理,能满足现有场地位置要求;整个除尘系统的所有建构筑物布置与主体工程协调;并根据其工程设计和布置要求在所给定的区域范围内优化,以使其工艺流程和布置合理、安全和经济;改造后达到超低排放要求;针对小型工业锅炉,目前常用的脱硝工艺为SNCR脱硝,由于SNCR脱硝系统脱硝效率有限,无法达到超低排放标准的要求,因此常用氧化湿法以应对越来越严格的排放标准要求;氧化脱硝其基本脱硝原理为:通过添加强氧化剂将烟气中NOx主要成分NO氧化为N2O5或N2O3,然后通过脱硫系统吸收剂吸收;强氧化剂可以选用臭氧、亚氯酸钠、亚氯酸钠、二氧化氯等;工艺路线本方案本着投资少,运行成本低,效率高且满足将来标准要求,采用氧化脱硝新技术;对烟气温度无特殊要求,脱氮效率高达70%;脱硝用水全部闭路循环,且配置了中水脱氯装置不向外排废水,无二次污染;在烟气脱硝塔内,利用多道逆顺向喷淋法,将吸收液喷入烟气中,在高速气流的带动下,吸收液被吹成雾状,比表面积大,使气液接触更加充分,从而确保了脱硝效率的稳定;氧化法脱硝常用的强氧化剂有臭氧、亚氯酸钠、亚氯酸钠、二氧化氯等;考虑投资及运行费用,本方案选择臭氧作为氧化剂;选择性氧化脱硝技术的基本原理为臭氧氧化法脱硝主要是利用臭氧的强氧化性,将不可溶的低价态氮氧化物氧化为可溶的高价态氮氧化物,然后在洗涤塔内将氮氧化物吸收,达到脱除的目的;我公司在臭氧同时脱硫脱硝过程中 NO的氧化机理进行了研究,对臭氧在烟道的投放、布气方式、气相混合方式,温度控制影响、粉尘影响等做了全面的模拟实验,总结并构建出 O3与 NOX之间详细的化学反应机理,该机理比较复杂;在实际试验中,可根据低温条件下臭氧与 NO的关键反应进行研究;低温条件下,O3与 NO之间的关键氧化反应如下:NO+O3→NO2+O21NO2+O3→NO3+O22NO3+NO2→N2O53NO+O+M→NO2+M 4NO2+O→NO35脱硝吸收主要反应原理如下:NO+NO2+H2O→2H++2NO2- 62NO2+H2O→2H++NO2-+NO3- 7N 2O5+H2O→2H++2NO3- 8NO3-+NO→NO2-+NO292H++CO32-→H2O+CO210H++OH-→H2O 11与气相中的其他化学物质如 CO,SOx等相比,NOx可以很快地被臭氧氧化,这就使得NOx的臭氧氧化具有很高的选择性;因为气相中的 NOx被转化成溶于水溶液的离子化合物,这就使得氧化反应更加完全,从而不可逆地脱除NOx,而不产生二次污染;经过氧化反应,加入的臭氧被反应所消耗,过量的臭氧可以在喷淋塔中分解;除了 NOx之外,一些重金属,如汞及其他重金属污染物也同时被臭氧所氧化;烟气中高浓度的粉尘或固体颗粒物不会影响到NOx的脱除效率;工艺特点1深度脱硝,脱硝效率高,可达到80%以上;2不使用催化剂,无催化剂中毒、反应器堵塞等问题,特别适用于催化剂颗粒物多的低温烟气脱硝工程;3维护费用低,不存在催化剂定期更换等问题;4占地面积小,模块化设备可根据现场条件灵活布置;工艺流程说明将臭氧注入混合反应装置内,使臭氧与烟气充分混合,将烟气中不溶于水的NO氧化成易溶于水的高价态氮氧化物,包括NO2,N2O3,N2O5,极短的时间内完成反应;然后进入吸收塔,喷淋碱性溶液将烟气中被氧化的氮氧化物吸收,确保NOx排放浓度在150mg/Nm3以下;工艺流程见图3-1;烟气脱硫脱硝系统按功能分为:1、氧气源系统;2、臭氧发生及注入系统;3、脱硝塔系统;4、自动控制系统等四个子系统;图3-1烟气脱硫脱硝工艺流程主要技术要求3.系统臭氧系统集成由臭氧发生系统,控制系统、冷却水系统、检测仪器仪表等组成;在臭氧发生室内的高频高压电场内,通过微间隙介质阻挡放电技术,将部分氧气纯度≥99%转换成臭氧,产品气体为臭氧化气体,通过出气调节阀后的臭氧管道出气口排出;臭氧发生系统的主要设备包括有:1臭氧发生器臭氧产率为15kg/h2氧气泄漏报警仪1台3臭氧分布器4储氧罐: 容积为30m3,立式罐;臭氧发生室出气管路上设有臭氧取气口,装有取样阀,通过臭氧浓度仪检测臭氧出气浓度;臭氧发生器氧气进气压力为,现场应使进气压力、流量稳定,以保证稳定的臭氧产量;为保证气源满足臭氧发生器进气要求,在进气管道上安装氧气过滤器过滤精度≤μ对进气进一步净化;在进气管道上同时安装有压力传感器与温度传感器在线检测及就地显示氧气压力和温度,配置压力开关及安全阀,当臭氧发生器压力过高时,自动泄压,必要时切断气源,保证臭氧发生器安全生产;同时进气管路设置压力表,用于就地显示进气压力;在出气管道上安装臭氧调节阀,自动调节臭氧浓度及产量,使臭氧发生器的产量满足实际需求;臭氧发生工艺原理臭氧发生器的核心采用了先进的介质阻挡双间隙放电技术,原料气流经过绝缘介质与高压电极之间以及绝缘介质层和臭氧发生器罐体接地极之间的狭小间隙,两个环状间隙之间的高压电场双面放电,将通过的氧气转换为臭氧,臭氧产生效率高;工业上一般采用电晕放电法制取,其原理如图3-2所示:图3-2臭氧发生原理图臭氧发生器最重要的部分是臭氧放电管,设备采用高质量的耐臭氧腐蚀的316L不锈钢材料,PTFE聚四氟乙烯制造,提高了系统的长期可靠运行;放电管数量在设计时留有 10%的余量,可抵消不可预见放电管污染带来的效率降低;臭氧发生器安装的形式为水平安装,可以直接将臭氧发生器放在基础上,方便安装和检修;臭氧发生器出厂前已将管道、阀门、仪表和电缆安装好,并且全套系统在工厂完成全部技术指标测试;臭氧发生器设计运行方式为 24小时连续运转;氧气源系统见参数说明冷却水系统本系统冷却水采用冷却塔和循环水泵,循环量不小于40m3/h;臭氧注入系统在进入吸收塔之前的烟气管道上,设置混合反应器;将烟气注入混合器反应器内使烟气和臭氧充分混合,低价态NOx在极短的反应时间内被氧化为高价态的氮氧化物;自动控制系统控制范围及要求本系统控制为锅炉烟气脱硝而设计;控制范围主要涉及包括以下内容:组合氧化吸收的控制系统及监测仪表系统;系统具有全自动控制及多级安全保护的功能,可以根据出口烟气中NOx浓度与烟气分析仪氧含量、二氧化硫、氮氧化物、颗粒物、风压、风速、风量的参数,通过调节臭氧注入量来保证出口烟气NOx浓度达标,同时充分考虑现场和操作检修工作的实际情况,使得运行更可靠、更安全、更容易检修;自控制功能、原理及其配置简介1系统控制方式:由主控室负责集中监控,具备手动/自动控制和调节功能,手自调节无扰切换;所有监控参数均可通过口令进入监视或设置,最大化方便用户操作;2监控系统功能:在屏幕中可完成系统集中监视和控制,报警、急停、数据及趋势归档等; 3监控界面功能:按需点按设备或参数弹出相关控制画面,弹出画面可按需放大缩小;4监控画面组成:包含主界面/公共系统界面/系统工艺流程/参数设置一揽表界面/常用参数 /初始参数/历史趋势/报警联锁/故障查询/数据统计/控制统计/设备控制/设备调节等等;5系统权限:可按用户权限要求定制,分配不同权限口令,用户管理员可修改设定原有权限口令,满足安全管理要求;6控制系统维护:在控制系统中可实现故障自检功能,提示维修人员故障位置,及其性质,方便用户日常维护;脱硝系统设备参数表1配套吸收系统参数2臭氧发生器参数表3-2臭氧发生器参数3氧气源系统参数表3-3 氧气源系统参数表3-4 氧气性能要求参数主要设备清单装置运行的经济性年脱除NOx量计约为36t/a,1×35t 按年运行3000h, BMCR工况下1×20t锅炉可脱除NOx以NO2计约为73t/a,锅炉可脱除NOx以NO2消耗定额1×35t锅炉脱硝系统消耗定额单位成本费用单位成本费用包括:原辅材料费、动力燃料费;电价:元/kWh;液氧700元/t年直接运行成本年直接运行成本一览表1×35t锅炉。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

臭氧脱硝工艺方案
一、工艺说明
1. 工艺原理
利用臭氧发生器制备臭氧,通过布气装置把臭氧气体均布到烟气管道截面,在管道中设置烟气混合器,使臭氧与含NO
X
的烟气在烟气管道中充分混合并发生
氧化反应。

将烟气中的NO
X 氧化为容易吸收的NO
2
和N
2
O
5。

再利用氨法脱硫洗涤塔,
对NO
2和N
2
O
5
进行吸收反应,生成硝酸氨与亚硝酸氨。

最后再与硫酸盐一起富集、
浓缩、干燥后,作为氮肥加以利用。

其主要反应式为:
NO+O3=NO2+O2
2NO2+O3=N2O5+O2
2NO2+2NH3+H2O=NH4NO2+NH4NO3
N2O5+2NH3+H2O =2NH4NO3
2. 工艺流程图
3. 主要工艺参数
每小时需要处理的NO
X 的量为:60000×(800-100)×10
-6
=42kg/h
二、主要设备说明
1. 臭氧发生器
根据烟气中NO
X
的含量,计算所需要的臭氧设备约为2台25kg/h的臭氧发生器,两用一备,配置气源控制系统,冷却水系统及配套齐全的自动控制(PLC)、检测仪器等。

至于采用何种气源(空气或氧气)的臭氧发生器系统,根据项目现场情况经与业主协商后确定。

1.1 臭氧制备工艺及流程(氧气源工艺)
业主提供的氧气管道气通过设置的一级减压稳压装置处理后,经过氧气过滤器进行过滤,并通过露点仪检测进气露点,通过流量计计量进气量,并与PLC 站联动。

每套系统的进气管路上设置安全阀用于泄压保护系统。

在臭氧发生室内的高频高压电场内,部分氧气转换成臭氧,产品气体为臭氧化气体,经温度、压力监测后、经出气调节阀后由臭氧出气口排出。

臭氧发生室出气管路上设有臭氧取气口,并装有电磁阀,每个设备的取气管分别通过各自的
发生臭氧浓度仪检测臭氧出气浓度。

臭氧发生器设置1套封闭循环冷却水系统,通过板式换热器换热,为臭氧发生器提供冷却水。

并配置一台冷却循环水泵,冷却循环水泵受PLC自动控制系统监控。

冷却水进水管路设置压力传感器,用于检测并反馈到PLC自动控制系统,冷却水出水有温度变送器、流量开关等,当冷却水温度超过设定值或者流量低于设定值时报警。

本系统设计按外循环冷却水入口温度£33℃,如水温超过33℃时,系统能连续稳定工作,但产能有所降低,可通过调整运行条件达到要求的臭氧产量。

内循环水建议采用蒸馏水。

臭氧发生器设置检修时剩余臭氧的吹扫系统和冷却水低点排空。

臭氧出气管路上设计取样口,并设置臭氧浓度在线检测仪。

臭氧设备放置点设计安装氧气泄漏报警仪(具备现场声光报警),周围环境中检测到氧气浓度超标检测仪将报警。

臭氧设备放置点设置臭氧泄漏报警仪(具备现场声光报警),用于检测臭氧设备放置点是否有臭氧泄漏,当检测到臭氧浓度超标时报警。

如果确定了是其它气源的臭氧系统,再提供流程。

1.2 臭氧发生器技术参数
1.2.1 臭氧产量及浓度
1.2.2电气性能
1.2.3氧气用量
1.2.4公共工程
2. 臭氧布气装置与烟气混合器
为了使臭氧与烟气中的NO
X
充分混合,从臭氧发生器出来的臭氧气体通过环
形烟气布气装置,均匀的通入需治理的烟气风管截面中,然后再通过烟气混合器
使烟气产生揣流,保证臭氧与烟气中的NO
X
能够充分接触而发生反应。

由于臭氧
与NO
X 的反应非常快速,基本不会受到SO
2
的影响,因此不需要额外增加设备,
只需要在烟气管道中进行即可。

布气装置与烟气混合器的总压损不超过300Pa。

3.洗涤装置
采用碱液洗涤塔对生成的NO
2
进行吸收治理,如果与烟气脱硫同时进行,可
以利用湿法脱硫塔,同时进行NO
X 和SO
2
的吸收治理。

建议碱液采用氨水,最终
生成产物为NH
4NO
2
和NH
4
NO
3。

三、工艺特点
⑴反应时间短,速度快。

臭氧与NO
X
反应速度极快,只需要很短的时间,
即可将NO
X 氧化成高价态的NO
2
和N
2
O
5。

因此不需要特别的反应设备,只需要在烟
气管道中混合,即可进行。

⑵吸收完全,净化效率高。

由于NO
2与N
2
O
5
都是易溶于水的物质,在碱性环
境下,只需要很小的喷淋量,即可彻底吸收烟气中的NO
X
,转化为硝酸盐和亚硝酸盐,因此烟气净化效率高。

⑶不产生二次污染。

由于臭氧与NO
X 反应的生成物是O
2
,在烟道中不影响
排放。

而且还可以提高SO
2
的转化效率。

⑷可以直接利用脱硫洗涤塔进行洗涤。

由于NO
x 的含量相对SO
2
来说很小,
基本不需要增加脱硫洗涤塔的负荷。

⑸自动化程度高。

整套设备全部通过PLC自动控制,不需要专人值守,只要定期巡查即可。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档