2020-2021学年度初中数学有理数的混合运算培优提升训练题2(附答案详解)
2020-2021学年七年级数学上册尖子生同步培优题典 专题2
专题2.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2 B.3 C.7 D.【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【解析】原式=4+2+1=7,故选:C.2.(2019秋•德城区校级期中)|﹣3|﹣(﹣1)2的值是()A.﹣2 B.4 C.2 D.﹣4【分析】根据有理数的乘方、有理数的减法和绝对值可以解答本题.【解析】|﹣3|﹣(﹣1)2=3﹣1=2,故选:C.3.(2020•金华模拟)下列计算正确的是()A.23×22=26B.C.D.﹣32=﹣9【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解析】∵23×22=25,故选项A错误;∵()3,故选项B错误;∵,故选项C错误;∵﹣32=﹣9,故选项D正确;故选:D.4.(2019秋•海淀区校级期中)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【分析】利用相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【解析】根据题意得:a+b=0,xy=1,1,则原式=0﹣1+1=0,故选:A.5.(2019秋•福田区期中)下列运算错误的是()A.B.(﹣1)2+(﹣1)3=0C.﹣(﹣3)2=﹣9 D.﹣8﹣2×6=﹣20【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解析】22,故选项A错误;(﹣1)2+(﹣1)3=1+(﹣1)=0,故选项B正确;﹣(﹣3)2=﹣9,故选项C正确;﹣8﹣2×6=﹣8﹣12=﹣20,故选项D正确;故选:A.6.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7 B.﹣1 C.1 D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.8.(2020•浙江自主招生)定义运算a⨂b,则(﹣2)⨂4=()A.﹣1 B.﹣3 C.5 D.3【分析】判断﹣2﹣4=﹣6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:﹣2﹣4=﹣6<1,则有(﹣2)⨂4=4﹣1=3,故选:D.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④;⑤;⑥;计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意;②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意;④原式=()×(),符合题意;⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2,不符合题意,故选:C.10.(2019秋•德惠市期中)计算()÷()的结果是()A.B.C.D.﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减..【解析】()÷()=()÷()=(),故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•九龙坡区校级期中)对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解析】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.12.(2020春•海淀区校级月考)计算:﹣2.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可.【解析】原式()(),故答案为.13.(2019秋•资阳区校级期中)若定义一种新的运算,规定ad﹣bc,则﹣11.【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=﹣3﹣8=﹣11,故答案为:﹣1114.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是[(﹣2)+(﹣3)﹣1]×(﹣4)=24.【分析】根据“24点”游戏规则列出算式即可.【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24,故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•思明区校级月考)计算:10242﹣128×(﹣43)×(﹣3)=10240000.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1048576﹣24576=10240000,故答案为:1024000016.(2019秋•虹口区校级月考)若规定一种新运算:a*b=(a+b)÷3,则2*3=.【分析】根据a*b=(a+b)÷3,可以求得所求式子的值.【解析】∵a*b=(a+b)÷3,∴2*3=(2+3)÷3=5,故答案为:.17.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为1.【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值.【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘)=1,故答案为:118.(2019秋•思明区校级期中)计算:(1)(1)×(﹣54)=59;(2)9992﹣999×715+284=284000.【分析】(1)根据乘法分配律可以解答本题;(2)根据提公因式法可以解答本题.【解析】(1)(1)×(﹣54)=9+(﹣10)+60=59,故答案为:59;(2)9992﹣999×715+284=999×(999﹣715)+284=999×284+284=284×(999+1)=284×1000=284000,故答案为:284000.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•钟楼区期中)计算:(1)10+(﹣16)﹣(﹣24);(2)5÷();(3)()×(﹣24);(4)﹣12+[20﹣(﹣2)3]+4.【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)10+(﹣16)﹣(﹣24)=10﹣16+24=34﹣16=18;(2)5÷()=5×();(3)()×(﹣24)(﹣24)(﹣24)(﹣24)=﹣9﹣14+20=﹣3;(4)﹣12+[20﹣(﹣2)3]+4=﹣1+(20+8)+4=﹣1+28+4=31.20.(2019秋•崇川区校级期中)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)【分析】(1)首先写成省略括号的形式,再计算有理数的加减即可;(2)先算乘方,再算乘除,后算加减即可.【解析】(1)原式=﹣20+3+5﹣7,=﹣20﹣7+3+5,=﹣27+8,=﹣19;(2)原式=﹣16()+2,=﹣162,2,.21.(2019秋•海陵区校级期中)计算:(1)﹣3+34+0.25(2)﹣4÷(﹣14)(3)()×60(4)﹣14÷(﹣5)2×()【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)﹣3+34+0.25=(﹣3﹣4)+(3)=﹣7+4=﹣3;(2)﹣4÷(﹣14)=﹣4×();(3)()×60=﹣45﹣50+55=﹣40;(4)﹣14÷(﹣5)2×()=﹣1÷25×()=﹣1().22.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:35﹣34=2×34;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n表示上述规律,通过提取公因式法进行证明便可;(3)把原式化成,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020.23.(2020春•通州区期末)对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.【分析】(1)(x]表示小于x的最大整数,依此即可求解;(2)根据(x]的定义求得a+b=2,代入解析式求得即可;(3)分两种情况列出关于x的不等式,解不等式即可.【解析】(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:﹣3 1 0 2.5 ﹣2 ﹣1.5与标准质量的差值(单位:千克)袋数 1 2 3 8 4 2(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.11。
有理数的混合运算练习题(含答案)(共17套)
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
专题2.6有理数的加减混合运算-2021年七年级数学上册尖子生同步培优题库(教师版含解析)【北师大版
2020-2021学年七年级数学上册尖子生同步培优题典【北师大版】专题2.6有理数的加减混合运算(北师大版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是( )A .﹣5﹣4+7﹣2B .5+4﹣7﹣2C .﹣5+4﹣7﹣2D .﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .2.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( )A .﹣8B .﹣7C .﹣4D .﹣3 【分析】从左向右依次计算,求出算式的值是多少即可.【解析】(﹣1434)﹣(﹣1014)+12 =﹣412+12 =﹣4故选:C .3.(2019秋•沙河市期末)为计算简便,把(﹣1.4)﹣(﹣3.7)﹣(+0.5)+(+2.4)+(﹣3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是( )A .﹣1.4+2.4+3.7﹣0.5﹣3.5B .﹣1.4+2.4+3.7+0.5﹣3.5C .﹣1.4+2.4﹣3.7﹣0.5﹣3.5D .﹣1.4+2.4﹣3.7﹣0.5+3.5 【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣1.4+3.7﹣0.5+2.4﹣3.5=﹣1.4+2.4+3.7﹣0.5﹣3.5,故选:A .4.(2019秋•通州区期末)下列运算正确的是( )A .﹣2+(﹣5)=﹣(5﹣2)=﹣3B .(+3)+(﹣8)=﹣(8﹣3)=﹣5C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10 【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B .5.(2019秋•内乡县期末)将﹣2﹣(+5)﹣(﹣7)+(﹣9)写成省略括号的和的形式是( )A .﹣2+5﹣7﹣9B .﹣2﹣5+7+9C .﹣2﹣5﹣7﹣9D .﹣2﹣5+7﹣9【分析】根据有理数的加减法法则将括号去掉.【解析】﹣2﹣(+5)﹣(﹣7)+(﹣9)=﹣2﹣5+7﹣9.故选:D .6.(2019秋•沙坪坝区校级月考)计算(−12)+(13+23)+(−14−24−34)+(15+25+35+45)+…+(155+255⋯+5455)的值( )A .54B .27C .272D .0【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【解析】原式=−12+1−32+2−52+3−72+⋯+27=27×12=272.故选:C .7.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( )A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答.【解析】﹣15﹣10+7=﹣18(m).故此时潜艇的海拔高度可记为﹣18m.故选:C.8.(2019秋•潮阳区校级月考)为计算简便,把(﹣5)﹣(﹣4)﹣(+3)+(+2)+(﹣1)写成省略加号和括号的和的形式是()A.﹣5﹣4﹣3+2﹣1B.﹣5+4﹣3+2﹣1C.﹣5+4+3+2﹣1D.﹣5﹣4+3+2+1【分析】根据有理数加减法的关系可以将加减混合运算写出省略加号代数和的形式.【解析】原式=﹣5+4﹣3+2﹣1故选:B.9.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是() A.﹣1+(﹣3)+(+6)﹣(﹣8)B.﹣1﹣3+6﹣8C.﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D.﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.10.(2019秋•金堂县校级月考)计算1+(﹣2)+3+(﹣4)+5+(﹣6)+…+19+(﹣20)得() A.10B.﹣10C.20D.﹣20【分析】原式结合后相加,根据﹣1的个数即可得到结果.【解析】原式=(1﹣2)+(3﹣4)+(5﹣6)+…+(19﹣20)=(﹣1)+(﹣1)+…+(﹣1)=﹣10.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•当涂县期末)8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是8﹣11+20﹣19.【分析】在一个式子里,有加法也有减法,根据有理数加减法法则,把8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式即可.【解析】8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是:8﹣11+20﹣19.故答案为:8﹣11+20﹣19.12.(2019秋•雨花区期末)计算:﹣(﹣4)+|﹣5|﹣7=2.【分析】根据有理数加减混合运算的计算方法进行计算即可.【解析】﹣(﹣4)+|﹣5|﹣7=4+5﹣7=2,故答案为:2.13.(2019秋•昌图县期末)我市某天上午的气温为﹣2℃,中午上升了7℃,下午下降了2℃,到了夜间又下降了8°C,则夜间的气温为﹣5℃.【分析】首先用我市某天上午的气温加上中午上升的温度,求出中午的温度是多少;然后用它减去下午、夜间又下降的温度,求出夜间的气温为多少即可.【解析】﹣2+7﹣2﹣8=﹣5(℃)答:夜间的气温为﹣5℃.故答案为:﹣5℃.14.(2019秋•惠城区期末)计算:20﹣(﹣7)+|﹣2|=29.【分析】从左向右依次计算,求出算式的值是多少即可.【解析】20﹣(﹣7)+|﹣2|=27+2=29故答案为:29.15.(2019秋•黄石期末)计算:(﹣7)﹣(+5)+(+13)=1.【分析】先化简,再从左往右计算即可求解.【解析】(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.16.(2019秋•新都区期末)若“方框”表示运算x﹣y+z+w,则“方框”=﹣8.【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8.17.(2019秋•温州期中)把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略加号的和的形式为﹣3+6﹣7﹣8.【分析】根据同号得正,异号得负的法则进行整理就可以了.【解析】把(﹣3)﹣(﹣6)﹣(+7)+(﹣8)写成省略加号的和的形式为﹣3+6﹣7﹣8.故答案为:﹣3+6﹣7﹣8.18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 . 【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可.【解析】﹣[(﹣1.5)+(﹣512)]﹣16 =﹣(﹣7)﹣16=7﹣16=﹣9故答案为:﹣9.三、解答题(本大题共8小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•城厢区校级月考)计算(1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可.【解析】(1)11﹣18﹣12+19=30﹣30=0.(2)534−(−13)+(−34)+323=534−34+13+323 =5+4=9.20.(2019秋•凉州区校级月考)计算(1)﹣17+(﹣33)﹣10﹣(﹣16).(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16)=﹣50﹣10+16=﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)=7﹣4﹣2﹣4﹣9=﹣1221.(2019秋•迎泽区校级月考)计算(1)36+(﹣76)+(﹣24)+64(2)12﹣(﹣18)+(﹣7)﹣20(3)425−614−(﹣114)+(﹣125) (4)﹣556−923+1734−312 【分析】(1)分别求出两个正数的和,两个负数的和,再进行加减即可;(2)分别求出两个正数的和,两个负数的和,再进行加减即可;(3)先把同分母的两个数相加减,再把所得的结果相加减;(4)先把负数相加,再计算加法即可.【解析】(1)原式=(36+64)﹣(76+24)=100﹣100=0;(2)原式=(12+18)﹣(7+20)=30﹣27=3;(3)原式=425−614+114−125 =(425−125)﹣(614−114)=3﹣5=﹣2;(4)原式=1734−(556+923+312)=1734−19=−54.22.(2019秋•思明区校级月考)尊师重教是我国的传统美德.教师节当天:出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:km):﹣3,﹣8,+10,﹣6,+7,6.(1)将最后一位教师送到目的地时,小王距出发地多少km?方位如何?(2)若汽车每1km耗油0.12升,这天小王最后回到起点共耗油多少升?【分析】(1)首先把所给的数据相加,然后根据结果的正负即可确定小王距出发地多少千米,方位如何;(2)首先把所给数据的绝对值相加,然后乘以0.12即可求解.【解析】(1)﹣3+(﹣8)+10+(﹣6)+7+6=6千米,小王在出发地的东边,(2)|﹣3|+|﹣8|+|+10|+|﹣6|+|7|+|6|=40千米40+6=46千米46×0.12=5.52升,答:(1)小王在出发地的东边,距出发地6千米;(2)这天小王最后回到起点共耗油5.52升.23.(2019秋•长汀县校级月考)某股民在上星期买进某种股票1000股,每股100元,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5﹣1﹣2.5﹣6(1)该股在本周内最高价是每股多少元?最低价是每股多少元?(2)星期三收盘时,每股是多少元?(3)已知买进股票时需付成交额的1.5‰的手续费,卖出时需付成交额的1.5‰手续费和1‰的交易费,如果在星期五收盘前将股票一次性卖出,他的收益情况如何?【分析】(1)由表可知,周二股价最高,100+4.5+4=184.5元;周五股价最低,100+4+4.5﹣1﹣2.5﹣6=99元;(2)周三股票价格:100+4+4.5﹣1=107.5元;(3)周五股票价格99元,买入时花费100×1000×(1+1.5‰)=100150元,卖出后的收入99×1000﹣99×1000×(1‰+1.5‰)=98752.5元,即可求解.【解析】(1)由表可知,周二股价最高,100+4.5+4=184.5元;周五股价最低,100+4+4.5﹣1﹣2.5﹣6=99元;(2)100+4+4.5﹣1=107.5元;(3)∵周五股票价格100+4+4.5﹣1﹣2.5﹣6=99元,买入时花费100×1000×(1+1.5‰)=100150元,卖出后的收入99×1000﹣99×1000×(1‰+1.5‰)=98752.5元,∴100150﹣98752.5=1397.5元,∴赔了1397.5元.24.(2019秋•大鹏新区期中)一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数,下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物100吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨8元,那么下午货车共得运费多少元?【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以8即可得到最后结果.【解析】(1)由题意可得:100+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=99.4(吨),则下午运完货物后存货99.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×8=32×8=256(元),则下午货车共得运费256元.25.(2019秋•金水区校级期中)在互联网技术的影响下,幸福新村的村民小刘在网上销售苹果,原计划每天卖100千克,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:千克):星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据表中的数据可知前三天共卖出296千克;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若每千克按5元出售,每千克苹果的运费为1元,那么小刘本周一共收入多少元?【分析】(1)求出前三天卖出的斤数,相加即可;(2)找出卖出最多的与最少的斤数,相减即可;(3)把表格中的数据相加,再根据题意列出算式,计算即可求出值.【解析】(1)300+4﹣3﹣5=296(千克).故前三天共卖出296千克;(2)21﹣292=29(千克).故销售量最多的一天比销售量最少的一天多销售29千克;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(17+100×7)×(5﹣1)=717×4=2868(元).答:小刘本周一共收入2868元.故答案为:296.26.(2019秋•黄陂区期中)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.(1)填空:a﹣c<0,b﹣a>0,b﹣d<0(填“>“,“<“或“=“);(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.【分析】(1)根据数轴得出a<b<c<d<e,再比较即可;(2)先去掉绝对值符号,再合并同类项即可;(3)先求出b、e的值,再代入求出即可.【解析】(1)从数轴可知:a<b<c<d<e,∴a﹣c<0,b﹣a>0,b﹣d<0,故答案为:<,>,<;(2)原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|=﹣a+c﹣2(b﹣a)﹣(d﹣b)=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(3)|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.。
部编数学七年级上册专题有理数的混合运算大题专练(重难点培优)同步培优【人教版】含答案
【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.15有理数的混合运算大题专练(重难点培优)一、解答题1.(2022·湖北武汉·七年级期末)计算:(1)5+(―6)+3―(―4);(2)79÷(23―15)―13×(―4)2.【答案】(1)6;(2)―113.【解析】【分析】(1)根据有理数的加减运算法则计算即可;(1)根据有理数的混合运算法则计算即可.(1)解:5+(―6)+3―(―4)=5―6+3+4=6.(2)解:79÷―13×(―4)2=79÷715―13×16=79×157―163=53―163=―113.【点睛】本题考查有理数的混合运算法则,解题的关键是掌握混合运算的法则.2.(2022·山东菏泽·七年级期末)计算:(1)15+(-6)-(-7)+(―6)×4―(―21)÷3(2)―32÷23×1―(3)―14+16÷(―2)3×|―3―1|【答案】(1)-1(2)-6(3)-9【解析】【分析】(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式先算括号中的减法及乘方,再从左到右依次计算即可得到结果;(3)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.(1)解:15+(-6)-(-7)+(―6)×4―(―21)÷3=15-6+7-24+7=9+7-24+7=16+(-17)= -1;(2)解:―32÷23×(1―13)2=―9×32×49=―6;(3)解:―14+16÷(―2)3×|―3―1|=―1+16×(―18)×4=―1―8=―9.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022·河南南阳·七年级期末)计算:(1)(―1)2019―|―3―7|×(―15)÷(―12);(2)―14―(1―0.5)×13×[1―(―2)2].【答案】(1)-5(2)―12【解析】【分析】(1)先算乘方,绝对值,除法转化为乘法,最后算加减即可;(2)先算乘方,括号里的运算,再算乘法,最后算加减即可.(1)解:(―1)2019―|―3―7|×(―15)÷(―12)=―1―10×(―15)×(―2)=―1―4=―5;(2)解:―14―(1―0.5)×13×[1―(―2)2].=―1―12×13×(1―4)=―1―16×(―3)=―1+12=―12.【点睛】本题主要考查有理数的混合运算,有理数的乘方、绝对值,解题的关键是对相应的运算法则的掌握.4.(2022·重庆梁平·七年级期末)计算(1)―22+3×(―1)2016―9÷(―3)(2)57÷――57×512―53÷4【答案】(1)2(2)―8584【解析】【分析】(1)先计算有理数的乘方、乘除,再计算加减;(2)将分数除法变形为分数乘法,再进行乘法和加减运算.(1)解:―22+3×(―1)2016―9÷(―3)=―4+3×1―9÷(―3)=―4+3―(―3)=―4+3+3=2(2)解:57÷――57×512―53÷4=―57×512―57×512―53×14=―2584―2584―512=―8584【点睛】本题考查带乘方的有理数的混合运算,属于基础题,掌握有理数的运算法则并正确计算是解题的关键.5.(2022·全国·七年级)计算:(―34―16+512)÷136.【答案】―18【解析】【分析】先将除法化为乘法,再利用乘法分配律计算后,最后计算加减即可.【详解】解:(―34―16+512)÷136=(―34―16+512)×36=―34×36―16×36+512×36=﹣27﹣6+15=﹣18.【点睛】本题考查有理数的混合运算.熟练掌握乘法分配律是解题关键.6.(2022·全国·七年级专题练习)计算:(1)(14+38―712)÷124;(2)(―1)2022×|―112|+0.5÷(―13).【答案】(1)1(2)-3【解析】【分析】(1)先化除为乘,再用乘法的分配率计算即可;(2)按照有理数的混合运算顺序,先算乘方,再算乘除,最后算加减即可;(1)38÷12438=14×24+38×24﹣712×24=6+9﹣14=1;(2)(﹣1)2021×|﹣112|+0.5÷(﹣13)=(﹣1)×32+12×(﹣3)=﹣32+(﹣32)=﹣3.【点睛】本题考查了有理数的混合运算,以及有理数的乘法分配率,解题的关键是熟悉有理数的混合运算顺序.7.(2022·全国·七年级专题练习)用简便方法计算:(1)(―8)×(―45)×(―1.25)×54;(2)(﹣93536)×18;(3)(―8)×(―16―512+310)×15.【答案】(1)-10(2)―17912(3)34【解析】【分析】(1)原式结合后,相乘即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式结合后,利用乘法分配律计算即可得到结果.(1)解:原式=﹣(8×1.25)×(45×54)=﹣10×1=﹣10;(2)原式=(﹣10+136)×18=﹣10×18+136×18=﹣180+12 =﹣17912;(3)原式=(﹣8×15)×(﹣16 ﹣512 + 310)=(﹣120)×(﹣16 ﹣512 +310)=﹣120×(﹣16)﹣120×(﹣512)﹣120×310 =20+50﹣36=34.【点睛】此题考查了有理数的混合运算,乘法分配律,熟练掌握运算法则及运算律是解本题的关键.8.(2022·全国·七年级专题练习)计算(1)2×(―3)3―4×(―3)+15;(2)(―2)3+(―3)×(―4)2+2―(―3)2÷(―2).【答案】(1)-27;(2)-57.5.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.(1)解:2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+12+15 =―27.(2)解:(―2)3+(―3)×(―4)2+2―(―3)2÷(―2)=―8+(―3)×18+9 2=―8―54+9 2=―57.5.【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数混合运算的法则,正确计算即可.9.(2021·云南·普洱市思茅区第四中学七年级期中)计算:(1)(―21)+(+3)―(―4)―(+9)(2)42×―+―÷(―0.25)(3)―12+(―3―1)2―|―13|×(―3)2【答案】(1)―23(2)―11(3)12【解析】【分析】(1)根据有理数加减混合运算法则进行计算即可;(2)根据有理数四则混合运算法则进行计算即可;(3)根据含有乘方的有理数混合运算法则进行计算即可.(1)解:(―21)+(+3)―(―4)―(+9),=(―21)+(―9)+3+4=―23.(2)42×+÷(―0.25)=―14+×(―4)=―14+3=―11(3)―12+(―3―1)2―|―13|×(―3)2=―1+(―4)2―13×9=―1+16―3=12【点睛】本题主要考查了有理数混合运算法则,熟练掌握有理数混合运算法则,是解题的关键.10.(2021·云南·富源县第七中学七年级期中)计算下列各题(1)15+(―8)―(―4)―5(2)(―512+34―16)×(―48)(3)―10+8÷(―22)―(―4)÷(―13)(4)―14―(1―0.5)×13×5―(―3)2【答案】(1)6(2)-8(3)-24(4)―13【解析】【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律可以解答本题;(3)先算乘方、再有理数的除法和加减法可以解答本题;(4)先算乘方、再有理数的乘法和加减法可以解答本题.(1)解:原式=15+(―8)+4+(―5)=19+(―13)=6 (2)解:原式=512×48+34×(―48)+16×48=20―36+8=28―36=―8(3)解:原式=―10+8÷(―4)―(―4)×(―3)=―10―2―12=―24 (4)解:原式=―1―12×13×(―4)=―1+23=―13【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算顺序和方法.11.(2020·黑龙江·虎林市实验中学七年级期中)计算(1)26―(―15)(2)-3×4+(-28)÷7(3)(23―15+65)×15(4)(―1)3×2+(―2)2÷4【答案】(1)41(2)-16(3)25(4)-1【解析】【分析】(1)去括号,括号内数字变符号,然后进行计算;(2)先算乘除,后算加减;(3)先算括号内,然后与括号外数字相乘;(4)先算乘方,再算乘除,最后算加减.(1)解:26―(―15)=26+15=41;(2)-3×4+(-28)÷7=-12+(-4)=-16;(3)(23―15+65)×15=(23+1)×15=53×15=25;(4)(―1)3×2+(―2)2÷4=(―1)×2+4÷4=-2+1=-1.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则是解题的关键.12.(2022·江苏·七年级)计算:(1)―16―320+45×(―15×4);(2)120×―556+638―(3)(﹣18)÷214×49÷(﹣16);(4)12÷(―14)+(1―0.2÷35)×(―3);(5)312÷(―125)―821×(―134)―(―1+16)2+(―13)2×3.【答案】(1)6(2)―111(3)29(4)―4(5)―7936【解析】【分析】(1)根据乘法分配律拆开括号,进行运算即可;(2)根据乘法分配律拆开括号,进行运算即可;(3)把除法转化为乘法,再进行运算即可;(4)先计算括号内,把除法转化为乘法,再进行运算即可;(5)先把乘方进行计算,把除法转化为乘法,再进行运算即可.(1)原式=(―16―320+45―712)×(―60)=16×60+320×60―45×60+712×60=10+9―48+35=6;(2)原式=―120×356+120×518―120×2215=―700+765―176=―111;(3)原式=18×49×49×116=29;(4)原式=12×(―4)+(1―15×53)×(―3)=―2+(1―13)×(―3)=―2―23×3=―2―2=―4;(5)原式=―72×57+821×74―(―56)2+19×3=―52+23―2536+13=―52―2536+(23+13)=―11536+1=―7936.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.13.(2020·山西晋城·七年级期中)计算:(1)―5+7―(―3)―20(2)―23+6÷(―32)【答案】(1)-15(2)-12【解析】【分析】(1)原式先根据有理数减法法则变形,再进行加减运算即可;(2)原式先计算乘方和除法,然后再进行加减运算即可.(1)―5+7―(―3)―20=―5+7+3―20 =(7+3)+(―5―20) =10―25 =―15;(2)―23+6÷(―32)=―8―6×23 =―8―4 =―12【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.14.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)―52×34+25×12―25×14;(4)423+215―0.8+245―(―613).【答案】(1)8(2)-1(3)-12.5(4)15.2【解析】【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=-1 (3)解:―52×34+25×12―25×14=―25×34+25×12―25×14=―25×(34―12+14)=―25×12 =-12.5 (4)解:423+215―0.8+245―(―613)=423+215―45+245+613=(423+613)+(215―45+245)=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.15.(2021·山东省郓城第一中学七年级阶段练习)计算:(1)―30+17;(2)―67―(―29);(3)1.5―8.9;(4)×(5)―5+(―3.75);(6)―5――(7)―17+23+(―16)―(―17);(8)―3+2×|―2―3|―25.【答案】(1)―13;(2)―38;(3)―7.4;(4)76;(5)―9;(6)―2.25;(8)―18.【解析】【分析】(1)根据有理数的加法计算即可;(2)根据有理数的减法计算即可;(3)根据有理数的减法计算即可;(4)根据有理数的乘法计算即可;(5)根据有理数的加法计算即可;(6)根据有理数的减法计算即可;(7)根据有理数的加减计算即可;(8)根据有理数的混合运算法则计算即可.(1)解:―30+17=―13.(2)解:―67―(―29)=―67+29=―38.(3)解:1.5―8.9=―7.4.(4)解:×―=76.(5)解:―+(―3.75)=―5.25+(―3.75)=―9.(6)解:――――5.75+3.5=―2.25.(7)解:―17+23+(―16)―(―17)=―17+23―16+17=7.(8)解:―3+2×|―2―3|―25=―3+10―25=―18.【点睛】本题考查有理数加法,减法,乘法以及混合运算,解题的关键是掌握有理数的运算法则,正确计算.16.(2022·黑龙江·哈尔滨德强学校期中)计算:(1)(―2)2×5―(―2)3÷4(2)23÷×34―34【答案】(1)22(2)54【解析】【分析】(1)原式先计算乘方,再计算乘除法,最后算加减即可;(2)原式先计算小括号内的减法,再计算乘除法,最后算加减即可.(1)(―2)2×5―(―2)3÷4=4×5+8÷4=20+2=22;(2)23÷×34―34=23÷14×34―34=23×4×34―34=2―34=54.【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.17.(2022·全国·七年级课时练习)计算:(1)(12―13)×6÷|―15|(2)(―1)2018+(―10)÷12×2―[2―(―3)3]【答案】(1)5(2)﹣68【解析】【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1)解:(12―13)×6÷|―15|=(12―13)×6×5 =(12―13)×30=12×30―13×30=15―10=5(2)(―1)2018+(―10)÷12×2―[2―(―3)3]=1+(―10)×2×2―(2+27)=1―40―29=―68【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.18.(2022·黑龙江·哈尔滨市萧红中学校期中)(1)(―20)+(+3)―(―5)―(+7)(216―×12(3)―2.5÷58×(4)2×(―3)3―4×(―3)+15【答案】(1)-19;(2)-1;(3)1;(4)-27【解析】【分析】(1)先去括号再求解;(2)先去括号再求解;(3)先把除号变成乘号再求解;(4)先计算―3立方,再依次计算即可得到答案.【详解】(1)(―20)+(+3)―(―5)―(+7)=(―20)+3+5―7=―19;(2)+16×12=14×12+16×12―12×12=3+2―6=―1;(3)―2.5÷58×―=―52×85×=4×14=1;(4)2×(―3)3―4×(―3)+15=2×(―27)+12+15=―54+27=―27.【点睛】本题考查有理数的混合运算,解题的关键是熟练掌握有理数的运算法则.19.(2022·云南·景谷傣族彝族自治县教育体育局教研室七年级期末)计算:(1)13―7―(―7);(2)18×――8÷(―2);(3)―22×(―9)―|―4×5|.【答案】(1)13(2)-2(3)16【解析】(1)解:原式=6+7=13;(2)解:原式=-6+4=-2;(3)解:原式=-4×(-9)-20=36-20=16.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.20.(2020·江西景德镇·七年级期中)计算:2+÷3(2)―22×1―4÷―1.4【答案】(1)3(2)-9【分析】(1)根据有理数的混合计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)―23÷=―23×(―36)=16×(―36)―23×(―36)+512×(―36)=―6+24―15 =3;(2)解:―22×14―4÷―1=―4×14―4÷49―1=―1―4×94―1=―1―9+1=―9.【点睛】本题主要考查了含乘方的有理数混合计算,有理数的四则混合运算,熟知相关计算法则是解题的关键.21.(2022·黑龙江绥化·期中)计算:(1)―6.5+(―3.3)―(―2.5)―(+4.7);(2)6××(―12)×116;(3)―32+2×4―1÷2(4)492425×(―5)(5)999×11845+999×――999×1835【答案】(1)―12(2)63(3)―9(4)―24945(5)99900【解析】根据有理数的加减乘除运算法则求解即可.(1)解:―6.5+(―3.3)―(―2.5)―(+4.7)=―6.5―3.3+2.5―4.7=―(6.5+3.3+4.7)+2.5=―14.5+2.5=―12;(2)解:6××(―12)×116=6×34×12×76=63;(3)解:―32+2×4―1÷2=―9+2×(4―4)=―9;(4)解:492425×(―5)=49×(―5)=―49×5―2425×5=―245―245=―24945;(5)解:999×11845+999×―999×1835=999×118+45―15―18=999×100=99900.【点睛】本题考查有理数的加减乘除混合运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.22.(2022·全国·七年级课时练习)计算(1)4×(―12―34+2.5)×3―|―6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)―14―(1―0.5)×13―[2―(―3)2](4)(―2)4÷(―4)×―12【答案】(1)9(2)2(3)356(4)―2【解析】(1)解:4×(―12―34+2.5)×3―|―6|=4×54×3―6=15―6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=―1×(―12)÷[16+(―10)]=―1×(―12)÷6=12÷6=2.(3)―14―(1―0.5)×13―[2―(―3)2]=―1―12×13―(2―9)=―1―16+7=6―1 6=356.(4)(―2)4÷(―4)×―12=16÷(―4)×14―1=―4×14―1=―1―1=―2.【点睛】本题考查了有理数的混合运算,正确计算是解题的关键.。
(2021年整理)初一数学有理数难题与提高练习和培优综合题压轴题(含解析)
(完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析)的全部内容。
(完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析)这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)初一数学有理数难题与提高练习和培优综合题压轴题(含解析)〉这篇文档的全部内容.初一数学有理数难题与提高练习和培优综合题压轴题(含解析)一.选择题(共12小题)1.1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径是()A.6万纳米B.6×104纳米C.3×10﹣6米D.3×10﹣5米2.足球循环赛中,红队胜黄队4:1,黄队胜蓝队2:1,蓝队胜红队1:0,则下列关于三个队净胜球数的说法正确的是()A.红队2,黄队﹣2,蓝队0 B.红队2,黄队﹣1,蓝队1C.红队3,黄队﹣3,蓝队1 D.红队3,黄队﹣2,蓝队03.要使为整数,a只需为( )A.奇数B.偶数C.5的倍数D.个位是5的数4.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩大于18秒,“﹣”表示成绩小于18秒,“0”表示刚好达标,这个小组的达标率是()﹣1+0。
2020-2021学年度初中数学有理数的混合运算培优提升训练题3(附答案详解)
2020-2021学年度初中数学有理数的混合运算培优提升训练题3(附答案详解) 1.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( ) ①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个2.如图所示是一个运算程序的示意图,若开始输入的x 值为27,则第5次输出的结果为( )A .3B .27C .9D .13.1×2+2×3+3×4+…+99×100=( )A .223300B .333300C .443300D .433300 4.小华用甲、乙两个容积相同的试管做实验,甲管原来装满纯酒精,乙管是空的,第1次实验:把甲管中的酒精倒一半到乙管中,用水把甲管装满;第2次实验:用甲管中的液体把乙管装满;第3次实验:用乙管中的液体把甲管装满;第4次实验:用甲管中的液体把乙管装满.则做完4次实验后,甲管中的纯酒精是原来的( )A .14B .58C .516D .11165.计算:(1)77281489⎛⎫-+ ⎪⎝⎭÷7; (2)1211351513335⎛⎫-÷-÷+⨯ ⎪⎝⎭; (3)121131(8)8233⎡⎤⎛⎫⨯⨯---⨯-- ⎪⎢⎥⎝⎭⎣⎦; (4)1321134323----⨯--; (5)117111172311233218663218⎛⎫⎛⎫⎛⎫⎛⎫-+÷-+-÷-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6.阅读下面的文字,完成后面的问题,我们知道:11=1122-⨯;111=2323-⨯;111=3434-⨯;111=4545-⨯….那么: (1)120182019⨯= _______;1n(n 1)+= _______; (2)计算:112⨯+123⨯+134⨯+…+189⨯+1910⨯; (3)计算:113⨯+135⨯+157⨯+…+120152017⨯+120172019⨯. 7.用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =221ab ab ++,如1※3=1×23+2×1×3+1=16.(1)求3※(-2)的值;(2)若()2410x y -++=,求12⎛⎫- ⎪⎝⎭※(x ※y )的值; (3)若12n +⎛⎫ ⎪⎝⎭※3=16,则n 的值为 。
2020-2021学年度初中数学有理数的混合运算培优提升训练题1(附答案详解)
2020-2021学年度初中数学有理数的混合运算培优提升训练题1(附答案详解) 1.观察下面三行数:-2、4、-8、16、-32、64、……① 0、6、-6、18、-30、66、……② -1、2、-4、8、-16、32、……③设x 、y 、z 分别为第①②③行的第10个数,则2x -y -2z 的值为( ) A .20012B .0C .-2D .22.(-2)2004+3×(-2)2003的值为 ( ) A .-22003B .22003C .-22004D .220043.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( ) A .522.8元B .510.4元C .560.4元D .472.8元4.定义一种对正整数n 的“F”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=2k n(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( ) A .1B .4C .2018D .420185.如图在表中填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .74B .104C .126D .1446.按下面的程序计算:若输入x 100=,输出结果是501,若输入x 25=,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为531,则开始输入的x 值可能有( ) A .1种B .2种C .3种D .4种7.(阅读)计算2310013333++++⋯⋯+的值.令S =2310013333++++⋯⋯+,则3S =231013333+++⋯⋯+,因此3S -S =10131-,所以S =101312-,即S =2310013333++++⋯⋯+=101312-. 依照以上推理,计算:20202345201820195155555556-+-+-+⋯⋯+-+=__________.8.阅读下列材料并解决有关问题:我们知道,(0)0,(0),(0)x x x x x x >⎧⎪==⎨⎪-<⎩,所以当0x >时,1x xx x==;当0x <时,1x x x x ==--,现在我们可以用这个结论来解决下面问题: (1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值;(2)已知a ,b ,c 是有理数,当0abc ≠,求a b ca b c++的值; (3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 9.传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的,参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股时,被告知该公司破产了.(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?01000-⎛⎫=⨯ ⎪⎝⎭回报金额投资额回报率投资额 (2)张大爷在参与这次传销活动中共损失了多少钱? 10.我们知道322111124==⨯⨯,33221129234+==⨯⨯,33322112336344++==⨯⨯,33332211234100454+++==⨯⨯……(1)猜想:13+23+33+…+(n-1) 3+n 3=14×( ) 2×( ) 2.(2)计算:①13+23+33+…+993+1003; ②23+43+63+…+983+1003.11.将九个数填在3行3列的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,这样的图称为“广义的三阶幻方”.如图1就是一个满足条件的广义三阶幻方.图2、图3的广义三阶幻方中分别给出了三个数.(1)请直接将图2、图3的其余6个数全填上; (2)就图3加以说明这样填写的理由.12.对有理数a 、b 、c ,在乘法运算中,满足:①交换律:ab ba =;②对加法的分配律:()c a b ca cb +=+.现对a b ⊕这种运算作如下定义,规定:a b a b a b ⊕=⋅++. (1)这种运算是否满足交换律?(2)举例说明:这种运算是否满足对加法的分配律?13.在求234561222222++++++的值时,小明发现:从第二个加数起每一个加数都是前一个数的2倍,于是他设:234561222222S =++++++①,然后在①式的两边都乘以2,得:23456722222222S =++++++②;②-①得7221S S -=-(1)求234561333333++++++的值; (2)求12310012222----+++++的值;14.如果有理数,a b 满足|3||1|0ab b -+-=,试求1111(2)(2)(4)(4)(100)(100)ab a b a b a b +++⋅⋅⋅+++++++的值. 15.观察下列各式:111111111111111,,22223236343412-⨯=-+=--⨯=-+=--⨯=-+=-, (1)根据上述规律写出第5个等式是________; (2)规律应用:计算:111111112233420182019⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯++-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(3)拓展应用:计算:1111111111335577920172019⨯+⨯+⨯+⨯++⨯; 16.观察以下一系列等式: ①22﹣21=4﹣2=21; ②23﹣22=8﹣4=22; ③24﹣23=16﹣8=23; ④ ;…(1)请按这个顺序仿照前面的等式写出第④个等式: ;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式: ,并说明这个规律的正确性;(3)请利用上述规律计算:21+22+23+ (2100)17.已知a ,b 为有理数,且a ,b 不为0,则定义有理数对(),a b 的“求真值”为()10,,10,a b b a b d a b a a b⎧->⎨-<⎩,如有理数数对()3,2的“求真值”为()33,22102d =-=-,有理数对()2,4-的“求真值”为()()42,42106d -=--=.(1)求有理数对()1,3-()3,2的“求真值”;(2)求证:有理数对(),a b 与(),b a 的“求真值”相等;(3)若(),2a 的“求真值”的绝对值为(),2d a ,若(),26d a =,求a 的值. 18.下面是按规律排列的一列式子: 第1个式子:1112-⎛⎫-+⎪⎝⎭;第2个式子:231(1)(1)2111234⎡⎤⎡⎤---⎛⎫-+++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦;第3个式子:23451(1)(1)(1)(1)31111123456⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦;……(1)分别计算出这三个式子的结果;(2)请按规律写出第2019个式子的形式(中间部分用省略号,两端部分必须写详细); (3)计算第2019个式子的结果. 19.观察下列各式:212316⨯⨯=;22235126⨯⨯+=;2223471236⨯⨯++=;222245912346⨯⨯+++=;…… (1)根据你发现的规律,计算下面算式的值:2222212345++++= ; (2)请用一个含n 的算式表示这个规律:2222123n ++++= ;(3)根据发现的规律,请计算算式2222515299100++++的值(写出必要的解题过程).20.概念学习:规定:求若干个相同有理数(均不为0)的除法运算叫做除方,如222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”,()()()()3333-÷-÷-÷-记作()3-④,读作“3-的圈4次方”,一般地,把()0n aa a a a ÷÷⋅⋅⋅÷≠个记作a ⓝ读作“a 的圈n 次方”.初步探究:(1)直接写出计算结果2=③________,12⎛⎫-= ⎪⎝⎭⑤________;(2)关于除方,下列说法不正确...的是________. A .任何非零数的圈2次方都等于1 B .对于任何正整数n ,1ⓝ1= C .34=④③D .负数的圈奇次方结果是负数,负数的圈偶次方结果是正数我们知道有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:将下列运算结果直接写成幂的形式:()3=-④______;5=⑥______;12⎛⎫-= ⎪⎝⎭⑩______. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式为________.(3)算一算:()2311223133⎛⎫⎛⎫÷-⨯---÷ ⎪ ⎪⎝⎭⎝⎭④⑥⑤.21.计算题:(1)317162838282⎛⎫-++-+-- ⎪⎝⎭ ; (2)()()()622312-+⨯---;(3)522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(4)444751121539477299996418..⎛⎫⎛⎫⎛⎫⨯-+⨯-⨯---+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.22.定义一种新的运算:2*a b a b a +=,如:42134*142+⨯==,则()()2*3*1-=______.23.将2018减去它的12,再减去余下的13,再减去余下的14,⋯⋯,依此类推,一直到最后减去余下的12018,最后的得数是________ 24.进制也就是进位计数制,是人为定义的带进位的计数方法.我们常用的十进制是逢十进一,如4652可以写作4×103+6×102+5×101+2×100,数要用10个数字组成:0、1、2、3、4、5、6、7、8、9.在小型机中引入了八进制,只要八个数字:0、1、2、3、4、5、6、7,如八进制中174可以写作1×82+7×81+4×80等于十进制的数124.将八进制中的数1234等于十进制中数应为__.(请直按写结果)25.将1,3,5,…,199,这100个自然数任意分成50组,每组两个数,将其中一个数记为x ,另一个数记为y ,代入代数式()14x y x y +--中计算,求出其结果,50组都代入后可得50个值,则这50个值的和的最小值是_________________ .参考答案1.C 【解析】 【分析】第①行的数是以2为底数,指数从1开始的连续自然数,奇数位置为负,偶数位置为正; 第②行的数比第①行对应数大2;第③行的数是第①行对应数除以2所得,奇数位置为负,偶数位置为正; 根据以上规律得出x 、y 、z 的值,再代入代数式求值即可. 【详解】第①行的数是以2为底数,指数从1开始的连续自然数,奇数位置为负,偶数位置为正,第10个数为210,102x =;第②行的数比第①行对应数大2,第10个数为210+2,1022y =+;第③行的数是第①行对应数除以2所得,奇数位置为负,偶数位置为正,第10个数为210÷2,1022z =÷;1010102222(22)2(22)2x y z --=⨯-+-⨯÷=-故选C 【点睛】本题考查数字规律,难度较大,分析数列,找出规律是解题关键. 2.A 【解析】(-2)2004可以表示为(-2)(-2)2003,可以提取(-2)2003,即可求解. 解:原式=(-2)(-2)2003+3×(-2)2003, =(-2)2003(-2+3), =(-2)2003, =-22003. 故选A .点评:本题主要考查了有理数的乘方的性质,(-a )2n =a 2n ,(-a )2n+1=-a 2n+1,正确提取是解决本题的关键. 3.C 【解析】分析:某人两次去购物分别付款168元与423元,而423元是优惠后的付款价格,实际标价为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=638元的商品,按规定(3)进行优惠即可.详解:某人两次去购物,分别付款168元与423元,由于商场的优惠规定,168元的商品未优惠,而423元的商品是按九折优惠后的,则实际商品价格为423÷0.9=470元,如果他只去一次购买同样的商品即价值168+470=638元的商品时,应付款为: 500×0.9+(638﹣500)×0.8=450+110.4=560.4(元). 故选C .点睛:本题考查了有理数的混合运算,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题容易把423元商品忽略当成标价处理而误选A . 4.A 【解析】 【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可. 【详解】 若n=13,第1次结果为:3n+1=40, 第2次结果是:34052 , 第3次结果为:3n+1=16, 第4次结果为:4162=1, 第5次结果为:4, 第6次结果为:1, …可以看出,从第四次开始,结果就只是1,4两个数轮流出现, 且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1,故选A.【点睛】本题考查了规律题——数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.5.D【解析】分析前三个正方形中的数据发现其包含两点规律:(1)从左上到左下到右上是三个连续的偶数;(2)右下的数等于左下的数与右上的数的积加上左上数的3倍.由此可知101283144m=⨯+⨯=.故选D.6.C【解析】【分析】根据输出的结果确定出x的所有可能值即可.【详解】解:若5x+1=531,解得x=106;若5x+1=106,解得x=21;若5x+1=21,解得x=4;故x的值可能是4,21,106四种.故选C.【点睛】此题考查了代数式求值,本题关键是弄清程序中的运算过程.7.1 6【解析】【分析】可以仿照所给的推理过程,设所求代数式为S,因为底数都为5,所以两边都乘以5得到5S,再用5S+S将两个等式某些项消掉,再利用合并同类项求解即可.【详解】解:设S=20202345201820195155555556-+-+-+⋯+-+, 则5S=202123456201920205555555556-+-+-+⋯+-+ 因此S+5S=120202021202055566-++6S=12021202055566-⨯+6S=1202120215566-+6S=1∴S=16 即2020234520182019511555555566-+-+-⋯+-+=【点睛】此题考察阅读理解能力,正确理解题中所给解题方法并运用是解题的关键. 8.(1)0或±2;(2)±1或±3;(3)-1. 【解析】 【分析】(1)分3种情况讨论即可求解; (2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a ,a+c=-b ,a+b=-c ,a 、b 、c 两正一负,进一步计算即可求解. 【详解】解:(1)已知a ,b 是有理数,当ab ≠0时,①a <0,b <0,112a bba +=--=-;②a >0,b >0,1+12a ba b+==;③a 、b 异号,0a a b b+=; 故a b a b+=±2或0; (2)已知a ,b ,c 是有理数,当abc ≠0时,①a <0,b <0,c <0,+1113b c ca ab +=---=-; ②a >0,b >0,c >0, +1113;b c a b ca +=++= ③a 、b 、c 两负一正,+-1-11-1;b b ca a c +=+= ④a 、b 、c 两正一负,+-1+111;ca b c a b +=+= 故a b c a b c++=±1或±3; (3)已知a ,b ,c 是有理数,a+b+c=0,abc <0,则b+c=-a ,a+c=-b ,a+b=-c ,a 、b 、c 两正一负, 则b c a c a b a b c+++++=-1-1+1=-1 故答案为:±2或0;±1或±3;-1.【点睛】此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.9.(1)20%(2)5690元【解析】试题分析:(1)根据当张大爷某一期追加的投资数为16股后时,被告知该公司破产了,则张大爷在破产前一共投了1+2+4+8=15股,进而求出总支出和总收入,再利用公式来解答即可;(2)用每股的价格乘以期数,然后减去收益即可.试题解析:(1)张大爷在破产前一天一共投了1+2+4+8=15股,此时回报率为530+10450)15100 45015-⨯⨯⨯(%=20%,所以他的投资回报率为20%;(2)450×16-(530-450+10)×15-16×10=5690元.10.(1)n,n+1 (2) 25502500(3) 13005000【解析】试题分析:(1)通过观察,从1开始的连续自然数的立方和等于最后一个数的平方与比它大1的数的平方的积的14,然后写出即可;(2)根据(1)的公式,令n=100即可求解. 试题解析:(1)n n+1(2)由(1)得13+23+33+…+993+1003=14×1002×1012=25 502 500(3)23+43+63+…+983+1003=(2×1) 3+(2×2) 3+(2×3) 3+…+(2×49) 3+(2×50)3=23×13+23×23+23×33+…+23×493+23×503=23×(13+23+33+…+493+503)=13005000 11.(1)见详解;(2)见详解【解析】【分析】(1)图2,先由第一行求出三阶幻方的幻和=-2+8-6=0,然后根据三阶幻方的幻和=中心数字×3,可求中心数字为0,然后再根据每个横行、每个竖列和每条对角线上的三个数之和都等于0,即可求出其它5个数;(2)图3,先根据广义的三阶幻方,两红线的6个数之和=两蓝线的6个数字之和.(其中x 算了两次)求出x的值;然后再根据三阶幻方的幻和=中心数字×3 (幻和就是每行或每列,或对角线上三个数字的和)可得:(-6)+B+(-8)=3B,即可求B的值,然后根据幻和即可求A、C、D、E的值.【详解】解:(1)图1,幻和=-2+8-6=0,∵三阶幻方的幻和=中心数字×3,∴中心数字为0,∴对角线右下角的数字为:0-(-2)-0=2,对角线左下角的数字为:0-(-6)-0=6,中心数字的下方的数字为:0-8-0=-8,中心数字的左边的数字为:0-(-2)-6=-4,中心数字的右边的数字为:0-(-6)-2=4.故填表如下:(2)分析如图所示:设其余6个位置的数字分别为:A,B,C,D,E,X,①根据广义的三阶幻方,两红线的6个数之和=两蓝线的6个数字之和,可得:[(-6)+(-5)+A]+[(-11)+B+C]=[(-6)+B+x]+(A+C+x),(-6)+(-5)+(-11)+A+B+C=(-6)+A+B+C+2x,(-6)+(-5)+(-11)=(-6)+2x,(-5)+(-11)=2x,2x=(-5)+(-11),2x=-16,x=-8,②三阶幻方的幻和=中心数字×3,可得:(-6)+B+(-8)=3B,2B=(-6)+(-8),B=-7,③三阶幻方的幻和=中心数字×3,可得:(-11)+(-7)+C=3×(-7),-18+C=-21,C=-3,④同理,可得:(-5)+(-7)+E=3×(-7),-12+E=-21,E=-9,⑤同理,可得:(-6)+(-5)+A=3×(-7),-11+A=-21,A=-10,⑥同理,可得:D+(-9)+(-8)=3×(-7),D+(-17)=-21,D=-4.所以6个数字分别为:A=-10,B=-7,C=-3,D=-4,E=-9,X=-8.【点睛】本题考查了有理数的加法,新定义下的实数运算与广义的三阶幻方,解题的关键是先确定中心数字,然后确定幻和.12.(1)运算满足交换律;(2)加法的分配律不满足.【解析】【分析】(1)利用交换律公式进行计算,即可进行判断;(2)利用分配律公式,以及新定义的运算法则进行计算,即可进行判断.【详解】解:(1)∵a b a b a b ⊕=⨯++,b a b a b a ⊕=⨯++,∴a b b a ⊕=⊕,∴该运算满足交换律;(2)根据规定,()()()a b c a b c a b c +⊕=+⨯+++a c b c a b c =⨯+⨯+++,∵a c a c a c ⊕=⨯++,b c b c b c ⊕=⨯++,∴a c b c a c a c b c b c ⊕+⊕=⨯+++⨯++2a c b c a b c =⨯+⨯+++,∵2a c b c a b c a c b c a b c ⨯+⨯+++≠⨯+⨯+++,∴()a b c a c b c +⊕≠⊕+⊕,∴对加法的分配律不满足.【点睛】本题主要考查有理数的混合运算,新定义的运算法则,解题的关键是弄清新定义规定的运算法则和有理数的运算顺序、法则.13.(1)()71312-;(2)10022--;(3)20201a a a -- 【解析】【分析】(1)依照题意设设234561333333S =++++++值,然后在其两边同乘以3得23456733333333S =++++++,再求出两式的差变形即可.(2)可仿照(1)求解;(3)仿照(1)求解.【详解】解:(1)设234561333333S =++++++①,则:23456733333333S =++++++②,②-①得:7231S =-, 即:()23456711333333312++++++=-; (2)设12310012222S ----=++++⋯+①, 则123101122222S ----=+++⋯+②, ①-②得:1011122S -=-, 即1231001001222222-----++++⋯+=-;(3)设232019S a a a a =----⋯-①0a ≠且1a ≠,2320192020aS a a a a ∴=---⋯--②②-①得:2020(1)a S a a -=-+,1a ≠20201a a S a -∴=-, 即:20202320191a a a a a a a ------=-. 【点睛】本题考查了数字的变化规律、有理数的混合运算等知识点,解题的关键是理解题目中所体现的一种解题方法与思路,培养学生的自学能力.14.51103【解析】【分析】首先利用非负数的性质得出a 、b 的数值,进一步代入,把分数分解求得答案即可.【详解】解:∵|ab-3|+|1-b|=0,∴ab-3=0,1-b=0,解得a=3,b=1, ∴()()()()()()11112244100100ab a b a b a b ++++++++++ = 1111133557101103++++⨯⨯⨯⨯ = 111111111233557101103⎛⎫⨯-+-+-+- ⎪⎝⎭ =1112103⎛⎫⨯- ⎪⎝⎭ =11022103⨯ = 51103. 【点睛】此题考查分式的化简求值、代数式求值,非负数的性质,把分数拆分是解决问题的关键. 15.(1)11111565630-⨯=-+=-;(2)-20182019;(3)10092019. 【解析】【分析】(1)根据已知的前3个等式中数的变化规律即可写出第4,5个等式;(2)根据(1)中的规律把式子变形,中间部分相互抵消,只剩下首项和末项,即可算出答案;(3)根据式子的特点将原式变形为12×(1111111133557711201720919-+-+-⋯+-+-+),从而可计算得出结果.【详解】解:(1)根据已知等式可得: 第4个等式为:11111454520-⨯=-+=-, 第5个等式为:11111565630-⨯=-+=-, …第n 个等式为:1111111(1)n n n n n n -⨯=-+=-+++, 故答案为:11111565630-⨯=-+=-; (2)由(1)中的规律“-111111n n n n ⨯=-+++”把式子进行变形可得: 111111112233420182019⎛⎫⎛⎫⎛⎫⎛⎫-⨯+-⨯+-⨯+⋯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111112233420182019=-+-+-++⋯-+ 112019=-+ 20182019=-; (3)1111111111335577920172019⨯+⨯+⨯+⨯++⨯ =12×(1111111133557711201720919-+-+-⋯+-+-+) =12×(1-12019) =10092019. 【点睛】考查了规律型:数字的变化类,此类规律题要分别找到等式左边和右边的规律,寻找不变的量和变化的量,本题中不变的量是分数中的分子1,负号“-”,变化的量是分数中分母,所以要从分母中找到变化的规律,从而找到这个等式的变化规律-111111 n n n n⨯=-+++.16.(1)25﹣24=32﹣16=24;(2)2n+1﹣2n=2n,见解析;(3)2101﹣2【解析】【分析】(1)根据题目中的式子,可以写出第④个等式;(2)根据题目中式子的特点可以写出第n个等式;(3)根据发现的规律,可以计算出所求式子的值.【详解】解:(1)∵①22﹣21=4﹣2=21;②23﹣22=8﹣4=22;③24﹣23=16﹣8=23;则第④个等式是:25﹣24=32﹣16=24,故答案为:25﹣24=32﹣16=24;(2)第n个等式是:2n+1﹣2n=2n,故答案为:2n+1﹣2n=2n,∵2n+1﹣2n=2×2n﹣2n=(2﹣1)×2n=2n,∴2n+1﹣2n=2n;(3)根据规律:21+22+23+ (2100)=(22﹣21)+(23﹣22)+(24﹣23)+…+(2101﹣2100)=22﹣21+23﹣22+24﹣23+…+2101﹣2100=2101﹣21=2101﹣2.【点睛】本题考查数字的变化类,有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,写出相应的式子.17.(1)11d =-;()3,22d =-;(2)见解析;(3)4a =.【解析】【分析】(1)利用题中的新定义判断即可;(2)利用已知的新定义化简,比较即可;(3)已知等式利用题中的新定义化简,求出a 的值即可.【详解】解:(1)()()31,311011d =-=--=-; ()33,22102d =-=-;(2)设a b <,则(),10b d a b a =-,(),10a d b a b ==-∴()(),,d a b a b a =;(3)当(),26d a =,2424()a a a a >=⎧⎨<=⎩时,解得:时,解得:舍去; 当(),26d a =-,()2222()a a a a ⎧>=⎨<=⎩时,解得:舍去时,解得:舍去; 综上所述,4a =.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.18.(1)12,112,122;(2)见解析,23403640371(1)(1)(1)(1)20191111123440374038⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦;(3)120182 【解析】【分析】(1)按照有理数的混合运算顺序计算即可;(2)第n 个式子为:23211(1)(1)(1)201911112342n n -⎡⎤⎡⎤⎡⎤----⎛⎫-++++ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦,再将2019n =代入即可;(3)由前三个式子可得出第n 个式子结果为:12n -,再将2019n =代入即可. 【详解】解:(1)第1个式子:111111222-⎛⎫-+=-= ⎪⎝⎭ 第2个式子:231(1)(1)2111234⎡⎤⎡⎤---⎛⎫-+++ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ 1431122123422=-⨯⨯=-= 第3个式子:23451(1)(1)(1)(1)31111123456⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦ 14365113322345622=-⨯⨯⨯⨯=-= (2)∵由题意可得:第n 个式子为:23211(1)(1)(1)201911112342n n -⎡⎤⎡⎤⎡⎤----⎛⎫-++++ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦∴当2019n =时,第2019个式子为:23403640371(1)(1)(1)(1)20191111123440374038⎡⎤⎡⎤⎡⎤⎡⎤-----⎛⎫-+++++ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦ (3)∵第1个式子的结果:12;第2个式子的结果:112;第3个式子的结果:122 ∴第n 个式子结果为:12n - ∴当2019n =时第2019个式子的结果为:120182 【点睛】本题考查数字的变化规律,解题关键是根据特殊情况找出数据间的一般运算规律. 19.(1)55;(2)(1)(21)6n n n ++;(3)295425 【解析】【分析】(1)根据所给的4个算式的规律,12+22+32+42+52等于56161⨯⨯;(2)根据所给的4个算式的规律,12+22+32+…+n 2等于()1216n n n ++(); (3)用12+22+…+992+1002的值减去12+22+…+492+502的值,求出算式512+522+…+992+1002的值是多少即可.【详解】(1)22222561112345==556⨯⨯++++; (2)()22221612123=n n n n +++++⋯+(); (3)原式22222222(1299100)(124950)=++++-++++100101201505110166⨯⨯⨯⨯=- 101(1002015051)6⨯⨯-⨯= 101(201002550)6⨯-= 101175506⨯=295425=【点睛】此题主要考查了有理数的混合运算,以及数字的变化规律,熟练掌握有理数混合运算顺序是解题的关键 .20.初步探究:(1)12;8-;(2)C .深入思考:(1)21()3-;41()5;8(2)-;(2)21()n a-;(3)5-.【解析】【分析】初步探究:(1)根据除方的定义计算即可得;(2)根据除方的定义、有理数的除法法则逐项判断即可得.深入思考:(1)先根据除方的定义写出每个式子,再将除法转化为乘法,然后根据幂的逆运算即可得; (2)根据题(1)的运算过程可归纳出规律,从而可得出答案;(3)先将除方运算转化为乘方运算,再计算有理数的乘方运算,然后计算有理数的加减法即可得.【详解】初步探究:(1)2=③12222÷÷= 12⎛⎫-= ⎪⎝⎭⑤11111()()()()()22222-÷-÷-÷-÷- 1111()()()222=÷-÷-÷- 11(2)()()22=-÷-÷- 14()2=÷- 8=- 故答案为:12;8-; (2)A 、1(0)a a a a =÷=≠②,此项正确B 、1ⓝ1111=÷÷÷=,此项正确 C 、113333,4449434=÷÷÷==÷÷=④③,此项不正确 D 、负数的圈奇次方是指奇数个相同负数的除法,其结果是负数;负数的圈偶次方是指偶数个相同负数的除法,其结果是正数,此项正确故选:C .深入思考:(1)()3=-④(3)(3)(3)(3)-÷-÷-÷- 111(3)()()()333=-⨯-⨯-⨯- 111()()33=⨯-⨯- 21()3=-5=⑥555555÷÷÷÷÷11111555555=⨯⨯⨯⨯⨯ 111115555=⨯⨯⨯⨯ 41()5= 12⎛⎫-= ⎪⎝⎭⑩1111111111()()()()()()()()()()2222222222-÷-÷-÷-÷-÷-÷-÷-÷-÷- 1(2)(2)(2)(2)(2)(2)(2)(2)=⨯-⨯-⨯-⨯-⨯-⨯-⨯-⨯- 8(2)=- 故答案为:21()3-;41()5;8(2)-; (2)由(1)可知,a ⓝ21()(0)n a a a a a -=÷÷÷=≠ 故答案为:21()n a -;(3)原式22343112(3)()(3)32=÷-⨯---÷ 243121()()3338=-⨯--÷ 116()38=⨯-- 23=--5=-.【点睛】本题考查了新定义“有理数的除方”、有理数的乘除法、乘方运算等知识点,理解新定义,将其转化为有理数的乘方运算是解题关键.21.(1)112-;(2)1;(3)113-;(4)-6 【解析】【分析】(1)先依次化简绝对值,再计算加减法;(2)先计算两个乘方,再计算乘法,最后计算加减;(3)先分组,将222009401833⎛⎫-+ ⎪⎝⎭放在一起计算得到整数,再将结果相加即可; (4)将前三项利用乘法分配率的逆运算计算,后面的乘法利用乘法分配率计算,再计算前面的乘法,最后计算加减法.【详解】(1)317162838282⎛⎫-++-+-- ⎪⎝⎭, =771383882-+, =1532-+, =112-; (2)()()()622312-+⨯---, =-4+3+2,=1;(3)522120082009401816332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=512220081200940186233⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, =5120092008162⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭, =11162-, =113-;(4)444751121539477299996418..⎛⎫⎛⎫⎛⎫⨯-+⨯-⨯---+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, =()()42-153-947-56-60+18-49..⎛⎫⨯-⎪⎝⎭, =4-10,=-6.【点睛】此题考查有理数的混合运算,掌握正确的计算顺序是解题的关键.22.12【解析】【分析】利用题中的新定义计算即可得到结果.【详解】利用题中的新定义:()()()2232*3*1*12+⨯-=- ()42(1)4(2)14*1442+⨯-+-=-=== 故答案为:12【点睛】 本题为考查有理数的运算的变式题型,正确理解新定义计算以及熟练掌握有理数运算法则是解答本题的关键.23.1【解析】【分析】 根据题意可列式11112018(1)(1)(1)(1)2342018⨯-⨯-⨯-⨯⨯-,把括号里的相减,再约分即可.【详解】解:由题意得:11112018(1)(1)(1)(1)2342018⨯-⨯-⨯-⨯⨯- =123201720182342018⨯⨯⨯⨯⨯=120182018⨯=1 故答案为:1.【点睛】本题考查了有理数的混合运算,根据题意列出式子并发现运算过程中的规律是解题的关键. 24.668.【解析】【分析】根据题意由八进制的定义列出算式计算即可得到结果.【详解】解:1×83+2×82+3×81+4×80=1×512+2×64+24+4=512+128+24+4=668,则八进制中的数1234等于十进制中数应为668.故答案为:668.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键. 25.1250【解析】【分析】假设x>y ,化简()14x y x y +--=12y ,得到当y 是1,3,5,7,,99时,这50个值的和最小,,根据求和公式计算即可得到答案.【详解】假设x>y , ∴()14x y x y +--=()1142x y x y y +-+=, ∴当50组中的较小的数y 恰好是1,3,5,7,,99时,这50个值的和最小,最小值为()1135992++++=12⨯()5019912502⨯+=, 故答案为:1250.【点睛】此题考查代数式的计算,设出x 、y 的大小关系,据此化简是解题的关键.。
人教版2020七年级数学上册第一章有理数自主学习培优提升训练题2(附答案详解)
人教版2020七年级数学上册第一章有理数自主学习培优提升训练题2(附答案详解) 1.已知点A 、B 、C 分别是数轴上的三个点,点A 表示的数是1-,点B 表示的数是2,且B 、C 两点的距离是A 、B 两点间距离的3倍,则点C 表示的数是( ) A .11B .9C .9或11D .7-或112.若330a a --+=,则a 的取值范围是( ) A .3a ≤B .3a <C .3a =D .3a ≥3.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量可以用科学记数法表示是( ) A .68.510⨯吨B .58.510⨯吨C .78.510⨯吨D .68510⨯吨4.给出以下几个判断,其中正确的是( )①两个有理数之和大于其中任意一个加数;②减去一个负数,差一定大于被减数;③一个数的绝对值一定是正数;④若0m n <<,则mn n m <-. A .①③B .②④C .①②D .②③④5.把-4+(+5)-(-8)+(-10)-(+1)写成省略括号和的形式,正确的是( )A .-4+5-8-10-1B .-4+5+8-10+1C .-4+5+8+10-1D .-4+5+8-10-16.12018的相反数是( ) A .12018- B .12018C .2018-D .20187.两个有理数的和是正数,下面说法中正确的是( ) A .两数一定都是正数 B .两数都不为0 C .至少有一个为负数D .至少有一个为正数8.有理数a 、b 、c 的位置如图,下面的判断正确的是( )A .abc <0B .a ﹣b >0C .|c |<|b |D .c ﹣a >09.若,则的值是( )A .-1B .1C .0D .2016 10.在下列数﹣3.5,+1,6.7,-15,0,722,-1,25%中,属于整数的有( ) A .2个B .3个C .4个D .5个11.下列各组数中,互为相反数的是( )A .2-与12-B .2-与2C .2-与2(2)-D .2-与38-12.下列各数中,是正整数的是( ) A .—2B .1.5C .100D .013.在数轴上点P 表示的数是-1,则与P 点距离5个长度单位表示的数是__________. 14.在 -3,34-,0 ,-3.14 ,57 ,5%- ,6,-0.3131131113中,负分数有___个。
北师大版2020-2021学年度七年级数学上册期末综合复习基础训练题2(附答案)
A、﹣(2x+5)=﹣2x﹣5,原式去括号错误,故这个选项不符合题意;
B、﹣ (6x﹣4)=﹣3x+2,原式去括号错误,故这个选项不符合题意;
C、 ,原式去括号错误,故这个选项不符合题意;
D、 ,原式去括号正确,故这个选项符合题意;
故选:D.
【点睛】
本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.
∴ ,
∴ ,
故答案为:1.
【点睛】
本题考查了同类项的定义,解题的关键是熟记定义.
16.
【解析】
【分析】
根据题意直接列代数式即可.
【详解】
表示“x的 与y的差”的代数式为 .
故答案为 .
【点睛】
本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.
17.1.
【解析】
29.已知:如图, , ,求: 的度数.
参考答案
1.D
【解析】
【分析】
根据二次三项式的定义,可知多项式 最高次数是二次,共有三项,据此列出m、n的关系式,从而确定m、n满足的条件.
【详解】
是关于 的二次三项式
可知多项式 最高次数是二次,共有三项
,
解得: ,
故选D.
【点睛】
本题考查了整式中多项式的项和次数,难度较低,熟练掌握多项式的相关定义是解题关键.
【详解】
解:由-8+4-5+2=(-8)+(+4)+(-5)+(+2),
即-8+4-5+2表示-8、+4、-5、+2的和;
故答案为:-8、+4、-5、+2.
有理数提高培优之混合运算50题(含答案解析)
2| ÷(﹣ 3) 2×(﹣ 1) 11;
23.
;
. 50.
参考答案(供参考) : 1. 原式 =1× 2+(﹣ 8)÷ 4=2+(﹣ 2) =0. 2.原式 =[50 ﹣( ﹣ + )× 36] ÷ 49=[50 ﹣( × 36﹣
× 36+ × 36) ] ÷ 49=[50 ﹣( 28﹣
33+6) ] ÷ 49 = ( 50﹣ 1)÷ 49=49÷ 49=1.
;
33.﹣ 3
2+(﹣3) 2+(﹣5) 2×(﹣)﹣0.3 2÷ |﹣ 0.9| . 2+(﹣3)
专业资料分享
Word 格式
.
专业资料分享
Word 格式
.
34.(﹣ 2× 5)
3﹣(﹣ 1 )×(﹣ ) 2﹣(﹣
) 2.
35. 1 × ﹣(﹣ )× 2 +(﹣ )÷ 1
18. ﹣ 2
(﹣ 2)
原式 =( ﹣ ﹣ )×(﹣ ) =(﹣ )×(﹣ ) =3. 47.
48. 原式 =3+(﹣ 4)× 8÷ 4÷ 2﹣ 9÷ 9×(﹣ 1) =3﹣ 4+1=0.
专业资料分享
Word 格式
.
专业资料分享
Word 格式
.
27. 原式 =64﹣{81﹣[﹣+ ×(﹣4) ] ÷(﹣3) }=64﹣{81﹣3 }=64﹣ 77 =﹣ 13 .
21. 原式 =﹣ 9﹣ 9×(﹣ 2)﹣ [ (﹣ 2)× 1] 2=﹣ 9+18-4=5 22. 原式 =﹣ 10×(﹣ 2)× 5× 1=100.
17.原式 =﹣ 3﹣[ ﹣ 5+( 1﹣ )×(﹣ ) =﹣ 3﹣ [ ﹣ 5﹣ ]= ﹣ 3+5+ =
有理数混合运算培优训练题
有理数混合运算培优训练题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(有理数混合运算培优训练题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为有理数混合运算培优训练题的全部内容。
初一有理数混合运算培优训练题1.若m 〈0,则=_____。
若,则 2。
m ,n 互为相反数,则以下结论中错误的序号是_____①2m +2n =0 ②mn =-m 2 ③ ④ 如果a 〉0,b <0,<,则a ,b ,-a ,-b 这4个数从小到大的顺序是________3.如果a 〉0,b <0,|a |〈|b |,则a ,b ,—a ,—b 这4个数从小到大的顺序是_____________4。
如果a 〈0,b >0,b >|-a |,则a ,b ,-a ,—b 这4个数从大到小的顺序是__________________.5.如果—|a |=|a |,那么a =_____.已知|a |+|b |+|c |=0,则a =_______,b =_____,c =_____.6。
若|a -2|+|b +3|=0,则3a +2b =__________.若|m +n |+(m +2)2=0,则m n =_______7.一个两位数,个位上的数字是a ,十位上的数字比个位上的数字小3,这个两位数是_____;当a =5时,这个两位数是__________.若|x +3|+(y -2)2=0,则x —2y =___8.某品牌服装以a 元购进,加20%作为标价.由于服装销路不好,按标价的八五折出售,此时的售价是_______元,这时仍获利________元.9。
北师大版2020-2021学年度七年级数学第一学期期末综合复习优生提升训练题2(附答案详解)
北师大版2020-2021学年度七年级数学第一学期期末综合复习优生提升训练题2(附答案详解)一、单选题1.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是( )个单位.A .49B .50C .51D .992.用同样多的钱,买一等毛线,可以买3千克;买二等毛线,可以买4千克,如果用买a 千克一等毛线的钱去买二等毛线,可以买( )A .43a 千克B .34a 千克C .73a 千克D .74a 千克 3.如图,点C 是线段AB 上一点,D 为BC 的中点,且AB 12cm =,BD 5cm =.若点E 在直线AB 上,且AE 3cm =,则DE 的长为( )A .4cmB .15cmC .3cm 或15cmD .4cm 或10cm 4.对于任意实数x ,通常用[]x 表示不超过x 的最大整数,如[2.9]2=,下列结论正确的是( )①[]33-=- ②[]2.92-=- ③[0.9]0= ④[][]0x x +-= A .①② B .②③ C .①③ D .③④5.如图所示,将一个圆依次二等分、三等分、四等分、五等分…,并按图中规律在半径上摆放黑色棋子,则第一幅图中有5个棋子,第二幅图中有10个棋子,第三幅图中有17个棋子,第四幅图中有26个棋子,依此规律,则第6幅图中所含棋子数目为( )A .51B .50C .49D .486.下列各对数中,互为相反数的是( )A .7--和()7+-B .()34-和34-C .()10+-和()10-+D .()45-和45- 7.请指出下列抽样调查中,样本缺乏代表性的是( )①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A .①② B .①④ C .②④ D .②③ 8.观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在( )A .第502个正方形的左下角B .第502个正方形的右下角C .第503个正方形的左下角D .第503个正方形的右下角 9.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5 10.满足方程24233x x ++-=的整数x 有( )个 A .0个 B .1个 C .2个 D .3个11.若(m-1)x=6是关于x 的一元一次方程,则m 的取值为( )A .任何数B .不等于1的数C .1D .不等于1的整数12.一列数按某规律排列如下: 1121231234,,,,,,,,,1213214321…,若第n 个数为57,则n =( ) A .50B .60C .62D .71 二、填空题13.若12a c eb d f ===,320b d f -+≠,则3232ac e bd f -+-+ = __________. 14.已知(m ,n )是函数与的一个交点,则代数式的值为__________ 15.2019年9月,科学家将“42”写成了“33(80538738812075974)80435758145817515-++312602123297335631”的形式.至此,100以内的正整数(9ni4)型的数除外)都写成了三个整数的立方和的形式.试将下列整数写成三个非零且互不相等的整数的立方和的形式:2=____;45=___. 16.如图,用灰白两色正方形瓷砖铺设地面,第2019个图案中白色瓷砖块数为_____________.17.在数轴上表示a,b,c三个实数的点的位置如图所示,化简式子:|b-a|+|c-a|-|c-b|=________.18.定义运算“☆”,其规则为a☆b=a ba,则方程(4☆3)☆x=13的解为x=________.19.把几个数用大括号括起来,中间用逗号断开,如:、,我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数是集合的元素时,有理数10也必是这个集合的元素,这样的集合我们称为“好的集合”.例如集合{10,0}就是一个“好的集合”.(1)集合(填“是”或“不是”)“好的集合”.(2)请你再写出两个好的集合(不得与上面出现过的集合重复).(3)在所有“好的集合”中,元素个数最少的集合是.20.有理数a,b,c在数轴上的对应点如图所示,化简:|b|-|c+b|+|b-a|=________.21.电视中的娱乐节目中常可以看到一个“猜词语”的游戏,其规则是:参加游戏的每两人为一组,主持人出示写有词语的一块牌子给两人中的一个人(甲)看,另一人(乙)是看不到牌子上的词语的,要求甲用语言(这句话中不能出现词语中含有的字)或用动作告诉乙牌子上的词语,要求乙根据甲的话语或动作猜出这个词语.现在我们把这个游戏中的词语改成两个整数“1和-1”,要求甲运用有关数学知识,用一句话或一个式子、一个图形对乙进行描述(要求不能出现与牌子上相同的数字),如果你是甲,对这两个整数,将怎样告诉乙?请写出两种方案:①;②.22.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,则表示“无所谓”的家长人数为________.23.对于有理数a 、b ,定义一种新运算“⊙”,规定:a ⊙b =a b a b -++.计算2⊙(-3)=________.三、解答题24.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为12,S S .(1)填空:12S S -= (用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x ,求x 的值(用含m 的代数式表示);②设该正方形的面积为3S ,试探究: 3S 与122()S S +的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n ,并且满足条件121n S S ≤<-的n 有且只有....4个,求m 的值.25.如图是一个边长6厘米的立方体ABCD---EFGH , 一只甲虫在棱EF 上且距F 点1厘米的P 处. 它要爬到顶点D ,需要爬行的最近距离是__________厘米.26.对于有理数a ,b ,规定一种新运算:*a b ab b =+.(1)计算:(3)*4-=__________.(2)若方程(4)*36x -=,求x 的值.(3)计算:5*[(3)*2]-的值.27.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.28.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 29.阅读材料:求1+2+22+23+24+…+22 015+22 016的值.解:设S=1+2+22+23+24+…+22 015+22 016, ①将等式两边同时乘2,得2S=2+22+23+24+25+…+22 016+22 017, ②②-①,得2S-S=22 017-1,即S=22 017-1,所以1+2+22+23+24+…+22 015+22 016=22 017-1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n-1+3n (其中n 为正整数).30.请仔细观察如图所示的折纸过程,然后回答下列问题:(1)2∠的度数为__________;(2)1∠与3∠有何数量关系:______;(3)1∠与AEC ∠有何数量关系:__________;31.如果有理数,a b 满足|3||1|0ab b -+-=,试求1111(2)(2)(4)(4)(100)(100)ab a b a b a b +++⋅⋅⋅+++++++的值.32.已知数轴上三点M ,O ,N 对应的数分别为-3,0,1,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M ,点N 的距离相等,那么x 的值是______;(2)数轴上是否存在点P ,使点P 到点M ,点N 的距离之和是5?若存在,请直接写出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟3个单位长度的速度从点O 向左运动时,点M 和点N 分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M ,点N 的距离相等.(直接写出答案)33.阅读下面文字:对于(﹣556)+(﹣923)+1734 +(﹣312) 可以如下计算:原式=[(﹣5)+(﹣56)]+[(﹣9)+(﹣23)]+(17+34)+[(﹣3)+(﹣12)] =[(一5)+(﹣9)+17+(一3)]+[(﹣56)+(﹣23)+34+(﹣12)]=0+(﹣114) =﹣114上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(﹣112)+(﹣200056)+400034+(﹣199923) 34.如图所示的是某风景区的旅游路线示意图,其中B ,C ,D 为风景点,E 为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一位游客从A 处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为34小时.(1)当他沿着路线A→D→C→E→A游览回到A处时,共用了4小时,求CE的长;(2)若此学生打算从A处出发,步行速度与景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,说明这样设计的理由.35.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.A();B();C();D();E().参考答案1.B【解析】【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【详解】解:设向右为正,向左为负.则1+(-2)+3+(-4)+.+(-100)=[1+(-2)]+[3+(-4)]+.+[99+(-100)]=-50.∴落点处离O点的距离是50个单位.故答案为:B.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.2.A【解析】试题解析:设买1千克的一等毛线花x元钱,买1千克的二等毛线花y元钱,根据题意得:3x=4y,则43xy=,故买a千克一等毛线的钱可以买二等毛线43xy=a.故选A.点睛:先设出买1千克的一等毛线花的钱数和买1千克的二等毛线花的钱数,列出一等毛线和二等毛线的关系,再乘以a千克即可求出答案.3.D【解析】【分析】分类讨论,①当点E在线段AB上时,②当点E在线段BA的延长线上时,分别画出图形,计算即可得出答案.【详解】∵D为BC的中点,BD=5cm,∴BC=10cm,CD=5cm,∵AB=12cm,∴AD=7cm,AC=2cm,①如图:当点E在线段AB上时,∵AE=3,∴DE=7-3=4cm,②如图:当点E在线段BA的延长线上时,∵AE=3cm,∴DE=7+3=10cm.故选D.【点睛】此题考查了两点间的距离求解,解答本题的关键是分类讨论点E的位置,有一定难度,注意不要遗漏.4.C【解析】【分析】根据符号[x]表示不超过x的最大整数,依次判断可得答案.【详解】解:由题意可得,[-3]=-3,故①正确;[-2.9]=-3,故②错误;[0.9]=0,故③正确;当x为整数时,[x]+[-x]=x+(-x)=0,当x为小数时,如x=1.2,则[x]+[-x]=1+(-2)=-1≠0,故④错误;故选:C.【点睛】本题考查了有理数的大小比较,解答本题的关键是理解题目中的新定义.【解析】试题分析:由题意可知:第一幅图中有22+1=5个棋子,第二幅图中有32+1=10个棋子,第三幅图中有42+1=17个棋子,第四幅图中有52+1=26个棋子,…由此得出第n 幅图中所含棋子数目为(n+1)2+1,由此进一步代入求得答案即可.解:∵第一幅图中有22+1=5个棋子,第二幅图中有32+1=10个棋子,第三幅图中有42+1=17个棋子,第四幅图中有52+1=26个棋子,…∴第n 幅图中所含棋子数目为(n+1)2+1,∴第6幅图中所含棋子数目为49+1=50.故选B .考点:规律型:图形的变化类.6.D【解析】A .7--=-7,()7+-=-7,∴7--=()7+-B .()34-=-64,34-=-64,∴()34-=34-;C .()10+-=-10,()10-+=-10,∴()10+-=()10-+D .()45-=625,45-=-625,故()45-和45-互为相反数.故选D .7.B【解析】【详解】试题分析:在某大城市调查我国的扫盲情况,不具备代表性,故①正确;在十个城市的十所中学里调查我国学生的视力情况,具备代表性,故②不正确;在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况,具备代表性,故③不正确; 在某一农村小学里抽查100名学生,调查我国小学生的健康状况,不具备代表性,故④正确.8.D【解析】试题分析:观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.因为2009÷4=502…1,所以在第503个正方形的右下角. 故选:D .9.A【解析】【分析】把x =1代入原方程并整理得出(b +4)k =7﹣2a ,然后根据方程总有根推出b +4=0,7﹣2a =0,进一步即可求出结果.【详解】解:把x =1代入2136kx a x bk +--=,得:21136+--=k a bk , 去分母,得:4k +2a ﹣1+kb =6,即(b +4)k =7﹣2a ,∵不论k 取什么实数,关于x 的方程2136kx a x bk +--=的根总是x =1, ∴40b +=,720a -=,解得:a =72,b =﹣4,∴a +b =﹣0.5. 故选:A .【点睛】本题考查了一元一次方程的相关知识,正确理解题意、得出b +4=0,7﹣2a =0是解本题的关键.10.C【解析】【分析】 分类讨论:43x ≥,23x ≤-,2334x -<<时,分别解方程求得答案. 【详解】 当43x ≥时,原方程为: 24233x x ++-=,得x=43,不合题意舍去;当23x≤-时,原方程为:24233x x--+-=,得x=23-,不合题意舍去;当2334x-<<时,原方程为:24233x x++-=,得2=2,说明当2334x-<<时关系式24233x x++-=恒成立,所以满足条件的整数解x有:0和1.故选:C.【点睛】此题考查解一元一次方程,需根据x的范围将绝对值符合去掉,再解出x的值.11.B【解析】分析:根据一元一次方程的定义,即可解答.详解:∵(m-1)x=6是关于x的一元一次方程,∴m-1≠0,∴m≠1,故选:B.点睛:本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.12.B【解析】【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为57时n的值,本题得意解决.【详解】1121231234 ,,,,,,,,, 1213214321,…,可写为:1121231234,,,,,,,,,1213214321⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,…,∵57的分子和分母的和为12,∴分母为11开头到分母为1的数有11个,分别为1234567891011,,,,,,,,,, 1110987654321,∴第n个数为57,则123410560 n=++++⋯++=,故选B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律. 13.12 【解析】 因为12a c eb d f ===,320b d f -+≠, 所以得a=0.5b ,c=0.5d ,e=0.5f ,所以3232a c e b d f -+-+=1.50.532b d f b d f -+-+=12. 故答案是:12. 14.1 【解析】∵已知(m ,n )是函数与的一个交点,∴ , ,∴mn =3,m -n =2,∴= =1.故答案为:1. 15.()()333756+-+- ()333234+-+【解析】【分析】根据题目的要求,进行大胆的猜想和验证.【详解】2=()()333756+-+-45=()333234+-+【点睛】本题考查了探索与表达规律-数字类型,1992年,当时数学家罗杰希思 - 布朗推测,所有自然数都可以被写成3个数立方之和.但时间不断推移,规律不断被演绎推导:“除了9n±4型自然数外,所有100以内的自然数都能写成三个整数的立方和”. 2019年9月,“42”的结果,就已经让一众数学家和爱好者激动了,或许是发现的乐趣,也是一种意义吧.同学们可以尽情发挥,享受数学的乐趣.16.6059.【解析】【分析】观察图形,分别数出第1、2、3个图案中白色瓷砖的数量,从中找出规律,由此推算第n个图案中白色瓷砖的数量,于是可计算出第2019个图案中白色瓷砖块数.【详解】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,第3个图案中白色瓷砖又多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n-1)=3n+2.所以第2019个图案中白色瓷砖块数=3×2019+2=6059.故答案是:6059.【点睛】本题考查图形规律问题,关键是观察图形进行分析,注意前后两个图形之间的联系.17.0【解析】分析:由数轴上点右边的数总比左边的数大,判断出a,b及c的大小,进而确定出b﹣a,c﹣a及c﹣b的正负,利用绝对值的代数意义化简绝对值运算,合并即可得到结果.详解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.故答案为0.点睛:本题考查了整式的加减运算,涉及的知识有:数轴上点的表示,绝对值的代数意义,以及合并同类项法则,判断出绝对值号中式子的正负是解答本题的关键.18.21【解析】根据新定义的运算规则,4☆3=43744+=,(4☆3)☆x=7441774xx+=+.所以41137x+=,解得x=21.故答案为21.点睛:理解新定义的运算规则,☆前的数字或字母相当于等号右边的a,☆后的数字或字母相当于等号右边的b,对于含有双重☆号的运算,应该分两次来计算,先计算出括号,再将括号中的运算结果与☆号右边的数或式子按新定义的规则来计算.19.(1)不是;(2)答案不唯一;(3){5}【解析】试题分析:(1)根据“好的集合”的定义,把集合中的元素10-a代入检验即可;(2)答案不唯一,集合中的数可以有2个,也可以3个或更多;(3)在所有“好的集合”中,元素个数最少的只有一个数即为5.试题解析:(1)不是(2)答案不唯一如:{2,3,,7,8}、{-1,1,-2,12,9,11};(3){5}考点:新定义、有理数的计算.20.a-b+c【解析】先根据各点在数轴上的位置判断出其符号,再去绝对值符号,合并同类项即可,即可由图可知,c<b<0<a,可求c+b<0,b-a<0,因此原式=-b+c+b+a-b=a+c-b.故答案为a+c-b.点评:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.21.答案不唯一,如:这两个数是最大的负整数和最小的正整数;这两个数互为相反数,且是每个数的绝对值为最小的非0整数.【解析】试题解析:本题答案不唯一,如最小的正整数与最大的负整数,倒数等于它本身的数;立方(或立方根)等于它本身的非零数;最小的正整数的平方根;数轴上与原点距离最近的两个整数;±2的一半等等考点:数轴.22.40【解析】【分析】根据赞同的人数和所占的百分比求出接受这次调查的家长人数;再根据表示“无所谓”的家长所占的百分比和总人数,求出表示“无所谓”的家长人数即可.【详解】解:由条形统计图和扇形统计图可知,赞同的人数是50人,占25%,∴接受这次调查的家长人数为50÷25%=200人,∵200×20%=40,∴表示“无所谓”的家长人数为40人.故答案为:40.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.6【解析】【分析】利用题中的新定义计算即可得到结果【详解】根据题中的新定义得:2⊙(-3)=|2-(-3)|+|2+(-3)|=5+1=6.故答案为6.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)2m-1;(2)①x 的值为:2m+7;②3S 与122()S S +的差是常数,这个常数是19;(3)m 的值为3.【解析】【分析】(1)根据长方形的面积公式分别求出12,S S ,再作差即可得出答案;(2)①根据长方形的周长公式求出甲乙两个长方形的周长,再根据正方形的周长公式求出x ,即可得出答案;②利用①求出的x ,求出正方形的面积3S ,代入312-2()S S S +化简即可得出答案;(3) 根据题意求出12S S -的取值范围,即得到2m-1的取值范围,根据取值范围求出m 的值,再根据m 是正整数这一条件得出m 的值.【详解】解:(1)由题意可得:()()21m 7m 1m 8m 7S =++=++ ()()22m 4m 2m 6m 8S =++=++∴2212876821S S m m m m m -=++---=-(2)①∵正方形的周长等于甲、乙两个长方形的周长之和∴正方形的周长=2(m+7+m+1)+2(m+4+m+2)=8m+28又正方形的边长为x∴4x=8m+28解得:x=2m+7∴x 的值为:2m+7.②由①可知,()2223x 2742849S m m m ==+=++∴()()22231224m 28492876819S S S m m m m m -+=++-+++++= 故3S 与122()S S +的差是常数,这个常数是19.(3)∵121n S S ≤<-的n 有且只有....4个∴1245S S <-≤即4<2m-1≤5 解得:5m 32≤≤ 又m 为正整数∴m=3故m 的值为3.【点睛】本题考查的主要是写代数式,涉及到的知识点有正方形和长方形的周长和面积公式、已知不等式的整数解求字母的取值范围.25【解析】把正方体展开,面DAEH 与面AEBF 为一体,则在三角形DHP 中用勾股定理解.PA 即为最短距离.PA==.26.(1)8-;(2)见解析;(3)见解析.【解析】【分析】(1)把a=-3,b=4代入到ab+b 中计算;(2)把a=x-4,b=2代入到ab+b=3中得到方程,解方程求x 的值;(3)先计算()3*2-=-4,再计算5*(-4).【详解】(1)()3*43441248-=-⨯+=-+=-.(2)由()4*36x -=,得()4336x -⨯+=31236x -+=315x =5x =.(3)()3*2322624-=-⨯+=-+=-()()()()5*454420424-=⨯-+-=-+-=-,所以()5*3*224⎡⎤-=-⎣⎦.【点睛】本题考查了有理数的混合运算和新定义,有理数的混合运算顺序是①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行;对于新定义,要理解它所规定的运算规则,再根据这个规则,结合有理数的混合运算的法则进行计算.27.65【解析】试题分析:首先解两个关于x 的方程,求得x 的值,然后根据两个方程的解互为相反数即可列方程求解.试题解析:第一个方程的解x=﹣m,第二个方程的解y=﹣0.5,因为x,y互为倒数,所以﹣m=﹣2,所以m= .28.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 29.(1) 211-1;(2) (3n+1-1);【解析】【分析】(1)设M=1+2+22+23+24+…+210,两边乘以2后得到新的等式,与已知等式相减,变形即可求出所求式子的值;(2)类比题目中的方法即可得到所求式子的值.【详解】(1)设M=1+2+22+23+24+…+29+210①,将等式两边同时乘2,得2M=2+22+23+24+25+…+210+211②,②-①,得2M-M=211-1,即M=211-1,所以1+2+22+23+24+…+29+210=211-1.(2)设N=1+3+32+33+34+…+3n-1+3n①,将等式两边同时乘3,得3N=3+32+33+34+35+…+3n+3n+1②,②-①,得3N-N=3n+1-1,即N=(3n+1-1),所以1+3+32+33+34+…+3n-1+3n=(3n+1-1).【点睛】本题主要考查了同底数幂的乘法,根据题目中所给的运算方法,类比解决所给的题目是解决这类问题的基本思路.30.(1)90°;(2)1390︒∠+∠=;(3)1180AEC︒∠+∠=.【解析】【分析】(1)由图中第三个图形可知,折叠后∠1+∠3=∠2,再根据B、E、C三点共线可求得结论;(2)根据(1)可知∠1+∠3=∠2=90°,两角之和为90°,两角互余;(3)由B、E、C三点共线可得出结论.【详解】解:(1)根据折叠的过程可知:∠2=∠1+∠3,∵∠1+∠2+∠3=∠BEC,B、E、C三点共线∴∠2=180°÷2=90°.故答案是:90°.(2)∵∠1+∠3=∠2,∴∠1+∠3=90°.故答案是:∠1+∠3=90°.(3)∵B、E、C三点共线,∴∠1+∠AEC=180°,故答案是:∠1+∠AEC=180°.【点睛】本题考查的角的计算以及折叠问题,解题的关键是依据折叠的特性找到∠1、∠2、∠3之间的关系.31.51 103【解析】【分析】首先利用非负数的性质得出a 、b 的数值,进一步代入,把分数分解求得答案即可.【详解】解:∵|ab-3|+|1-b|=0,∴ab-3=0,1-b=0,解得a=3,b=1, ∴()()()()()()11112244100100ab a b a b a b ++++++++++ = 1111133557101103++++⨯⨯⨯⨯ = 111111111233557101103⎛⎫⨯-+-+-+- ⎪⎝⎭ =1112103⎛⎫⨯- ⎪⎝⎭ =11022103⨯ = 51103. 【点睛】此题考查分式的化简求值、代数式求值,非负数的性质,把分数拆分是解决问题的关键. 32.(1)1-;(2)x= 3.5-或1.5;(3)4t 3=分钟或t=2分钟时点P 到点M ,点N 的距离相等.【解析】【分析】(1)根据三点M ,O ,N 对应的数,得出NM 的中点为:x=(-3+1)÷2进而求出即可; (2)根据P 点在N 点右侧或在M 点左侧分别求出即可;(3)分别根据①当点M 和点N 在点P 同侧时,②当点M 和点N 在点P 两侧时求出即可.【详解】解:(1)∵M ,O ,N 对应的数分别为-3,0,1,点P 到点M ,点N 的距离相等, ∴x 的值是1-.故答案为:1-;(2)存在符合题意的点P ;∵点M为-3,点N为1,则点P分为两种情况,①点P在N点右侧,则(1)(3)5x x-++=,解得: 1.5x=;②点P在M点左侧,则(3)(1)5x x--+-=,解得: 3.5x=-;∴ 3.5 1.5x=-或=.(3)设运动t分钟时,点P对应的数是-3t,点M对应的数是-3-t,点N对应的数是1-4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以:-3-t=1-4t,解得t=43,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=-3t-(-3-t)=3-2t.PN=(1-4t)-(-3t)=1-t.因为PM=PN,所以3-2t=1-t,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=3t-t-3=2t-3.PN=-3t-(1-4t)=t-1.因为PM=PN,所以2t-3=t-1,解得t=2.此时点M对应的数是-5,点N对应的数是-7,点M在点N右侧,符合题意.综上所述,三点同时出发,43分钟或2分钟时点P到点M,点N的距离相等.【点睛】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.33.54 -.【解析】试题分析:首先分析(-556)+(-923)+1734+(-312)的运算方法:将带分数分解为一个整数和一个分数;然后重新组合分组:整数一组,分数一组;再分别计算求值.试题解析:(﹣112)+(﹣200056)+400034+(﹣199923)=﹣1+(﹣12)+(﹣2000)+(﹣56)+4000+34+(﹣1999)+(﹣23),=﹣1+(﹣2000)+4000+(﹣1999)+(﹣12)+(﹣56)+34+(﹣23),=(﹣2)+34,=﹣54.点睛:首先阅读材料,结合有理数运算的法则,理解拆项法的原理及应用,然后仿照材料的方法,进行计算.34.(1)CE=0.2千米;(2)步行路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A),见解析.【解析】【分析】(1)关系式为:总路程=速度×时间,注意时间应去掉逗留时间.(2)最短时间内看完三个景点返回到A处应选择不重复走景点所在的路线,比如可以不走CE.【详解】(1)设CE长为x千米,则2.2+1.4+x+1.2=2×(4-2×0.75),解得:x=0.2(千米).(2)若步行路线为A→D→C→B→E→A(或A→E→B→C→D→A),则所用时间为:(2.2+1.4+2+0.6+1.2)÷2+3×0.75=5.95(小时).若步行路线为A→D→C→E→B→E→A(或A→E→B→E→C→D→A),则所用时间为:(2.2+1.4+0.2+0.6×2+1.2)÷2+3×0.75=5.35(小时).因为5.95>5.35,所以步行路线应为A→D→C→E→B→E→A(或A→E→B→E→C→D→A).【点睛】本题考查了线段和差在实际生活中的应用,细心计算是解题关键.35.A(1、5、6);B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【解析】试题分析:分别分析五种图形的所有的截面情况,即可写出答案.试题解析:A圆锥,截面有可能是三角形,圆,椭圆(不完全),B三棱锥,截面有可能是三角形,正方形,梯形,C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形,D球体,截面只可能是圆,E圆柱体,截面有可能是椭圆(不完全),圆,矩形,因此答案为:A(1、5、6);B(1、3、4);C(1、2、3、4);D(5);E(3、5、6) . 【点睛】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.空间想象力对于解答此类题目也是比较关键的.。
2020-2021初一数学有理数及其运算单元综合练习题(附答案)
2020-2021初一数学有理数及其运算单元综合训练题(附答案) 一、单选题 1.计算2–(–3)×4的结果是( )A .10B .–20C .–10D .14 2.计算216()22÷-⨯的结果是( )A .-12B .-48C .48D .12 3.计算-113÷(-3)×(-13)的值为( ) A .-113 B .113C .-427D .427 4.定义一种新的运算:a •b =2a b a +,如2•1=2212+⨯=2,则(2•3)•1=( ) A .52B .32C .94D .1985.字母a 、b 、c 分别表示一个有理数,它们在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0c a -<C .0bc >D .a b -> 6.使得算式()()24123311⎡⎤-⨯--⎣⎦的值最大,则“□”里应填入的运算符号为( ) A .+ B .- C .⨯ D .÷7.如图所示,是一个数值转换机,当输入3-时,输出的结果是( )A .1-B .1C .3-D .3二、解答题8.把下列各数分别填入相应的集合里:3--,1.525525552,0,34⎛⎫-- ⎪⎝⎭,3.14,()6--,3π- (1)负数集合:{ };(2)非负整数集合:{ };(3)无理数集合:{}. 9.计算:(1)2125824(3)3-+-+÷-⨯;(2)20171313[2()24]5(1)2864-+-⨯÷⨯-. 10.计算:(1)2304124()(2)3-⨯+---; (2)422311(1){[()0.4(1)](2)}532---+⨯-÷-.11.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于3,求m 2+(cd +a +b )×m +(cd )2018的值.12.对于四个数“6-,2-,1,4”及四种运算“+,-,⨯,÷”,列算式回答: (1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得: ①“□-□”的结果最小; ②“□⨯□”的结果最大;(3)在这四个数中选出三个数,组成一个算式,使运算结果等于没选的那个数.请写出这个算式.13.某商贩每日要到小龙虾基地购进500千克小龙虾,下表是该商贩记录的本周小龙虾购进价格(单位:元)浮动情况:注:正号表示价格比前一天上涨,负号表示价格比前一天下降.已知小龙虾上周末的进价为每千克23元,这周四的进价为每千克24元.(1)m =______.(2)这周购进小龙虾的最高价是每千克多少元?最低价是每千克多少元?(3)若该商贩周五将购进的小龙虾以每千克25元全部售出,且出售时小龙虾有4%的损耗,那么该商贩在本周星期五的收益情况如何?14.观察下列三组数: 第一组:1-,4-,9-,16-,25-,…;第二组:1,8,27,64,125,…;第三组:2-,16-,54-,128-,250-,….(1)分别写出三组数中的第7个数.(直接写结果)(2)取每组数的第10个数,计算这三个数的和.(列式计算)15.已知a 的相反数是5,9b =,且0a b +<,求2a b +的值.16.已知下列等式:1×12 =1- 12;1123⨯= 1231-;1134⨯ =1341-;1145⨯ =1145-. (1)按照这个规律,请你写出第5个等式;(2)按照这个规律,请你写出第n 个等式;(3)计算:111145566778+++⨯⨯⨯⨯. 17.如图,数a ,b ,c 对应的点在数轴上,且|a |=|b |.(1)a +b ________0,c -b ________0,a -c ________0;(2)|a |=2,|c |=4,求a -b +(-c )的值;(3)化简:|a -c |-|c -b |.18.己知5a =,3b =,且a b a b +=+,求a b -的值.19.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km ):第1批第2批 第3批 第4批 第5批 5km 2km ﹣4km ﹣3km 10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km 收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?20.某校想要为参加校园艺术节演出的72名同学每人购买一套服装,负责采购的老师现有A 、B 两家服装厂备选,两厂每套服装出货价都是100元,但A 厂的优惠是:每套服装打9折;B 厂给出的优惠是:前50套不优惠,超出的部分打8折;已知参加演出的男生数量比女生的2倍少18人.(1)参加演出的男生有多少人?(2)如果您是采购老师,从省钱的角度,会选择哪个厂家购买?请说明理由.(3)购买服装后,厂里指派甲、乙两车间用1天时间,完成为每件上衣刺绣出校方指定图案的任务,假设两车间的工人原计划每人每天刺绣件数相同,而最终甲车间加工总件数比计划每人每天加工件数的4倍多2套,乙车间加工总件数比计划每人每天加工件数的5倍少11套,若甲车间人数比乙车间人数的一半还少1人,那么该厂乙车间一共有几名工人?21.体育课上全班女生进行了百米测验,达标成绩为18秒,第一小组8名女生的测试成绩记录如下表:其中“+”表示成绩大于18秒,“-”表示成绩小于18秒,“0”表示刚好达标.(1)这个小组女生最快的成绩是______秒,最慢的成绩与最快的成绩相差______秒; (2)求这个小组8名女生百米测试的平均成绩.22.有一种“24”点游戏,其游戏规则是:任取一副扑克牌,我们约定A 为1,J 、Q 、K 分别为11、12、13,并规定方块、红桃牌为正,黑桃、梅花牌为负.任取4张牌,将这4张牌的牌面所表示的数进行加、减、乘、除运算(使用括号).每个数用且只用一次,使其结果等于24.如:抽出4张牌黑桃4、梅花2、方块4、红桃3,可做运算:(4)(2)4324-÷-⨯⨯=.(1)若抽出黑桃3,梅花1,方块5,红桃3,请写出1种算式,并写出计算过程,验证结果为24.(2)若抽出黑桃3、梅花K 、方块8、红桃Q ,请写出2种不同的算式,并写出计算过程,验证结果为24(3)若抽出黑桃4、梅花7、方块2、红桃3,请设计1种含“乘方”的混合运算的算式,并写出计算过程,验证结果为24.23.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.三、填空题 24.若|2||4|0a b ++-=,则a b -=______.25.将数4.5983按精确到百分位取近似值,所得的结果是__________.26.用四舍五入法把5.3476精确到百分位,取得的近似数是______.27.计算()2021202011-+-的值是______.28.在数学小组探究活动中,小月请同学想一个数,然后将这个数按以下步骤操作:小月就能说出同学最初想的那个数,如果小红想了一个数,并告诉小月操作后的结果是6,那么小红所想的数是______.29.根据如图的程序,计算当输入4x =时,输出的结果y =______.参考答案1.D【解析】【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【详解】解:原式=2+12=14,故选D .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解题关键.2.C【解析】 原式162642484=÷⨯=⨯⨯=.故选C . 3.C【解析】-113÷(-3)×(-13)=411433327-⨯⨯=-,选C. 4.B【解析】【分析】 根据2a b a b a +⋅=,可以求得所求式子的值,本题得以解决. 【详解】 解:∵2a b a b a+⋅=, ∴(2•3)•1 2232+⨯=•1 =4•14421+⨯= 32=, 故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 5.D【解析】【分析】根据数轴可得a <c <0,b >0,|a|>|b|>|c|,据此可逐项进行判断即可得到答案.【详解】解:根据数轴可得a <c <0,b >0,|a|>|b|>|c|,∴a+b <0,故选项A 错误;c-a >0,故选项B 错误;bc <0,故选项C 错误;a b ->,正确,故选:D .【点睛】本题考查的是数轴的特点,熟知“数轴上数轴右边的数总比左边的数大”是解答此题的关键. 6.D【解析】【分析】将各项的运算符号填入,先分别根据有理数的乘方、加减乘除运算求出结果,再比较大小即可得.【详解】A 、()()24123311⎡⎤-+⨯--⎣⎦, ()1163911=-+⨯-, 61611=--, 61611=-; B 、()()24123311⎡⎤--⨯--⎣⎦, ()1163911=--⨯-,61611=-+, 51511=-; C 、()()24123311⎡⎤-⨯⨯--⎣⎦, ()1163911=-⨯⨯-, ()116611=-⨯⨯-, 9611=; D 、()()24123311⎡⎤-÷⨯--⎣⎦, ()1163911=-÷⨯-, ()16116=-⨯⨯-,1056=; 因为659616151056111111-<-<<, 所以应填入的运算符号为÷, 故选:D .【点睛】本题考查了含乘方的有理数混合运算、有理数的大小比较法则,熟练掌握有理数的运算法则是解题关键.7.B【解析】【分析】按照转换机的要求列式:()()()3331-+-÷--⎡⎤⎣⎦,再按照有理数的混合运算的运算法则与运算顺序进行计算即可得到答案.【详解】解:由题意得:()()()()()333163121 1.-+-÷--=-÷--=-=⎡⎤⎣⎦故选B .【点睛】本题考查的是列式计算,掌握有理数的混合运算的法则与顺序是解题的关键.8.(1)|3|,3π---;(2)()0,6--;(3)1.525525552,3π-. 【解析】【分析】(1)由实数可分为:正实数,0,负实数,从而可得答案; (2)由非负整数分为正整数与0,从而可得答案; (3)由无理数的定义:无限不循环小数,从而可得答案.【详解】解:(1)负数集合:|3|,3π⎧⎫---⎨⎬⎩⎭; (2)非负整数集合:(){}0,6--; (3)无理数集合: 1.525525552,3π⎧⎫-⎨⎬⎩⎭ 故答案为:|3|,3π---;()0,6--;1.525525552,3π-.【点睛】 本题考查的是实数的分类,无理数的定义,掌握按不同的分类依据将实数分类是解题的关键. 9.(1)−113(2)−32 【解析】(1)()212582433-+-+÷-⨯ =−4+3+(−8)×13=−1−83=−113. (2)()20171313224512864⎡⎤⎛⎫-+-⨯÷⨯- ⎪⎢⎥⎝⎭⎣⎦()131312242424128645⎡⎤=-⨯-⨯+⨯⨯⨯-⎢⎥⎣⎦()519418125⎡⎤=--+⨯⨯-⎢⎥⎣⎦ ()515125⎡⎤=+⨯⨯-⎢⎥⎣⎦ ()51151255⎡⎤=⨯+⨯⨯-⎢⎥⎣⎦ ()1112⎡⎤=+⨯-⎢⎥⎣⎦=32×(−1) =−32. 10.(1)1;(2)518. 【解析】【分析】(1)结合负整数指数幂、零指数幂的概念进行求解即可(2)先算乘方,再算乘除,最后算加减,有括号,要先做括号内的运算.【详解】(1)2304124()(2)3-⨯+--- =3141164⨯+- 24116=+-16116=+-1=.(2)422311(1){[()0.4(1)](2)}532---+⨯-÷- 3121{[()]4}59523=--+⨯-÷ 31311[()]5954=---⨯3221=-+⨯1()54545411=1()-+9090651=-90131=-185=.18【点睛】此题考查有理数的混合运算,解题关键在于掌握负整数指数幂,零指数幂的运算法则11.7或13.【解析】【分析】首先根据a、b互为相反数,可得a+b=0;再根据c、d互为倒数,可得cd=1;再根据m是绝对值等于3的负数,可得m=-3;然后应用代入法,求出m2+(cd+a+b)×m+(cd)2018的值是多少即可.【详解】∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,当m=–3时,m2+(cd+a+b)×m+(cd)2018=(–3)2+(1+0)×(–3)+12018=9+1×(–3)+1=9+(–3)+1=7;当m=3时,∴m2+(cd+a+b)×m+(cd)2018=13.【点睛】此题考查代数式求值,掌握运算法则是解题关键12.(1)3-;(2)①6-,4;②6-,2-;(3)[](2)(6)14---÷=(答案不唯一)【解析】【分析】(1)求这四个数的和,需要列式并计算即可,(2)两个数 “□−−□”的结果最小,使减数选最大数,被减数取最小数;两个数 “□×□”的结果最大,要求两数为同号,在同号中取绝对值较大的两数即可,(3)四个数中选出三个数剩一,组成一个等式,三数运算的结果为剩下的数,选取-6,-2,1结果为4,由于1比较特殊,用乘除法不影响运算,只要-6,与-2用减法即可得到4即可.【详解】(1)-6+(-2)+1+4=-8+5=-3,(2)-6<-2<1<4, ①“(-6)−4的结果最小, ②“(-6)×(-2)”的结果最大, (3)选取-6,-2,1计算结果为4,算式为:[(-2)-(-6)]÷1,等式为:[(-2)-(-6)]÷1=4. 【点睛】本题考查有理数的限定运算,关键掌握大小比较,求和运算,差最小,积最大,三数运算结果为第四个数等知识.13.(1)1.5;(2)25,21;(3)1500.【解析】【分析】通过题意和图中的表格,可以计算出每天小龙虾的进价,即可求出m 和本周内购进小龙虾的最高价和最低价,也可算出周五购进的小龙虾的价格,根据题意列出关系式即可算出最终收益情况.【详解】(1)由题意可知:星期一的小龙虾每千克进价为:23122-=(元); 星期二的小龙虾每千克进价为:22 2.524.5+=(元); 星期三的小龙虾每千克进价为:24.5222.5-=(元);星期四的小龙虾每千克进价为:24元;星期五的小龙虾每千克进价为:24321-=(元); 星期六的小龙虾每千克进价为:21223+=(元);星期日的小龙虾每千克进价为:23225+=(元),22.524m +=解得: 1.5m =.故答案为:1.5.(2)由(1)可知:212222.5232424.525<<<<<<,这周购进小龙虾的最高价是每千克25元;最低价是每千克21元;(3)由(1)可知:星期五的小龙虾每千克进价为21元,()50014%255002112000105001500⨯-⨯-⨯=-=(元)答:该商贩在本周星期五的收益情况是赚钱1500元.【点睛】本题考查了正数和负数,解题的关键是根据题意列出关系式.14.(1)49-,343,686-;(2)1100.-【解析】【分析】(1)第一组的数是正整数的平方的相反数,第二组的数是正整数的立方,第三组的数是第二组数的2倍的相反数,从而可得每组的第7个数;(2)由(1)中的规律分别写出第10个数,再把它们相加即可得到答案.【详解】解:(1)第一组的数可依次记为:222221,2,3,4,5,-----所以第7个数为:2749,-=-第二组的数可依次记为:333331,2,34,5,, 所以第7个数为:37343,=第三组的数可依次记为:3333321,22,23,24,25,-⨯-⨯-⨯-⨯-⨯所以第7个数为:327686,-⨯=-(2)由(1)得:三组数的第10个数分别为:23310,10,210,--⨯ 所以:233101021010010001100.-+-⨯=--=-【点睛】本题考查的是探究数字的规律,列代数式,有理数的加减运算,有理数的乘方运算,掌握由具体到一般的探究规律的方法是解题的关键.15.-19【解析】【分析】根据相反数的定义、绝对值的意义进行分析计算.【详解】∵ a 的相反数是5,9b =,∴a =-5,b =±9, ∵0a b +<,∴ a =-5,b =-9,当a =-5,b =-9时,2a b +=-19.【点睛】本题考查相反数的定义、绝对值的意义,熟练掌握基础知识是关键.16.(1)11115656⨯=-;(2)111111n n n n ⨯=-++;(3)18【解析】【分析】(1)根据已知等式的规律即可写出结论;(2)根据已知等式的规律即可写出结论;(3)根据(2)的公式变形,然后求和即可.解:(1)第5个等式为:1111 5656⨯=-;(2)第n个等式为:111111 n n n n⨯=-++;(3)原式=11111111 45566778 -+-+-+-=1148 -18=【点睛】此题考查的是有理数的运算,找出运算规律是解决此题的关键.17.(1)=;<;>;(2)8;(3)a-b【解析】【分析】(1)根据数轴可得a>0,c<b<0,从而得出c-b<0,a-c>0,再根据绝对值的性质可得a与b互为相反数,从而求出a+b=0;(2)根据绝对值的定义和相反数的定义即可求出a、b、c,从而求出结论;(3)根据绝对值的性质化简即可.【详解】解:(1)由数轴可知:a>0,c<b<0∴c-b<0,a-c>0∵|a|=|b|∴a与b互为相反数∴a+b=0故答案为:=;<;>;(2)∵|a|=2,|c|=4,a+b=0,∴a=2,c=-4,b=-2,则a-b+(-c)=a-b-c=2+2+4=8;(3)∵a-c>0,c-b<0,∴|a-c|-|c-b|=a-c-[-(c-b)]=a-c-c+b=a-b.此题考查的是利用数轴比较大小、相反数和化简绝对值,掌握利用数轴比较大小、相反数的定义和绝对值的性质是解决此题的关键.18.2或8.【解析】【分析】 由5a =, 3b =可得,5a =±,3b =±,再由a b a b +=+可得,5a =,3b =或5a =,3b =-,代入计算即可.【详解】 ∵5a =,3b =, ∴5a =±,3b =±, ∵a b a b +=+,∴0a b +>,∴5a =,3b =或5a =,3b =-,当5a =,3b =时,2a b -=,当5=,3b =-时,8a b -=.【点睛】本题考查了绝对值,有理数的加减法,此题主要用了分类讨论的方法,各种情况都有考虑,不能遗漏.19.(1)驾驶员在公司的南边10千米处;(2)在这个过程中共耗油4.8升;(3)驾驶员共收到车费68元【解析】【分析】(1)根据有理数加法即可求出答案;(2)根据题意列出算式即可求出答案;(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(﹣4)+(﹣3)+10=10(km ),答:接送完第五批客人后,该驾驶员在公司的南边10千米处;(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升),答:在这个过程中共耗油4.8升;(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元), 答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查有理数的加法运算的实际应用,解题的关键是掌握有理数的加法法则,并且能够根据题意列出算式.20.(1)参加演出的男生有42人;(2)选择A 厂家省钱,见解析;(3)乙车间一共有6名工人【解析】【分析】(1)先求出女生人数,进而可求男生人数;(2)分别求出A 、B 两家服装厂需付的钱数,比较即可;(3)设原计划每人每天刺绣件数为a 件,求出a 的值,再求出甲乙两车间的总人数,进而根据甲车间人数比乙车间人数的一半还少1人可求出乙车间的人数.【详解】解:(1)()()27318120÷+=+(人),723042-=(人),答:参加演出的男生有42人.(2) :7210090%6480A ⨯⨯=(元), () :725010080%501006760B -⨯⨯+⨯=(元),64806760<,答:选择A 厂家省钱.(3)设原计划每人每天刺绣件数为a 件,4251172a a ++-=,解得9a =,甲、乙车间共有:8972=÷(人),乙车间有:()181162⎛⎫+÷+= ⎪⎝⎭(人), 答:乙车间一共有6名工人.【点睛】本题考查了有理数混合运算的应用,根据题意正确列出算式是解答本题的关键.21.(1)17.4,1.4;(2)18秒.【解析】【分析】(1)利用成绩记录表中的最小数加上18即可得最快的成绩;利用成绩记录表中最大数减去最小数即可得出答案;(2)先利用平均数公式求出成绩记录表中数据的平均数,再加上18即可得.【详解】(1)这个小组女生最快的成绩是0.61817.4-+=(秒),最慢的成绩与最快的成绩相差0.8(0.6) 1.4--=(秒),故答案为:17.4,1.4;(2)平均成绩为0.60.800.20.30.10.70.518180188-++--++-+=+=(秒), 答:这个小组8名女生百米测试的平均成绩为18秒.【点睛】本题考查了正数和负数在实际生活中的应用、有理数的加减法与除法运算的应用,理解题意,正确列出运算式子是解题关键.22.(1)()()()315324-⨯-⨯+=;(2)()()38131224-⨯⨯-+=;(){}12313824⎡⎤⨯----=⎣⎦;(3)()()324724⎡⎤⨯---=⎣⎦ 【解析】【分析】(1)根据所给的数是-3、-1、5、3,应用有理数混合运算的运算方法,凑成24即可; (2)根据所给的数是-3、-13、8、12,应用有理数混合运算的运算方法,凑成24即可; (3)根据所给的数是-4、-7、2、3,应用有理数混合运算的运算方法,凑成24即可.【详解】(1)()()()31533824-⨯-⨯+=⨯=;(2)()()()38131224124-⨯⨯-+=-⨯-=;(){}()1231381210812224⎡⎤⨯----=⨯-=⨯=⎣⎦;(3)()()32478324⎡⎤⨯---=⨯=⎣⎦. 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040 【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可; (1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111 (12233420192020)++++⨯⨯⨯⨯ =111111 (22320192020)-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++ =111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭=10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.6-.【解析】【分析】由|2||4|0a b ++-=可得:2040a b +=⎧⎨-=⎩,再求解,a b 的值,从而可得答案. 【详解】解:|2||4|0a b ++-=,2040a b +=⎧∴⎨-=⎩24a b =-⎧∴⎨=⎩ 24 6.a b ∴-=--=-故答案为: 6.-【点睛】本题考查的是两个非负数之和为0的性质,有理数的减法运算,二元一次方程组的解法,掌握非负数的性质是解题的关键.25.4.60【解析】4.5983精确到百分位取近似值,千分位上是8,应该向前一位进1,所以应为4.60, 故答案为4.60.26.5.35【解析】【分析】用四舍五入法可以将5.3476精确到百分位,本题得以解决.解:5.3476≈5.35(精确到百分位),故答案为:5.35.【点睛】本题考查近似数和有效数字,解答本题的关键是明确题意,利用四舍五入法解答. 27.-2【解析】【分析】根据有理数的乘方,可以解答本题.【详解】解:202020211(1)-+-1(1)=-+-2=-,故答案为:-2.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数乘方放入符号规律. 28.4【解析】【分析】根据流程图从后面逆推即可得出结果.【详解】解:()622844-⨯+÷=⎡⎤⎣⎦,故答案为:4【点睛】本题主要考查的是有理数的混合运算,正确的计算出结果是解题的关键.29.1【解析】【分析】根据运算进行的限制条件,选择相应运算程序进行即可.解:∵x=4>1∴y=-4+5=1故答案为:1【点睛】本题考查了有理数的计算,解答关键是根据x取值范围的限定选择相应的计算程序.。
人教版2020七年级数学上册第一章有理数自主学习培优提升训练题(附答案详解)
人教版2020七年级数学上册第一章有理数自主学习培优提升训练题(附答案详解) 1.如图,数轴上的A ,B 两点所表示的数分别是a ,b ,如果a b >,且0ab >,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点B 的右边C .点A 与点B 之间靠近点AD .点A 与点B 之间靠近点B2.2018年以来,烟台降水充足,农业生产形势总体较好.据农情调度,全市小麦总产785000吨,较上年增长102000吨.其中数据785000用科学记数法可表示为( )A .578510⨯B .67.8510⨯C .57.8510⨯D .60.78510⨯ 3.一只小鸟重约150克,100万只小鸟的重量约等于( )A .一头大象的重量B .一头鲨鱼C .一头蓝鲸的重量D .世界上不存在这样的动物4.一个数加-0.6和为-0.36,那么这个数是( )A .-0.24B .-0.96C .0.24D .0.965.已知a 、b 、c 是△ABC 三边的长,则+|a+b ﹣c|的值为( ) A .2a B .2b C .2c D .2(a 一c )6.下列说法中,正确的是( )A .有理数分为正数、0和负数B .有理数分为正整数、0和负数C .有理数分为分数、小数和整数D .有理数分为正整数、0和负整数7.苏州红十字会统计,2004年苏州是无偿鲜血者总量为12.4万人次,已连续6年保持全省第一.12.4万这个数用科学记数法来表示是A .1.24×104B .1.24×105C .1.24×106D .12.4×1048.下列各数中,互为相反数的有( ) A .与(﹣2)3 B .与﹣3 C .﹣1与(﹣1)2019 D .与(﹣2)2 9.若||||m n =,则m 与n 的关系是( ).A .都是零B .互为相反数C .相等D .相等或互为相反数 10.2的相反数的绝对值是( )A .﹣12B .±12 C .0 D .211.计算714+388⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的结果是:( ) A .618- B .18- C .778- D .8-12.数32019・72020・132021的个位数是 ( )A .1B .3C .7D .913.如果|a+3|=5,则a=_______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年度初中数学有理数的混合运算培优提升训练题2(附答案详解)1.为了求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020,因此2S -S =22020-1,所以1+2+22+23+…+22019=22020-1.请仿照以上推理计算:1+4+42+43+…+42019的值是( )A .42100-1B .42020-1C .2019413D .20204132.已知a ,b ,c 为非零的实数,则a ab ac bc a ab ac bc +++的可能值的个数为( ) A .4 B .5 C .6 D .73.若|abc |=-abc ,且abc ≠0,则||||b a c a b c++=( ) A .1或-3 B .-1或-3C .±1或±3D .无法判断 4.定义一种新运算:新定义运算3()a b a a b *=⨯-,则34*的结果是______. 5.已知a b c d ,,,表示4个不同的正整数,满足23490a b c d +++=,其中1>d ,则a b c d +++的最大值是__________.6.计算: 2342020133333+++++⋯+=____.7.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则1(2)?()3a b a b ++- 的值为_____. 8.对于正数x 规定1()1f x x =+,例如:11(3)=134f =+,115()=15615f =+,,则f (2019)+f (2018)+……+f (2)+f (1)+1111()+()++()()2320182019f f f f +=___________.9.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.如图,将一个边长为1的正方形纸片依次分割为若干部分,部分①的面积是12,部分②的面积是14,部分③的面积是18,…,以此类推,第n 部分的面积是12n (n 是大于1的整数).请你用“数形结合”的思想计算12+14+18+…+12n =______.为6,第2次得到的结果为3,…,请你探索第2019次得到的结果为_______.11.正整数n 小于100,并且满足等式[][][]236n n n n ++=,其中[]x 表示不超过x 的最大整数,例如:[1.7]1=,这样的正整数n 有 个.12.计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587); (2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 13.阅读理解题,阅读材料:设正整数a 可以写成11010001000n n n n a a a a --=+++,(其中01000i a ≤<,0,1,,i n =) 若()()0213a a a a ++-++能被13整除,则a 也能被13整除,反之,若a 能被13整除,则()()0213a a a a ++-++也能被13整除。
比如:①30553100055=⨯+,因为55352134-==⨯,能被13整除,所以3055能被13整除②2205259621000521000596=⨯+⨯+因为()5962525461342+-==⨯,能被13整除,所以2052596能被13整除 ③3227718554892100077110008551000489=⨯+⨯+⨯+因为()()48977185524031331+-+==⨯,能被13整除,所以2771855489能被13整除(1)按照上面提供的方法,试判断4060698967能否被13整除,并写出过程; (2)若7位正整数307552m 能被13整除,试求m 的值.14.﹣22+(﹣3)2﹣(﹣1)2×(23﹣0.5)÷112﹣(﹣1)4数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.16.(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = ;②如果欲求1234n +++++的值,可令1234...S n =+++++ ……………①将①式右边顺序倒置,得...4321S n =+++++ ……………②由②加上①式,得2S = ;∴ S=_________________;由结论求123455___________+++++=;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是 ;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a = ,n a = ;②为了求23201813333++++⋯⋯+的值,可令23201813333M =++++⋯⋯+,则23201933333M =+++⋯⋯+,因此2019331M M -=-,所以2019312M -=, 即201923201831133332-++++⋯⋯+=. 仿照以上推理,计算235115555++++⋯⋯+17.观察下列等式111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯, (1)猜想并写出:()11n n =+ (2)直接写出下列各式的计算结果:①1111 (12233420162017)++++=⨯⨯⨯⨯ ②()1111...1223341n n ++++=⨯⨯⨯+ (3)若()()1111...1335572121n n ++++⨯⨯⨯-+的值为1735,求n 的值 18.在通常的日历牌上,可以看到一些数所满足的某些规律,图①是某年某月的一份日历,图②将40个数排列成了5行8列.(1)如图①,用一个3×2的长方形框出的6个数中,将长方形四角位置上的4个数交叉相乘,再相减,结果为12×17-10×19=______; (2)如图②,用一个4×3的长方形任意框出的12个数中,将长方形四角位置上的4个数交叉相乘,再相减,所得结果是多少?并说明理由。
19.计算(1)12﹣(﹣18)+(﹣7).(2)314+(﹣235)+534+(﹣825).(3)(﹣65)×(﹣23)+(﹣65)×(173). (4)(﹣34)×(﹣112)÷(﹣214). (5)42×(﹣23)+(﹣34)÷(﹣0.25). (6)(﹣1)10×3+(﹣2)3÷4﹣145×0. 20.阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯, 由以上三个等式相加,可得111122334(123012)(234123)(345234)333⨯+⨯+⨯=⨯⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯⨯11(123234123345234)3452033=⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯⨯=⨯⨯⨯=. 读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯++⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯++⨯+=__________________________(直接写出答案);(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯=_____________________(直接写出答案).21.(1)类比计算①6×12=1×2×3; ②6×22=2×3×5﹣1×2×3; ③6×32=3×4×7﹣2×3×5; ④6×42=4×5×9﹣3×4×7; ⑤ ;(2)规律提炼写出第n 个式子(用含字母n 的式子表示).(3)问题解决求12+22+33+42+…+592+602的值.22.观察下列两个等式:2+2=2×2,3+32=3×32,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,32)都是“有趣数对”.(1)数对(0,0),(5,53)中是“有趣数对”的是;(2)若(a,34)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.23.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作aⓝ,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2③,(﹣12)③.(深入思考)2④2 111111 2222222⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧24.运算律是解决许多数学问题的基础,在运算中有重要的作用,充分运用运算律能使计算简便高效.例如:(-12557)÷(-5)解:(-12557)÷(-5)=12557×15=(125+57)×15=125×15+57×15=25+17=2517(1)计算:6÷(-32+23),A同学的计算过程如下:原式=6×(-23)+6×32=-6+9=3. 请你判断A 同学的计算过程是否正确,若不正确,请你写出正确的计算过程.(2)请你参考例题,用运算律简便计算(请写出具体的解题过程):999×11845+333×(-35)-999×1835. 25.计算:(1)()()2018211113223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦(2)()()()()322019234221-⨯-+-÷---参考答案1.D【解析】【分析】设S=1+4+42+43+…+42019,表示出4S,然后求解即可.【详解】解:设S=1+4+42+43+ (42019)则4S=4+42+43+ (42020)因此4S-S=42020-1,所以S=2020413.故选:D.【点睛】本题考查了乘方,利用错位相减法,消掉相关值,是解题的关键.2.A【解析】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,ac<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述:a ab ac bc a ab ac bc+++的可能值的个数为4. 故选A .点睛:本题考查了有理数的除法,绝对值的性质,难点在于根据三个数的正数的个数分情况讨论.3.A【解析】【分析】利用绝对值的代数意义判断得到a ,b ,c 中负数有一个或三个,即可得到原式的值.【详解】∵|abc|=-abc ,且abc≠0,∴abc 中负数有一个或三个,则原式=1或-3,故选A .【点睛】本题考查了绝对值、有理数的乘法以及有理数的除法,熟练掌握运算法则是解本题的关键. 4.-3【解析】【分析】原式利用题中新定义计算方式进行运算即可.【详解】解:33343(34)3(1)3*=⨯-=⨯-=-,故答案为-3.【点睛】本题考查基本的知识迁移能力,运用新定义,求解代数式;解答的关键在于灵活运用所学知识.5.70【解析】【分析】要使a+b+c+d最大,则d应尽可能小,根据已知,得到d=2,进一步确定c尽可能小,则c=1,由四个数不相同,则b取3,从而计算出a,即可得到结论.【详解】∵d>1,d为正整数,要使a+b+c+d最大,则d应尽可能小,∴d=2,同样的道理,c应尽可能小.∵c为正整数,∴c=1,∴a+b2+13+24=90,∴a+b2=73.同理,b尽可能小,a尽可能大.∵a、b、c、d表示4个不同的正整数,∴b=3,∴a=64,∴a+b+c+d=64+3+1+2=70.故a+b+c+d 的最大值是70.故答案为:70.【点睛】本题考查了有理数的混合运算.解题的关键是根据已知依次确定d、c、b的取值.6.2021 312-【解析】【分析】设原式=S,两边乘以3变形后,相减求出S即可.【详解】设S=1+3+32+33+…+3n,两边乘以3得:3S=3+32+33+…+3n+1,两式相减得:3S-S=3n+1-1,即S=1312n+-,则原式=2021312-.【点睛】此题考查了有理数的混合运算,对于有规律的式子的运算,通过观察,可以寻找简便方法进行运算..7.﹣23(9a+1)2或0. 【解析】【分析】由ab <0可得a 、b 异号,由a +b >0可得,正数的绝对值较大,再分两类讨论:①a >0,b <0;②a <0,b >0,在这两种情况下对7a +2b +1=﹣|b ﹣a |进行化简,最后计算出所求式子的值即可.【详解】∵ab <0,a +b >0,∴a 、b 异号,且正数绝对值较大,①当a >0,b <0时,b ﹣a <0,|b ﹣a |=a ﹣b ,∴7a +2b +1=﹣(a ﹣b )=b ﹣a ,∴b =﹣1﹣8a ,∴(2a +b +13)·(a ﹣b )=(2a ﹣1﹣8a +13)·[a ﹣(﹣1﹣8a )]=(﹣6a ﹣23)·(9a +1)=﹣23(9a +1)2; ②当a <0,b >0时,b ﹣a >0,|b ﹣a |=b ﹣a ,∴7a +2b +1=﹣(b ﹣a )=a ﹣b ,∴2a +b =﹣13, ∴(2a +b +13)·(a ﹣b )=0. 故答案为﹣23(9a +1)2或0. 【点睛】本题关键在于分类讨论,结合有理数的运算法则去绝对值对式子进行化简.8.120182【解析】【分析】根据所给()11f x x =+计算每一个值,再把所有的数值相加即可. 【详解】解:f(2019)+f(2018)+…+f(2)+f(1)+1111+++2320182019f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1111232018201920202019323420192020++⋯+++⋯+ =(1201920202020+)+(1201820192019+)+…+12=2018×1+12=120182. 故答案为:120182. 【点睛】本题考查了有理数的混合运算,解题的关键是注意利用()11f x x=+计算,并能找出f(n)和f(1n)之间的关系. 9.1﹣n 12 【解析】【分析】 观察图形可知:阴影的部分的面积为12n ,那么所求的式子其实就是正方形的面积-阴影部分的面积.【详解】观察图形,可得阴影部分的面积=11112482n ++++=112n -. 故答案为:112n-. 【点睛】本题考查了有理数的混合运算.看懂图形的构成是解答本题的关键.10.8.【解析】【分析】根据程序分别计算前几次输出的结果,从中找到规律,进一步探索第2019次得到的结果.【详解】解:先根据图示的程序计算,6→3→8→4→2→1→6→3→8→4→2→1→…,由上可知每6次一循环.∵2019÷6=336…3,∴第2019次得到的结果为8.故答案为:8.【点睛】本题考查了代数式的求值,解决此类题的关键是通过计算发现循环的规律,再进一步探索,有一定难度,注意规律的总结.11.16【解析】【分析】 由[][][]236n n n n ++=,以及若x 不是整数,则[]x x <知,[],[],[]223366n n n n n n ===,可得n 是6的倍数,因此小于100的这样的正整数有100[]166=个. 【详解】 解:∵[][][]236n n n n ++=, 若x 不是整数,则[]x x <,故 [][][]236n n n n ++<, ∴[],[],[]223366nn n n n n ===, ∴n 是6的倍数,∴小于100的这样的正整数有100[]166=个, 故答案为:16【点睛】本题考查取整计算,难度较大,解题关键是理解题意.12.(1)原式=514;(2)原式=3. 【解析】【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加; (2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514. (2)原式=-1×{[-143÷4+0.5]÷(-19)-9} =-1×[(-23)÷(-19)-9] =-1×(6-9)=-1×(-3)=3.13.(1)能被13整除,过程见解析;(2)m=7【解析】【分析】(1)由题意按照题干的方法,将4060698967代入判断4060698967能否被13整除,并写出过程即可;(2)分析正整数307552m 能被13整除,可知()52375m +-也能被13整除以此进行分析运算即可.【详解】解:(1)由题意可得:324060698967410006010006981000967=⨯+⨯+⨯+又967606984()()3251325+-+==⨯能被13整除4060698967∴能被13整除(2)307552m 能被13整除且23075523100075100052m m =⨯+⨯+()52375m ∴+-也能被13整除即:5210375m ⨯++-448m =+能被13整除,其中09m ≤≤,且是整数7m ∴=【点睛】本题为材料阅读题型,考查有理数的运算相关,理解材料并根据材料方法进行代入分析是解题的关键.14.2【解析】【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】﹣22+(﹣3)2﹣(﹣1)2×(23﹣0.5)÷112﹣(﹣1)4 =﹣4+9﹣1×16÷112﹣1 =﹣4+9﹣2﹣1=2.【点睛】此题考查有理数的运算,注意运算顺序的正确性.15.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】 (1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可; (3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a =11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.16.(1)①1,18,n ;②()1n n +,()12n n +,1540;(2)①2,182,2n ;②52235151155554-++++⋯⋯+=. 【解析】【分析】(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差都为1,从而可得常数为1;根据此规律,如果n a (n 为正整数)=n ,据此即可求得答案;②观察可得2S =n(n+1),从而求得 S ;根据上面得到的式子进行计算即可求得123455+++++的值;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数2,根据此规律,可得n a (n 为正整数)=2n ,据此即可得答案;②根据推理进行计算即可求得235115555++++⋯⋯+的值.【详解】(1)①观察一列数1,2,3,4,5,…,发现从第二项开始,每一项与前一项之差是一个常数,这个常数是1;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a =18,n a =n ,故答案为:1,18,n ;②令S 1234...n =+++++ ,①将①式右边顺序倒置,得S n ...4321=+++++,②②+①,得2S =()()()1n)111n n n n 个(+++++++=n(1+n),∴ S=()12n n +;123455+++++=()555512⨯+=1540, 故答案为:()n 1n +,()n 1n 2+,1540;(2)①观察一列数2,4,8,16,32,…,发现从第二项开始,每一项与前一项之比是一个常数,这个常数是2;根据此规律,如果n a (n 为正整数)表示这个数列的第n 项,那么18a =218,n a =2n ,故答案为:2,182,n 2;②令2351M 15555=++++⋯⋯+,则23525M 5555=+++⋯⋯+,525M M 51∴-=-,524M 51∴=-,5251M 4-∴= , 即52235151155554-++++⋯⋯+=. 【点睛】本题考查了阅读理解题,根据题目的内容以及问题的求解方法进行求解,正确分析并仿照题目中的解题方法进行求解是解题的关键.17.(1)111n n -+;(2)①20162017;②1n n +;(3)17n =. 【解析】【分析】(1)观察已知等式,得出拆项规律,写出答案即可;(2)①原式利用拆项法变形,计算即可得到结果;②原式利用拆项法变形,计算即可得到结果;(3)根据(2)的结论,先找出规律,然后把代数式的值代入计算,即可得到结果.【详解】解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴()11111n n n n =-++; 故答案为:111n n -+; (2)①1111 (12233420162017)++++⨯⨯⨯⨯ =11111111 (2233420162017)-+-+-++- =112017- =20162017; ②()1111...1223341n n ++++⨯⨯⨯+ =11111111...223341n n -+-+-++-+ =111n -+ =1n n +; 故答案为:①20162017;②1n n +. (3)()()1111...1335572121n n ++++⨯⨯⨯-+ =11111111111(1)()()...()2323525722121n n -+-+---+++ =11111111(1...)2335572121n n -+-+-++-+- =11(1)221n -+ =21n n +; ∴17=2135n n +, 解得:17n =;【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找出题目中的规律是解本题的关键. 18.(1)14;(2)48.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(2)设长方形中最小的数为n ,则另外三个数分别为3n +,16n +,19n +,列式计算即可.【详解】(1)12×17-10×19=14; (2)设长方形中最小的数为n ,另外三个数为3n +,16n +,19n +,所以()()()223161919481948n n n n n n n n ++-+=++--=;【点睛】本题考查了一元一次方程的应用、列代数式、整式的混合运算、有理数的混合运算等知识点,此题属于规律性题目,难度适中,解题的关键是找到规律.19.(1)23;(2)﹣2;(3)﹣6;(4)12-;(5)﹣25;(6)1. 【解析】【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)12﹣(﹣18)+(﹣7)=12+18+(﹣7)=23;(2)13323(2)5(8)4545+-++- 1332(35)(2)(8)4455⎡⎤=++-+-⎢⎥⎣⎦=9+(﹣11)=﹣2;(3)62617()()()()5353-⨯-+-⨯6217()()533⎡⎤=-⨯-+⎢⎥⎣⎦ 6()55=-⨯ =﹣6;(4)311()(1)(2)424-⨯-÷- 334429=-⨯⨯ 12=-; (5)2342()()(0.25)34⨯-+-÷- 312844=-+÷ 32844=-+⨯ =﹣28+3=﹣25;(6)(﹣1)10×3+(﹣2)3÷4﹣145×0 =1×3+(﹣8)÷4﹣0 =3+(﹣2)﹣0=1.【点睛】此题考察有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键. 20.(1)440; (2)1(1)(2)3n n n ++; (3)1260.【解析】【分析】 通过观察,根据给定等式的变化找出变化规律1n(n+1)=[n(n+1)(2)(1)() 13n n n n +--+ (1)根据变化规律将算式展开后即可得出原式11011123=⨯⨯⨯,此题得解; (2)根据变化规律将算式展开后即可得出原式1(1)(2)3n n n =++,此题得解; (3)通过类比找出变化规律1(1)(2)[(1)(2)(3)(1)(1)(2)4n n n n n n n n n n n ++=+++--++,依此规律将算式展开后即可得出结论.【详解】 解:观察,发现规律:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,…, ∴1n(n+1)=[n(n+1)(2)(1)() 13n n n n +--+,(1)原式111(123012)(234123)(345234)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯⨯1(10111291011)3+⋯+⨯⨯-⨯⨯ 11011123=⨯⨯⨯ 440=;(2)原式111(123012)(234123)(345234)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯⨯1((1)(2)(1)(1))3n n n n n n +⋯+++--+ 1(1)(2)3n n n =++; 故答案为:1(1)(2)3n n n ++; (3)观察,发现规律:11123(12340123),234(23451234),44⨯⨯=⨯⨯⨯-⨯⨯⨯⨯⨯=⨯⨯⨯-⨯⨯⨯…, ∴1(1)(2)[(1)(2)(3)(1)(1)(2)4n n n n n n n n n n n ++=+++--++, ∴原式=111(12340123)(23451234)(34562345)444=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+1(789106789)4+⨯⨯⨯-⨯⨯⨯ 1(78910)12604=⨯⨯⨯=故答案为:1260.【点睛】本题考查了规律型中数字的变化类以及有理数的混合运算,根据等式的变化找出变化规律是解题的关键.21.(1)5×6×11﹣4×5×9.(2)6•n2=n(n+1)(2n+1)﹣(n﹣1)•n•(2n﹣1).(3)73810.【解析】【分析】(1)⑤根据题目中前几个式子的规律即可得结论6×52=5×6×11﹣4×5×9;(2)根据前边几个式子的规律即可写出第n个式子6×n2=n(n+1)(2n+1)﹣(n﹣1)•n•(2n﹣1).;(3)先变形为16(6×12+6×22+6×32+6×42+…+6×592+6×602),再利用(2)中求得的规律式展开,即可求解.【详解】解:(1)∵①6×12=1×2×3;②6×22=2×3×5﹣1×2×3;③6×32=3×4×7﹣2×3×5;④6×42=4×5×9﹣3×4×7;∴⑤6×52=5×6×11﹣4×5×9故答案为6×52=5×6×11﹣4×5×9.(2)根据以上算式,得第n个式子为6•n2=n(n+1)(2n+1)﹣(n﹣1)•n•(2n﹣1).(3)12+22+33+42+…+592+602=16(6×12+6×22+6×32+6×42+…+6×592+6×602)=16(1×2×3+2×3×5﹣1×2×3+3×4×7﹣2×3×5+4×5×9﹣3×4×7+…+59×60×119﹣58×59×117+60×61×121﹣59×60×119)=16×60×61×121=73810.答:12+22+33+42+…+592+602的值为73810.【点睛】本题考查了数字的变化类、有理数的混合运算、列代数式,解决本题的关键是根据数字的变化寻找规律.22.(1)(0,0);(2)﹣3;(3)(4,43);(4)13.【解析】【分析】(1)根据定义代数判断即可得出答案;(2)根据定义即可得出答案;(3)根据定义即可得出答案;(4)根据定义先求出a的值,再代入3﹣2a2﹣2a中计算即可得出答案. 【详解】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+53=203,5×53=253,∴(5,53)不是“有趣数对”,故答案为:(0,0);(2)∵(a,34)是“有趣数对”,∴34a=a+34,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,43);故答案为:(4,43);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=43,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×43=﹣83,∴3﹣2a 2﹣2a =3﹣83=13. 【点睛】 本题考查的是新定义,认真审题理清题意是解决本题的关键.23.(1)12,-2;(2)(15)4,(﹣2)8;(3)n-21a ⎛⎫ ⎪⎝⎭;(4)7-28. 【解析】【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果; (3)结果前两个数相除为1,第三个数及后面的数变为1a ,则a ⓝ=a ×(1a )n-1; (4)将第二问的规律代入计算,注意运算顺序.【详解】 解:(1)2③=2÷2÷2=12,(﹣12)③=﹣12÷(﹣12)÷(﹣12)=﹣2; (2)5⑥=5×15×15×15×15×15=(15)4,同理得;(﹣12)⑩=(﹣2)8; (3)a ⓝ=a×1a ×1a ×…×n-211a a ⎛⎫= ⎪⎝⎭; (4)(-3)8×(-3)⑨-(﹣12)9×(﹣12)⑧ =(-3)8×(1-3 )7 -(﹣12)9×(-2)6 =-3-(-12)3 =-3+18=7-28. 【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)A 同学的计算是错误的,正确过程见解析;(2)99900.【解析】【分析】(1)利用有理数的混合运算法则计算即可;(2)模仿题目中的计算方式,利用有理数混合运算法则以及乘法对加法的结合律即便运算即可.【详解】(1)解:A 同学的计算是错误的6÷(-32+23) = 6÷(-65) =-365 (2)解:999×11845+333×(-35)-999×1835=999×(11845-15-1835) =99900【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算法则以及简便算法是解题关键. 25.(1)556-;(2)35 【解析】【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值; (2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)()()2018211113223⎡⎤⎛⎫-+-⨯+-+ ⎪⎢⎥⎝⎭⎣⎦ =11[1](92)23+⨯+-+=1[1](7)6++-=1(6)6+-=556- (2)()()()()322019234221-⨯-+-÷---=9(4)(8)4(1)-⨯-+-÷--=36(2)1+-+=35【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。