小学数学必会知识点和应用题解题公式大全
小学数学公式大全
小学数学公式大全在小学数学的学习中,公式是解决问题的重要工具。
掌握好这些公式,不仅能提高解题的效率,还能帮助我们更好地理解数学的原理和规律。
接下来,让我们一起梳理一下小学数学中常见的公式。
一、基本运算公式1、加法交换律:两个加数相加,交换加数的位置,和不变。
用字母表示为:a + b = b + a2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为:(a + b) + c = a +(b + c)3、乘法交换律:两个因数相乘,交换因数的位置,积不变。
用字母表示为:a × b = b × a4、乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
用字母表示为:(a × b) × c = a ×(b × c)5、乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
用字母表示为:(a + b) × c = a × c + b × c二、四则运算1、加法:加数+加数=和,和一个加数=另一个加数2、减法:被减数减数=差,被减数差=减数,差+减数=被减数3、乘法:因数 ×因数=积,积 ÷一个因数=另一个因数4、除法:被除数 ÷除数=商,被除数 ÷商=除数,商 ×除数=被除数三、图形的周长和面积公式1、长方形的周长=(长+宽)× 2 ,用字母表示为:C = 2 (a + b) ;面积=长 ×宽,用字母表示为:S = a × b2、正方形的周长=边长 × 4 ,用字母表示为:C = 4a ;面积=边长 ×边长,用字母表示为:S = a × a = a²3、三角形的周长=三条边之和;面积=底 ×高 ÷ 2 ,用字母表示为:S = a × h ÷ 24、平行四边形的周长=相邻两边之和 × 2 ;面积=底 ×高,用字母表示为:S = a × h5、梯形的周长=上底+下底+两条腰长;面积=(上底+下底)×高 ÷ 2 ,用字母表示为:S =(a + b) × h ÷ 2四、体积和表面积公式1、长方体的表面积=(长 ×宽+长 ×高+宽 ×高)× 2 ,用字母表示为:S = 2(ab + ah + bh) ;体积=长 ×宽 ×高,用字母表示为:V = a × b × h2、正方体的表面积=棱长 ×棱长 × 6 ,用字母表示为:S = 6a²;体积=棱长 ×棱长 ×棱长,用字母表示为:V = a³五、单位换算公式1、长度单位:1 千米= 1000 米,1 米= 10 分米,1 分米= 10厘米,1 厘米= 10 毫米2、面积单位:1 平方千米= 100 公顷,1 公顷= 10000 平方米,1 平方米= 100 平方分米,1 平方分米= 100 平方厘米,1 平方厘米= 100 平方毫米3、体积单位:1 立方米= 1000 立方分米,1 立方分米= 1000 立方厘米,1 立方厘米= 1000 立方毫米,1 升= 1 立方分米,1 毫升= 1 立方厘米,1 升= 1000 毫升4、质量单位:1 吨= 1000 千克,1 千克= 1000 克5、时间单位:1 世纪= 100 年,1 年= 12 个月,大月(31 天)有 1、3、5、7、8、10、12 月,小月(30 天)有 4、6、9、11 月,平年 2 月 28 天,闰年 2 月 29 天,平年全年 365 天,闰年全年 366 天,1 日= 24 小时,1 小时= 60 分,1 分= 60 秒六、数学中的数量关系1、速度 ×时间=路程,路程 ÷速度=时间,路程 ÷时间=速度2、单价 ×数量=总价,总价 ÷单价=数量,总价 ÷数量=单价3、工作效率 ×工作时间=工作总量,工作总量 ÷工作效率=工作时间,工作总量 ÷工作时间=工作效率这些公式是小学数学中的基础知识,同学们一定要牢记并能熟练运用。
(完整版)非常全的小学数学知识点汇总
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
小学1-6年级数学应用题解题公式大全
小学1-6年级数学『应用题解题公式大全』一、植树问题1.非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2.封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数3.延申问题:正方形、三角形等植树,上楼梯问题,敲钟问题,锯木头问题等。
小学1-6年级数学『应用题解题公式大全』二、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数三、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间1、关注多次相遇问题:第一次相遇是一个全程,后面的每一次相遇是两个全程。
2、相遇的中点问题:两个人或者车相差距离是中点距离*2四、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间五、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2小学1-6年级数学『应用题解题公式大全』六、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量七、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)八、牛吃草问题同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”⑵草的生长速度=(对应牛的头数×较多天数-对应牛的头数×较少天数)÷(较多天数-较少天数)⑶原来的草量=对应牛的头数×吃的天数-草的生长速度×吃的天数⑷吃的天数=原来的草量除以(牛的头数-草的生长速度)⑸牛的头数=原来的草量除以吃的天数+草的生长速度。
小学数学必背知识点公式
小学数学必背知识点公式在学习数学的过程中,掌握一些必背的知识点公式是非常重要的。
这些公式能够帮助我们快速解决问题,提高计算效率。
以下是小学数学必背的一些知识点公式:一、四则运算公式:1. 加法公式:a + b = b + a2. 减法公式:a - b ≠ b - a3. 乘法公式:a × b = b × a4. 除法公式:a ÷ b ≠ b ÷ a二、单位换算公式:1. 长度单位换算:1 米(m)= 100 厘米(cm)1 厘米(cm)= 10 毫米(mm)1 千米(km)= 1000 米(m)2. 重量单位换算:1 千克(kg)= 1000 克(g)1 克(g)= 1000 毫克(mg)1 吨(t)= 1000 千克(kg)3. 容积单位换算:1 升(L)= 1000 毫升(mL)三、平方公式:1. 平方公式:(a + b)² = a² + 2ab + b²2. 平方差公式:(a - b)² = a² - 2ab + b²四、三角形公式:1. 周长公式:周长 = 边长₁ + 边长₂ + 边长₃2. 面积公式:- 等边三角形的面积 = (边长)² × √3 ÷ 4- 直角三角形的面积 =(直角边₁)×(直角边₂)÷ 2 - 一般三角形的面积 = (底边长度)×(高)÷ 2五、圆的公式:1. 圆周长公式:周长= 2 × π × 半径2. 圆面积公式:面积= π × 半径²六、倍数关系公式:1. a 是 b 的 n 倍:a = n × b2. a 是 b 的 n 倍数:a = n × b七、分数加减乘除公式:1. 分数加法公式:a/b + c/d = (ad + bc)/bd2. 分数减法公式:a/b - c/d = (ad - bc)/bd3. 分数乘法公式:a/b × c/d = ac/bd4. 分数除法公式:a/b ÷ c/d = ad/bc八、平均数公式:1. 平均数公式:平均数 = 总和 ÷总个数九、倍数公式:1. a 是 b 的倍数:a ÷ b 余数为 0以上是小学数学必背的一些知识点公式。
小学数学常见应用题公式汇总
公式1反向行程问题公式反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:2相遇问题公式3工程问题公式(1)一般公式:(2)用假设工作总量为“1”的方法解工程问题的公式:(注意:用假设法解工程题,可任意假定工作总量。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)4利润与折扣公式5简易方程知识点(1)用字母表运算定律。
(2)用字母表示计算公式。
(3)x2读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
(4)有关的概念。
(5)数量关系。
试题简单应用题(一步)1、求总数小明有8支铅笔,小华有4支笔,两人一共有几支铅笔?2、求剩余学校有11个皮球,借走了9个,还剩几个?3、求两数相差多少有12只白兔,7只黑兔,白兔比黑兔多几只?4、求比一个数多几的数黄花有5朵,红花比黄花多3朵,红花有几朵?5、求比一个数少几的数学校买红黑水8瓶,买的兰黑水比红黑水少3瓶。
买兰黑水多少瓶?6、求几个相同加数的和一辆小汽车有4个轮子,6辆小汽车一共有多少个轮子?7、把一个数平均分成几份15只皮球,平均分给3个班。
每班分得几只?8、求一个数包含几个另一个数24个同学做旗子游戏,每班分给3把,够分给几个班?9、求一个数的几倍某车间有女工28人,男工人数是女工的4倍。
男工有多少人?10、求一倍数饲养小组有母鸡12只,恰好是公鸡的3倍,公鸡有几只?应用题(两步)1、求总数学校里原有7棵梨树,12棵杏树,又栽了15棵桃树。
现在有多少棵果树?2、求剩余小小图书室有图书85本,其中,有连环画25本,画报有15本,剩下的是故事书。
故事书有多少本?3、求比-多小红在期中考试中,语文得了81分,政治比语文多5分,数学比政治又多6分,数学得多少分?4、求比-少食堂一月份吃大米45袋,二月份比一月份少吃3袋,三月份比二月份少吃2袋。
小学数学应用题常用公式大全
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(完整版)1—6年级小学数学公式大全
(完整版)1—6年级小学数学公式大全(完整版)1—6年级小学数学公式大全一、数学公式的重要性数学公式是数学知识的核心,是数学思想的精华总结和表达方式。
在小学数学学习中,数学公式起着承上启下的作用,为学生提供有效的知识框架和解题思路。
本文将为大家介绍1至6年级小学数学常用公式。
二、1年级数学公式1. 加法公式:- 两个整数相加:a + b = c- 和的交换律:a + b = b + a- 加法的结合律:(a + b) + c = a + (b + c)- 零的作用:a + 0 = a2. 减法公式:- 两个整数相减:a - b = c3. 乘法公式:- 两个整数相乘:a × b = c- 乘法的交换律:a × b = b × a- 乘法的结合律:(a × b) × c = a × (b × c)- 乘法的分配率:a × (b + c) = (a × b) + (a × c) 4. 除法公式:- 两个整数相除:a ÷ b = c5. 简单的面积公式:- 长方形的面积:A = 长 ×宽- 正方形的面积:A = 边长 ×边长三、2年级数学公式1. 加减法公式:- 大数加法:a + b = c- 大数减法:a - b = c2. 乘除法公式:- 两位数乘一位数:ab × c = d- 三位数除一位数:abc ÷ d = e3. 简单的周长公式:- 矩形的周长:C = (长 + 宽) × 2- 正方形的周长:C = 边长 × 4四、3年级数学公式1. 分数公式:- 分数的加法:a/b + c/d = (ad + bc) / bd- 分数的减法:a/b - c/d = (ad - bc) / bd- 分数的乘法:a/b × c/d = ac/bd- 分数的除法:a/b ÷ c/d = ad/bc2. 乘方公式:- 一个数的平方:a² = a × a- 一个数的立方:a³ = a × a × a3. 面积公式:- 三角形的面积:A = 底边 ×高 ÷ 2- 圆的面积:A = π × 半径²五、4年级数学公式1. 百分数公式:- 将百分数转化为小数:百分数 = 小数 × 100 - 将小数转化为百分数:小数 = 百分数 ÷ 100 2. 均值公式:- 一组数的平均值:平均值 = 总和 ÷数的个数3. 梯形面积公式:- 梯形的面积:A = 上底 + 下底 ×高 ÷ 2六、5、6年级数学公式1. 勾股定理:- 直角三角形的斜边:c² = a² + b²2. 二次方程公式:- 一次项系数为0的二次方程:ax² + c = 0- 一般形式的二次方程:ax² + bx + c = 03. 等比数列通项公式:- 数列中的第n项:an = a₁ × q^(n - 1)4. 三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a² = b² + c² - 2bc × cosA- 正切定理:tanA = sinA/cosA以上是1-6年级小学数学常用公式的完整版。
小学数学重点知识点所有公式总结
小学数学重点知识点所有公式总结在小学数学中,有许多重要的知识点和相关公式。
这些公式不仅可以帮助我们解决数学问题,还可以培养我们的逻辑思维和解决问题的能力。
下面是我总结的小学数学重点知识点的公式。
一、四则运算公式1. 加法和减法的运算法则:- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 减法法则:a - b +b = a2. 乘法和除法的运算法则:- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:a × (b + c) = a × b + a × c- 除法法则:a ÷ b × b = a二、面积和周长公式1. 矩形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长 ×边长3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径 ×半径5. 矩形的周长公式:周长 = (长 + 宽) × 26. 正方形的周长公式:周长 = 边长 × 47. 圆的周长公式:周长= 2 × π × 半径三、分数的运算公式1. 分数的加法:a/b + c/d = (ad + bc)/(bd)2. 分数的减法:a/b - c/d = (ad - bc)/(bd)3. 分数的乘法:a/b × c/d = ac/bd4. 分数的除法:a/b ÷ c/d = ad/bc四、百分数的计算公式1. 百分数与小数的转换:将百分数的百分号去掉,除以100就得到了相应的小数。
例如:25% = 25/100 = 0.252. 百分数的加减法公式:将百分数转化为小数,然后进行相应的加减法运算,最后再将结果转化为百分数。
小学1-6年级数学应用题解题公式大全
『1-6年级数学应用题』1.鸡兔同笼问题鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数) 2.流水问题:顺水速度=船速+水速逆水速度=船速-水速水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷23.火车问题基本数量关系是:火车速度×时间=车长+桥长(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和4.列车过桥问题公式(桥长+列车长)÷速度=过桥时间(桥长+列车长)÷过桥时间=速度『1-6年级数学应用题』5.植树问题间隔数+1=棵数(两端植树)路长÷间隔长+1=棵数间隔数-1=棵数路长÷间隔数=棵数路长÷间隔数=路长÷棵数=每个间隔长每个间隔长×间隔数=每个间隔长×棵数=路长锯的次数=段数-1段数=锯的次数+1A每个角上都摆的情况每边数=总盆数÷边数+1 边数=总盆数÷(每边数-1) B.每个角上都不摆的情况:每边数×边数=总盆数总盆数÷边数=每边数总盆数÷每边数=边数6.剪绳问题一根绳对折N次,从中剪M刀,则被剪成了(2N×M+1)段『1-6年级数学应用题』7.年龄问题两个人的年龄的倍数是发生变化的几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差8.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数9.和差问题公式(和-差)÷2=较小数 (和+差)÷2=较大数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数÷差=大数10.方阵问题1.方阵总人数=最外层每边人数的平方(方阵问题的核心)2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵最外层总人数=(最外层每边人数-1)×411.握手问题共需要(n-1)+(n-2)+(n-3)+....+2+1+0=n(n-1)/2『1-6年级数学应用题』12.等差数列末项=首项+(项数-1)÷公差项数=(末项-首项)÷公差+1总和=(末项+首项)×项数÷213.牛吃草问题1.草的每天生长量不变;2.每头牛每天的食草量不变;3.草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值4.新生的草量=每天生长量×天数①草的生长速度=(对应的牛头数x吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);②原有草量=牛头数×吃的天数-草的生长速度×吃的天数;③吃的天数=原有草量÷(牛头数-草的生长速度);④牛头数=原有草量÷吃的天数+草的生长速度。
小学数学公式集合
小学数学公式集合数学是理解世界的基础,而公式则是数学的语言。
在小学数学的学习中,公式扮演着重要的角色。
以下是我们收集的小学数学公式集合,这些公式涵盖了小学阶段的大部分基础知识。
一、加法与减法1、加法公式:a + b = c解释:a和b的和是c。
2、减法公式:a - b = c解释:a减去b等于c。
二、乘法与除法1、乘法公式:a × b = c解释:a和b的乘积是c。
2、除法公式:a ÷ b = c解释:a除以b等于c。
三、正方形与长方形面积公式1、正方形面积公式:s = a^2解释:正方形的面积是边长的平方。
2、长方形面积公式:s = ab解释:长方形的面积是长乘以宽。
四、三角形面积公式三角形面积公式:s = (1/2) × ab解释:三角形的面积是底乘以高再除以2。
五、圆周率与圆的面积公式1、圆周率:π≈ 3.解释:圆周率是圆的周长与其直径的比值,通常取近似值3.。
2、圆的面积公式:s = πr^2解释:圆的面积是π乘以半径的平方。
六、梯形面积公式梯形面积公式:s = (a + b) × h / 2解释:梯形的面积是上底加下底的和乘以高再除以2。
以上就是小学数学公式集合,这些公式是小学数学的基础,理解并掌握它们对于提高数学能力和成绩至关重要。
我们也要理解,数学不仅仅是记住公式,更重要的是理解其背后的逻辑和概念。
物理化学公式集合物理化学是化学的一个重要分支,它涉及到物质的物理性质和化学反应的深入理解。
以下是一些常见的物理化学公式集合,这些公式对于理解物理化学的基本概念和解决实际问题都具有重要的意义。
1、理想气体常数 R理想气体常数 R是一个用于计算理想气体热力性质的常数,其值为8.314 J/(mol·K)。
2、阿伏伽德罗常数 N_A阿伏伽德罗常数 N_A是一个用于描述气体分子数密度的常数,其值为 6.022×10^23 mol^-1。
小学数学应用题常用公式大全
小学数学应用题常用公式大全1、【平均数问题公式】总数量÷总份数=平均数。
2、【一般行程问题公式】平均速度×时间=路程;3、【反向行程问题公式】:反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;4、【同向行程问题公式】(速度差)×追及(拉开)时间=追及(拉开)路程。
5、【列车过桥问题公式】 (桥长+列车长)÷速度=过桥时间;6、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
7、【工程问题公式】(1)一般公式:工效×工时=工作总量;(2)用假设工作总量为“1”的方法解工程问题的公式:(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。
特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。
)1÷工作时间=单位时间内完成工作总量的几分之几;8、【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)÷(两次每人分配数的差)=人数。
例如:“小朋友分桃子,每人10个少9个,每人8个多7个。
问:有多少个小朋友和多少个桃子?”解:(7+9)÷(10-8)=16÷2=8(个) ...................人数10×8-9=80-9=71(个) 或8×8+7=64+7=71(个)…………桃子(2)两次都有余(盈),可用公式:(大盈-小盈)÷(两次每人分配数的差)=人数。
小学数学常见应用题公式
小学数学常见应用题公式
1.路程=(速度)×(时间)
2.速度=(路程)÷(时间)
3.时间=(路程)÷(速度)
4.总价=(单价)×(数量)
5.单价=(总价)÷(数量)
6.数量=(总价)÷(单价)
7.总产量=(单产量)×(数量)
8.单产量=(总产量)÷(数量)
9.数量=(总产量)÷(单价 )
10.工作总量=(工作效率)×(工作时间)
11.工作效率=(工作总量)÷(工作时间)
12.工作时间=(工作总量)÷(工作效率)
13.大数-小数=相差数
14.大数-相差数=小数
15.小数+相差数=大数
16.一倍量×倍数=几倍量
17.几倍量÷倍数=一倍量
18.几倍量÷一倍量=倍数
19.被减数=减数+差
20.减数=被减数-差
21.加数=和-另一个加数
22.被除数=除数×商
23.除数=被除数÷商
24.因数=积÷另一个因数。
小学数学1-6年级应用题必备公式大全
精编小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
(完整版)小学生必背数学公式
小学生必背《数学公式》▲乘法定律:乘法交换律:a×b = b×a乘法结合律:a×b×c = a×(b×c)乘法分配律:a×c + b×c=c×(a + b) a×c - b×c=c×(a - b)▲除法性质:a÷b÷c = a÷(b×c)▲减法性质:a –b - c = a - (b + c) ▲解方程定律:◇加数+加数= 和;加数= 和–另一个加数。
◇被减数–减数= 差被减数=差+减数减数=被减数–差◇因数×因数= 积因数= 积÷另一个因数◇被除数÷除数= 商被除数=商×除数除数=被除数÷商◆行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间。
◆相遇问题:相遇路程=(甲速度+乙速度)×相遇时间;相遇时间=相遇路程÷(甲速度+乙速度);甲速度=相遇路程÷相遇时间–乙速度;乙速度=相遇路程÷相遇时间–甲速度。
◆工程问题:工作总量=工作效率×工作时间;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间;工作总量=计划工作效率×计划工作时间;工作总量=实际工作效率×实际工作时间;实际工作时间=工作总量÷实际工作效率;实际工作效率=工作总量÷实际工作时间;◆买卖问题:总金额=单价×数量;数量=总金额÷单价;单价=总金额÷数量。
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积C周长∏d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
小学数学公式大全1到6年级完整版
小学数学公式大全1到6年级完整版在小学阶段,数学公式是解决各种数学问题的重要工具。
掌握这些公式,不仅能帮助我们快速准确地解题,还能培养我们的逻辑思维能力。
下面为大家整理了 1 到 6 年级的小学数学公式完整版。
一、基本运算公式1、加法交换律:两个加数相加,交换加数的位置,和不变。
用字母表示为:a + b = b + a例如:3 + 5 = 5 + 3 = 82、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用字母表示为:(a + b) + c = a +(b + c)比如:(2 + 3) + 4 = 2 +(3 + 4) = 93、乘法交换律:两个因数相乘,交换因数的位置,积不变。
用字母表示为:a × b = b × a例如:2 × 3 = 3 × 2 = 64、乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
用字母表示为:(a × b)× c = a ×(b × c)比如:(2 × 3)× 4 = 2 ×(3 × 4) = 245、乘法分配律:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
用字母表示为:(a + b)× c = a × c + b × c 例如:(2 + 3)× 4 = 2× 4 + 3× 4 = 20二、图形计算公式1、正方形周长:C = 4a (其中 C 表示周长,a 表示边长)面积:S = a²(其中 S 表示面积)例如,一个正方形的边长是 5 厘米,那么它的周长是 4×5 = 20 厘米,面积是 5²= 25 平方厘米。
2、长方形周长:C = 2×(a + b) (a 表示长,b 表示宽)面积:S = a × b比如,一个长方形的长是 6 厘米,宽是 4 厘米,那么它的周长是 2×(6 + 4) = 20 厘米,面积是 6×4 = 24 平方厘米。
六年级下册数学素材应用题常用公式大全|通用版
小学数学应用题常用公式大全1、【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
2、【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
3、【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
4、【平均数问题公式】总数量÷总份数=平均数。
5、【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
7、【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
8、【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
10、【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效;工作总量÷工效=工时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学必会知识点和应用题解题公式大全
一、最小的自然数是0,最下的质数是2。
二、最小的合数是4,1既不是质数也不是合数。
三、所有的质数中,只有2是偶数。
四、2和任何奇数都是互质的。
五、1和任何非0自然数都是互质数。
六、1是所有非0自然数都是互质数。
七、1是所有非0自然数的公因数。
八、最小的一位数是1,最大的一位数是9。
九、最小的两位数是10,最大的两位数是99。
十、最小的三位数是100,最大的三位数是999。
十一、1的倒数是它本身,平方等于它本身的数是0和1。
十二、鸡兔同笼问题:
兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷2
十三、盈亏问题
份数=盈亏总额÷两次分配数的差
十四、行程问题
路程=速速×时间
速度=路程÷时间
时间=路程÷速度
十五、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
十六、追及问题
追及时间=路程差÷速度差
路程差=速度差×追及时间
速度差=路程差÷追及时间
十七、周长、面积和体积
长方形的周长:(长+宽)×2 C= 2(a+b)
长方形的面积:长×款S=ab
正方形的周长:边长×4 C=4a
正方形的面积:边长×边长S=a2
三角形的面积:底×高÷2 S=1/2ah
圆的周长:直径×圆周率=半径×2×圆周率
圆的面积:π×半径2 S=πr2
梯形的面积:(上底+下底)×高÷2 S=1/2(a+b)h
圆环的面积:大圆面积-小圆面积S=π(R2-r2)
圆柱的面积:底面积×高V=Sh 或V=πr2h
圆锥的体积:底面积×高×1/3 V=1/3Sh 或V=1/3πr2h
长方体的体积:长×宽×高或底面积×高V=abh 或V= Sh
正方体的体积:棱长3 V=a3
圆柱的表面积:侧面积+底面积×2 S=2πrh+2πr2
正方体的表面积:棱长×棱长×6 S=6a2
长方体的表面积:长×宽×2+长×高×2+宽×高×2
(长×宽+长×高+宽×高)×2
十八、应用题公式
求总数:部分数+部分数=总数
求剩余数:总数-部分数=另一部分数
求几个相同加数的和:每份数×份数=总数
把一个数平均分成几份求每份是多少:总数÷分数=每份数
和差问题:大数=(和+差)÷2 大数=和-小数
归一与归总问题:总量÷数量=单一量
总量÷单一量=数量
单一量×数量=总量
不封闭的植树问题:
一端植树:棵树=段数=全长÷株距
全长=株距×棵树
株距=全长÷棵树
两端植树:棵树=段数+1=全长÷株距+1
全长=株距×(棵树-1)
段数=全长÷(棵树-1)=株距
两端都不植树:
棵树=段数-1=全长÷株距-1
全长=株距×(棵树+1)
株距=全长÷(棵树+1)
封闭的植树问题:
棵树=段数=全长÷株距
全长=株距×棵树
株距=全长÷棵树=段数。