223实际问题与二次函数(二)导学案(无答案)-人教版九年级数学上册

合集下载

人教版九年级数学上册导学案:22.3实际问题和二次函数(2)

人教版九年级数学上册导学案:22.3实际问题和二次函数(2)

九年级数学导学案课题实际问题与二次函数(2)课型新授任课教师周次第 6 周年级九年级班级章节22.3 课时第 2 课时时间9月 29 日学习目标知识与技能1、能根据实际问题的意义建立简单的二次函数模型;会利用二次函数性质解决实际生活中的利润最大等问题;2、通过对实际问题利润最大等的探究,学习分析问题、解决问题与建模。

3、在合作交流中感受数学的用价值,体会建模思想,提高学生应用数学的意识过程与方法情感态度与价值观学习重点利用二次函数的有关知识解决实际生活中利润最大问题学习难点将实际问题转化成二次函数问题学法指导自主探究,合作交流课前导案自学一、自主探究(课前导学)1、求下列二次函数的最大值或最小值:(1)322-+-=xxy(2)xxy42+=2、某种新型礼炮的升空高度h(m)与飞行时间t(s)的关系式是120252++-=tth,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为,升空的最大高度为3、知识回顾:(1)总价=单价×(2)利润= —进价(3)总利润=单个商品×4、认真研读课本50页“探究2”,类比涨价情况,解决在降价情况下,最大利润是多少?课中班级展示1、从课本50页“探究2”的解答中可以看出,商品销售中要想获得最大利润,可以采取什么手段?2、某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表,若日销售量 y 是销售价 x 的一次函数。

(1)求出日销售量y(件)与销售价x(元)的函数关系式?(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?3、某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?质疑探究提出自己的疑问,运用集体智慧,共同解决测评反馈主观题1、将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A、5元B、10元C、15元D、20元2、厂家以每件21元的价格购回一批商品,该商品可以自行定价,若每件商店售价为a元,则可卖出()a10-350件。

人教版九年级数学上册导学案:22.3.4实际问题与二次函数

人教版九年级数学上册导学案:22.3.4实际问题与二次函数

课题22.3.4实际问题与二次函数主备人签字课型新授授课人学案编号授课日期核心素养1、能熟练地列二元一次方程解决简单的实际问题;2、利用二次函数的图像性质求出最值,从而解决问题.重点利用二次函数解决实际问题难点根据图像和性质求出最值学习过程及内容备注一、新知预习已知直角三角形两条直角边的和等于8,两条直角边各位多少时,这个直角三角形的面积最大?最大值是多少?二、自学自测如图,四边形ABCD的两条对角线AC,BD互相垂直,AC+BD=10.当AC,BD的长是多少时,四边形ABCD的面积最大?三、合作交流一块三角形材料如图所示,∠A=30°,∠C=90°,AB=12.用这块材料剪出一个矩形CDEF,其中,点D,E,F分别在BC,AB,AC上.要使剪出的矩形CDEF的面积最大,点E应选在何处?万全区第三初级中学数学导学案四、拓展延伸如图所示,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG都是正方形,设BC=x.(1)求AC的长度;(2)设正方形ACDE和正方形CBFG的总面积为S,用x表示S的函数表达式;(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?(4)总面积S取最大值或最小值时,点C在AB的什么位置?五、展示帮扶1、如图所示,等腰直角三角形ABC的直角边AB=2,点P,Q分别从A,C两点同时出发,以相等的速度做直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线AC相交于点D.(1)设AP的长为x,ΔPCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,SΔPCQ=SΔABC?2、如图所示,ΔABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q 从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则ΔAPQ的最大面积是()A.8 cm2B.16 cm2C.24 cm2D.32 cm2六、内化总结反思。

九年级数学上册22.3实际问题与二次函数导学案(无答案)新人教版

九年级数学上册22.3实际问题与二次函数导学案(无答案)新人教版

22。

3 实际问题与二次函数学习目标1、能够分析和表示实际问题中变量之间的二次函数关系,2、能运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。

预习导学一、预习新知:阅读课本p49-p51,然后回答以下问题:知识点一:1.二次函数y=ax 2+bx+c 的图象是一条 ,它的对称轴是 ,顶点坐标是 。

当a>0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a<0时,抛物线开口向 ,有最 点,函数有最 值,是 .知识点二:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。

要想每周获得6090元的利润,该商品定价应为多少元?若设商品定价为x 元那么每件商品的利润可表示为 ,每周的销售量可表示为 ,一周的利润可表示为 ,要想获得6090元利润可列方程 。

知识点三;有一座抛物线拱桥,正常水位时桥下水面宽度为20 m ,拱顶距离水面4 m.①如图所示的直角坐标系中,求出该抛物线的解析式;②在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),求出将d 表示为h 的函数解析式;③设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面的宽度不得小于18 m,求水深超过多少m 时就会影响过往船只在桥下顺利航行。

学以致用1、已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;如何定价才能使利润最大?2、已知某商品的进价为每件40元。

现在的售价是每件60元,每星期可卖出300件。

市场调查反映:如调整价格 ,每降价一元,每星期可多卖出20件。

如何定价才能使利润最大?3、已知某商品的进价为每件40元.现在的售价是每件60调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;20件.如何定价才能使利润最大?4、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案

人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。

教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。

三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。

2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。

3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。

四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。

2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。

五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。

同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。

六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。

2.准备教学课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。

2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。

引导学生运用二次函数知识进行解决。

3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。

教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。

人教版九年级上册数学导学案:22.3实际问题和二次函数(无答案)

人教版九年级上册数学导学案:22.3实际问题和二次函数(无答案)

3.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。

(1)要使鸡场的面积最大,鸡场的长应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?选做题:用6m长的铝合金型材做一个形状如图所示的矩形窗框。

应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?五、板书【课后反思】【学习目标】1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x 的取值范围。

3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。

【学习重点】根据实际问题建立二次函数不同的数学模型,应用函数的性质解答数学问题【学习难点】根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围【资料准备】【教学过程】一、复习旧知 导入新课(1)建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA 。

O 恰好在水面中心,布置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y =-x 2+52x +32,请回答下列问题:(1)花形柱子OA 的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?(2).如图(7),一位篮球运动员跳起投篮,球沿抛物线y =-15x 2+3.5二、学习新知1、引导学生自学引导学生应用不同的方法去构建数学模型重点讲解例32、练一练:(1).如图是抛物线拱桥,已知水位在AB位置时,水面宽46米,水位上升3米就达到警戒线CD,这时水面宽43米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?三、小结:1.通过本节课的学习,你学到了什么知识?存在哪些困惑? 2.谈谈你的收获和体会。

人教版数学九年级上册22.3实际问题与二次函数(教案)

人教版数学九年级上册22.3实际问题与二次函数(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对二次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.二次函数图像与实际问题的联系,通过图像分析实际问题,求解最优解。
本节内容将结合具体案例,让学生在实际问题中理解和掌握二次函数的性质和应用,培养他们运用数学知识解决实际问题的能力。
二、核心素养目标
本章节的核心素养目标主要包括:
1.培养学生运用数学知识,特别是二次函数知识解决实际问题的能力,提高数学应用意识;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c的函数,它在生活中有着广泛的应用。它可以帮助我们解决最优化问题,如成本最小化、利润最大化等。
2.案例分析:接下来,我们来看一个具体的案例。假设一个工厂的成本与生产数量之间的关系是二次函数,如何求解成本最小时的生产数量?通过这个案例,展示二次函数在实际中的应用。
在小组讨论环节,学生们的表现让我感到欣慰。他们能够围绕二次函数在实际生活中的应用展开讨论,并提出自己的观点。这说明他们在思考问题和解决问题的能力上有了很大的提升。但在引导讨论时,我意识到需要提出更具针对性和启发性的问题,以激发学生的思考和创新能力。
最后,总结回顾环节,学生们对今天的学习内容有了较好的掌握。但我也发现,仍有一些学生对二次函数的应用不够熟练。在今后的教学中,我会加强对这部分学生的辅导和关注,确保他们能够跟上教学进度。

九年级数学上册第二十二章二次函数22.3实际问题与二次函数导学案2(新版)新人教版

九年级数学上册第二十二章二次函数22.3实际问题与二次函数导学案2(新版)新人教版

22.3 实际问题与二次函数(2)能根据实际问题建立二次函数的关系式,并探求出在何时刻,实际问题能取得理想值,增强学生解决具体问题的能力.重点:用函数知识解决实际问题.难点:如何建立二次函数模型.一、自学指导.(10分钟)1.自学:自学课本P 50,自学“探究2”,理解求实际问题中的最值与二次函数最值之间的关系,完成填空.总结归纳:在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,其中一些问题可以归结为求二次函数的最大值或最小值.用二次函数的知识解决实际问题时,关键是先将实际问题抽象成数学问题,即先建立二次函数关系,然后再利用二次函数的图象及性质进行解答.在二次函数y =a(x -h)2+k 中,若a>0,当x=h 时,函数y 有最小值,其值为y =k ;若a<0,当x =h 时,函数y 有最大值,其值为y =k .点拨精讲:遇到一般式,可先化成顶点式,再求最值;自变量有取值范围的还要考虑在范围内的最值.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(7分钟)1.已知二次函数y =x 2-4x +m 的最小值是2,那么m 的值是6.2.边长为10 cm 的正方形铁片,中间剪去一个边长是x cm 的小正方形,剩下的四方框铁片的面积y(cm 2)与x(cm )之间的函数关系是y =-x 2+100(0<x <10).3.服装店将进价为100元的服装按x 元出售,每天可销售(200-x)件,若想获得最大利润,则x 应定为150元.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究 某经销店代销一种材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式;(不要求写出x 的取值范围)(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)王强说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.解:(1)45+260-24010×7.5=60(吨); (2)y =(x -100)(45+260-x 10×7.5), 化简,得y =-34x 2+315x -24000;(3)y =-34x 2+315x -24000=-34(x -210)2+9075 此经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,王强说得不对.理由:当月利润最大时,x 为210元,而月销售额W =x(45+260-x 10×7.5)=-34(x -160)2+19200,当x 为160元时,月销售额W 最大,∴当x 为210元时,月销售额W 不是最大.∴王强说得不对.点拨精讲:要分清每一吨的利润、销售量与售价的关系;分清最大利润与最大销售额之间的区别.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.若抛物线y =-x 2+bx +c 的最高点为(1,3),则b =________,c =________.2.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x 元(x 为正整数),每个月的销售利润为y 元.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围.(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰好是2200元?根据以上的结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?3.某旅社有100张床位,每床每晚收费10元时,床位可全部租出;若每床每晚收费提高2元,则减少10张床位的租出,若每床每晚收费再提高2元,则再减少10张床位租出;以每次提高2元的这种方法变化下去,为了投资少而获利大,每床位每晚应提高多少元?点拨精讲:在根据实际问题建立函数模型时,要考虑自变量的取值范围.(3分钟)学生总结本堂课的收获与困惑.(2分钟)学习至此,请使用本课时的对应训练部分.(10分钟)。

部编版人教数学九年级上册《22.3 实际问题与二次函数(2) 教学设计》最新精品优秀教案

部编版人教数学九年级上册《22.3 实际问题与二次函数(2) 教学设计》最新精品优秀教案
2.如何确定二Fra bibliotek函数的关系式?
让学生回顾、思考、交流,得出:关键是确定上述两个式子中的待定系数,通常需要三个已知条件。在具体解题时,应根据具体的已知条件,灵活选用合适的形式,运用待定系数法求解。
作业
设计
必做
教科书P26:4、5、6
选做
教科书P26:8、9




三、课堂练习
1. 已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式。
解法1:设所求二次函数关系式为y=ax2+bx+c,因为图象过点(0,3),所以c=3,又由于二次函数当x=-3时,有最大值-1,可以得到: 解这个方程组,得:
所以,所求二次函数的关系式为y= x2+ x+3。
2.已知二次函数y=x2+px+q的图象的顶点坐标是(5,-2),求二次函数关系式。
简解:依题意,得 解得:p=-10,q=23
所以,所求二次函数的关系式是y=x2-10x+23。
四、小结
1,求二次函数的关系式,常见的有几种类型?
[两种类型:(1)一般式:y=ax2+bx+c
(2)顶点式:y=a(x+h)2+k,其顶点是(-h,k)]
2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。 (1)求二次函数的关系式,
(2)画出二次函数的图象; (3)说出它的顶点坐标和对称轴。
答案:(1)y=x2+x+1,(2)图略,(3)对称轴x=- ,顶点坐标为(- , )。
3.二次函数y=ax2+bx+c的对称轴,顶点坐标各是什么?
解法2:所求二次函数关系式为y=a(x+h)2+k,依题意,得y=a(x+3)2-1
因为二次函数图象过点(0,3),所以有3=a(0+3)2-1解得a=

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案

人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。

这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。

教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。

但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。

因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。

三. 教学目标1.了解二次函数在实际问题中的应用。

2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.掌握二次函数在实际问题中的应用。

2.将实际问题转化为二次函数问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。

同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。

六. 教学准备1.准备相关的实际问题案例。

2.准备PPT,展示二次函数在实际问题中的应用。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。

例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。

通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。

3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。

每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。

九年级数学上册 22.3 实际问题与二次函数导学案1(无答

九年级数学上册 22.3 实际问题与二次函数导学案1(无答

二次函数 实际问题与二次函数学习目标 会建立直角坐标系解决桥洞水面宽度等实际问题。

学习重点 会建立直角坐标系解决桥洞水面宽度等实际问题。

学习难点 会建立直角坐标系解决桥洞水面宽度等实际问题。

学习方法数形结合的思想学习准备1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________. 2.拱桥呈抛物线形,其函数关系式为241x y-=,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( ) A .m 3 B .m 62C .m 34D .m 93.下图是抛物线拱桥,当水面在l 时,拱顶离水面m 2,水面宽m 4,水面下降m 1,水面宽度增加多少?教 学 流 程一、应用举例例1、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽m AB 6.1=时,涵洞顶点与水面的距离为m 4.2.这时,离开水面m 5.1处,涵洞宽ED 是多少?是否会超过m 1?例2、连接着汉口集家咀的江汉三桥(晴川桥),是一座下承式钢管混凝土系杆拱桥.它犹如一道美丽的彩虹跨越汉江,是江城武汉的一道靓丽景观.桥的拱肋ACB 视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,相邻系杆之间的间距均为m 5(不考虑系杆的粗细),拱肋的跨度AB 为m 280,距离拱肋的右端m 70处的系杆EF 的长度为m 42.以AB 所在直线为x 轴,抛物线的对称轴为y 轴建立如图(2)所示的平面直角坐标系.(1)求抛物线的解析式;(2)正中间系杆OC 的长度是多少米?是否存在一根系杆的长度恰好是OC 长度的一半?请说明理由.图26.3.2yxABEFC O当堂训练1、如图,有一个抛物线形的水泥门洞.门洞的地面宽度为m8,两侧距地面m4高处各有一盏灯,两灯间的水平距离为m6.求这个门洞的高度.(精确到m1.0)2、如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是m20,如果水位上升m3时,水面CD的宽为m10,建立如图所示的直角坐标系,求此抛物线的解析式;现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥km280,(桥长忽略不计)货车以hkm/40的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以hm/25.0的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行。

人教版九年级上册数学学案:22.3实际问题与二次函数 (2)含答案

人教版九年级上册数学学案:22.3实际问题与二次函数 (2)含答案

课题:22.3实际问题与二次函数 (2)201 年月一、学习目标1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.2.通过探索“面积问题中”的最值的过程,获得利用数学方法解决实际问题的经验,亲自体会到学习数学知识的价值,提高学习兴趣.二、教材导学问题1.某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?问题2.计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道.如图,现有一张半径为45mm的磁盘.(1)磁盘最内的磁道半径为rmm,其上每0.015的弧长为1个存储单元,这条磁道有多少个存储单元?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外周不是磁道,这张磁盘最多有多少条磁道?(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?分析问题(1)磁盘存储量与那几个量有关?(每条磁道的存储量和磁道条数)(2)从中找寻函数关系,解决实际问题.(3)考虑自变量范围,r可以无限增大吗?问题3.如图,某养鸡专业户准备利用一面墙(墙的长度大于50米),用长50米的篱笆围成一个鸡的活动场地矩形ABCD,其中AB边上有一个宽2米的门(PQ=2米)且门不需要篱笆.请你帮助设计一下,当矩形的长AB是多少米时,此矩形面积最大?最大面积是多少平方米?三、引领学习知识点1:利用二次函数求“图形面积”问题中墙不限长的最值如图所示,有长为24m的篱笆,一面利用墙(•墙的长度不限),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.知识点2:利用二次函数求“图形面积”问题中墙限长的最值如图所示,有长为24m的篱笆,一面利用墙(•墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.归纳:1.在此类面积问题中,墙的长度一般是限定自变量取值范围的,即确定是否可以取到此二次函数的最大值,因此,要特别注意墙的长度这一限制条件.2.此类问题中的隔断部分也属于材料的一部分,注意列式时要考虑在内.3.此类问题如果设置门,则所围部分的实际周长,比材料多门的宽度.课题:22.3实际问题与二次函数 (2)答案二、教材导学问题1.(1) (130-100)×80=2400(元)(2)设应将售价定为元,则销售利润 .当时,有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.问题3.设AB 长x 米,则AD 长21(50+2-x)=(26-21x)米 设面积为S ,则S=x(26 -21x)=-21x 2+26x∵a=-21<0 ∴S 有最大值……1分 当x=-)21(226-⨯=26时 S 最大=26(26-13)=338三、引领学习知识点1:(1)∵m AB x =, ∴()243BC x =-m .∴()2243324S x x x x=-=-+.(2)当45S =时,232445x x -+=,即28150x x -+=.解得1235x x ==,.∴要围成面积为45m 2的花圃,AB 的长是3m 或5m .(3)能围成面积比45m 2更大的花圃.∵()223243448S x x x =-+=--+,∴当=4x 时,S 取最大值48. 知识点2:(1)∵m AB x =, ∴()243BC x =-m .∴()2243324S x x x x=-=-+.∵0024310x x ><-,≤, ∴1483x <≤.x 130(100)(8020)5xy x -=-+⨯24100060000x x =-+-24(125)2500x =--+125x =y∴S 与x 的函数关系式是21432483S x x x ⎛⎫=-+< ⎪⎝⎭≤. (2)当45S =时,232445x x -+=,即28150x x -+=.解得1235x x ==,.而当3x =时,不满足1483x <≤,故舍去,只取5x =.∴要围成面积为45m 2的花圃,AB 的长是5m .(3)不能围成面积比45m 2更大的花圃. ∵()223243448S x x x =-+=--+,∴当=4x 时,S 取最大值48.∵1483x <≤,1443<∴当4x >时,S 随x 的增大而减小.∴不能围成面积比45m 2更大的花辅.。

九年级数学上册第22章《实际问题与二次函数(2)》名师教案(人教版)

九年级数学上册第22章《实际问题与二次函数(2)》名师教案(人教版)

22.3 实际问题与二次函数(2)——二次函数与几何最值问题一、教学目标(一)学习目标1. 能根据具体几何问题中的数量关系,列出二次函数关系式2.会利用二次函数求几何图形中的周长、面积等的最值3.体会利用二次函数求面积其中所蕴含的数学思想和方法(二)学习重点应用二次函数解决几何图形中有关的最值问题(三)学习难点函数特征与几何特征的相互转化以及讨论最值在何处取得二、教学设计(一)课前设计预习任务1.22(3)2y x =--+;对称轴3x =、顶点坐标()3,2、当3x =时,y 取最大值为22.21322y x x =--;对称轴1x =、顶点坐标()1,2-、当1x =时,y 取最小值为-2 3.(1)(3)y x x =-+对称轴1x =-、顶点坐标()1,4--、当1x =-时,y 取最小值为4- 预习自测1. 已知二次函数的解析式为22813y x x =++(1)当33x -≤≤,该函数的最大和最小值分别是_________和_____________;(2)当03x ≤≤,该函数的最大和最小值分别是_________和_____________.【知识点】求二次函数的区间最值【数学思想】数形结合【思路点拨】先化成顶点式或是利用顶点坐标公式求出顶点,再看对称轴和区间的位置关系,进而求解.【解题过程】解:把原式化为顶点式为2228132(2)5y x x x =++=++,可知此函数的顶点坐标是(2,5)-,对称轴为2x =-(1) 当33x -≤≤时可知,max 355x y ==时,2x =-时min 5y =;(2)当03x ≤≤,对称轴2x =-时在所给的区间左侧,此时y 随x 的增大而增大,因此可知max 355x y ==时,min 013x y ==时【答案】(1)55,5;(2)55,13.【设计意图】通过做练习复习区间最值的求解以及应该注意的问题,实际问题中有时会涉及到区间最值,学生很容易出问题.设计此题就是为了提醒学生注意求解函数问题不能离开定义域这个条件才有意义,因为任何实际问题的定义域都受现实条件的制约,为学习新课做好知识铺垫.2.在一幅长80cm ,宽50cm 的矩形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5000cm 2,设金色纸边的宽为xcm ,那么满足的方程是( ).A .x 2+130x-1400=0B .x 2-130x-1400=0C .x 2+65x-250=0D .x 2-65x-250=0【知识点】矩形性质,矩形面积【数学思想】数形结合【思路点拨】挂图长为(80+2x )cm ,宽为(50+2x )cm ,根据整个挂图的面积是5000cm 2,即长×宽=5000,列方程进行化简即可.【解题过程】解:挂图长为(80+2x )cm ,宽为(50+2x )cm ;所以(80+2x )(50+2x )=5000,即4x2+160x+4000+100x=5000,所以4x2+260x-1000=0.即x2+65x-250=0. 故选C.【答案】C .【设计意图】根据矩形的面积公式本题易得解.3.用长16 m 的绳子围成如图所示的矩形框,使矩形框的面积最大,那么这个矩形框的最大面积是_______ 2m .【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】设竖边为x ,用x 表示横边,再表示面积,再求最值【解题过程】设竖边为x,则横边为1623x - 21622(4)32333x x s x --==-+ 当4x =时,y 取最大值为323【答案】323 【设计意图】把其中的一个主要变量设为x ,另一个设为y ,其它变量用含x 的代数式表示,找等量关系,建立函数模型,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.4.如图,点C 是线段AB 上的一个动点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大【知识点】正方形性质,求面积最大问题【数学思想】数形结合【思路点拨】把其中的一个主要变量设为x ,其它变量用含x 的代数式表示,找等量关系,建立函数模型【解题过程】设AC=x 则BC= 1x -22211(1)2()22s x x x =-+=-+ 当12x =时,取最小值为12∴当C 是AB 的中点时,S 最小【答案】A【设计意图】把其中的一个主要变量设为x ,另一个设为y ,其它变量用含x 的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.(二)课堂设计1.知识回顾(1)对于任意一个二次函数的一般式2(0)y ax bx c a =++≠,可以利用配方把它化为顶点式2()y a x h k =-+,进而写出顶点坐标(h,k )和对称轴x=h(2)求二次函数2(0)y ax bx c a =++≠与x 轴的交点,即令y=0即可;其与x 轴交点即为12(,0)(,0)x x ;求二次函数2(0)y ax bx c a =++≠与y 轴的交点,即令x=0即可;其与y 轴交点即为(0,)c(3)将二次函数的一般式2(0)y ax bx c a =++≠转化成顶点式2()y a x h k =-+来求二次函数最值,当x h =时,y 取最值为k2.问题探究探究一 最大面积(★)●活动1 创设情境,发现问题[做一做]:请你画一个周长为24厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大. 学生通过画周长一定的矩形,会发现矩形长、宽、面积不确定,从而回想起常量与变量的概念,最值又与二次函数有关,进而自己联想到用二次函数知识去解决.【设计意图】做一做中,让每一个同学动手画周长固定的矩形,然后比较谁的矩形面积最大,目的一是为激发学生的学习兴趣,二是为了引出想一想.周长固定、要画一个面积最大的矩形,这个问题本身对学生来说具有很大的趣味性和挑战性,学生既感到好奇,又乐于探究它的结论,从而很自然地从复习旧知识过渡到新知识的学习.●活动2 师生共研,探索解法例1. 李老师计划用长为24米的篱笆,围成长方形花圃,他想请同学们帮他思考一下如何围才能使围成的花圃面积最大,最大值是多少?让学生讨论,得出解法.点拨:先用未知数表示面积问题中的各个量,再利用矩形面积公式列出表达式,然后根据表达式,利用二次函数求最值.生答:设矩形宽为x厘米,则长为2422x-=(12-x)厘米.12S x x=-(),当x=6时,S取最大值为36.【设计意图】把前面矩形的周长24厘米改为24米,变成一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方法基础.解决完想一想之后及时让学生总结方法,为后面阶段打下思想方法基础.练习1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l为多少米时,场地的面积S最大?【知识点】矩形性质,矩形周长,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.【解题过程】设矩形一边长l,则长为602302ll-=-()厘米.()30S l l=-,当15l=时,S取最大值为225【答案】当15l =时,S 取最大值为225【设计意图】一个实际问题,目的在于让学生体会其应用价值——数学来源于生活也服务于生活.学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为l ,其它变量用含l 的代数式表示,找等量关系,建立函数模型●活动3 变式应用例2.(例1变式) 后来李老师惊喜的发现有一面长度为8米的墙可以靠,则他怎样围可以使花圃的面积最大?最大面积是多少?学生根据例1的解法,独立求解【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式是本题关键.考虑实际问题中靠墙所造成的易错点.最值不是由顶点处取到,学会区间求最值.【解题过程】生答:(1)设矩形长为x 厘米,则宽为242x -厘米.(8x ≤) 241(24)22x S x x x -=⋅=-=()2112722x --+; ∵a=12-<0,开口向下, ∵8x ≤,当8x =时,S 取最大值为64【答案】面积S 取最大值为64【设计意图】此时有了上一问的方法和技巧,很多学生能够类比的方法建立模型,设出未知数,列出函数关系式.但问题是此时自变量x 有取值范围的限制,不能“任性”的取值.从而让学生在不断的探究和合作中感悟,对于实际问题一定需要考虑其自变量x 的取值范围才可以求最值.练习2.如图,用一段长为60 m 的篱笆围成一个一边靠墙的矩形菜园,墙长32 m ,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个量,列出面积的关系式时考虑实际问题中靠墙所造成的易错点(这道题靠墙依然可以在顶点处取到最值).【解题过程】与墙垂直的一边为x 米,则(602)S x x =-∵0≤60-2x≤32. ∴ 14≤x≤30当15x =时,S 取最大值为450【答案】当15x =时,S 取最大值为450【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既 加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.小结:在实际问题中求解二次函数的最值问题,不一定都取图象顶点处,要根据自变量的取值范围来确定.通过问题2与问题3的对比,希望学生能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.探究二 利用二次函数求几何最值的训练●活动① 基础性例题例1. 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25 m )的空地上修建一个矩形绿化带 ABCD ,绿化带一边靠墙, 另三边用总长为 40 m 的栅栏围住 (如下图).设绿化带的 BC 边长为 x m ,绿化带的面积为2m y .(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.(2)当 x 为何值时,满足条件的绿化带的面积最大?【知识点】一侧靠墙的矩形,周长确定求其面积最大【数学思想】数形结合【思路点拨】利用题目给出的已知条件列出满足题意的式子,进而转化为二次函数求最值. 【解题过程】解:(1) 24012022x y x x x -==-+g , 自变量x 的取值范围是0<x ≤25;(2) ()22112020+20022y x x x =-+=-- ∵20<25,∴当x=20时,y 有最大值200,即当x=20时,满足条件的绿化带面积最大【答案】(1)21202y x x =-+,其中025x ≤≤; (2)当x=20时,满足条件的绿化带面积最大【设计意图】这一阶段,我让学生分组讨论,每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.练习.某窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长为15 m (图中所有线条长度之和),当x 等于多少时,窗户通过的光线最多?此时,窗户的面积是多少?(结果精确到0.01 m)【知识点】周长确定的矩形面积最大问题【数学思想】数形结合【思路点拨】中间线段用x 的代数式来表示,要充分利用几何关系;要注意顶点的横坐标是否在自变量x 的取值范围内.【解题过程】由题意可知1426152y x x π+⨯+=,化简得1564x x y π--=,设窗户的面积为S m 2, 则2211561523242x x S x x x x ππ--=+=-+g , ∵30a =-<,∴S 有最大值.∴当x =1.25 m 时,S 最大值≈4.69(m 2),即当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.【答案】当x =1.25 m 时,窗户通过的光线最多.此时,窗户的面积是4.69 m 2.【设计意图】这一阶段,让学生自己通过自己的思考,动手来进行操作解决问题.每一小组指定一名发言人说明小组的思路和解题的过程.这一过程既 加强了学生之间合作和探究的能力,形成你追我赶的良好氛围,同时也锻炼学生口头表达能力和板书的能力.小组中每个孩子的数学思维和数学能力都得到了锻炼,使不同层次的学生都能体会到成功的喜悦.●活动② 提升型例题分组讨论交流解题思路,小组活动后,小组代表展示活动成果.例2.如图,在矩形ABCD 中,AB =2 cm ,BC =4 cm ,P 是BC 上的一动点,动点Q 仅在PC 或其延长线上,且BP =PQ ,以PQ 为一边作正方形PQRS ,点P 从B 点开始沿射线BC 方向运动,设BP =x cm ,正方形PQRS 与矩形ABCD 重叠部分面积为y 2cm ,试分别写出02x ≤≤和24x ≤≤时,y 与x 之间的函数关系式.【知识点】正方形性质,矩形性质,求二次函数最值【数学思想】数形结合,分类讨论【思路点拨】根据题目题意画出相关的图形,充分利用几何关系来求解同时写出自变量x 的取值范围内.【解题过程】如图,阴影部分的重叠部分的面积为y当02x ≤≤时,如下面的左边的图形所示, PQ BP x ==,此时22y PQ x ==,其中02x ≤≤;当24x ≤≤时,如下面的右边的图形所示, PQ BP x ==,此时4PC BC BP x =-=-,其中24x ≤≤;2(4)28y PC CD PC AB x x =⨯=⨯=-=-+,其中24x ≤≤综上所述:2,0228,24x x y x x ⎧≤≤=⎨-+≤≤⎩【答案】2,0228,24x x y x x ⎧≤≤=⎨-+≤≤⎩【设计意图】让学生自己通过自己的思考,结合题意画出符合题意的图形,根据图形来求解,让学生感受分类讨论的数学思想.练习.如图,从一张矩形纸片较短的边上找一点E ,过E 点剪下两个正方形,它们的边长分别是AE ,DE ,要使剪下的两个正方形的面积和最小,点E 应选在何处?为什么?【知识点】矩形性质,矩形面积,求二次函数最值【数学思想】数形结合【思路点拨】根据图形之间的关系,表示出两个正方形的边长,进而表示出两个正方形的面积之和,转化为二次函数求最值.【解题过程】令,,DE x AD a AE a x ===-, 所以面积之和222222()222()22a a S x a x x ax a x =+-=-+=-+, 所以当2a x =时,面积最小,即E 应选在AD 的中点. 【答案】E 应选在AD 的中点. 【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验. 例3.如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等,设甬道的宽为x 米.(1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的总面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米,如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?【知识点】梯形面积,正比例函数,解一元二次方程,二次函数求最值【数学思想】数形结合【思路点拨】想象把所有的阴影部分拼在一起就是一个小梯形.解答抛物线形实际问题的一般思路:1.把实际问题中的已知条件转化为数学问题;2.建立适当的平面直角坐标系,把已知条件转化为坐标系中点的坐标;3.求抛物线的解析式.【解题过程】(1)横向甬道的面积为:21(120180)150()2x x cm ⨯+= (2)依题意:2112801502(120180)8028x x x ⨯+-=⨯+⨯⨯ 整理得:21557500x x -+=解得125,150(x x ==舍去)故甬道的宽为5米;(3)设建设花坛的总费用为y 万元. 则210.02(120180)80(2310) 5.72y x x x ⎡⎤=⨯⨯+⨯--++⎢⎥⎣⎦20.040.5240x x =-+当 6.252b x a=-=时,y 的值最小. ∵根据设计的要求,甬道的宽不能超过6米,∴当x=6米时,总费用最少.即最少费用为 238.44万元. 【答案】(1)横向甬道的面积为:21(120180)150()2x x cm ⨯+= (2)故甬道的宽为5米;(3)当x=6米时,总费用最少.即最少费用为 238.44万元.【设计意图】新课程下的数学活动必须建立在学生已有的认知发展水平及知识经验基础之上,充分让学生参与教学,在合作交流的过程中,获得良好的情感体验 练习.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4 m ,当水渠深x 为_______时,横断面面积最大,最大面积是__________.【知识点】梯形面积,二次函数求最值【数学思想】数形结合【思路点拨】根据题目中给定的角度,求出两腰和下底之间的关系式,进而列式转化为二次函数求解.【解题过程】底角为120°,则高和腰之间的夹角为30°,水渠深度 为x ,则得到:33AE x =,腰长33AB CD x == 两腰与下底的和为4得到:下底为434BC x =-所以上底为234AD x =设横断面的面积为S,则21()342S AD BC BE x x =+=-+ ∵2330x -<=,对称轴为 ∴当23x =时,横断面面积最大为43 【答案】当233x =时,横断面面积最大为433 【设计意图】加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣●活动③ 探究型例题例4. 在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/秒的速度移动,同时,点Q 从点B 出发沿BC 边向点C 以2cm/秒的速度移动.如果P 、Q 两点在分别到达B 、C 两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,△PBQ 的面积等于8平方厘米?(2)设运动开始后第t 秒时,五边形APQCD 的面积为S 平方厘米,写出S 与t 的函数关系式,并指出自变量t 的取值范围;(3) t 为何值时S 最小?求出S 的最小值.【知识点】矩形性质,三角形、五边形面积,求二次函数最值【数学思想】数形结合【思路点拨】能用未知数表示清楚面积问题中的各个边长,列出面积的关系式,再依次解决三个问题.【解题过程】(1)设x 秒后△PBQ 的面积等于8,则AP=x ,QB=2x ∴PB=6﹣x .∴12×(6﹣x )2x=8, 解得1x =2,2x =4,所以2秒或4秒后△PBQ 的面积等于8;(2)第t 秒钟时,AP=t cm ,故PB=()6t -cm ,BQ=2t cm , 故212(6)=62PBQ S t t t ∆=⋅--+ ∵61272ABCD S =⨯=矩形∴()27267206.PBQ S S t t t ∆=-=-+<<(3)∵()22672=363S t t t =-+-+,∴当3t =秒时,S 取最小值为63.【答案】(1)2秒或4秒后△PBQ 的面积等于8;(2)()27267206.PBQ S S t t t ∆=-=-+<<(3)当3t =时,S 取最小值为63【设计意图】此题设计了一个动点最值问题,有前面的方法和思路加上前面基础题作铺垫,大部分学生可以完成.练习. 曾经有这样一道题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m ,如何设计这个窗户,使透光面积最大?(该题的答案是:当窗户半圆的半径约为0.35m 时,透光面积最大值约为1.05m ²) 我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m ,利用图3,解答下列问题:(1)若AB 为1m ,求此时窗户的透光面积?(2)与该例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.【知识点】矩形性质,二次函数求最值【数学思想】数形结合【思路点拨】由题意列出式子,转化为二次函数求最值【解题过程】(1)由已知可以得到:161115224AD ----== 此时窗户的透光面积55144S =⨯=; (2)设AB=x ,则734AD x =- ∵7304x -> ∴1207x << 设窗户的面积为S,由已知可以得到2277769(3)3()44477S AB AD x x x x x ==-=-+=--+g 当67x =时,max 9 1.057S => 与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大【答案】(1)窗户的透光面积55144S =⨯= (2)与前面的例题比较,改变窗户形状后,窗户透光面积的最大值变大【设计意图】学生在探索这个问题的过程中,将自然地体会到数学来源于生活,同时也服务于生活体验到数学与现实生活的紧密联系,同时加强学生自己的过手能力和计算能力,以课本上的例题为引子,在原来的基础上进行拓展,让学生吃透课本.3. 课堂总结知识梳理1.二次函数的三种形式:一般式2(0)y ax bx c a =++≠;顶点式2()(0)y a x h k a =-+≠以及交点式12()()(0)y a x x x x a =--≠.2.二次函数的三种形式之间的相互转化:一般式2(0)y ax bx c a =++≠可以利用配方化为顶点式2224()(0)24b ac b y ax bx c a x a a a -=++=++≠,进而可以得到顶点坐标公式24(,)24b ac b a a --,对称轴2b x a=-.交点式可以先化为一般式再配方转化为顶点式,有时也可以利用交点式快速的求对称轴122x x x +=. 3.利用二次函数求矩形周长一定的情况下,矩形面积的最大值,在求解的过程中需要标注自变量x 的取值范围,求解的过程中注意是顶点最值还是区间最值,这里往往难度较大.重难点归纳1. 利用二次函数的一般式求最值,有两种思路,第一可以先通过配方2224()(0)24b ac b y ax bx c a x a a a -=++=++≠ 把一般式化为顶点式,再利用顶点式求函数的最值;第二可以直接利用顶点坐标公式24(,)24b ac b a a--来求解. 利用交点式求二次函数的最值,一般是快速的利用对称轴的方程122x x x +=来求对称轴,进而求解. 2.实际问题中已知矩形的周长来求解面积最大,此时需要结合题意求解相关的边长,列出方程或是等式转化为二次函数的形式,但需要注意实际问题中往往需要注明自变量x 的取值范围.3. 强化利用二次函数求面积时,应该用一个变量来表示另一个变量,进而表示出面积,写出自变量的取值范围,再结合二次函数求最值的方法来求解,在求解的过程中应该注意是顶点最值还是区间最值,最后还需检验解的合理性.4.数形结合思想特别重要,在思考的过程中需要结合题意画出满足条件的图形,尤其是动态问题中画出图形是解题的关键.(三)课后作业基础型 自主突破1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( )A .60 m 2B .63 m 2C .64 m 2D .66 m 2【知识点】矩形面积,求二次函数最值【数学思想】数形结合【解题过程】设AB=x ,则BC=16-x ,其中016x <<.所以矩形ABCD 的面积为 2(16)16S AB BC x x x x ==-=-+g10,8x -<=Q 对称轴且016x <<8x ∴=当时,矩形ABCD 的面积最大,2max 64m S =.【思路点拨】通过设未知数,先把矩形ABCD 的面积表示出来,是一个开口向下的二次函数,然后利用顶点坐标公式求出对称轴8x =,又知道自变量016x <<,因此当取对称轴8x =时,面积最大.【答案】C2.用一根长为40 cm 的绳子围成一个面积为a 2cm 的矩形,那么a 的值不可能为( )A .20B .40C .100D .120【知识点】矩形面积,求二次函数最值【数学思想】数形结合【解题过程】设矩形的一边为x ,则另外一边为20x -,其中020x <<.所以围成矩形的面积为2(20)20S x x x x =-=-+ 10,10x -<=Q 对称轴且020x <<10x ∴=当时,矩形的面积最大,2max 100cm S =,因此0100S <≤,故a 不可能取120.【思路点拨】矩形的周长为40,可以设出其中一边,可表示出另外一边,需要注意此时自变量的取值范围,再表示出矩形的面积,此时面积是一个开口向下的二次函数,然后利用顶点坐标公式求出对称轴10x =,又知道自变量020x <<,因此可以算出面积的取值范围.【答案】D3.已知一个直角三角形两直角边长之和为20,则这个直角三角形的最大面积为( )A .25B .50C .100D .不确定【知识点】三角形面积,求二次函数最值【数学思想】数形结合【解题过程】设这个直角三角形的一边为x ,则另外一边为20x -,其中020x <<.所以面积为211(20)1022S x x x x =-=-+ 10,102x -<=Q 对称轴且020x << 10x ∴=当时,三角形的面积最大,max 50S=,因此max 50S =. 【思路点拨】已知直角三角形的两边之和是20,设其中一边为x , 表示出该直角三角形的面积211(20)1022S x x x x =-=-+,此时面积是一个开口向下的二次函数,然后利用顶点坐标公式24(,)24b ac b a a--求出对称轴10x =,其中020x <<,因此可以算出面积的最大值【答案】B4.将一条长为20 cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是____2cm .【知识点】正方形面积,求二次函数最值【数学思想】数形结合【解题过程】设其中一个正方形的周长为xcm ,其边长为4x ,则另外一个正方形的周长为(20x -)cm ,其边长为204x -其中020x <<.所以这两个正方形的面积之和为 2222015()()254482x x S x x -=+=-+ 10,108x >=Q 对称轴且020x << 10x ∴=当时,三角形的面积最小,2min 25cm 2S=, 因此2min 25cm 2S =. 【思路点拨】两个正方形的周长之和为20,,设其中一个正方形的边长为x , 表示出另一个的周长,进而表示出两个正方形的面积之和。

3 实际问题与二次函数(第二课时)(教学设计)-九年级数学上册同步备课系列(人教版)

3 实际问题与二次函数(第二课时)(教学设计)-九年级数学上册同步备课系列(人教版)

22.3实际问题与二次函数(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.3实际问题与二次函数(第二课时),内容包括:利用二次函数解决利润最值问题与拱桥最值.2.内容解析二次函数是描述现实世界变量之间关系的重要数学模型,将实际问题中的变量关系转化为二次函数后,就可以利用二次函数的图象和性质加以解决,其关键是从实际问题中抽象出数学模型.本节课是在学生学习二次函数的图象和性质的基础上,借助于二次函数的图象研究二次函数的最小(大)值,并运用这个结论解决相关的实际问题.利用二次函数解决销售利润问题的方法:(1)读懂题意;(2)借助销售问题中的利润等公式寻找等量关系;(3)确定函数解析式;(4)确定二次函数的最值;(5)检验、解决实际问题。

特别需要注意,解答此类型问题要抓住关键的词和字,将实际问题转化为求函数最值问题。

既要看到销售价格对销售量的影响,也要看到销售价格对单件商品利润产生的影响,两者结合起来,销售价格就会对销售总利润产生影响。

在求二次函数最值时,要注意实际问题中自变量的取值的限制对最值的影响。

以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究,建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问题的关键.基于以上分析,确定本节课的教学重点是:从实际问题中抽象出二次函数关系并运用二次函数的最小(大)值解决实际问题.二、目标和目标解析1.目标1)求二次函数y =ax 2+bx +c 的最小(大)值.2)能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题.2.目标解析达成目标1)的标志是:学生会借助于二次函数的图象得到在二次函数顶点处取得最小(大)值的结论,理解当x =-2b a 时,函数有最小(大)值244ac b a-.达成目标2)的标志是:学生通过经历探索具体问题中数量关系和变化规律的过程,进一步体验如何从实际问题中抽象出二次函数模型,结合实际问题研究二次函数,将二次函数的最小(大)值的结论和已有知识综合运用来解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础.但运用二次函数的知识解决实际问题要求学生能选取适当的用来描述变量之间关系的函数分析问题和解决问题,对学生来说,要完成这一过程难度较大.基于以上分析,本节课的教学难点是:将实际问题抽象出数学模型,并利用二次函数解决实际问题.四、教学过程设计(一)复习巩固[问题]简述用二次函数解决实际问题的一般步骤?师生活动:教师提出问题,学生回答.【设计意图】复习回顾用二次函数解决实际问题的一般步骤,为本节课学习利用二次函数解决利润最值问题与拱桥问题进行铺垫.(二)探究新知【问题】某产品现在售价为每件60元,每星期可卖出300件。

人教版数学九年级上册 22实际问题与二次函数 学案

人教版数学九年级上册 22实际问题与二次函数 学案

《22.3.1 实际问题与二次函数》任务学习单一.探索微课、自主探究(一)构建认知冲突要求:打开平板中愤怒的小鸟,你可以玩两关游戏,同时在玩游戏的过程中仔细观察并思考以下问题:1.在游戏中,你可以看到小鸟的运动轨迹是一条;2.如果我们用的知识来分析小鸟的运动轨迹,应该先;3.要想解决这个问题,你可以选择以作为原点建立平面直角坐标系;4.除了以作为原点建立平面直角坐标系,还有没有其他方案?5.试着对比你所想到的所有方案,选择作为原点建立平面直角坐标系最好。

(二)明确学习目标要求:观看微课之前,请快速浏览本次学习的认知目标,打开平板中的洋葱数学进行学习,观看《22.3.1实际问题与二次函数——先建系再解题》,如果在看微课时遇到不懂的问题,你可以暂停或重看微课,直到充分理解微课中所讲的知识内容并在下面的[ ]中打勾。

(三)自学引导问题要求:在观看微课时,动手做摘要和笔记很重要。

首先,请你完成下列引导问题,遇到做不出来的题目,可能是因为你忘记或没理解微课中的关键概念,这时你可以随时回看微课。

然后,提炼出本节课的知识重点,记录在反思栏处,用于以后课后或考前的高效复习。

阶段一:桥洞问题——实际问题,先建系☆微课对应时间:00:00~01:45☆如图,一座拱桥的桥洞呈抛物线形,当桥洞里的水面宽4米时,离拱顶2米,如果水位下降1米,水面会变得多宽?1. 思路:☆ →☆ →☆2. 解决:要想求出解析式,首先应该3. 前提:我们必须确定两个问题:☆ ;☆阶段二:桥洞问题——选择合适的原点 ☆微课对应时间:01:45~03:19☆ 思考:在点A ,点P ,点Q 三个点中,哪个点最适合做原点来建立平面直角坐标系?小结1:在点A ,点P ,点Q 三个点中, 最适合做原点。

阶段三:桥洞问题——选择最佳原点☆微课对应时间:03:19~06:43☆再思考:在四个点中,哪个点能让得出的函数解析式尽量简单?小结2:在点A,点B,点C,点D四个点中,最适合做原点。

九年级数学上册 22.3 实际问题与二次函数教案2 新人教版(2021年整理)

九年级数学上册 22.3 实际问题与二次函数教案2 新人教版(2021年整理)

陕西省石泉县九年级数学上册22.3 实际问题与二次函数教案2 (新版)新人教版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县九年级数学上册22.3 实际问题与二次函数教案2 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县九年级数学上册22.3 实际问题与二次函数教案2 (新版)新人教版的全部内容。

22.3 实际问题与二次函数(2)。

人教版九年级数学上册学案:22.3 实际问题与二次函数(2)

人教版九年级数学上册学案:22.3 实际问题与二次函数(2)

辽源市第十七中学_九_数学_ 学科教师备课活页课题主备人时间9.22 六周一节2、目标理解,交流探讨( 10 分钟)3、目标展示,拓展提升(10 分钟):y=2(x-2)2-4y=2x2-8x+4。

y=44/9(x+3)2-1,即y=49x2+83x+3.y=x2-10x+23。

学习目标:(重点用★、难点用▲标注)1.根据不同条件选择不同的方法求二次函数的关系式★2.根据不同条件选择不同的方法求二次函数的关系式▲学习内容:,,,因此,可以设函数关系式为:例2.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。

解法1:设二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,-5),可求所求的二次函数的关系式为y=-2x2+8x-5。

解法二;设二次函数的关系式为y=a(x-2)2+k,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5。

例3。

已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。

解法1:设所求的函数关系式为y=a(x+h)2+k,解法2:设所求二次函数的关系式为y=ax2+bx+c?依题意,得三、课堂练习1. 已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式。

第1页共4页2.已知二次函数y=x2+px+q的图象的顶点坐标是(5,-2),求二次函数关系式。

第2页共4页1. 已知抛物线的顶点坐标为(-1,-3),与y轴交点为(0,-5),求二次函数的关系式。

2.函数y=x2+px+q的最小值是4,且当x=2时,y=5,求p和q。

3.若抛物线y=-x2+bx+c的最高点为(-1,-3),求b和c。

4.已知二次函数y=ax2+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是______。

如果y随x的增大而减少,那么自变量x的变化范围是______。

人教版-数学-九年级上册上册数学22-3实际问题与二次函数第二课时 学案

人教版-数学-九年级上册上册数学22-3实际问题与二次函数第二课时 学案

人教版九年级上册数学22-3实际问题与二次函数第二课时学案学习目标:1.根据实际问题列二次函数关系式解决实际问题2、掌握利用顶点坐标解决最大值最小值问题.学习重点:列二次函数求最大利润学习难点:将实际问题转化为二次函数问题【知识链接】:1、一般地,因为抛物线2=++的顶点是最低(高)点,所以当 x= 时,二y ax bx c次函数2y ax bx c=++有最小(大)值为。

2、:某商品成本为20元,售价为30元,卖出200件,则利润为元,①若价格上涨x元,则利润为元;②若价格下降x元,则利润为元;【自主学习】:自学课本50页探究2,完成下列问题3、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:设每件 x元,用含有x的式子填写列表格每件售价每件进价每件利润销售量调价前调价后4、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:设每件 x元,用含有x的式子填写列表格每件售价每件进价每件利润销售量调价前调价后5、自学检测:某商品成本为20元,售价为30元,卖出200件,①若价格每上涨1元,销售量减少10件,现价格上涨x元,则销售量为件,利润为y= 元;②若价格每下降1元,销售量增加20件,现价格下降x元,则销售量为件,利润为y= 元;【合作交流】6、:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?完整步骤:【课堂练习】7、某商场销售一批名牌衬衫,平均每天可售出30件,每件盈利50元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,每件衬衫应降价多少时平均每天盈利最大?【当堂检测】8、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?自学目标:1. 理解用频率来估计概率的方法;2. 了解概率的实验背景及其现实意义. 学习重点:通过对事件发生的频率的分析来估计事件发生的概率 学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率一、知识链接:1、在生产的100件产品中,有95件正品,5件次品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:实际问题与二次函数(二)
主备:审核:
学习目标:应用二次函数的最值解决实际问题.
学习重点:应用二次函数的最值解决实际问题.
学习难点:应用二次函数的最值解决实际问题.
一、预学过程:
1.二次函数y=a(x-h)2+k的图象是一条 ,它的对称轴是 ,顶点
坐标是 .
2.二次函数y=ax2+bx+c的图象是一条 ,它的对称轴是 ,顶点
坐标是 .
当a>0时,抛物线开口向 ,有最点,函数有最值,是;
当 a<0时,抛物线开口向 ,有最点,函数有最值,是。

3.二次函数y=2(x-3) 2+5的对称轴是 ,顶点坐标是。

当x= 时,y的最值是。

4.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,
函数有最值,是。

二、导学过程
某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,
每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的
进价为每件40元,如何定价才能使利润最大?
分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?
解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商
品的利润为y元.
(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.
三.固学过程[来源:学§科§网Z§X§X§K]
1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?
2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x (月份)与市场售价P(元/千克)的关系如下表:
上市时间x/(月份) 1 2 3 4 5 6
市场售价P(元/千
10.5 9 7.5 6 4.5 3
克)
这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的一次函数关系式;
(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?
(收益=市场售价-种植成本)。

相关文档
最新文档