八年级数学下册 第16章 分式 16.1 分式及其基本性质 16.1.2 第2课时 分式的通分练习
华东师大版八年级下册数学第16章 分式第一节分式及其基本性质《分式的基本性质》(约分)参考教案
16.1.2 分式的基本性质(约分)教学目标:掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义.教学重点:分式约分方法教学难点:分子、分母是多项式的分式约分(一)复习与情境导入分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=, (其中M 是不等于零的整式). 与分数类似,根据分式的基本性质,可以对分式进行约分和通分,可类比分数的基本性质来识记.(二)实践与探索例4、下列等式的右边是怎样从左边得到的?(1)22x xy x y x x ++= (2)1121122-++=-+y y y y y (y≠-1). 特别提醒:对22x xy x y x x++=,由已知分式可以知道x 0≠,因此可以用x 去除以分式的分子、分母,因而并不特别需要强调0x ≠这个条件,再如1121122-++=-+y y y y y 是在已知分式的分子、分母都乘以y+1得到的,是在条件y+1≠0下才能进行的,所以,这个条件必须附加强调.例5、不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.(1)y x y x 32213221-+; (2)ba b a -+2.05.03.0. 仔细观察分母(分子)的变化利用分式的基本性质来解题.深入理解.尝试解题.例6、约分(1)4322016xyy x -; (2)44422+--x x x 解:(1)y x yxy x xy xy y x 545444201633432-=∙∙-=- (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x . 说明:在进行分式约分时,若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.(三)练习:约分:222223322)3( ;24)2( ;32)1(b ab a ab y xy x axy y ax --+-先思考约分的方法,再解题,并总结如何约分:若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.(四)小结与作业:请你分别用数学语言和文字表述分式的基本性质分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:(1)因式分解;(2)分式基本性质;(3)分式中符号变换规律;约分的结果是,一般要求分子、分母不含“-”.作业:习题16.1 第4题。
八年级数学《分式的约分和通分》教案
“三部五环”教学模式设计《16.1.2分式的基本性质(2)》教学设计
活动三变式训练,巩固新知 题组一:选择题
1、下列说法错误的是( ) A .
a 21与24a b
通分后分别为242a a 与2
4a
b B .
z xy 231与y
x 2
31
通分后分别为z y x x 223与z
y x yz
2
23 C .
n m +1与m
n -1
的最简公分母为2
2
n m - D .
)(1n m a -与m
n -1
最简公分
母为))((m n n m a -- 2、下列约分正确的是( ) A .
33
=+m
m B.
022=--y x y x C.
b
a
b x a x =++ D.
1-=-+-y x y x 题组二:快速解答 1、约分
2、通分 (1)
2
261
21xy
y x -与 (2)
6
4312---+x x x
x 与 题组三:挑战自我
【师生活动】
教师相机出示题组,其中题组一口答,题组二、三纸笔演练
(题组二的1题分组练习,交叉评价),生思考并独立完成,
教师巡视指导,相机提名板演,重点关注学困生的表现,
及时辅导、补救。
【设计意图】
培养学生自主学习的思想,观察其成效
板书设计
16.1.2分式的约分和通分(2)。
八年级数学下册第十六章二次根式16.1分式及其基本性质2.分式的基本性质课件(新版)华东师大版
探究点三:分式的通分
【例 3】 通分:
(1) c , 1 , a ;
ab c 2c2
【导学探究】 1.题(1)的最简公分母为
2abc2
.
解:(1) c , 1 , a 的最简公分母是 2abc2,
ab c 2c2
所以 c = c 2c2 = 2c3 ,
ab ab 2c2 2abc2
1 = 1 2abc = 2abc ,
公因式 的分式称为最简分式.化简分式时,通常要使结果为
最简分式或者整式.
4.通分
把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫分式的通分.
探究点一:分式的基本性质
【例 1】 利用分式的基本性质填空:
(1) 7xy = 7
5x2 y 5x
;(2)
x
x
y
=
x
x y y
x y
x
=
xy x2 x2 2xy y2
2.分式的基本性质
1.分式的基本性质
分式的分子与分母都乘(或都除以)同一个不等于零的 整式
,分式的值不
变.用式子表示为 A = A M , A = A M (其中 M 为不等于零的整式).
B BM B BM
2.约分
把一个分式的分子和分母的
公因式 约去,这种变形称为分式的约分.
3.最简分式 分子与分母没有
确定最简公分母的一般步骤:
1.(2018 灵宝期中)下列各式从左到右的变形不正确的是( D )
(A) 2 =- 2
3y 3y
(B) y = y
6x 6x
(C) 3x =- 3x
4 y 4 y
(D)- 8x = 8x
3y 3y
人教版八年级下册数学课本知识点归纳
人教版八年级下册数学课本知识点归纳第十六章 分式一、分式1. 分式:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
(分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 )2. 分式的基本性质:分式的分子与分母同乘(或除)以一个不等于0的整式,分式的值不变。
用式子表示如下:(C ≠0) 其中A,B,C 是整式3.最简公分母:取各分母的所有因式的最高次幂的积做公分母,它叫做最简公分母4.通分:分子和分母同乘最简公分母,不改变分式值,把几个整式化成相同分母的分式。
这个过程叫通分。
(分母为多项式时要分解因式)5.约分:约去分子和分母的公因式,不改变分式值,这个过程叫约分。
二、分式的运算1.分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2.分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
上述法则可以用式子表示:C B C A B A ⋅⋅=C B C A B A ÷÷=bcad c d b a d c b a bd ac d c b a =⋅=÷=⋅;3分式乘方法则:一般地,当n 为正整数时 这就是说, 分式乘方要把分子、分母分别乘方4.分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
上述法则可用以下式子表示:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 5.整数指数幂1.任何一个不等于0的数的0次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1=- ()0≠a ,也就是说a n (a≠0)是a -n 的倒数。
正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)(1)同底数的幂的乘法:n m n m a a a +=⋅;(2)幂的乘方:mn n m a a =)(;(3)积的乘方:n n n b a ab =)(; (4)同底数的幂的除法:n m n m a a a -=÷( a ≠0);(5)商的乘方:n nn b a ba =)(( n 是正整数);(b ≠0) 三、分式方程1. 分式方程:分母中含未知数的方程叫分式方程。
八年级数学下册(华师大版)
01 阅读材料 The Graph of Function
04
2 矩形的判 定
02
阅读材料 稳定性PK 不稳定性
05
阅读材料 完美矩形
03
1 矩形的性 质
06
1 菱形的性 质
第16章 分式
16.1 分式及其基本性质
2 菱形的判 定
3 加权平
01
均 数 06
阅读材料 四边形的 02 变 身 术
2 用 计 算 05 器求平均
故事
04
2 函数的图 形
03
1 平面直 角坐标系
第16章 分式
16.1 分式及其基本性 质
0 1
2 一次函数的 图象
0 4
阅读材料 小明 算得正确吗
0 2
3 一次函数的 性质
0 5
1 反比例函数
0 3
4 求一次函数 的表达式
0 6
2 反比例函数 的图象和性质
第16章 分式
16.1 分式及其基本性 质
第17章 函数及 其图象
第17章 函数及其 图象
17.1 变量与函数 17.2 函数的图形 17.3 一次函数 17.4 反比例函数 17.5 实践与探索
第18章 平行四 边形
第18章 平行四边 形
18.1 平行四边形的性质 18.2 平行四边形的判定
第19章 矩形、 菱形与正方形
第19章 矩形、菱 形与正方形
19.1 矩形 19.2 菱形 19.3 正方形
第20章 数据的整 理与初步处理
第20章 数据的整 理与初步处理
20.1 平均数 20.2 数据的集中趋势 20.3 数据的离散程度
感谢聆听
数
04
华师版八下数学第16章分式知识归纳
华东师大版八年级下册数学第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式:由数与字母的乘积组成的代数式;⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
(完整word版)华师版初中数学八年级下册教材总目录.pdf
17.1 变量与函数
17.2 函数的图像
1. 平面直角坐标系 2. 函数的图象 阅读材料 笛卡儿的故事
17.3 一次函数
1. 一次函数 2. 一次函数的图象 3. 一次函数的性质 4. 求一次函数的表达式 阅读材料 小明算得正确吗 17.4 反比例函数 1. 反比例函数 2. 反比例函数的图象和性质 17.5 实践与探索 阅读材料 The Graph of a Function
第 20 章 数据的整理与初步处理
20.1 平均数
1. 平均数的意义 2. 用计算器求平均数 3. 加权平均数 阅读材料 平均化 20.2 数据的集中趋势 1. 中位数和众数 2. 平均数、中位数和众数的选用 阅读材料 计算机帮我们求平均数、中位数和众数
20.3 数据的离散程度
1. 方差 2. 用计算器求方差 阅读材料 早穿皮袄午穿纱 小结 复习题 综合与实践 通讯录的设计
华师版初中学八年级下册教材总目录
八年级下册 第 16 章 分式
16.1 分式及其基本性质 1. 分式 2. 分式的基本性质
16.2 分式的运算 1. 分式的乘除 2. 分式的加减
阅读材料 类比 16.3 可化为一元一次方程的分式方程 16.4 零指数幂与负整指数幂
1. 零指数幂与负整指数幂 2. 科学记数法 阅读材料 光年与纳米 小结 复习题
小结 复习题 第 18 章 整式的加减
18.1 平行四边形的性质
18.2 平行四边形的判定
阅读材料 小结 复习题
稳定性 PK不稳定性
第 19 章 矩形、菱形与正方形
19.1 矩形 1. 矩形的性质 2. 矩形的判定
阅读材料 完美矩形 19.2 菱形
华师大版数学八年级下册16.1《分式及其基本性质》(第3课时)说课稿
华师大版数学八年级下册16.1《分式及其基本性质》(第3课时)说课稿一. 教材分析华师大版数学八年级下册16.1《分式及其基本性质》这一节内容,是在学生已经掌握了实数运算、分数运算的基础上,进一步引导学生认识分式,理解分式的基本性质。
分式是中学数学中的一个重要概念,它在解决实际问题、方程求解等方面有着广泛的应用。
本节课的内容为后续学习分式的运算、分式方程的求解等奠定了基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、分数等概念有了初步的认识。
但是,他们对分式的理解还比较模糊,分式运算更是未曾接触。
因此,在教学过程中,我需要从学生的实际出发,通过生动有趣的实例,引导学生认识分式,理解分式的基本性质。
三. 说教学目标1.知识与技能:让学生理解分式的概念,掌握分式的基本性质,能对简单的分式进行运算。
2.过程与方法:通过观察、分析、归纳等方法,让学生自主探索分式的基本性质,培养学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:分式的概念,分式的基本性质。
2.教学难点:分式的基本性质的运用,分式的运算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、讨论交流法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、实物模型等辅助教学,使抽象的数学概念形象化、具体化。
六. 说教学过程1.导入新课:通过展示实际生活中的分式实例,如比例尺、折扣等,引导学生认识分式,激发学生的学习兴趣。
2.自主探索:让学生观察、分析分式的特点,引导学生发现分式的基本性质。
3.小组讨论:让学生分组讨论,分享各自的心得,培养学生的团队合作意识。
4.讲解与示范:对分式的基本性质进行讲解,并通过示例演示分式的运算方法。
5.练习与巩固:设计一些具有代表性的练习题,让学生动手实践,巩固所学知识。
6.总结与拓展:对本节课的内容进行总结,引导学生思考分式在实际问题中的应用,布置课后作业。
新版华东师大版八年级数学下册《16.1.2分式的基本性质约分》说课稿4.
新版华东师大版八年级数学下册《16.1.2分式的基本性质约分》说课稿4.一. 教材分析华东师大版八年级数学下册《16.1.2分式的基本性质约分》这一节,主要让学生掌握分式的基本性质和约分的方法。
分式是中学数学中的一个重要内容,是代数学习的基础。
本节课通过讲解分式的基本性质,让学生了解分式约分的方法,提高他们的数学思维能力和解决问题的能力。
二. 学情分析八年级的学生已经掌握了分式的基本概念,对分式的加减乘除有一定的了解。
但是,对于分式的基本性质和约分的方法,学生的理解程度参差不齐。
因此,在教学过程中,我将以引导学生理解和掌握分式的基本性质和约分的方法为目标,通过讲解、练习、讨论等多种方式,提高学生的数学思维能力和解决问题的能力。
三. 说教学目标1.让学生理解分式的基本性质,掌握分式约分的方法。
2.培养学生的数学思维能力和解决问题的能力。
3.提高学生对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:分式的基本性质,分式约分的方法。
2.教学难点:分式约分的灵活运用,对分式基本性质的理解。
五. 说教学方法与手段1.采用讲解、练习、讨论等多种教学方法,引导学生理解和掌握分式的基本性质和约分的方法。
2.使用多媒体教学手段,如PPT等,辅助讲解和展示分式的基本性质和约分的方法。
六. 说教学过程1.导入:通过一个实际问题,引出分式的基本性质和约分的方法。
2.讲解:讲解分式的基本性质,演示分式约分的过程。
3.练习:让学生进行分式约分的练习,巩固所学知识。
4.讨论:引导学生进行分组讨论,分享分式约分的经验和方法。
5.总结:总结分式的基本性质和约分的方法,强调重点和难点。
6.作业:布置相关的作业,让学生进行巩固练习。
七. 说板书设计板书设计包括:分式的基本性质,分式约分的方法。
通过板书,让学生清晰地了解分式的基本性质和约分的过程。
八. 说教学评价教学评价主要包括学生的课堂参与度、作业完成情况、考试成绩等方面。
华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质
x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2
③
1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b
与
ab ab2c
数学:16.1分式-16.1.2分式的基本性质通分约分
化简分式时,通常要使结果成为最简分式或者整式 化简分式时 通常要使结果成为最简分式或者整式
5 xy 5x = 2 2 20 x y 20 x
10 x + 10 5、先将分式 2 约分, 、 约分,再讨论取哪 x −1
-3 -3 × 3 -9 所以 2 = 2 = 2 2x 2x × 3 6x
a a ×2 x 2ax = = 3 x 3 x ×2 x 6 x 2
通分的依据是: 分式的基本性质 通分的依据是: 通分的关键是: 通分的关键是: 找到最简公分母 1、系数的最小公倍数 、 最简公分母: 最简公分母: 乘积 2、相同字母的最高次幂 、
2
公分母8a 公分母 2b2
(3)
5(a + b) ⋅ 3(a + b) 3(a + b) 3a + 3b − 15(a + b ) = = = 5(a + b) ⋅ 5 5 5 − 25(a + b )
公分母 5(a+b) ( )
化简下列分式(约分 化简下列分式 约分) 约分
x + 2x +1 (4) x2 + x
2
约分的步骤
2
) ( x + 1) (1)约去系数的最 解:原式 = x( x + 1) 大公约数
x +1 = x
(2)约去分子分母 ) 相同因式的最低次幂
在约分化简时同学甲和同学 乙出现了分歧 同学甲
5xy 5xy 1 同学乙 = = 2 20x y 4x ⋅ 5xy 4x
你更认同哪个同学的解法呢?为什么? 你更认同哪个同学的解法呢?为什么?
华师大版数学八年级下册16.分式的基本性质课件
分式 分式 分式 分式
(打“√”或“×”)
a 中b的a,b同时扩大10倍,分式值不变.( )×
ab
a 中 b的a,b同时扩大10倍,分式值不变.( )√
2a
a 约 2分后变为 2 .
( )×
ab
b
与2
a的最简公分母为(a+b)(a2-b2).( )×
ab
a2 b2
知识点 1 约分
【例1】化简下列分式:
1 3ab2c .
27ab
2
x2 x
6x 9 2y 9y
.
【思路点拨】确定分子、分母的公因式→约分.
分子、分母分别因式分解→找出公因式→约分.
【自主解答】1 3ab2c 3ab bc bc .
27ab 3ab 9 9
2
x2 6x 9 x2y 9y
x 32 yx 3x
3
x xy
的最简公分母是______.
【解析】因为(a-1)2=(1-a)2,所以最简公分母为(1-a)3.
答案:(1-a)3
3.分式 1 , 1 , 1 的最简公分母是______.
a b a b a2 b2
【解析】各分母的因式是(a+b),(a-b),(a+b)(a-b),
所以最简公分母是(a+b)(a-b).
1
x x y
y 2
.
2
x x2
1 . 1
提示:中(x-y)2变为(y-x)2不用在前面添负号. 错把x2-1当作(x-1)2进行约分了.
a2 ab a a b
a
3.化简 xy-2y 的结果是( )
x2-4x 4
A. x x2
B.x-x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[16.1 2. 第2课时 分式的通分]
一、选择题
1.下列关于几个分式的最简公分母的说法正确的是( )
A .分式中所有分母的积
B .最简公分母中数字因数取所有分母的数字因数的最大公约数
C .各分母中所有因式的最低次幂的积
D .各分母中所有因式的最高次幂的积
2.分式12a 和1
3b 的最简公分母是( )
A .6ab
B .5ab C.16ab D.2
5ab
3.分式1
m -n 和1
n +m 通分时,最简公分母应取( )
A .m -n
B .m +n
C .n -m
D .m 2-n 2
4.把分式1x -2,1()x -2()x +3,2
()
x +32通分,下列过程不正确的是( ) A .最简公分母是(x -2)(x +3)2
B.1x -2=(x +3)2
(x -2)(x +3)2
C.1
(x -2)(x +3)=x +3
(x -2)(x +3)2
D.2(x +3)2=2x -2
(x -2)(x +3)2
5.如果分式3a
a 2-
b 2经过通分后分母变为2(a -b )2(a +b ),那么分子应变为(
)
A .6a (a -b )2(a +b )
B .2(a -b )
C .6a (a -b )
D .6a (a +b )
二、填空题
6.分式a -33a 2b ,c -58a 3bc 3,b -2
2ab 2的最简公分母是________.
7.把分式a-1
a2+2a+1与
5
1-a2通分后的结果是____________________.
8.写出两个分式,使得它们的最简公分母为12x·(x-y)2,这样的两个分式可以是____________.
三、解答题
9.通分:
(1)3
x2,-1
6xy;(2)1
mn,
-1
x2-2x+1;
(3)3
x2-3x,
1
x2-9,
-1
6-2x;
(4)x
(2x-4)2,
1
6x-3x2,
2x
x2-4.
链接听课例3归纳总结
综合探究若关于x的分式1
x+m和1
x2-n的公分母是x2-9,求分式m2-n2
m2n+mn2的值.
详解详析
【课时作业】
[课堂达标]
1.[答案] D
2.[答案] A
3.[答案] D
4.[解析] D 2(x +3)2=2(x -2)(x -2)(x +3)2
. 5.[答案] C
6.[答案] 24a 3b 2c 3
7.[答案] -(a -1)2(1-a )(a +1)2,5(a +1)(1-a )(a +1)2
[解析] 首先找出两个分式的最简公分母是(1-a)(a +1)2,由此根据分式的基本性质化为
同分母分式即可,a -1a 2+2a +1=-(a -1)2
(1-a )(a +1)2
, 51-a 2=5(a +1)(1-a )(a +1)2
. 8.[答案] x +13x (x -y )和2y 4(x -y )2
(答案不唯一) 9.解:(1)最简公分母为6x 2y ,
所以3x 2=18y 6x 2y ,-16xy =-x 6x 2y
. (2)最简公分母是mn(x -1)2,
所以1mn =(x -1)2
mn (x -1)2
, -1x 2-2x +1=-mn mn (x -1)2
. (3)最简公分母为2x(x +3)(x -3),
所以3x 2-3x =6x +182x (x +3)(x -3)
, 1x 2-9=2x 2x (x +3)(x -3)
, -16-2x =x 2+3x 2x (x +3)(x -3)
.
(4)最简公分母为12x(x +2)(x -2)2,
所以x (2x -4)2=3x 2(x +2)12x (x +2)(x -2)2
, 16x -3x 2=-4(x +2)(x -2)12x (x +2)(x -2)2
, 2x x 2-4=24x 2(x -2)12x (x +2)(x -2)2
. [素养提升]
解:分式化简,得m 2-n 2m 2n +mn 2=(m +n )(m -n )mn (m +n )=m -n mn
.
由已知,得n =9,所以m =3或-3.
当m =3,n =9时,m -n mn =-29
; 当m =-3,n =9时,m -n mn =49
. 如有侵权请联系告知删除,感谢你们的配合!。