人教A版数学《函数的表示法》导学案
高中数学必修一 《3 1 函数的概念及其表示》集体备课导学案

【新教材】3.1.1 函数的概念(人教A版)1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
一、预习导入阅读课本60-65页,填写。
1.函数的概念(1)函数的定义:设A,B是,如果按照某种确定的对应关系f,使对于集合A中的,在集合B中都有和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作.(2)函数的定义域与值域:函数y=f(x)中,x叫做,叫做函数的定义域,与x的值相对应的y值叫做,函数值的集合叫做函数的值域.显然,值域是集合B的.2.区间概念(a,b为实数,且a<b)3.其它区间的表示1.判断(正确的打“√”,错误的打“×”) (1)区间表示数集,数集一定能用区间表示. ( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞]. ( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合. ( ) 2.函数y =1x +1的定义域是 ( )A .[-1,+∞)B .[-1,0)C .(-1,+∞)D .(-1,0) 3.已知f (x )=x 2+1,则f ( f (-1))= ( ) A .2 B .3 C .4 D .5 4.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________. (2){x |x >1}用区间表示为________.题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√xx ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x . 跟踪训练四1.求函数y=√2x +3√2-x1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x; ④y =2x -√x −1.跟踪训练五1.求下列函数的值域: (1)y = √2x +1 +1;(2)y =1−x 21+x 2.1.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},由下列图形给出的对应f 中,不能构成从A 到B 的函数有( )个A.1个B.2个C.3个D.4个2.函数()2121f x ax x =++的定义域为R ,则实数a 的取值范围为( )A .a >1B .0<a <1C .a <0D .a <13.函数f (x )=√x−1x+3的定义域为 A .{x|1≤x <3或x >3} B .{x|x >1} C .{x|1≤x <2} D .{x|x ≥1}4.已知函数f (2x +1)的定义域为(−2,0),则f (x )的定义域为( ) A.(−2,0)B.(−4,0)C.(−3,1)D.(−12,1)5.下列各组函数中,()f x 与()g x 相等的是( )A .()()2,2f x x g x x =-=-B .()()32,f x x g x ==C .()()22,2x f x g x x x=+=+D .()()22,1x x x f x g x x x-==- 6.集合A ={x |x ≤5且x ≠1}用区间表示____________.7.已知函数8()2f x x =-(1)求函数()f x 的定义域; (2)求(2)f -及(6)f 的值. 8.求下列函数的值域: (1)f (x )=211x x -+;(2)f (x )=x .答案小试牛刀1.(1)× (2) × (3)√ (4)× (5 )× 2.C 3.D4. (1)[10,100] (2)(1,+∞) 自主探究 例1 【答案】D 跟踪训练一【答案】C 例2 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以 它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 跟踪训练二【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 例3 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 跟踪训练三【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3).例4【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 跟踪训练四【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x+1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32.∴函数f(2x+1)的定义域是[-1,32]. 例5【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.跟踪训练五【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 当堂检测1-5.CADCD 6.(,1)(1,5]-∞7.【答案】(1)()f x 的定义域为[3,2)(2,)-⋃+∞;(2)(2)1f -=-;(6)5f = 【解析】(1)依题意,20x -≠,且30x +≥,故3x ≥-,且2x ≠,即函数()f x 的定义域为[)()3,22,-⋃+∞. (2)()8223122f -=+-+=---,()8663562f =+=-. 8. 【答案】(1)(–∞,2)∪(2,+∞); (2)[–54,+∞). 【解析】(1)因为f (x )=()2131x x +-+=2–31x +,所以f (x )≠2, 所以函数f (x )的值域为(–∞,2)∪(2,+∞).(21x +(t≥0),则x=t 2–1,所以y=t 2–t –1(t≥0). 因为抛物线y=t 2–t –1开口向上,对称轴为直线t=12∈[0,+∞),所以当t=12时,y取得最小值为–54,无最大值,所以函数f(x)的值域为[–54,+∞).。
函数的表示(导学案)

§2.2函数的表示1、函数的表示法(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.(2)列表法:就是列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值.(3)图象法:就是用函数图象表示两个变量之间的关系.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.2、分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数称为分段函数.分段函数是一个函数,而不是几个函数.3、求函数解析式的方法:(1)待定系数法;(2)换元法;(3)方程法 ;(4)配凑法等.4、作函数图象的一般步骤:(1)确定函数定义域;(2)化简或变形函数表达式(一般来说可化简成常见函数或其复合函数);(3)利用描点法或图象变换法作出图象.5、常见的图象变换有:平移变换、对称变换和翻折变换等.独立自测1.下列四种说法正确的有( )①函数是从其定义域到值域的映射;②f(x)=x -3+2-x 是函数;③函数y =2x(x ∈N)的图象是一条直线;④f(x)=x2x与g(x)=x 是同一函数. A .1个 B .2个C .3个D .4个2.下列各个图形中,不可能是函数y =f(x)的图象的是( )3.函数y =f(x)的图象如图所示,根据函数图象填空:(1)f(0)=________;(2)f(1)=________;(3)若-1<x1<x2<1,则f(x1)与f(x2)的大小关系是________.4、函数2)1(+=x y -2的图象可由函数2x y =的图象经过( )得到.A 、先向右平移1个单位,再向下平移2个单位B 、先向右平移1个单位,再向上平移2个单位C 、先向左平移1个单位,再向下平移2个单位D 、先向左平移1个单位,再向上平移2个单位5、函数1)1(2-+-=x y 的图象与函数1)1(2+-=x y 的图象关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、以上都探究案例. (1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )(2)已知)(x f 是一次函数, 且14))((-=x x f f ,求)(x f 的解析式 ;(3)已知2211)11(x x xx f +-=+-,试求)(x f 的解析式.( 4)已知x x x f 2)1(+=+,求)(x f ;(5)已知)(x f 满足x x f x f 3)1()(2=+,求)(x f训练案1、已知11)1(+=x x f ,那么)(x f 的解析式为 ( ) A 、11+x B 、x x +1 C 、1+x xD 、x +1A 、B 、C 、D 、2、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,则_______)]}1([{=-f f f .3、已知f (x )=x x 22+,则f (2x +1)= .4、已知二次函数y =f(x)的最大值为13,且f(3)=f(-1)=5,求f(x)的解析式,。
3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册

教学课题:3.1.2 函数的表示法课型:新授课课时:2课时课标要求:1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;2、通过具体实例,了解简单的分段函数,并能简单应用。
学习目标:1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;2、通过具体实例,了解简单的分段函数,并能简单应用;3、发展学生直观想象、逻辑推理核心素养。
重点:了解简单的分段函数,并能简单应用。
难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知、引入新课引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?(生)解析法、列表法和图像法引入2:(师)你能分辨下列函数是用什么方法表示的吗?(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;(生)图象法,就是用图象表示两个变量之间的对应关系.(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;年份y2006200720082009201020112012201320142015恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57(生)列表法,就是列出表格表示两个变量之间的对应关系.(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}∈≤≤t t(生)解析法,就是用数学表达式表示两个变量之间的对应关系.设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。
二、创设情境、提出问题x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})像法表示函数y=f(x).解析:用列表法可将y=f(x)表示为笔记本数x12345钱数y510152025用图象法发可将y=f(x)表示为追问1(师)你发现图象上这些点有什么特征?(生)这些点好像都经过一条直线。
函数的表示法教案三篇

函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
人教版八年级下册数学 函数的三种表示方法(导学案)

19.1.2 函数的图象第2课时函数的三种表示方法一、新课导入1.导入课题上节课我们学习了函数图象的意义和画图象的方法,这节课我们结合实例来总结画函数图象的一般步骤.2.学习目标(1)能用描点法画函数的图象.(2)能从函数图象上看出函数与自变量的变化规律.(3)知道函数的三种表示方法及它们的优缺点.3.学习重、难点重点:用描点法画函数的图象,从函数图象上读取信息.难点:从图象中说明函数的增减情况.二、分层学习1.自学指导(1)自学内容:P77例3.(2)自学时间:10分钟.(3)自学要求:比照上节画S= x2(x>0) 的图象的过程画函数(1)、(2)的图象,并归纳画函数图象有哪些基本步骤.(4)自学参考提纲:①用描点法画函数图象的一般步骤是什么?②当点在图象上时,点的坐标满足什么条件?③从图象的升降可以知道函数值随自变量怎样变化?④完成P79练习题.(在下图中分别画第1,3题的图象)2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:关注学生能否从画图象的方法中总结出画函数图象的一般步骤,是否理解图象升降与y 随 x的变化情况的关系.②差异指导:对学习中存在的疑点进行针对性指导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)用描点法画函数的图象的一般步骤.(2)展示练习的答案,并点评.(3)从图象的升降看函数的增减性.1.自学指导(1)自学内容:P80到P81的例4.(2)自学时间:8分钟.(3)自学方法:认真阅读例2解答过程,理解并明确函数的三种表示方法.(4)自学参考提纲:①函数的三种表示方法分别指的是什么方法?②图象上的点的坐标(x,y)与函数关系式有何联系?③完成P81的练习题.2.自学:学生可参考自学参考提纲进行自学.3.助学(1)师助生:①明了学情:巡视课堂,收集学生在自学中存在的问题,遇到的困难.②差异指导:对个别学生存在的疑点进行点拨、引导.(2)生助生:相互交流,帮助矫正错误.4.强化(1)总结函数的三种表示方法的优缺点.(2)展示练习的答案,并点评.(3)展示本节所学知识点和数学思想方法.三、评1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑.2.教师对学生的评价:(1)表现性评价:点评学生的学习态度、方法、成效及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本节课的重点是函数的三种表示方法:解析式法、列表法和图象法。
人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案

人教版数学八年级下册19.1.2《函数的表示方法》(第2课时)教案一. 教材分析《函数的表示方法》是中学数学中重要的概念之一,对于八年级的学生来说,这是一个新的知识领域。
本节课的内容包括函数的定义、函数的表示方法以及函数的性质。
通过本节课的学习,学生可以掌握函数的基本概念,了解函数的表示方法,并能够运用函数的性质解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有了初步的了解。
但是,学生在学习新的知识时,往往还存在一定的困难,需要教师的耐心引导和讲解。
此外,学生对于实际问题的解决能力还有待提高,需要通过大量的练习来加强。
三. 教学目标1.了解函数的定义和表示方法。
2.掌握函数的性质,并能够运用函数的性质解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.函数的定义和表示方法。
2.函数的性质的理解和运用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而掌握函数的基本概念和性质。
同时,通过案例分析和小组合作,培养学生的实际问题解决能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学PPT,包括函数的定义、表示方法和性质等内容。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考函数的定义和表示方法。
例如,什么是函数?函数如何表示?2.呈现(15分钟)通过PPT展示函数的定义和表示方法。
详细解释函数的定义,以及如何用图像、表格和解析式来表示函数。
3.操练(15分钟)让学生通过练习题来巩固函数的定义和表示方法。
可以选择一些简单的练习题,让学生独立完成,然后进行讲解和解析。
4.巩固(10分钟)通过一些实际问题来巩固函数的性质。
例如,给定一个函数的图像,让学生判断函数的性质。
5.拓展(10分钟)让学生通过小组合作,解决一些复杂的实际问题。
例如,给定一个实际问题,让学生运用函数的性质来解决。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6
∵
4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15
数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;
3.1.2函数的表示法教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册

重点题型整理
1. 题目:已知函数f(x) = 2x + 1,求f(3)。
答案:f(3) = 2*3 + 1 = 7。
说明:这是一个基础的函数值求解题型。首先,需要理解题目中给出的函数表达式,然后将给定的x值代入表达式中求解。
二、新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解函数的基本表示方法。函数是某个变量随着另一个变量的变化而变化的规律。它可以用电解析式、图像和表格等方式来表示。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了函数图像在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调电解析式和图像表示法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
说明:这个题目涉及到三次方的计算,需要注意三次方和二次方的运算。
4. 题目:已知函数f(x) = 2x + 3,求f(-1)。
答案:f(-1) = 2*(-1) + 3 = -2 + 3 = 1。
说明:这个题目是求负数作为x值的函数值。需要注意负数的运算。
5. 题目:已知函数f(x) = -x^2 + 4x - 3,求f(-2)。
教学内容与学生已有知识的联系主要在于初中数学中的函数概念和图像。学生在初中阶段已经学习了函数的基本概念和一些简单的函数图像,对本节课的内容有一定的了解。在此基础上,本节课将进一步深化学生对函数的理解,引导学生从不同的角度来观察和研究函数,培养学生的数学思维能力和解决问题的能力。
核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理和数学建模的核心素养。通过学习函数的表示法,学生将能够抽象出函数的本质特征,运用逻辑推理能力理解不同的表示方法之间的联系,以及运用数学建模能力选择合适的表示方法来解决实际问题。同时,通过小组讨论和问题解答,学生还将提高合作交流和问题解决的能力,从而全面提升数学学科核心素养。
人教A版(2019)高中数学必修第一册 3 函数的表示法(二)导学案(无答案)

§3.1.2 函数的表示法(二)【探究学习】分段函数的表示例1画出函数y=|x|的图象定义:像y=|x|这样的,对于自变量x的不同的取值范围,有着不同的对应关系的函数通常称为_________ 【知识应用】变式1画出函数y=|x-2|的图象变式2画出函数y=|x2-1|的图象变式3画出函数y=|x-1|(x+1)的图象例2给定函数f(x)=x+1,g(x)=(x+1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},例如,当x=2时,M(2)=max{f(2),g(2)}=max{3,9}=9 请分别用图像法和解析法表示函数M(x) 练习1.给定函数f(x)=-x+1,g(x)=(x-1)2,x∈R(1)在同一直角坐标系中画出函数f(x),g(x)的图象(2)x∈R,用m(x)表示f(x),g(x)中的较小者,记为m(x)=min{f(x),g(x)},请分别用图像法和解析法表示函数m(x)例3设函数()22,1,122,2x xf x x xx x+≤-⎧⎪=-<<⎨⎪≥⎩,(1)求()32,2f f f⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若f(x)=3,求x的值.练习2.已知f(x)=⎩⎪⎨⎪⎧x2,-1≤x≤1,1,x>1或x<-1.(1)画出f(x)的图象;(2)若f(x)≥14,求x的取值范围;(3)求f(x)的值域.例4.某市招手即停公共汽车的票价按下列规则制定(1)5km以内(含5km),票价2元;(2)5km以上,每增加5km,票价增加1元(不足5km 按5km算)如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式,并画出图像.【小结】【作业】作业本3837-P。
3.1.2函数表示法(第二课时)教学设计

3.1.2函数的表示法(第2课时)(人教A版普通高中教科书数学必修第一册第三章)深圳市坪山高级中学钟南林一、教学目标1.明确函数的三种表示方法.2.在实际情境中,会根据不同的需要选择恰当的方法表示函数.3.通过具体实例,了解简单的分段函数,并能简单应用.二、教学重难点1.函数的三种表示方法,分段函数的概念.2.如何根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.三、教学过程1.复习导入1.1函数三种表示方法定义及优缺点1.2分段函数的定义及特点(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.【设计意图】在上节课的基础上进一步掌握比较函数三种不同表示方法的优缺点,为本节课在具体情境中选取何种函数的表示方法作铺垫,同时对分段函数的特点进一步深化,为在具体实例中应用分段函数做好准备。
2.探究典例例1 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表问题1:上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?【预设的答案】4个;测试序号;{1,2,3,4,5,6}【设计意图】让学生体会列表法不单单是表示一个函数,让学生体会列表法表示多个函数,进一步理解函数的定义.问题2:上述4个函数能用解析法表示吗?能用图象法表示吗?【预设的答案】用解析法并不能很好的表示出对应的解析式,可以类似例题4用图像法表示。
【设计意图】在问题1的基础上继续追问,让学生进一步深化函数三种表示方法的优缺点.问题3:若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?【预设的答案】表格上并不能很好的看出每位同学的成绩变化情况,用图像法较好【设计意图】让学生体会用表格区分三位同学的成绩变化并不直观,引导学生用图像法分别表示出三个同学的成绩和班级平均分对应的函数图像,让学生体会在实际需要中选择恰当的方法表示函数是需要给予关注的.问题4:试根据图象对这三位同学在高一学年度的数学学习情况做一个分析?【预设的答案】王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;赵磊同学的数学成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩在稳步提升.【活动预设】让学生动手将每个同学的成绩与测试序号之间的函数关系分别用图像(均为6个离散的点)表示出来,学生分组讨论,能从图像上得出哪些结论,每组派代表进行发言,.【设计意图】让学生动手做出每位同学成绩对应的散点图,让学生进一步理解函数定义域与值域的对应关系,并体会如何能更好的表示出每位同学成绩变化情况。
1.2.2《函数的表示法》导学案

1.2.2《函数的表示法》导学案姓名: 班级: 组别: 组名:____________【学习目标】1、明确函数的三种表示方法,会根据不同的实际情境选择合适的方法表示函数;2、通过具体实例,了解简单的分段函数及其应用3、知道映射的定义;【重点难点】重点:函数的三种表示方法,分段函数的概念难点:分段函数的表示、求值及其图象【知识链接】我们在初中接触过的函数有些事用表格的形式呈现的,如小明从小学一年级至六年级每年的身高与体重之间对应的函数关系,可以用一个表格的形式表示出来;有的可以用函数解析式,如二次函数1232-+=x x y ;当然有的也可以用图象表示,如二次函数的图象是一条抛物线.【学习过程】阅读课本19至20页的内容,尝试回答以下问题:知识点一:函数的表示法解析法就是用___________表示两个变量之间的对应关系,图像法就是用___________表示两个变量之间的对应关系,列表法就是用___________表示两个变量之间的对应关系.练习:①某商场新近了10台彩电,每台售价3000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.②课本23页1,2,4.知识点二 分段函数阅读课本21至22页的内容,尝试回答以下问题:定义:例5中得出的票价与里程之间的函数关系式中对于不同范围内的x 对应不同的y 的表达式,像这种在定义域的不同部分对应________________的函数称为分段函数.注意:①虽然分段函数在定义域的不同部分对应不同的对应关系,但分段函数是一个函数,不能误认为分段函数是“几个函数”;②分段函数的定义域是各段自变量取值范围的并集③分段函数的值域是各段函数值的并集同步练习:若函数⎪⎩⎪⎨⎧≥<<--≤+=2,222,2,2)(2x x x x x x x f ,(1) 试求)]3([),3(),5(---f f f f 的值;(2) 若1)(=a f ,求a 的值;(3) 写出函数的定义域、值域;(4) 作出函数的图象.知识点三 映射阅读课本22页至23页的内容,尝试回答下列问题:1、一般地,设B ,A 是_____________,如果按照某种确定的___________,使对于集合A 中的____________,在集合B 中都有______________________,那么就称____________为从集合A 到集合B 的一个_______.集合A 中的元素叫原象,集合B 中与A 中的元素相对应的元素叫象.2、与函数概念相比,在映射的概念中只是将函数概念中的__________换为____________,所以可以说函数是一种特殊的映射,但映射不一定是函数.同步练习:1、下列集合A 到集合B 的对应中,哪些是A 到B 的映射?(1)B y A x x y x f B N ∈∈-=→==,,:,Z ,A 对应法则;(2)B x A x xy x f R B R A ∈∈=→==++,,1:,,; (3){}{}B y A x x y x f B A ∈∈±=→--=--=,,,2,1,1,2,4,1,1,4:对应法则;(4){}三角形平面内边长不同的等边=A ,{}平面内半径不同的圆=B ,对应法则圆:作等边三角形的内切f .2、已知在)(y x ,映射f 下的象是),(2y x y x -+, (1))2,3(-的象;(2))2,2(-的原象【基础达标】A1、以下几个命题:① 从映射角度看,函数是其定义域到值域的映射;② 函数]3,3(,1-∈∈-=x Z x x y 且的图象是一条线段③ 分段函数的定义域是各段定义域的并集,值域是各段值域的并集;④若21,D D 分别是分段函数的两个不同对应关系的值域,则=⋂21D D ∅.其中正确的有 ( )A 、0个B 、1个C 、2个D 、3个B2、给出下列对应:①{}应为矩形到它的面积的对对应关系,矩形f R N M ,==;②{}xy x f N R 1,M =→==:,正实数, ③{}{}为求平方根f N M ,2,2,1,1,4,1--==.其中是从集合M 到集合N 的映射有 ( )A 、0个B 、1个C 、2个D 、3个C3、已知函数⎩⎨⎧<+≥-=6),2(6,4)(x x f x x x f ,则)3(f =___________,=)]1([f f ____________.C4、已知⎩⎨⎧≥<=0,0,2)(2x x x x x f ,若16)(=x f ,则x 的值为___________.D5、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式5)2()2(≤+++x f x x 的解集是_________________.【小结】1、 函数的三种表示方法:2、 分段函数:3、 映射:【当堂检测】A1、作出下列函数的图象:(1)⎩⎨⎧>≤=0,100)(x x x f ,;(2){}3,2,1,13)(∈+=n n n g ;B2、设集合{}{}1,0,,,A ==B c b a ,试问:从A 到B 的映射共几个?将它们分别表示出来.【课后反思】本节课我最大的收获是我还存在的疑惑是我对导学案的建议是。
高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

3。
1。
2 函数的表示法第1课时函数的表示法学习目标核心素养1。
掌握函数的三种表示法:解析法、图象法、列表法.(重点) 2.会根据不同的需要选择恰当的方法表示函数.(难点)1.通过函数表示的图象法培养直观想象素养.2.通过函数解析式的求法培养运算素养。
(1)已建成的京沪高速铁路总长约1 318千米,设计速度目标值380千米/时,若京沪高速铁路时速按300千米/时计算,火车行驶x小时后,路程为y千米,则y是x的函数,可以用y=300x来表示,其中y=300x叫做该函数的解析式.(2)如图是我国人口出生率变化曲线:(3)下表是大气中氰化物浓度与污染源距离的关系表污染源距离50100200300500氰化物浓度0.6780。
3980.1210.050。
01问题:根据初中所学知识,请判断问题(1)、(2)、(3)分别是用什么法表示函数的?提示:解析法、图象法和列表法.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D(x)=错误!列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.思考辨析(正确的画“√”,错误的画“×”)(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()[答案](1)×(2)×2.已知函数f(x)由下表给出,则f(3)等于()x1≤x<222<x≤4f(x)123A。
1B.2C.3D.不存在C[∵当2〈x≤4时,f(x)=3,∴f(3)=3。
]3.已知函数y=f(x)的图象如图所示,则其定义域是______.[-2,3][由图象可知f(x)的定义域为[-2,3].]4.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________。
高中数学 第三章 函数的概念与性质 3.1.2 第1课时 函数的表示法学案(含解析)新人教A版必修第

3.1.2 函数的表示法第1课时函数的表示法[目标] 1.掌握函数的三种表示方法——解析法、图象法、列表法;2.会求函数解析式,并正确画出函数的图象;3.在实际情境中,会根据不同的需要选择恰当的方法表示函数.[重点] 函数解析式的求法及函数图象的画法.[难点] 求函数解析式的两种通法.知识点函数的表示法[填一填]函数有解析法、列表法、图象法三种表示法.(1)解析法:就是用数学表达式表示两个变量之间的对应关系;(2)列表法:就是列出表格来表示两个变量之间的对应关系;(3)图象法:就是用图象表示两个变量之间的对应关系.[答一答]1.任何一个函数都可以用解析法表示吗?提示:不一定.如学校安排的月考,某一地区绿化面积与年份关系等受偶然因素影响较大的函数关系就无法用解析法表示.2.函数的三种表示方法各有什么优点?提示:解析法:简单、全面地概括了变量间的关系;可以通过解析式求定义域内的任意自变量对应的函数值;图象法:直观、形象地反映出函数关系变化的趋势,便于研究函数的性质;列表法:查询方便,不需计算便可得自变量对应的函数值.3.作出函数y=x2-3,x∈{-2,-1,0,1,2,3}的图象.提示:函数的图象是一些离散的点,图象如图所示:类型一列表法表示函数[例1]已知函数f(x),g(x)分别由下表给出:则f(g(1))的值为________;当g(f(x))=2时,x=________.[分析]这是用列表法表示的函数求值问题,在解答时,找准变量对应的值即可.[解析]由g(x)对应表,知g(1)=3,∴f(g(1))=f(3).由f(x)对应表,得f(3)=1,∴f(g(1))=f(3)=1.由g(x)对应表,得当x=2时,g(2)=2,又g(f(x))=2,∴f(x)=2.又由f(x)对应表,得x=1时,f(1)=2,∴x=1.[答案]1 1列表法是表示函数的重要方法,这如同我们在画函数图象时所列的表,它的优点是变量对应的函数值在表中可直接找到,不需计算.[变式训练1](1)在例1中,函数f(x)的定义域是{1,2,3},值域是{2,1};_f(1)=2;若f(x)=1,则x=2或3.(2)已知函数f(x),g(x)分别由下表给出.则g (f (2))=1;f (g (2))=3.解析:(2)∵f (2)=3,g (2)=2,∴g (f (2))=g (3)=1,f (g (2))=f (2)=3.类型二 图象法表示函数[例2] 作出下列函数的图象并求出其值域. (1)y =2x +1,x ∈[0,2]; (2)y =2x ,x ∈[2,+∞);(3)y =x 2+2x ,x ∈[-2,2].[分析] 列表⇒描点⇒用平滑曲线连成图象⇒观察图象 求得值域. [解] (1)列表:x 0 12 1 32 2 y12345描点,作出图象(如图).当x ∈[0,2]时,图象是直线的一部分,观察图象可知,其值域为[1,5].(2)列表:x 2 3 4 5 … y1231225…描点,作出图象(如图).当x ∈[2,+∞),图象是反比例函数y =2x 的一部分,观察图象可知,其值域为(0,1].(3)列表:x -2 -1 0 1 2 y-138描点,作出图象(如图),图象是抛物线y =x 2+2x 在-2≤x ≤2之间的部分.由图可得函数的值域是[-1,8].作函数图象应注意:(1)在定义域内作图,即树立定义域优先的意识;(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象;(3)要标出某些关键点,例如图象的顶点、端点与坐标轴的交点等.要分清这些关键点是实心点还是空心点.[变式训练2]作出下列函数图象,并求其值域.(1)y=1-x(x∈Z,且|x|≤2);(2)y=2x2-4x-3(0≤x<3).解:(1)因为x∈Z,且|x|≤2,所以x∈{-2,-1,0,1,2}.所以该函数图象为一直线上的孤立点(如图①).由图象知,y∈{-1,0,1,2,3}.(2)因为y=2(x-1)2-5,所以当x=0时,y=-3;当x=3时,y=3;当x=1时,y=-5.因为x∈[0,3),故图象是一段抛物线(如图②).由图象可知,y∈[-5,3).类型三 解析法表示函数[例3] 求函数的解析式.(1)已知f (x )是一次函数,且f (f (x ))=9x +4,求f (x )的解析式; (2)已知f (x +1)=x +2x ,求f (x ); (3)已知2f ⎝⎛⎭⎫1x +f (x )=x (x ≠0),求f (x ). [解] (1)设f (x )=kx +b (k ≠0).则f (f (x ))=k (kx +b )+b =k 2x +kb +b =9x +4.所以⎩⎪⎨⎪⎧k 2=9,kb +b =4.解得k =3,b =1,或k =-3,b =-2. 所以f (x )=3x +1或f (x )=-3x -2. (2)法1:(配凑法)因为f (x +1)=x +2x =(x +1)2-1(x +1≥1). 所以f (x )=x 2-1(x ≥1). 法2:(换元法) 令x +1=t (t ≥1). 则x =(t -1)2(t ≥1). 所以f (t )=(t -1)2+2(t -1)2=t 2-1(t ≥1).所以f (x )=x 2-1(x ≥1).(3)f (x )+2f ⎝⎛⎭⎫1x =x ,令x =1x ,得f ⎝⎛⎭⎫1x +2f (x )=1x. 于是得关于f (x )与f ⎝⎛⎭⎫1x 的方程组⎩⎨⎧f (x )+2f ⎝⎛⎭⎫1x =x ,f ⎝⎛⎭⎫1x +2f (x )=1x.解得f (x )=23x -x3(x ≠0).求函数解析式的方法:(1)代入法:已知f (x )的解析式,求f [g (x )]的解析式常用代入法.(2)配凑法:已知f [g (x )]的解析式,求f (x )的解析式时,可先从f [g (x )]的解析式中拼凑出“g (x )”,即把“g (x )”作为整体,再将解析式的两边的g (x )用x 代替即可求得f (x )的解析式.(3)换元法:已知f [g (x )]的解析式,要求f (x )的解析式时,可令t =g (x ),利用t 表示出x ,然后代入f [g (x )]中,最后把t 换为x 即可.注意换元后新元的范围.(4)待定系数法:已知f (x )的函数类型,求f (x )的解析式时,可根据函数类型先设出函数解析式,再代入关系式,利用恒等式求出待定系数即可.[变式训练3] (1)已知f ⎝⎛⎭⎫1x =x1-x 2,求f (x );(2)已知函数f (x )=x 2,g (x )为一次函数,且一次项系数大于零,若f [g (x )]=4x 2-20x +25,求g (x )的表达式.解:(1)设t =1x ,则x =1t(t ≠0),代入f ⎝⎛⎭⎫1x =x 1-x 2,得f (t )=1t1-⎝⎛⎭⎫1t 2=tt 2-1(t ≠0), 故f (x )=x x 2-1(x ≠0).(2)由g (x )为一次函数, 设g (x )=ax +b (a >0),∵f [g (x )]=4x 2-20x +25,∴(ax +b )2=4x 2-20x +25,即a 2x 2+2abx +b 2=4x 2-20x +25,从而a 2=4,2ab =-20,b 2=25,解得a =2,b =-5, 故g (x )=2x -5(x ∈R ).1.已知一次函数的图象过点(1,0)和(0,1),则此一次函数的解析式为( D ) A .f (x )=-x B .f (x )=x -1 C .f (x )=x +1D .f (x )=-x +1解析:设f (x )=ax +b (a ≠0),则有⎩⎪⎨⎪⎧a +b =0,b =1,所以a =-1,b =1,f (x )=-x +1.2.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图所示的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f (g (2))=( B )x 1 2 3 f (x )23A .3B .2C .1D .0解析:由函数图象可知g (2)=1,由表格可知f (1)=2,故f (g (2))=2. 3.已知函数f (2x +1)=6x +5,则f (x )的解析式为f (x )=3x +2. 解析:解法一:令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2,∴f (x )=3x +2.解法二:∵f (2x +1)=3(2x +1)+2,∴f (x )=3x +2.4.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是y =80x 2+800x,_x ∈(0,+∞).解析:由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0,化简为:y =80x 2+800x ,x ∈(0,+∞).5.某商场新进了10台彩电,每台售价3 000元,试分别用列表法、图象法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与收款总额y(元)之间的函数关系.解:用列表法表示如下:x/台1234 5y/元 3 000 6 0009 00012 00015 000x/台678910y/元18 00021 00024 00027 00030 000 用图象法表示,如图所示.用解析法表示为y=3 000x,x∈{1,2,3,…,10}.——本课须掌握的三大问题1.函数三种表示法的优缺点2.描点法画函数图象的步骤:(1)求函数定义域;(2)化简解析式;(3)列表;(4)描点;(5)连线.3.求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)消元法等.。
新2024秋季高一必修数学第一册人教A版第三章函数概念与性质《函数的概念及其表示:函数的表示方法》

教学设计:新2024秋季高一必修数学第一册人教A版第三章函数概念与性质《函数的概念及其表示:函数的表示方法》教学目标(核心素养)1.数学抽象:学生能够理解并掌握函数的三种基本表示方法(解析式、列表法、图像法),并能根据具体情境选择合适的表示方法。
2.逻辑推理:通过分析不同表示方法下的函数实例,学生能够推导出函数的基本性质,如定义域、值域、单调性等。
3.数学建模:培养学生将实际问题抽象为数学模型的能力,特别是能够运用函数的不同表示方法来构建数学模型。
4.数学运算:在理解函数表示方法的基础上,学生能够进行简单的函数运算和性质分析。
5.数学交流:通过小组合作和课堂展示,学生能够清晰、准确地表达自己对函数表示方法的理解和应用。
教学重点•掌握函数的三种基本表示方法(解析式、列表法、图像法)。
•理解并能灵活应用不同表示方法解决实际问题。
教学难点•理解函数图像与解析式、列表法之间的内在联系,能够相互转化。
•在复杂情境中准确选择和应用合适的函数表示方法。
教学资源•多媒体课件(包含函数实例、图像展示、动画演示等)。
•教材及配套习题册。
•黑板和粉笔/白板和笔,用于板书和演示。
•数学软件(如GeoGebra、Desmos)用于实时绘制函数图像和进行性质分析。
教学方法•讲授与演示结合:利用多媒体展示函数实例和图像,辅助讲解函数表示方法。
•小组合作学习:分组讨论函数实例,共同探究不同表示方法的优缺点和适用情境。
•问题驱动法:通过提出问题引导学生主动思考,加深对函数表示方法的理解和应用。
•实践操作法:利用数学软件绘制函数图像,进行性质分析,提高学生的实践能力。
教学过程导入新课•情境创设:展示一个实际问题的情境(如汽车速度随时间变化的问题),引导学生思考如何描述这种变化关系。
•问题引入:提问“我们有哪些方式来表示这种变化关系(即函数)?”引出函数的不同表示方法。
新课教学1.解析式法:•讲解解析式法的定义和特点,强调其精确性和一般性。
2导学案1.2.2函数的表示法

函数的表示法导学案唐河县友兰实验高中赵琳卓学习目标:1、明确函数的三种表示方法,能对函数的三种不同表示进行相互间的转化;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用;4、了解映射的概念,知道函数是一种特殊的映射。
一、自主学习:1、阅读课本19-20页例3和例4,了解函数的三种表示方法。
2、你能说出几种函数表示法的各自优缺点吗?_______________________________________________________________________________ 3、阅读课本21页例5和例6,学习分段函数的知识。
练习:⑴画出函数y=|x-2|的图象。
⑵2,0(),(3)(2),0x xf x ff x x≥⎧=-=⎨+<⎩则______⑶函数f(x)=[x]的函数值表示不超过x的最大整数,例f(-3.5)=[-3.5]=-4,f(2.1)=[2.1]=2. 当x∈(-2.5,3]时,写出函数f(x)的解析式,并画出函数的图象。
4、阅读课本22、23页(1)了解什么是映射;(2)对比函数概念与映射概念,你有何感想?练习(1)设A={x|x是锐角},B=(0,1),从A到B的映射是“求正弦”。
则与A中元素060相对应的B中的元素是___________,与B相对应的A中的元素是___________.(2)设集合A={a,b,c},B={0,1},则从A到B的映射共有_______个。
二、巩固练习1、画出下列函数的图象(1) F(x)={1)0()0(>≤xx(2) G(n)= 3n+1 , n∈{1,2,3}2、已知f(x)=⎪⎩⎪⎨⎧<--=>+-,1,1,22xxxxxx(1) 求f(-1), f(f(-1)), f{ f [f(-1)]} (2) 画出函数的图象。
3、观察下列几组对应,是映射的是__________________。
人教A版数学必修一《1.2.2《函数的表示法》(1)》教案

四川省泸县第九中学高中数学《 1.2.2函数的表示法(1)》教案 新人教A 版必修1课 型:新授课 教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点; (2)在实际情境中,会根据不同的需要选择恰当的方法表示函数; (3)通过具体实例,了解简单的分段函数,并能简单应用。
教学重点:会根据不同的需要选择恰当的方法表示函数。
教学难点:分段函数的表示及其图象。
教学过程: 一、课前准备(预习教材19p ---21p ,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么? 二、新课导学: (一)学习探究探究任务:函数的三种表示方法讨论:结合课本P 15 给出的三个实例,说明 三种表示方法的适用范围及其优点小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1); 优点:简明扼要;给自变量求函数值。
图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2); 优点:直观形象,反映两个变量的变化趋势。
列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3); 优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。
*典型例题例1.(课本P 19 例3)某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x) .{}5,4,3,2,1,5∈=x x y变式:作业本每本0.3元,买x 个作业本的钱数y (元),试用三种方法表示此实例中的函数。
反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例2:(课本P 20 例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级例3:某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。
山东省临朐县实验中学高中数学 函数的表示方法学案 新人教A版必修1

编写人孟凡强编写时间2013-8-29使用时间2013-09-08审核人王现东主任函数的表示方法一、课前预习:(预习课本P38---P41页,思考以下问题)1、函数的表示方法有哪些?2、如何用这些方法表示函数?3、三种方法各有怎样的特点?二、课内探究:1、复习提问:(1)、函数的三要素是什么? (2)、映射与函数的关系?2、新课引入:前面我们学习了函数的基本概念,掌握了映射与函数的关系,而要想研究一个函数,首先必须把它正确的表示出来,这就是我们这一节课的研究内容。
3、合作探究:(学生思考并回答以下问题)问题一:函数的表示方法有哪些?问题二:什么是列表法?它有怎样的优点?问题三:什么是解析法?它有怎样的优点?问题四:什么是图象法?它有怎样的优点?如何用集合的观点看函数的图象?问题五:如何判断一个图形是否是函数图象?函数图象可能是怎样的形状?(学生小组讨论,教师总结,学生自做P39思考与讨论,P42第6题)问题六:什么叫分段函数?分段函数是否为一个函数?三.典例剖析:例1、作函数y=x的图象。
强化训练1、某种笔记本的单价是5元,买x({1,2,3,4,5}x 个笔记本需要y元,试用函数的三种表示法表示函强化训练已知函数(),y f n =满足(1)8,f =且,(1)()7,f n f n n N ++=+∈求(2),f(3),f(4),f(5)。
例4 已知一个函数f(x)的定义域为区间[0,2],当x ∈[0,1]时,对应法则为y=x ,当x ∈(1,2]时,对应法则为y=2-x ,用解析法与图像法表示这个函数。
强化训练投寄信件时,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,以此类推,每封x g (x ∈(0,100])的信应付多少邮资?写出函数的表达式,作出函数图像,并求函数值域。
四. 随堂测试(1)作函数的图象 y=21x - x ∈[-2,2](2)、一个矩形的周长为10,如果此矩形的面积为y,一边长为x,试把y表示成x的函数。
导学案004函数的概念及其表示

函数及其表示考纲要求1.了解构成函数的要素,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.考情分析1.函数的概念、表示方法、分段函数是近几年高考的热点.2.函数的概念、三要素、分段函数等问题是重点,也是难点.3.题型以选择题和填空题为主,与其他知识点交汇则以解答题的形式出现.教学过程基础梳理1、函数的基本概念(1)函数定义:一般地,设,A B是两个非空的______,如果按某种对应法则f,对于集合A中的____________x,在集合B中都有______的元素y和它对应,那么这样的对应叫做从A到B的一个______,通常记为_______.∈其中,所有x A的输入值x组成的集合A叫做函数()=的______。
y f x(2)函数的三要素:___________,__________,___________.2、函数的表示方法:___________,__________,___________.3、分段函数:________________________________________________________双基自测1.已知集合M={-1,1,2,4},N={0,1,2},给出下列四个对应法则,其中能构成从M到N的函数的是( )A.y=x2 B.y=x+1C.y=2x D.y=log2|x|2.(教材习题改编)设f ,g 都是从A 到A 的映射(其中A ={1,2,3}),其对应关系如下表:则f (g (3))等于( )A .1B .2C .3D .不存在3.(教材习题改编)设函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a = ( )A .-3B .±3C .-1D .±14.已知f ⎝ ⎛⎭⎪⎫1x =x 2+5x ,则f (x )=________.5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0, 则f (-1)=________.典例分析考点一、函数、映射的概念与求函数值[例1] (2011·浙江高考)设函数f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0.若f (a )=4,则实数a = ( )A .-4或-2B .-4或2C .-2或4D .-2或2变式1:(2011·陕西高考)设f (x )=⎩⎨⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=________.变式2.(2012·广州模拟)设函数f (x )=⎩⎨⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f 2的值为 ( )A.1516B .-2716C.89D .18:(1)函数值f (a )就是a 在对应法则f 下的对应值,因此由函数关系求函数值,只需将f (x )中的x 用对应的值代入计算即可.另外,高考命题一般会与分段函数相结合,求值时注意a 的范围和对应的关系.(2)求f (f (f (a )))时,一般要遵循由里到外逐层计算的原则. 考点二、分段函数[例2](2012·衡水模拟)图中的图象所表示的函数的解析式f (x )=____________.变式3:(2012·无锡模拟)设函数f (x )=⎩⎨⎧2-x,x ∈-∞,1x 2,x ∈[1,+∞若f (x )>4,则x 的取值范围是________.:对于分段函数应当注意的是分段函数是一个函数,而不是几个函数,其特征在于“分段”,即对应关系在不同的定义区间内各不相同,在解决有关分段函数问题时既要紧扣“分段”这个特征,又要将各段有机联系使之整体化、系统化.分段函数的解析式不能写成几个不同的方程,而应写成函数的几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况. 考点三、函数的表示法 [例3]求函数的解析式 (1)已知2(1)lg ,f x x+=求()f x ;(2)若函数2y x x =+与()y g x =的图象关于点()2,3-对称,求()g x ;(3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;变式4:(2012·昆明模拟)已知f (1-cos x )=sin 2x ,则f ⎝ ⎛⎭⎪⎫32=________.:函数解析式的求法(1)凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)方程思想:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[考题范例](2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.首先讨论1-a,1+a 与1的关系,当a <0时,1-a >1,1+a <1, 所以f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =3a +2.因为f (1-a )=f (1+a ),所以-1-a =3a +2, 所以a =-34.当a >0时,1-a <1,1+a >1,所以f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-3a -1. 因为f (1-a )=f (1+a ),所以2-a =-3a -1,所以a =-32(舍去).综上,满足条件的a =-34.两个防范(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f .本节检测1.已知a 、b 为实数,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±12.已知函数f (x )=⎩⎨⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .93.已知函数f (x )的图象是两条线段(如图,不含端点),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫13=( )A .-13 B.13C .-23 D.234.已知函数f (x )=⎩⎨⎧x 2+2ax ,x ≥22x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.5.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.6.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.自我反思。
人教A版高中数学必修一第二章教案函数的表示法,分段函数,区间

第四教时教材: 函数的表示法,分段函数,区间。
目的: 要求学生明确函数的三种表示方法,继而要求学生掌握分段函数的概念和区间的概念。
过程:一、复习:函数的概念提出课题:函数的表示法。
常用的函数表示法有三种:解析法、列表法、图象法。
二、解析法:定义:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式。
它的优点是:关系清楚,容易求函数值、研究性质。
例:加速度公式: 221gt s = (如 260t s =) 圆面积公式: π=A 2r 圆柱表面积: rl s π2=二次函数 c bx ax y ++=2 )0(≠a 2-=x y (x ≥2)又例: 31--+=x x y 我们可用“零点法”把绝对值符号打开,即:31--+=x x y =⎪⎩⎪⎨⎧--4224x 3311>≤<--≤x x x这一种函数我们把它称为分段函数。
三、列表法:定义:列出表格来表示两个变量的函数关系。
它的优点是:不必通过计算就能知道函数对应值。
例:初中接触过的平方表,平方根表,立方表,立方根表,三角函数表,汽车、火车站的里程价目表等等。
又如:1984-1994年国民生产总值表。
P52四、图象法定义:用函数图象表示两个变量之间的关系。
例:平时作的函数图象:二次函数、一次函数、反比例函数图象。
又如:气象台温度的自动记录器,记录的温度随时间变化的曲线(略)人口出生率变化曲线(见P53)略它的优点是:直观形象地表示出函数变化情况。
注意:函数的图象可以是直线(如:一次函数)、曲线(如:抛物线),也可以是折线及一些孤立的点集(或点)。
例四、例五、例六见P55-56 (略)(注意强调分段函数概念)五、区间见课本P53-54注意:1)这是(关于区间)的定义2)今后视题目的要求,可用不等式、区间、集合表示(答案)3)“闭”与“开”在数轴上的表示4)关于“+∞”“ ∞”的概念六、小结:三种表示法及优点练习:P56 练习七、作业:P57 习题2、2 3,4,5,6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2函数的表示法(2课时)
一.教学目标
1.知识与技能
(1)明确函数的三种表示方法;
(2)会根据不同实际情境选择合适的方法表示函数;
(3)通过具体实例,了解简单的分段函数及应用.
2.过程与方法:
学习函数的表示形式,其目的不仅是研究函数的性质和应用的需要,而且是为加深理解函数概念的形成过程.
3.情态与价值
让学生感受到学习函数表示的必要性,渗透数形结合思想方法。
二.教学重点和难点
教学重点:函数的三种表示方法,分段函数的概念.
教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.
三.学法
学法:学生通过观察、思考、比较和概括,从而更好地完成本节课的教学目标.
四.学习流程
(一)、知识连线
1、函数的三种表示法:__________ , __________ , __________ 。
2、什么是分段函数?分段函数表示的是_____个函数
3、设A 、B 是两个非空的_____,如果按照某种确定的_________,使对于集合A 中的___________,在集合B 中都有___________和它对应,那么就称对应f :A →B 为_____________的一个映射。
(观察:映射与函数的关系)
(二)、知识演练
4、阅读分析课文中例3、4、
5、
6、7
5、练习课本P23第1,2,4题
6、 已知f ( x )=
求f {f [ f (
3
1 ) ]}的值
7、已知f ( x +1)=2x 2
-4x ,求f ( x )
x 1{
2X (0<x <1) (x ≥1)
8、设f (
11+x )=112-x
,则f ( x )= __________ , f ( -3 )= _______
9、若f ( x )= a x 3+cx x
b +,其中a 、b 、
c 都是常数,且f (1)=10,则f ( -1)= _______ 10、画出下列函数的图像:
(1)
(2)y=|x-2| (3)y=x
|x |+
x
11、设集合A={a ,b ,c },B={1,0},则从A 到B 的映射共有______个
12、在给定A →B 的映射f :(x ,y )→(x+y ,x-y )下,集合A 中的元素(2,1)对应着B 中的元素______
(三)、知识提升
13、函数y=f ( x )的图像与直线x=a 有( )个交点
A 、1
B 、0
C 、至多有1
D 、可能有2
14、设函数f ( x )的定义域为R ,且满足下列两个条件:
①存在x 1≠ x 2,使f ( x 1 )≠ f ( x 2 );
②对任意x ,y ∈R ,有f ( x+y )= f ( x ) f ( y ),
求f ( 0 )的值
(四)、归纳总结
1、通过本节你学习了哪些知识?
2、在解决分段函数时应注意什么问题?
(五)、作业布置
x 1y={
x (0<x <1) (x ≥1)
课本第24页习题1.2(A组)第6、9题。