小学六年级奥数专题明细
小学六年级奥数专题大全
第一讲 计数原理知识纵横:如果完成一件事情,有几类不同的方法,而且每类方法中又有几种可能的方法,那么求完成这件事 的方法总数,即各类方法的总和,就是我们要掌握的加法原理。
加法原理:完成某件事情,如果有几类方法,而在第一类方法中有m 1种方法,第二类方法中有方法⋯⋯第 n 类有 m n 种,那么完成这件事的方法总数可以表示为m 1+ m 2+ m 3+⋯ +m n 。
完成一件事,需要分几个步骤来完成,而完成每步又有几种不同的方法,要求完成这件事的方法的 总数,应当将各步骤方法总数相乘,这就是我们应掌握的乘法原理。
乘法原理:完成一件事需要分成几个步骤,第一步有m 1 种方法,第二步有 m 2 种方法,第三步有种方法⋯⋯第 n 步有 m n 种方法,那么完成这件事共有 m 1× m 2× m 3×⋯× m n 种不同的方法。
例题求解:【例 1】 10 个人进行乒乓球比赛,每两个人之间比赛一场,问:一共要比赛多少场?例 2】一天有 6 节不同的课,这一天的课表有多少种排法?例 3】 1000 至 1999 这些自然数中,个位数大于百位数的有多少个?例 4】 4 只鸟飞入 4 个不同的笼子里,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不同) 每个笼子只能进一只鸟。
若都不飞进自己的笼子里去,有 种不同的飞法。
例 5】 如果组成三位数 abc 的三个数字 a , b ,c 中,有一个数字是另外两个数字的乘积,则称它为 特殊数”。
在所有的三位数中,共有 个“特殊数” 。
m 2种m 31、2、3、4 的长方形,使任何相邻的【例6】如下图所示,用红、绿、蓝、黄四种颜色,涂编号为两个长方形的颜色都不相同,一共有多少种不同的涂法?基础夯实1、一件工作可以用3 种方法完成,有5 人会用第1 种方法完成,有4 人会用第2 种方法完成,有6 人会用第3 种方法完成。
选出一个人来完成这项工作共有多少种选法?2、一件工序可以分3 步方法完成,有5人会做第1步,有4人会做第2步,有6人会做第3 步,每个人只会做一步。
小学6年级奥数知识目录
目录第一讲估值巧算--省略尾数法第二讲估值巧算--放缩法第三讲估值巧算--前后夹击法第四讲分数、小数四则混合运算第五讲四则混合运算的速算与巧算第六讲已知一个数的百分之几求原数第七讲日常生活中的百分数应用题第八讲求一个数是另一个数的几分之几第九讲求一个数的几分之几是多少第十讲已知一个数的几分之几求原数第十一讲棋盘中的数学问题第十二讲棋盘中的两人对弈问题第十三讲棋盘中的覆盖问题第十四讲按比例分配的一般题型及应用第十五讲比和比例在行程问题中的应用第十六讲比和比例在工效问题中的应用第十七讲比和比例在浓度问题中的应用第十八讲离散最值——最多最少问题第十九讲离散最值——最大最小问题第二十讲溶液稀释问题第二十一讲溶液加浓问题第二十二讲两种溶液混合问题第二十三讲平面最短路线问题第二十四讲立体最短路线问题第二十五讲行程中的发车问题第二十六讲行程中的过桥问题第二十七讲流水行船问题第二十八讲整数的分组第二十九讲整数的拆分第三十讲分数的拆分第三十一讲利息问题第三十二讲利润问题第三十三讲圆锥的表面积和体积第三十四讲圆柱的表面积和体积第三十五讲圆柱、圆锥混合问题第三十六讲二元一次不定方程第三十七讲多元一次不定方程第三十八讲圆与扇形的一般求法第三十九讲圆与扇形的加辅助线法第四十讲圆与扇形的分割移补法第四十一讲运筹学初步中的排队问题第四十二讲运筹学初步中的调运问题第四十三讲运筹学初步中的场地设置问题第四十四讲解题方法--设数法第四十五讲解题方法-- 找定量法第四十六讲解题方法--分析综合法第四十七讲解题方法--筛选法第四十八讲解题方法--极端考虑法第四十九讲解题方法--类比转化法第五十讲解题方法--交集法。
小学六年级奥数题100道与答案解析
20.根据下表中的排列规律,在空格里填上适当的数。
【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。
21.找规律,在空格里填上适当的数。
22.根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?
32.
(1)一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量。1只西瓜的重量等于几个橘子的重量?
所以C是12221或11011。
12.先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19
【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?
解答:9+3+2=14(种)
6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?
解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)
7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?
12345679×54=12345679×9×6=66666666612345679×81=12345679×9×9=999999999.
练习3:找规律,写得数。
(1)1+0×9=2+1×9=3+12×9=4+123×9=9+12345678×9=
六年级能学的奥数题及答案
六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。
六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。
以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。
请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。
由于每次拿球后都放回,第二次拿到红球的概率也是3/5。
两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。
题目2:一个数字钟的时针和分针在12点整重合。
请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。
因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。
每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。
题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。
答案:设原来的长方形宽为x厘米,那么长就是2x厘米。
原来的面积是x * 2x = 2x^2平方厘米。
增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。
根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。
解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。
题目4:一个数字序列如下:2, 4, 7, 11, ...。
这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。
根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。
六年级小学生奥数及答案大全
六年级小学生奥数及答案大全1.六年级小学生奥数及答案大全篇一一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。
原有男工多少人?女工多少人?解题思路:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。
这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。
这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
答题:解:35÷(2-1)=35(人)女工原有:35+17=52(人)男工原有:52+35=87(人)答:原有男工87人,女工52人。
2.六年级小学生奥数及答案大全篇二有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。
三种球各有多少个?解题思路:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
答题:解:总个数:(21+20+19)÷2=30(个)白球:30-21=9(个)红球:30-20=10(个)黄球:30-19=11(个)答:白球有9个,红球有10个,黄球有11个。
3.六年级小学生奥数及答案大全篇三1、一列火车长120米,以50千米一小时的速度通过长为880米的大桥,那么火车从开始上桥到完全离开桥要几秒?解:50千米=50000米50000/(60*60)=125/9(米)120+880=1000(米)1000/(125/9)=72(秒)答:火车从开始上桥到完全离开桥要72秒。
2、一个打字员打一篇稿件,第一天打了总数的25%,第二天打了总数的40%,第二天比第一天多打6页,这篇稿件由多少页?解:设一共X页,则40%X-25%X=6X=40答:一共40页4.六年级小学生奥数及答案大全篇四1、一块三角形土地,底是358米,高是160米,这块土地的面积是多少平方米?解:s=ah/2=358*160/2=286402、解放军运输连运送一批煤,如果每辆卡车装4.5吨,需要16辆车一次运完。
六年级奥数数论
六年级奥数数论
六年级的奥数数论主要包括以下内容:
1. 数的整除性:掌握能否整除、能否整除的性质(如偶数、奇数、末尾为0或5的数能否整除)等。
2. 数的倍数关系:了解倍数的概念,掌握如何判断一个数是否是另一个数的倍数。
3. 质数和合数:了解质数和合数的概念,掌握如何判断一个数是否为质数或合数。
4. 素数分解:学习将一个数分解为质数的乘积,掌握质因数分解的方法。
5. 最大公约数和最小公倍数:了解最大公约数和最小公倍数的概念,学习如何求解最大公约数和最小公倍数。
6. 同余与模运算:学习同余的概念,掌握模运算的性质和运算规则。
7. 约数和因数:了解约数和因数的概念,学习如何求解一个数的所有约数和因数。
8. 数列与数表:学习数列的概念和常见的数列类型,掌握数表中的规律和特征。
在学习这些内容时,可以通过解决一些数论问题来提高解题能力。
例如,求解一个数的约数个数或因数个数,判断一个数是否为完全平方数等。
通过六年级奥数数论的学习,可以培养学生的逻辑思维能力和数学推理能力,提高他们解决实际问题的能力和创新思维。
小学六年级奥数题专题训练七篇
小学六年级奥数题专题训练七篇篇一:小学六年级奥数题:小学奥数应用题专题汇总1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米?5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少?6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少?7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?10.(周期问题)2006年7月1日是星期六,求10月1日是星期几?11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
小学六年级奥数题集锦
小学六年级奥数题集锦一、工程问题1、甲乙两个水龙头单独开,注满一池水.分别需要10小时,8小时,丙水管单独开,排一池水要5小时,若水池没水,同时打开甲乙两龙头,2.5小时后,再打开排水管丙,问水池注满还是要多少小时?2、修一条马路,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条马路,且要求两队合作的天数尽可能少,那么两队要合作几天?3、A工作甲、乙合做需4小时完成。
乙、丙合做需5小时完成。
现在先由甲、丙合做2小时后, 余下的乙还需做6小时完成.乙单独做完这件工作要多少小时?4、一项工程。
第一天甲做,第二天乙做,第三天甲做,第四天乙做。
这样交替轮流做,那么怡好用整数天完工;如果第一天乙做、第二天甲做、第三天乙做、第四天甲做。
这样交替轮流做。
那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5、甲乙俩人加工同样多的零件。
当甲完成1/2时,乙完成了120个。
当甲完成任务时,徒弟完成了4/5,这批零件共有多少个?6、一批樹苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵.单份给男生栽,平均每人栽几棵?7、某工程队需要在规定日期内完成.若由甲队去做,恰好如期完成.若乙队去做.要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成.问规定日期为几天?8、两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时。
一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二、鸡免同笼问题鸡与兔共100只,鸡的腿数比免的腿数少28条,问鸡与兔各有几只?三.数字数位问题1、把1至2005这2005个自然数依次写下来得到一个多位123456789..…2005,这个多位数除以9余数是多少?2、已知A B.C都是非0自然数A/2+B/4+C/16的近似值为6.4,那么它的准确值是多少?3、一个三位数的各位数字之和是17其中十位数字比个位数字大1,如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大20,求原数.4、一个两位数,在它的前面写上3,所组成的三位数比原两位数的6倍多24,求原来的两位数。
小学六年级奥数专题之相遇问题
小学六年级奥数专题之相遇问题一、基本练习(1)甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2)两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3)甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?二、综合练习(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3)甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(5)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。
已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇。
乙车每小时行多少千米?(8)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(9)甲、乙两列汽车同时从两地出发,相向而行。
已知甲车每小时行45千米,乙车每小时行32千米,相遇时甲车比乙车多行52千米。
小学六年级奥数教程题目
奥数教程(六年级)第一讲 分数的计算例1 计算:4.3695.3)5.3694.3(2009-⨯+⨯⨯ (提示:转化成分母相同) 例2 计算:1341321318428.44.22.113913313118628.106.32.1⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯ (提示:找分子分母共同点,变形)例3 计算:10241195121172561151281136411132191617815413211+++++++++(提示:先合并再相加) 例4 计算:)1099()988()877()766()655()544()433()322()211(-⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯-(提示:先求差)例5 计算:23191713111917132223171311132613117455⨯⨯+⨯⨯+⨯⨯+⨯⨯(分子分解质因数,约分) 例6 计算:()123...891098...32199...531)100...642(22222222++++++++++++++++-++++第二讲 分数的大小比较例1 分数75、1715、94、12440、309103中,哪一个最大?(提示:化简,统一分子)例2 在□内填上相同的自然数,使不等式3619613111>++++ 成立,此时□内的数的最大值是几?例3 若A=12009200912+-, B=2220082009200820091+⨯-,比较A 与B 的大小。
(提示:比较分母)例4 不求和,比较200520022004200420032005+与200520022003200420032006+的大小。
例5 在下列□内填两个相邻的整数,使不等式成立。
□<10191817161514131211+++++++++<□ 例6 已知A=21771 (21611216011)+++,求A 的整数部分是多少?第三讲 巧算分数的和例1 计算:50491...431321211⨯++⨯+⨯+⨯ 例2 计算:100981...861641421⨯++⨯+⨯+⨯ 例3 计算:10099981...43213211⨯⨯++⨯⨯+⨯⨯ 例4 计算:10099...3211...4321132112111++++++++++++++++例5 计算:2019...4321...54321432132121++++++++++++++++ 例6 计算:⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++9911...311211991 (41131121141)3112113121121 第四讲 繁分数例1 计算:20072008200820091200920092009122⨯+-+-÷ 例2 计算:41322111+++例3 规定□表示选择两数中较大的数的运算,△表示选择两数中较小的数的运算。
6年级奥数题20道题
20 道六年级奥数题一、分数应用题1. 一桶油,第一次用去这桶油的1/4,第二次用去余下的2/3,还剩10 千克,这桶油原来有多少千克?解:把这桶油原来的重量看作单位“1”。
第一次用后剩下 1 - 1/4 = 3/4,第二次用去余下的2/3,即用去了3/4×2/3 = 1/2,此时还剩 1 - 1/4 - 1/2 = 1/4,对应10 千克,所以这桶油原来有10÷1/4 = 40 千克。
二、比例问题2. 甲、乙两数的比是3:4,乙、丙两数的比是5:6,求甲、丙两数的比。
解:甲:乙= 3:4 = 15:20,乙:丙= 5:6 = 20:24,所以甲:丙= 15:24 = 5:8。
三、工程问题3. 一项工程,甲单独做12 天完成,乙单独做18 天完成,现在甲、乙合作,中途甲休息了几天,结果共用了9 天完成,甲休息了几天?解:设甲休息了x 天。
乙工作了9 天,完成的工作量是1/18×9 = 1/2。
甲工作了(9 - x)天,完成的工作量是1/12×(9 - x)。
两人完成的工作量之和为单位“1”,可列方程1/12×(9 - x)+1/2 = 1,解得x = 3。
四、行程问题4. 甲、乙两车同时从A、B 两地相对开出,相遇时甲、乙两车所行路程的比是5:4,已知甲每小时行45 千米,乙行完全程要8 小时,A、B 两地相距多少千米?解:相遇时时间相同,路程比等于速度比,所以乙的速度是45×4/5 = 36 千米/小时。
两地距离为36×8 = 288 千米。
五、浓度问题5. 在浓度为10%的盐水中加入20 克盐,浓度变为12%,原来盐水有多少克?解:设原来盐水有x 克。
可列方程(x×10% + 20)÷(x + 20)= 12%,解得x = 800。
六、图形问题6. 一个圆形花坛的周长是25.12 米,在花坛周围修一条宽1 米的小路,求小路的面积。
小学六年级奥数重点题型汇总带答案
六年级奥数重点题型汇总1、师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?2、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?3、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?4、王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。
问这盒铅笔最少有多少支?5、有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有多少种?6、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?7、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?8、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。
现在田径组有女生多少人?9、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。
三个年级段各分得多少本图书?10、小华有连环画本数是小明6倍,如果两人各再买2本,那么小华所有本数是小明4倍,两人原来各有连环画多少本?11、小春一家四口人今年的年龄之和为147岁,爷爷比爸爸大38岁,妈妈比小春大27岁,爷爷的年龄是小春与妈妈年龄之和的2倍。
小春一家四口人的年龄各是多少?参考答案1、【答案】600个【解析】120÷(4/5x2/1)x2=600个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
小学六年级奥数知识点
1.整数:正整数、负整数、绝对值、相反数、相加减、相乘除、整数
序列等。
2.小数:小数的读法、四则运算、小数与整数的关系、小数的表示、
小数的大小比较等。
3.分数:分数的基本概念、分子分母、约分、通分、分数的四则运算、分数的大小比较等。
4.比例:比例的概念、比例的性质、比例的计算、比例的应用等。
5.百分数:百分数的概念、百分数的转换、百分数的应用等。
6.几何:平面图形的性质、常见平面图形的计算、面积、周长、体积等。
7.代数:代数表达式、方程、不等式、函数等。
其中,可拓展的知识点还包括:
8.组合数学:排列组合、逻辑推理、数列等。
9.概率统计:事件与概率、样本空间与事件、频率与概率、抽样、统
计与图表等。
10.数论:质数与合数、最大公约数与最小公倍数、整除与整除性质、素数与合数等。
11.平面几何:线段、角、相似、全等、三角形、四边形、圆等。
12.立体几何:立体图形的计算、球的计算、体积与表面积等。
对于小学六年级的学生来说,掌握以上的知识点可以帮助他们提高解
决问题的能力,培养逻辑思维和数学推理的能力。
同时,通过奥数的学习,学生还可以提高自己的数学素养,为以后更深入的学习打下基础。
小学奥数题六年级
小学奥数题六年级小学奥数题六年级 11、有鸡兔共20只,脚44只,鸡兔各几只?2、小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?3、现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?4、有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同。
这两桶油各有多少千克?5、瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268。
6元,求打破了几只花瓶?6、学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?7、蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶。
现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元。
该校每学期买两种墨水各多少瓶?8、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。
小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?9、小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多。
问小毛做对几道题?10、赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张。
他兑换了两种面额的人民币各多少张?小学奥数题六年级 21、有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379。
6元,问这次搬运中玻璃损坏了几只?2、鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?3、今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?4、蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?6、鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?7、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?8、大油瓶一瓶装4千克,小油瓶2瓶装1千克。
(完整版)六年级奥数知识点大汇总
六年级奥数知识点大汇总1、六年级奥数知识点讲解:不定方程2、六年级奥数知识点:约数与倍数3、六年级奥数知识点:数的整除4、六年级奥数知识点:余数及其应用5、六年级奥数知识点:余数问题6、六年级奥数知识点:分数与百分数的应用7、六年奥级数知识点:分数大小的比较8、六年级奥数知识点:完全平方数9、六年级奥数知识点讲解:称球问题10、六年级奥数知识点讲解:质数与合数11、六年级奥数知识点讲解:二进制及其应用12、六年级奥数知识点讲解:定义新运算13、六年级奥数知识点讲解:周期循环数14、六年级奥数知识点讲解:牛吃草问题15、六年级奥数知识点讲解:鸡兔同笼问题16、六年级奥数知识点讲解:归一问题17、六年级奥数知识点讲解:逻辑推理问题18、六年级奥数知识点讲解:几何面积19、六年级奥数知识点讲解:时钟问题20、六年级奥数知识点讲解:浓度与配比21、六年级奥数知识点讲解:经济问题22、六年级奥数知识点讲解:简单方程23、六年级奥数知识点讲解:循环小数24、六年级奥数知识点:综合行程问题25、六年级奥数知识点讲解:工程问题26、六年级奥数知识点讲解:比和比例27、六年级奥数知识点讲解:加法原理28、六年级奥数知识讲解:数列求和29、六年级奥数知识讲解:抽屉原理30、六年级奥数知识点讲解:平均数问题31、六年级奥数知识点讲解:盈亏问题32、六年级奥数知识点讲解:植树问题33、六年级奥数知识点讲解:年龄问题的三大特征34、小学奥数知识点总结之:和差倍问题35、小学奥数知识点总结之:分数拆分1、六年级奥数知识点讲解:不定方程不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;2、六年级奥数知识点:约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
六年级奥数题大全(共35道题-142页word文档)-小学数学六年级上册-奥数试题及答案-人教版--
六年级奥数题大全(共35道题,142页word文档)小学数学六年级上册奥数试题及答案人教版目录1. 定义运算 (1)2. 简便运算(一) (5)3. 简便运算(二) (8)4. 转化单位“1”(一) (11)5. 转化单位“1”(二) (15)6. 设数法解题……………………………………………………(21)7. 假设法解题(一)……………………………………………(25)8. 假设法解题(二)……………………………………………(29)9. 假推法解题(一) (33)10.代数法解题 (38)11.比的应用(一) (42)12.比的应用(二) (47)13.用“组合法”解决工程问题 (52)14.浓度问题 (57)15.面积计算(一) (61)16.面积计算(二) (66)17.抓“不变量”解题 (71)18.特殊工程问题 (76)19.周期工程问题 (81)20.比较大小 (88)21.最大最小问题 (93)22.乘法和加法原理 (96)23.表面积和体积(一) (100)24.表面积和体积(二) (105)25.抽屉原理(一) (110)26.抽屉原理(二) (114)27.逻辑原理(一) (117)28.逻辑原理(一) (123)29.行程问题(一) (128)30.行程问题(一) (133)31.流水行船问题 (138)32对策问题 (142)33.应用同余解题 (146)34.“牛吃草”问题 (150)35.不定方程 (154)15.面积运算计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们基本的几何知识,适当添加辅助线,搭一座联通已知条件与所求问题的“小桥”,就会使你顺利地达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
小学六年级数学奥数所有内容
第一讲 解方程第一课时例题:例1、180+6X =330 例 2、3.4X +1.8=8.6 例3、1.8X -X=2.4习题:1、0.8X -4=1.62、2.2X -1=103、3.5X +1.8X =12.724、6×3-1.8X=7.25、18.8-5X=2.4+3.2X第二课时例题:例1、4X +X =3.15 例2、X +52X =21 例3、53X+2.4X=6习题:1、5X -X =2.42、X +72X =43 3、X -0.25X =34、X -41X=83 5、12.6×65-2X=8第三课时例题:例1、5X ÷2=10 例2、15X ÷2=60 例3、4.5+8X=2721习题:1、3.6X ÷2=2.162、21X =43 3、X -0.8X =104、2X+4.3×3=1421 5、X ×(1-83)=132第二讲 列方程解决实际问题(1)第一课时例题:例1、一个数的5倍加上10等于它的7倍减去6,求这个数。
例2、黄桥小学数学兴趣小组的人数是语文组的2.4倍,比美术组多30人,三个小组共115人。
三个小组各多少人?习题:1、一个数的6倍加上8等于它的8倍减去6,求这个数2、两块地一共100公顷,第一块地相当于第二块地的3倍,第二块地是多少公顷?3、篮球、足球、排球各1个,平均每个36元。
篮球比排球贵10元,足球比排球贵8元。
每个排球多少元?第二课时例题:例1、被除数与除数的和是98,如果被除数和除数都减去9,那么被除数是除数的4倍。
求原来的除数和被除数。
例2、一个两层书架,一共有书245本。
上层每天借出15本,下层每天借出10本,3天后,上、下两层剩下的本数一样多。
上、下两层原来各有图书多少本?习题:1、甲、乙、丙三个数的和是195,已知甲数除以乙数,乙数除以丙的商都是3。
甲、乙、丙三个数各是多少?2、甲厂有煤120吨,乙厂有煤96吨。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学六年级奥数应用题50列
小学六年级奥数应用题50列1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2.3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4.李力和张强付同样多的钱买了同一种铅笔,李力要了13支,张强要了7支,李力又给张强0.6元钱。
每支铅笔多少钱?想:根据两人付同样多的钱买同一种铅笔和李力要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李力要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
六年级奥数题型
六年级奥数题型
以下是一些常见的六年级奥数题型:
1. 排列组合题:要求学生找出一组对象的排列或组合方式,如排列顺序、选取对象的组合数等。
2. 数字推理题:学生需要根据一定的规律或模式,找出数字序列中的缺失数字或下一个数字是什么。
3. 几何图形题:学生需要解决一些关于几何图形的问题,如计算图形的周长、面积,判断图形的性质等。
4. 逻辑推理题:学生需要通过分析给定的条件和信息,推断出正确的答案或解决问题的方法。
5. 数论题:学生需要在给定的范围内寻找特定的数学性质或规律,如质数、倍数、因数等。
6. 速算题:要求学生在规定的时间内完成一系列的计算运算,包括加减乘除、平方根等。
7. 综合题:综合运用多个数学概念和技巧,考察学生解决复杂问题的能力。
请注意,奥数题型的难易程度和具体内容会根据不同的考试和题库而有所差异,以上只是一些常见的题型示例。
在准备奥数考试时,建议学生多做各种不同类型的题目,提高解题的综合能力和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数学习专题专题一:分数乘法与除法的计算
专题二: 分数混合运算训练
专题三:分数应用题
专题四:多位数的运算
专题五:比的应用
专题六:比例的应用
专题七:运用比和比例求解行程问题
专题八:综合复习(一)
专题九:位置与方向(二)
专题十:整取问题
专题十一:工程问题
专题十二:解方程
专题十三:列方程解应用题
专题十四:综合复习(二)
专题十五: 数学的数与形
专题十六:赛况分析
专题十七:圆的应用
专题十八:百分数与扇形统计图的综合应用
专题十九:百分数(一)应用题
专题二十:综合复习(三)。