风力发电机并网 原理ppt课件

合集下载

风力发电ppt较详细PPT课件

风力发电ppt较详细PPT课件

市场推广
通过宣传和教育,提高公 众对风力发电的认识和接 受度,促进市场需求增长。
竞争环境
建立公平的市场竞争机制, 打破行业垄断,吸引更多 企业参与风力发电项目的 投资和建设。
技术瓶颈与解决方案
风能利用率
提高风能利用率,降低风能成本, 是当前面临的主要技术瓶颈之一。 通过研发更高效的风力发电机组 和优化风电场布局,可以提高风
能利用率。
储能技术
发展储能技术,解决风能发电的 间歇性问题。例如,利用电池、 抽水蓄能、压缩空气储能等技术, 实现风电场的有功无功调节和调
峰填谷。
输电技术
加强智能电网建设和特高压输电 技术的研究,提高风电并网和远
距离输送的能力,降低损耗。
环境保护与可持续发展
减少对环境的影响
合理规划风电场的位置和规模,避免对生态环境造成破坏。同时,加强风电设备 的噪声和视觉污染治理,降低对周边居民的影响。
海上风电发展
海上风电资源丰富,未来 将有更多的海上风电项目 建成并投入运营。
风力发电与其他可再生能源的结合
太阳能与风能结合
太阳能和风能在时间和地域上具有互补性,结合使用可提高可再 生能源的利用效率。
风能与水能结合
风能和水能在动力转换上具有协同效应,结合使用可实现能源的更 高效利用。
多种可再生能源的综合利用
风力发电的优势与局限性
优势
风能是一种可再生能源,利用风能发电有助于减少化石燃料的消耗和温室气体 排放;风能分布广泛,可利用风能资源丰富;风力发电技术成熟,经济效益逐 渐提高。
局限性
风能是一种间歇性能源,受天气和季节影响较大;风力发电机组占地面积较大, 对土地资源有一定需求;风力发电在建设、维护和拆除过程中可能对环境产生 一定影响。

第四讲 风力发电机组的并网运行

第四讲 风力发电机组的并网运行

U 2 r2 / s
r22 + x k ( x k + x m ) s 2 −1 ) 异步发电机的功率因数角: ϕ = tan ( r2 x m s
r22 + x k ( x k + x m ) s 2 Pe 无功功率与有功之间的关系: Qe = − r2 x m s
注意!
异步发电机的最大转矩与电网电压的平方成正比,电 网电压下降会导致发电机的最大转矩成平方关系下降, 因此如电网电压严重下降也会引起转子飞车; 电网电压上升过高,会导致发电机励磁电流增加,功 率因数下降,并有可能造成电机过载运行。 对于小容量电网应该配备可靠的过压和欠压保护装置, 另一方面要求选用过载能力强(最大转矩为额定转矩 1.8倍以上)的发电机。
4.3 变速恒频风力发电机的并网运行 .
变速恒频风电系统的一个重要优点是可以使风力机在很大 风速范围内按最佳效率运行。从风力机的运行原理可知, 这就要求风力机的转速正比于风速变化并保持一个恒定的 最佳叶尖速比,从而使风力机的风能利用系数 CP 保持最 大值不变,风力发电机组输出最大的功率。因此,对变速 恒频风力发电系统的要求,除了能够稳定可靠地并网运行 之外,最重要的一点就是要实现最大功率输出控制。
③降压并网
并网过程:并网前,在异步发电机与电网之间串接电阻或 并网过程: 电抗器或者接入自耦变压器,以达到降低并网瞬间冲击电 流幅值及电网电压下降的幅度。并网后,将电阻、电抗短 接,避免耗能。 适用于百千瓦以上的发电机组,我国引进的200kW异步风 力发电机组就是采用这种并网方式。 这种并网方式的经济性较差。
第四讲 风电场并网运行
4.1 同步发电机的并网运行 4.2异步发电机的并网运行 异步发电机的并网运行 4.3 变速恒频风力发电机的并网运行 4.4 同步发电机交 直/交系统的并网运行 同步发电机交/直 交系统的并网运行 4.4 磁场调制发电机系统的并网运行 4.5双馈发电机系统的并网运 双馈发电机系统的并网运

风力发电机并网 原理 PPT

风力发电机并网 原理 PPT

• 2. 网侧变频器接触器闭合(S6)。网侧变频 器接触器闭合,同时预充电接触器断开, 能量从网侧经变频器至直流母排,母排 电压为1050DC,网侧变频器提供系统所 需无功能量,包括变压器、高频滤波装 置等。
• 3. 电机侧变频器启动(S7)。网侧变频器电 流80A左右,电机侧变频器电流20A左右。
• 2.风机达到并网转速,同时网侧变频器及 5Q2检测电压等条件达到并网条件,网侧 接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
• 4. 同步(S7-syn)。风机转速达到12001400rpm,电机侧变频器注入140A电流, 电机定子侧电压达到690V。
• 5. 定子接触器闭合,发电(S8)。定子电压 幅值、相位、频率与电网电压近乎一致, 定子接触器闭合,风机并网发电。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变 频器工作,母排直流电压经机侧变频器 逆变对发电机转子加电压。
二、华锐风机并网方式简介
• 1. 预充电(S2):防止高频滤波器件过流。 预充电接触器吸和,变频器直流母排充 电至970DC左右,网侧变频器工作,母 排直流电压经网侧变频器逆变使A点电压 渐升为690AC,且电流值为57A。如果没 有预充电环节,直接吸和网侧接触器, 会使A点瞬间过电流。
大家有疑问的,可以询问和交流 可以互相讨论下,但要小声
此时输入转子电流的频率fr1为:
fr1=P·nr1/60=p(ns-nr2)/60=P·ns·S/60=S·fs
式中:S—转子滑差 fs---工频
上式表明:当发电机的转子以不同的转速 (滑差为S)运行时,只要根据转子转速的变 化来调节输入转子电流的频率,使变频器在转 子三相对称绕组中随时输入滑差频率fr1的电流, 就可以在发电机气隙中形成同步速度的旋转磁 场,在定子绕组中产生恒定频率的电势,满足 其并网运行的要求。

第四章 风力发电机组的并网技术 《风力发电机组监测与控制》课件

第四章 风力发电机组的并网技术 《风力发电机组监测与控制》课件

第三节 永磁同步风力发电机组的并网技术
图4-18 永磁同步直驱式风力发电机组的结构
第三节 永磁同步风力发电机组的并网技术
图4-19 永磁同步风力发电机组并网起动过程
第三节 永磁同步风力发电机组的并网技术
图4-20 电压空间矢量的八种工作状态
第四节 风力发电机ቤተ መጻሕፍቲ ባይዱ对电网稳定性的影响
一、低电压穿越能力 二、风电场无功功率的控制 三、风电场有功功率的控制
第一节 定桨恒速风力发电机组的软并网技术
一、软并网控制系统的结构 二、软并网控制系统的主电路分析 三、软并网装置中晶闸管的触发方式 四、软并网的控制规律及其对电网的影响 五、并网软切入对电网的影响
一、软并网控制系统的结构
图4-1 软并网控制系统的结构
二、软并网控制系统的主电路分析
图4-2 软切入的控制特性
一、双馈异步风力发电机组的并网过程
图4-14 双馈异步风力发电机组并网起动过程
一、双馈异步风力发电机组的并网过程
图4-15 WD77/1.5MW双馈机组并网实测波形
一、双馈异步风力发电机组的并网过程
图4-16 机组转速-转矩特性
二、双馈异步风力发电机组的并网控制
图4-17 双馈机组空载并网控制框图
风力发电机组监测与控制
第四章 风力发电机组的并网技术
并网运行的风力发电场除了节能和环保方面的优势外,还有以 下优点: (1)建设工期短。 (2)实际占地面积小,对土地质量要求低。 (3)运行管理自动化程度高,可做到无人值守。 但是,它也有局限性,主要表现为: (1)风能的能量密度小,从而使风能设备巨大而笨重,造成安装 运输的困难。 (2)风能的不稳定性,使风电场规模达到一定容量时会对电网产 生严重影响。

风电并网PPt

风电并网PPt
风电并网问题的分析
Logo
主要内容介绍
• 风力发电系统
一、风力収电系统类型 二、风力収电系统的模型 风电场稳态分析 一、含双馈异步収电机的工作原理 二、含直驱同步収电机的电力系统潮流计算 三、含直驱永磁同步机和双馈异步机的风电场电力系统潮 流计算 风电场并网对系统影响仿真分析
• • • • •
风力发电系统
风力发电系统
5、双馈异步収电机及其控制系统模型 • 控制系统数学模型 • a 转速控制
• • • •
转速控制传递函数框图 Kr表示比例积分控制器放大倍数 Tr表示时间常数 通过调节双馈异步収电机的电磁转矩来实现转速控制,即 改发电磁转矩要通过调节转子绕组电流q轴分量来进行。
风力发电系统
• b 无功功率控制
• 恒定功率因数控制传递函数框图
• 一阶惯性环节平滑输出减小了Idr波动的幅度,TQ是惯性环
节的时间常数
风力发电系统
6、直驱永磁同步収电机模型

直驱永磁同步収电系统有以下几个部分组成:风力机 、机械传动系统和桨距角控制系统、永磁同步収电机、转 速控制系统、发频器及其控制系统。
风力发电系统
6、直驱永磁同步収电机模型
• 双馈异步风电场在恒定功率因数方式下的潮流计算程序图
如下
• 含直驱永磁同步电机风电场恒定功率因数方式下的潮流计
算流程
• 示例分析
系统描述
• 采用含有大型风电场的IEEE14节电系统,风电场通过发
风力发电系统
2、变速恒频风力发电系统 采用双馈异步収电机的风力収电系统

该类风力収电系统丌必使风力机组转速保持恒定,而是 通过其他控制方式使得频率保持恒定。因此,它能够实现风 力机运行在最佳值,从而实现风能的最佳利用。

风力发电机并网原理PPT课件

风力发电机并网原理PPT课件

二、华锐风机并网方式简介
• 1. 预充电(S2):防止高频滤波器件过流。 预充电接触器吸和,变频器直流母排充 电至970DC左右,网侧变频器工作,母排 直流电压经网侧变频器逆变使A点电压渐 升为690AC,且电流值为57A。如果没有 预充电环节,直接吸和网侧接触器,会 使A点瞬间过电流。
• 2. 网侧变频器接触器闭合(S6)。网侧变 频器接触器闭合,同时预充电接触器断 开,能量从网侧经变频器至直流母排, 母排电压为1050DC,网侧变频器提供系 统所需无功能量,包括变压器、高频滤 波装置等。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变频 器工作,母排直流电压经机侧变频器逆 变对发电机转子加电压。
• 2.风机达到并网转速,同时网侧变频器 及5Q2检测电压等条件达到并网条件,网 侧接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
风力发电机并网
一、双馈异步发电机并网方式简介 二、华锐风机并网方式简介 三、GE风机并网方式简介
一、双馈异步发电机并网方式简介
1.双馈异步发电机 发电机的定子直接连接到电网上,转子 和变流器相连。当风力驱动发电机旋转 时,在变流器的控制下,发电机把机械 能转换成电能向电网馈电。
• 实际运行中,如果转子的机械转速nr2与 三相交流电流在转子表面产生的旋转磁 场的转速nr1(两者方向可以相同或相反) 之和等于电网频率为50Hz的发电机的同 步转速ns,即nr1±nr2=ns,此时在发电 机气隙中形成的同步旋转磁场就会在发 电机定子绕组中感应出频率为50Hz的感 应电势。
此时输入转子电流的频率fr1为:

风力发电机并网原理PPT课件

风力发电机并网原理PPT课件

此时输入转子电流的频率fr1为:
fr1=P·nr1/60=p(ns-nr2)/60=P·ns·S/60=S·fs
式中:S—转子滑差 fs---工频 上式表明:当发电机的转子以不同的
转速(滑差为S)运行时,只要根据转子转速 的变化来调节输入转子电流的频率,使变频器 在转子三相对称绕组中随时输入滑差频率fr1 的电流,就可以在发电机气隙中形成同步速度 的旋转磁场,在定子绕组中产生恒定频率的电 势,满足其并网运行的要求。
一、双馈异步发电机并网方式简介
1.双馈异步发电机 发电机的定子直接连接到电网上,转子 和变流器相连。当风力驱动发电机旋转 时,在变流器的控制下,发电机把机械 能转换成电能向电网馈电。
• 实际运行中,如果转子的机械转速(两者方向可以相同或相反) 之和等于电网频率为50Hz的发电机的同 步转速ns,即nr1±nr2=ns,此时在发电 机气隙中形成的同步旋转磁场就会在发 电机定子绕组中感应出频率为50Hz的感 应电势。
当发电机的转子以不同的转速运行时只要根据转子转速的变化来调节输入转子电流的频率使变频器在转子三相对称绕组中随时输入滑差频率fr1的电流就可以在发电机气隙中形成同步速度的旋转磁场在定子绕组中产生恒定频率的电势满足其并网运行的要求
风力发电机并网
一、双馈异步发电机并网方式简介 二、华锐风机并网方式简介 三、GE风机并网方式简介
• 3. 电机侧变频器启动(S7)。网侧变频器 电流80A左右,电机侧变频器电流20A左 右。
SUCCESS
THANK YOU
2019/8/1
• 4. 同步(S7-syn)。风机转速达到12001400rpm,电机侧变频器注入140A电流, 电机定子侧电压达到690V。
• 5. 定子接触器闭合,发电(S8)。定子电 压幅值、相位、频率与电网电压近乎一 致,定子接触器闭合,风机并网发电。

并网型风力发电机及控制系统 ppt课件

并网型风力发电机及控制系统  ppt课件

一般故障状态下,故障状态将对风机的安全产生 威胁,系统将采取慢速停机的方式将风机自然停 止 严重故障时的紧急保护,保证机组安全 严重故障发生时系统将采取快速停机的方式将风 机系统紧急抱死
ppt课件
17
5、控制系统技术特点及可靠性措施

双CPU的功能:严重故障时连锁动作的硬件保证 工作效率高:双CPU控制,两主站具有相对独立 的决策和执行能力,之间通过数据交换进行系统 监控。
8

直驱式风力发电机组
ppt课件
9
并网方式与特点 电力电子控制准同步并网,并网瞬间不会 产生冲击电流,不会引起电网电压的下降, 也不会对发电机定子绕组及其他机械部件 造成损害。 同步并网不需要复杂的并网装置,并网操 作简单,并网过程迅速;缺点是合闸后有 冲击电流,电网电压会出现短时间的下降 结构简单,可靠性提高,发电机转速低, 有利于提供寿命和减少维护 缺点:体积大、有退磁、成本高、运输和 吊装问题较大
可靠性高:通信故障是严重故障,在发生通信故 障后,按照设定各自进行相关停机复位动作,保 护系统硬件设备。 一定程度上互为备用,防止误动作和过早动作


ppt课件
18
光纤通讯:高强电磁环境下的抗干扰 距离远(一般50米以上),电磁干扰大,各 种大功率开关动作以及变流器等。


自然界干扰:雷电冲击、各种静电放电、 磁暴等 。 失电保护和自动复位 通过硬件连锁,保证在突然失电情况下, 关键部件有效动作,保障安全 安装不间断电源,紧急动作和连续动作配 合进行,保证相关部件到达安全位置。
降低了并网冲击电流 峰值,减少电网电压 大中型异步风力发电机的并 下降幅度,系统集成 网 较高
几乎冲击准同步并网, 捕捉式准同 风力发电机组的准同步并网 对机组的调速精度要 步快速并网 操作 求不高 软并网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双馈异步发电机的缺点是有滑环结构,需要 经常维护。
2. 主要三种并网方式
交流励磁变速恒频发电机采用双馈型异步发电机,与传 统的直流励磁同步发电机以及通常的异步发电机相比, 其并网过程有所不同。采用交流励磁后,可根据电网电 压和发电机转速来调节励磁电流, 进而调节发电机输出 电压来满足并网条件,因而可在变速条件下实现并网 。 变速恒频风力发电机组的并网方式主要有空载并网,带 独立负载并网,孤岛并网。其中,空载并网和带独立负载 并网2种方式中,转子励磁变换器直接与电网相连,双馈 电机定子与电网经过开关相连,而孤岛并网方式则是定 子与转子励磁变换器直接连接,再经过开关连接到电网, 电网经过预充电变压器与直流母线连接。

• 从定子侧看,这与一般同步发电机具有 直流励磁的转子以同步转速旋转时,在
发电机气隙中形成的同步旋转磁场是等
效的。因而,只要做到转子的机械转速 nr2和三相交流电流在转子表面产生的旋 转磁场的转速nr1互补,即nr1±nr2≌ns,
就可以在不同的转子转速情况下,在定 子绕组中总能感应出频率恒定的50Hz交 流电。
三、GE风机并网方式简介
• 1. 预充电:预充电接触器MA吸和,变频 器直流母排充电至970DC左右,机侧变 频器工作,母排直流电压经机侧变频器 逆变对发电机转子加电压。
• 2.风机达到并网转速,同时网侧变频器及 5Q2检测电压等条件达到并网条件,网侧 接触器合,预充电接触器分。
• 3. 5Q1和5Q2检测5Q3两侧电压、频率等 并网条件,如条件达到5Q3合,风机并网
风力发电机并网
一、双馈异步发电机并网方式简介 二、华锐风机并网方式简介 三、GE风机并网方式简介
一、双馈异步发电机并网方式简介
1.双馈异步发电机 发电机的定子直接连接到电网上,转子 和变流器相连。当风力驱动发电机旋转 时,在变流器的控制下,发电机把机械 能转ห้องสมุดไป่ตู้成电能向电网馈电。
• 实际运行中,如果转子的机械转速nr2与 三相交流电流在转子表面产生的旋转磁 场的转速nr1(两者方向可以相同或相反) 之和等于电网频率为50Hz的发电机的同 步转速ns,即nr1±nr2=ns,此时在发电 机气隙中形成的同步旋转磁场就会在发 电机定子绕组中感应出频率为50Hz的感 应电势。
双馈异步发电机变速恒频的特点,适应了风 力发电机组转速范围大的运行方式,其功率因 数可调的特点,有利于风电场接入点的电网电 压稳定性。
双馈异步发电机所配变频器功率较小,只有 总功率的30%左右,故风力发电机组整体的价 格较低。
同步发电机应用在发电机组中,需要用全功 率变频器,导致风力发电机组整体成本较高。
谢谢!
此时输入转子电流的频率fr1为:
fr1=P·nr1/60=p(ns-nr2)/60=P·ns·S/60=S·fs
式中:S—转子滑差 fs---工频
上式表明:当发电机的转子以不同的转速 (滑差为S)运行时,只要根据转子转速的变 化来调节输入转子电流的频率,使变频器在转 子三相对称绕组中随时输入滑差频率fr1的电流, 就可以在发电机气隙中形成同步速度的旋转磁 场,在定子绕组中产生恒定频率的电势,满足 其并网运行的要求。
• 3. 电机侧变频器启动(S7)。网侧变频器电 流80A左右,电机侧变频器电流20A左右。
• 4. 同步(S7-syn)。风机转速达到12001400rpm,电机侧变频器注入140A电流, 电机定子侧电压达到690V。
• 5. 定子接触器闭合,发电(S8)。定子电压 幅值、相位、频率与电网电压近乎一致, 定子接触器闭合,风机并网发电。
二、华锐风机并网方式简介
• 1. 预充电(S2):防止高频滤波器件过流。 预充电接触器吸和,变频器直流母排充 电至970DC左右,网侧变频器工作,母 排直流电压经网侧变频器逆变使A点电压 渐升为690AC,且电流值为57A。如果没 有预充电环节,直接吸和网侧接触器, 会使A点瞬间过电流。
• 2. 网侧变频器接触器闭合(S6)。网侧变频 器接触器闭合,同时预充电接触器断开, 能量从网侧经变频器至直流母排,母排 电压为1050DC,网侧变频器提供系统所 需无功能量,包括变压器、高频滤波装 置等。
相关文档
最新文档