动量动量定理动量守恒定律专题

合集下载

动量动量定理动量守恒定律专题

动量动量定理动量守恒定律专题

动量定理和动量守恒定律的应用1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则[ ]A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C、三个小球运动过程的动量变化率大小相等,方向相同D、三个小球从抛出到落地过程中A球所受的冲量最大2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了0.5m.在着地过程中地面对他双脚的平均作用力估计为[ ]A、自身所受重力的2倍B、自身所受重力的5倍C、自身所受重力的8倍D、自身所受重力的10倍3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则A、p=-p’是不可能的B、△p垂直于p是可能的C、△P垂直于△v是可能的D、△P=O是不可能的。

4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。

若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( )A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没在水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细线断裂,又经t2s后,木块停止下沉.试求铁块在木块停上下沉瞬间的速度.v 16、 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v 。

7、设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

高中物理选择性必修第一册 第1章 动量和动量守恒定律专题强化5 动量、动力学和能量观点在力学中的应用

高中物理选择性必修第一册 第1章 动量和动量守恒定律专题强化5 动量、动力学和能量观点在力学中的应用

动量、动力学和能量观点在力学中的应用[学习目标] 1.进一步熟悉牛顿第二定律、动能定理、动量守恒定律、能量守恒定律等规律.2.灵活运用动力学观点、动量观点和能量观点解决力学问题.一、力的三个作用效果与五个规律作用效果对应规律公式表达三个基本观点力的瞬时作用效果牛顿第二定律F合=ma动力学观点力对空间积累效果动能定理W合=ΔE k W合=12m v22-12m v12能量观点机械能守恒定律mgh1+12m v12=mgh2+12m v22力对时间积累效果动量定理F合t=p′-pI合=Δp动量观点动量守恒定律m1v1+m2v2=m1v1′+m2v2′二、力学规律的选用原则1.如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.2.研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.3.若研究的对象为一物体系统,且它们之间有相互作用,一般用两个守恒定律解决问题,但需注意所研究的问题是否满足守恒的条件.4.在涉及相对位移问题时优先考虑利用能量守恒定律求解,根据系统克服摩擦力所做的总功等于系统机械能的减少量(即转化为系统内能的量)列方程.5.在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般隐含有系统机械能与其他形式能量之间的转化,这种问题由于作用时间极短,因此动量守恒定律一般能派上大用场.如图1所示,较长的曲面与水平桌面平滑连接,将m 1、m 2之间的轻弹簧压缩后用细线连接,置于水平桌面上,弹簧与两物体不拴连.现将细线烧断,弹簧将两物体弹开,m 2离开弹簧后从右边飞出,m 1冲上曲面.已知桌面高为h ,m 2平抛的水平射程为x ,m 1=2m ,m 2=m ,不计一切摩擦,重力加速度为g ,求:图1(1)m 2离开弹簧时的速度大小;(2)m 1上升到曲面最高点时距桌面的高度H ; (3)弹簧的最大弹性势能. 答案 (1)xg 2h (2)x 216h (3)3mgx 28h解析 (1)对m 2平抛过程分析,有 h =12gt 2, x =v 2t 解得v 2=xg 2h. (2)弹簧将两物体弹开的过程,m 1、m 2组成的系统动量守恒,取向左为正方向,由动量守恒定律有m 1v 1-m 2v 2=0 解得v 1=x2g 2h对m 1冲上曲面过程,由机械能守恒定律有 m 1gH =12m 1v 12解得H =x 216h.(3)弹簧的最大弹性势能为E p =12m 1v 12+12m 2v 22解得E p =3mgx 28h.(1)灵活选取系统.根据题目的特点可选取其中动量守恒或能量守恒的几个物体为研究对象,不一定选所有的物体为研究对象.(2)灵活选取物理过程.在综合题目中,物体运动常有几个不同的过程,根据题目的已知、未知条件灵活地选取物理过程来研究.列方程前要注意分析、判断所选过程动量、能量的守恒情况.(2020·湖北曾都高二期中)如图2,光滑的水平地面上静止放置一辆小车A ,质量m A=5 kg ,上表面光滑,可视为质点的物块B 置于A 的最右端,B 的质量m B =3 kg.现对A 施加一个水平向右的恒力F =10 N ,A 运动一段时间后,小车左端固定的挡板与B 发生碰撞,碰撞时间极短,碰后A 、B 粘合在一起,共同在F 的作用下继续运动,碰撞后经时间t =0.8 s ,二者的速度达到v t =2 m/s.求:图2(1)A 开始运动时加速度a 的大小; (2)A 、B 碰撞后瞬间的共同速度v 的大小; (3)A 的上表面长度l .答案 (1)2.0 m/s 2 (2)1 m/s (3)0.64 m解析 (1)以A 为研究对象,由牛顿第二定律有F =m A a 代入数据解得a =Fm A=2.0 m/s 2(2)A 、B 碰撞后一起在F 的作用下运动时间t 的过程中,由动量定理得 Ft =(m A +m B )v t -(m A +m B )v 代入数据解得v =1 m/s(3)设A 、B 发生碰撞前,A 的速度为v A , 对A 、B 发生碰撞的过程,由动量守恒定律有 m A v A =(m A +m B )vA 从开始运动到与B 发生碰撞前,由动能定理有 Fl =12m A v A 2代入数据可得l =0.64 m.1.(动力学和动量观点的综合应用)(多选)如图3所示,一平台到地面的高度为h =0.45 m ,质量为M =0.3 kg 的木块放在平台的右端,木块与平台间的动摩擦因数为μ=0.2.地面上有一质量为m =0.1 kg 的玩具青蛙,距平台右侧的水平距离为x =1.2 m ,旋紧发条后释放,让玩具青蛙斜向上跳起,当玩具青蛙到达木块的位置时速度恰好沿水平方向,玩具青蛙立即抱住木块并和木块一起滑行.已知木块和玩具青蛙均可视为质点,玩具青蛙抱住木块过程时间极短,不计空气阻力,重力加速度g =10 m/s 2,则下列说法正确的是( )图3A .玩具青蛙在空中运动的时间为0.3 sB .玩具青蛙在平台上运动的时间为2 sC .玩具青蛙起跳时的速度大小为3 m/sD .木块开始滑动时的速度大小为1 m/s 答案 AD解析 由h =12gt 12得玩具青蛙在空中运动的时间为t 1=0.3 s ,A 项正确;玩具青蛙离开地面时的水平速度和竖直速度分别为v x =xt 1=4 m/s ,v y =gt 1=3 m/s ,则玩具青蛙起跳时的速度大小为v 0=v x 2+v y 2=5 m/s ,C 项错误;由动量守恒定律得m v x =(M +m )v ,解得木块开始滑动时的速度大小为v =1 m/s ,D 项正确;对木块及玩具青蛙,由动量定理得:-μ( M +m )gt 2=0-(M +m )v ,解得玩具青蛙在平台上运动的时间为t 2=0.5 s ,B 项错误.2.(力学三大观点的综合运用)(2021·忻州一中月考)如图4所示,一水平轻弹簧右端固定在粗糙水平面右侧的竖直墙壁上,质量为M =2 kg 的物块静止在水平面上的P 点,质量为m =1 kg 的小球用长l =0.9 m 的轻绳悬挂在P 点正上方的O 点.现将小球拉至轻绳与竖直方向成60°角位置,静止释放.小球到达最低点时恰好与物块发生弹性正碰.碰后物块向右运动并压缩弹簧,之后物块被弹回,刚好能回到P 点.设小球与物块只碰撞一次,不计空气阻力,物块和小球均可视为质点,重力加速度取g =10 m/s 2.求:图4(1)小球第一次摆到最低点与物块碰撞前瞬间对轻绳的拉力大小; (2)弹簧的最大弹性势能E p . 答案 (1)20 N (2)2 J解析 (1)小球静止释放,由机械能守恒定律:mgl (1-cos 60°)=12m v 02小球在最低点由牛顿第二定律得:F T -mg =m v 02l又由牛顿第三定律有小球对轻绳的拉力F T ′=F T 解得:F T ′=20 N.(2)小球与物块发生弹性碰撞,由动量守恒定律和能量守恒定律得:m v 0=m v 0′+M v 1 12m v 02=12m v 0′2+12M v 12 物块从P 点运动到最右端,由能量守恒定律得:12M v 12=E p +Q小球反弹后回到P 点的过程,又有:E p =Q 联立解得:E p =2 J.1.(多选)如图1所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧恢复原长后某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图1A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算 答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm =12×2m v 2=12mgh ,故A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,解得B 能达到的最大高度为h ′=14h ,故C 正确,D 错误.2.(多选)如图2甲,光滑水平面上放着长木板B ,质量为m =2 kg 的木块A 以速度v 0=2 m/s 滑上原来静止的长木板B 的上表面,由于A 、B 之间存在摩擦,之后木块A 与长木板B 的速度随时间变化情况如图乙所示,重力加速度g =10 m/s 2,则下列说法正确的是( )图2A .木块A 与长木板B 之间的动摩擦因数为0.1 B .长木板的质量M =2 kgC .长木板B 的长度至少为2 mD .木块A 与长木板B 组成的系统损失的机械能为4 J 答案 AB解析 由题图可知,木块A 先做匀减速运动,长木板B 先做匀加速运动,最后一起做匀速运动,共同速度v =1 m/s ,取向右为正方向,根据动量守恒定律得m v 0=(m +M )v ,解得M =m =2 kg ,故B 正确;由题图可知,长木板B 匀加速运动的加速度为a B =Δv Δt =11 m/s 2=1 m/s 2,对长木板B ,根据牛顿第二定律得μmg =Ma B ,解得μ=0.1,故A 正确;由题图可知前1 s 内长木板B 的位移为x B =12×1×1 m =0.5 m ,木块A 的位移为x A =2+12×1 m =1.5 m ,所以长木板B 的最小长度为L =x A -x B =1 m ,故C 错误;木块A 与长木板B 组成的系统损失的机械能为ΔE =12m v 02-12(m +M )v 2=2 J ,故D 错误.3.(2020·广东省实验中学、广雅中学、佛山一中高二下期末)如图3所示,一质量为M B =6 kg 的木板B 静止于光滑的水平面上,物块A 的质量M A =6 kg ,停在B 的左端,一质量为m = 1 kg 的小球用长为l =0.8 m 的轻绳悬挂在固定点O 上.将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A 发生碰撞后反弹,反弹所能达到的最大高度h =0.2 m ,物块A 与小球均可视为质点,A 、B 达到共同速度后A 还在木板上,不计空气阻力,g 取10 m/s 2.图3(1)小球和物块A 碰后瞬间物块A 的速度大小; (2)A 、B 组成的系统因摩擦损失的机械能. 答案 (1)1 m/s (2)1.5 J解析 (1)对于小球,在运动的过程中机械能守恒,则有mgl =12m v 12,得v 1=2gl =4 m/s ,mgh =12m v 1′2,得v 1′=2gh =2 m/s小球与物块A 碰撞过程中,系统的动量守恒,以向右为正方向,则有:m v 1=-m v 1′+M A v A , 解得v A =1 m/s(2)物块A 与木板B 相互作用过程中: M A v A =(M A +M B )v 共,解得v 共=0.5 m/s. A 、B 组成的系统因摩擦而损失的机械能 ΔE =12M A v A 2-12(M A +M B )v 共2代入数据,解得ΔE =1.5 J4.如图4所示,光滑的水平面上有一质量M =9 kg 的木板,其右端恰好和14光滑固定的圆弧轨道AB 的底端等高对接(木板的水平上表面与圆弧轨道相切),木板右端放有一质量m 0=2 kg 的物体C (可视为质点),已知圆弧轨道半径R =0.9 m ,现将一质量m =4 kg 的小滑块(可视为质点),在轨道顶端A 点由静止释放,滑块滑到B 端后冲上木板,并与木板右端的物体C 粘在一起沿木板向左滑行,最后恰好不从木板左端滑出,已知滑块和物体C 与木板上表面间的动摩擦因数均为μ=0.2,取g =10 m/s 2.求:图4(1)滑块到达圆弧的B 端时,轨道对它的支持力大小; (2)木板的长度l .答案 (1)120 N (2)1.2 m解析 (1)滑块从A 端下滑到B 端,由机械能守恒定律得 mgR =12m v 02解得v 0=3 2 m/s在B 点,由牛顿第二定律得 F N -mg =m v 02R解得轨道对滑块的支持力F N =120 N.(2)滑块滑上木板后,滑块与木板右端的物体C 发生碰撞,以向左为正方向,设碰撞后共同的速度为v 1,则 m v 0=(m +m 0)v 1 代入数据得v 1=2 2 m/s对滑块、物体C 以及木板,三者组成的系统沿水平方向的动量守恒,设末速度为v 2,由动量守恒定律有(m +m 0)v 1=(m +m 0+M )v 2 由能量守恒定律得μ(m +m 0)gl =12(m +m 0)v 12-12(M +m +m 0)v 22解得l =1.2 m.5.如图5所示,C 是放在光滑的水平面上的一块木板,木板的质量为3m ,在木板的上表面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ.最初木板静止,A 、B 两木块同时以相向的水平初速度v 0和2v 0滑上长木板,木板足够长,A 、B 始终未滑离木板也未发生碰撞.重力加速度为g ,求:图5(1)此后运动过程中木块B 的最小速度是多少?(2)木块A 从刚开始运动到A 、B 、C 速度刚好相等的过程中,木块A 发生的位移是多少? 答案 见解析解析 (1)由题知,B 向右减速,A 向左减速,此时C 静止不动;A 先减速到零后与C 一起反向向右加速,B 向右继续减速,三者共速时,B 的速度最小. 取向右为正方向,根据动量守恒定律有 m ·2v 0-m v 0=5m v 解得B 的最小速度v =v 05.(2)A 向左减速的过程,根据动能定理有 -μmgx 1=0-12m v 02向左的位移为x 1=v 022μgA 、C 一起向右加速的过程,根据动能定理有 μmgx 2=12×4m ⎝⎛⎭⎫v 052向右的位移为x 2=2v 0225μg取向右为正方向,整个过程A 发生的位移为 x =x 2-x 1=-21v 0250μg即此过程中A 发生的位移向左,大小为21v 0250μg.6.(2020·嘉祥县第一中学高二期中)如图6所示,小球A 质量为m ,系在细线的一端,细线的另一端固定在O 点,O 点到光滑水平面的距离为h .物块B 和C 的质量分别是4m 和2m ,物块B 、C 与轻弹簧接触不拴接,静止置于光滑的水平面上,且物块B 位于O 点正下方.现拉动小球A 使细线水平伸直,小球A 由静止释放,运动到最低点时与物块B 发生正碰(碰撞时间极短),反弹后上升到最高点时与水平面的距离为h9.小球A 与物块B 、C 均可视为质点,不计空气阻力,重力加速度为g ,求碰撞过程:图6(1)物块B 受到的冲量大小; (2)碰后轻弹簧获得的最大弹性势能; (3)物块C 获得的最大速度的大小. 答案 (1)4m 32gh (2)427mgh (3)492gh解析 (1)设小球A 运动到最低点与物块B 碰撞前的速度大小为v 1,取小球A 运动到最低点时的重力势能为零,根据机械能守恒定律有mgh =12m v 12解得v 1=2gh设碰撞后小球A 反弹的速度大小为v 1′, 根据机械能守恒定律有:12m v 1′2=mg h9解得v 1′=2gh3设碰撞后物块B 的速度大小为v 2,取水平向右为正方向, 由动量守恒定律有m v 1=-m v 1′+4m v 2 解得v 2=2gh 3由动量定理可得,碰撞过程物块B 受到的冲量大小为I =4m v 2=4m 2gh3(2)碰撞后当物块B 与物块C 速度相等时轻弹簧的弹性势能最大, 根据动量守恒定律有4m v 2=6m v 3根据机械能守恒定律有E pm =12×4m v 22-12×6m v 32解得E pm =427mgh (3)当压缩的弹簧恢复原长时,C 物块获得的速度最大,根据动量守恒定律和能量守恒定律有 4m v 2=4m v 2′+2m v 3′12×4m v 22=12×4m v 2′2+12×2m v 3′2 解得v 3′=492gh。

08 动量定理及动量守恒定律(解析版)

08 动量定理及动量守恒定律(解析版)
解得喷出水的速度大小为
2.(2020全国1).行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )
A.增加了司机单位面积的受力大小
B.减少了碰撞前后司机动量的变化量
C.将司机的动能全部转换成汽车的动能
(1)A受到的水平瞬时冲量I的大小;
(2)碰撞前瞬间B的动能 至少多大?
【考点】圆周运动的向心力表达式、动能定理、动量定理、动量守恒定律
【答案】(1) ;(2)
【解析】(1)A恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A在最高点时的速度大小为v,由牛顿第二定律,有

A从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A在最低点的速度大小为 ,有
【答案】(1)3m(2) (3)
【解析】:(1)物块A和物块B发生碰撞后一瞬间的速度分别为 、 ,弹性碰撞瞬间,动量守恒,机械能守恒,即:
联立方程解得: ;
根据v-t图象可知,
解得:
(2)设斜面的倾角为 ,根据牛顿第二定律得
当物块A沿斜面下滑时: ,由v-t图象知:
当物体A沿斜面上滑时: ,由v-t图象知:
【考点】动量定理
【答案】2mv+mgt
【解析】取向上为正方向,动量定理mv-(-mv)=I且I=(F-mg)t
解得IF=Ft=2mv+mgt
6.(2017全国3)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。F随时间t变化的图线如图所示,则( )
A.t=1 s时物块的速率为1 m/s
【考点】动量定理
【答案】C
【解析】根据自由落体运动和动量定理有2gh=v2(h为25层楼的高度,约70 m),Ft=mv,代入数据解得F≈1×103 N,所以C正确.

动量与能量综合专题

动量与能量综合专题

动量与能量综合专题一、动量守恒定律动量守恒定律是物理学中的一个重要定律,它表述的是物体动量的变化遵循一定的规律。

当两个或多个物体相互作用时,它们的总动量保持不变。

这个定律的适用范围非常广泛,从微观粒子到宏观宇宙,只要有物体之间的相互作用,就可以应用动量守恒定律来描述。

在理解动量守恒定律时,需要注意以下几点:1、系统:动量守恒定律适用于封闭的系统,即系统内的物体之间相互作用,不受外界的影响。

2、总动量:动量的变化是指物体之间的总动量的变化,而不是单个物体的动量变化。

3、方向:动量是矢量,具有方向性。

在计算动量的变化时,需要考虑动量的方向。

二、能量守恒定律能量守恒定律是物理学中的另一个重要定律,它表述的是能量不能被创造或消灭,只能从一种形式转化为另一种形式。

这个定律的适用范围同样非常广泛,从微观粒子到宏观宇宙,只要有能量的转化和转移,就可以应用能量守恒定律来描述。

在理解能量守恒定律时,需要注意以下几点:1、封闭系统:能量守恒定律适用于封闭的系统,即系统内的能量之间相互转化和转移,不受外界的影响。

2、转化与转移:能量的转化和转移是不同的。

转化是指一种形式的能量转化为另一种形式的能量,而转移是指能量从一个物体转移到另一个物体。

3、方向:能量的转化和转移是有方向的。

在计算能量的变化时,需要考虑能量的方向。

三、动量与能量的综合应用在实际问题中,动量和能量往往是相互的。

当一个物体受到力的作用时,不仅会引起物体的运动状态的变化,还会引起物体能量的变化。

因此,在解决复杂问题时,需要综合考虑动量和能量的因素。

例如,在碰撞问题中,两个物体相互作用后可能会发生弹射、粘合、破碎等情况。

这些情况的发生不仅与物体的动量有关,还与物体的能量有关。

如果两个物体的总动量不为零,它们将会继续运动;如果两个物体的总能量不为零,它们将会继续发生能量的转化和转移。

因此,在解决碰撞问题时,需要综合考虑物体的动量和能量因素。

四、总结动量守恒定律和能量守恒定律是物理学中的两个重要定律,它们分别描述了物体动量的变化和能量的转化和转移遵循的规律。

专题:动量定理 动量守恒定律

专题:动量定理 动量守恒定律

专题:动量定理动量守恒定律考点一:动量定理的理解及应用【典例1】质量的篮球从距地板高处由静止释放,与水平地板撞击后反弹上升的最大高度,从释放到弹跳至h高处经历的时间,忽略空气阻力,重力加速度,求:篮球与地板撞击过程中损失的机械能;篮球对地板的平均撞击力.强化训练一1.蹦床运动有“空中芭蕾“之称,某质量的运动员从空中落下,接着又能弹起高度,此次人与蹦床接触时间,取,求:运动员与蹦床接触时间内,所受重力的冲量大小I;运动员与蹦床接触时间内,受到蹦床平均弹力的大小F。

2.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目一个质量为60kg的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回离水平网面高处已知运动员与网接触的时间为若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小取3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为、。

初始时A静止与水平地面上,B悬于空中。

先将B竖直向上再举高未触及滑轮然后由静止释放。

一段时间后细绳绷直绷直的时间极短,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。

取。

从释放到细绳绷直时的运动时间t;的最大速度v的大小;初始时B离地面的高度H。

4.某游乐园入口旁有一喷泉,喷出的水柱将一质量M的卡通玩具稳定地悬停在空中。

为计算方便起见,假设水柱从横截面积为S的喷口持续以速度竖直向上喷出;玩具底部为平板面积略大于;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。

忽略空气阻力。

已知水的密度为,重力加速度大小为g。

求喷泉单位时间内喷出的水的质量;玩具在空中悬停时,其底面相对于喷口的高度。

考点二:动量守恒定律的理解及应用【典例2】在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,他们紧靠在一起,如图所示一个可视为质点的物块P,质量也为m,它从木板AB的右端以初速度滑上木板,过B点时速度为,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处若物体P与木板AB间的动摩擦因数为,求:物块滑到B处时木板AB的速度的大小;木板AB的长度L;滑块CD最终速度的大小.【典例3】如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求小球到达车底B点时小车的速度和此过程中小车的位移;小球到达小车右边缘C点处,小球的速度.强化训练二1. 如图,在光滑的水平面上,有一质量为 的木板,木板上有质量为 的物块 它们都以 的初速度反向运动,它们之间有摩擦,且木板足够长,求:当木板向左的速度为 时,物块的速度是多大?木板的最终速度是多大?2. 如图所示,A 、B 两木块靠在一起放于光滑的水平面上,A 、B 的质量均为 。

物理:《动量与动量守恒定律》课件-(复习专题)

物理:《动量与动量守恒定律》课件-(复习专题)
动量与动量守恒定律的应用
一、动量定理的应用 练习1:一个质量为0.18kg的垒球, 以25 m/s的水平速度飞向球棒,被球棒 打击后,反向水平飞回,速度的大小为 45 m/s,设球棒与垒球的作用时间为 0.01 s,求球棒对垒球的平均作用力有 多大?
练习2:质量1kg的铁球从沙坑上方由静 止释放,下落1s落到沙子表面上,又 经过0.2s,铁球在沙子内静止不动。 假定沙子对铁球的阻力大小恒定不变, 求铁球在沙坑里运动时沙子对铁球的 阻力。(g=10m/s2)

v0
m2
练习3:如图示:质量为M的滑槽静止在光滑的水平面 滑槽的AB部分是半径为R的1/4的光滑圆弧,BC部分是 水平面,将质量为m 的小滑块从滑槽的A点静止释放,沿 圆弧面滑下,并最终停在水平部分BC之间的D点,则D A. 滑块m从A滑到B的过程,物体与滑块组成的系统动 量守恒、 机械能守恒
2m gR v2 ( M m) M
2
练习2:如图所示,光滑水平面上质量为m1=2kg 的物块以v0=2m/s的初速冲向质量为m2=6kg静止 的光滑圆弧面斜劈体。求: (1)物块m1滑到最高点位置时,二者的速度; (2)物块m1从圆弧面滑下后,二者速度; (3)若m1= m2,物块m1从圆弧面滑下后,二者速 度。
B. 滑块滑到B点时,速度大小等于 2 gR C. 滑块从B运动到D的过程,系统的动量和机械能都 不守恒 A
D. 滑块滑到D点时,物体的 速度等于0
B D C
; /q2532273645/mine/ 时时计划群
gvh95hyc
泛着银子般的亮光、活泼泼流过去。小道童蹲下去喝口水,岸边有锯齿边缘的小草,给他手上拉了小小一道血口子,他点了点 那片绿叶子,决定不跟他计较,半立起身子,搔搔头皮,自言自语埋怨:“霞姐好没道理,这道髻挽得裳儿好紧。”便把短簪、 发带都抽开,一头青丝摇将下来,与宝音发质一般无二,还更细柔些。又抚着胸道:“这也箍得裳儿好紧。”竟探手入怀,把 一条布带子也松开,胸脯也像吹了气似的涨起来。她身姿娇小如鸟儿,胸脯倒比小鸟的胸丰满得多。深青的草穗,在浓碧的穗 鞘里摇晃。一条六寸长的虎头鱼从细浪里甩个尾巴钻上来,又要一头扎下去,裳儿哪肯放过,吐气开手,长臂一抓,抓住了, 那鱼挣扎扭动个不住,鳞片滑溜溜的,就指望滑出去,裳儿五指如钉,抓进鱼身里,笑斥:“你想回哪儿去?”那鱼吃痛,抖 颤不已。裳儿同情道:“还是给你个痛快罢!”右手五指仍钩着鱼身不放,左手食指扎进鱼腮中间,一拉,把肚皮都划开,连 鱼泡带肝肠都一把拉出来,不曾捏碎了苦胆,全甩在一边,道:“这下了帐了?”鱼已不能大动作,但鱼鳍仍在颤动。裳儿嗔 道:“你们鱼儿总是这般作势,连下了油锅还能跳起来,我可没法子了,只当你已经死了罢。”便在溪中大石块上找了个好位 置盘膝坐下,将鱼摆在面前,谢过三清,以短簪作刀,将鱼腹两边嫩肉都片下来,去了大刺,笑道:“幸亏把芋大娘的淡酱油 偷出来。”便袖中出一装丹药用的小瓷瓶,瓶里丹药早没了,装了谢府厨房里芋大娘自酿的好酱油,点在嫩肉上头,也不炙烤, 就这么生啖,且啖且夸赞,一时腹肉食毕,连鱼头中好物色也挑罢吮尽了,剩下一条鱼脊、一条鱼尾肉,小刺多,裳儿不耐烦 再吃,都丢回溪里,抹抹嘴,心满意足继续取路往山上回去。一路阴阴的古木参天、娇娇的雀鸟啭鸣,快近山顶,裳儿转过一 条小道,便见山石益奇、林木益秀,分叶蹬岧,眼前一亮,是一座极大的观院,台阶雪白,花开得无边无际,有女孩子们赤着 脚、端着烛台和果碟走来走去,都披着淡紫色的纱衣,耳旁垂下长长的明月珰。第四十八章 毓秀垂钟附眉刀(5)裳儿开开心 心奔过去,正待同那些女孩子们打招呼,有一个大姑娘跑出来,十八九的年纪,瓜子脸儿,戴个道冠,把水绿的袖子挽起来: “裳儿!”那些女孩子们向裳儿作个眼色,一半同情、一半幸灾乐祸,哄然散去。裳儿吸进一口气,认命的上前行礼道:“取 霞姐姐!”取霞冷笑:“去了恁多时光!这丫头又祸害了哪条生灵回来?”裳儿奇道:“咦,怎么又被霞姐姐看出来?”取霞 摇头道:“一口腥气不说,指缝间鲜血还在。”裳儿就笑着低头剔指甲里的鱼血。取霞问道:“没有动火,又是生吃的?什么 时候偷了我的芥辣酱去?”一边动手

专题三动量定理和动量守恒

专题三动量定理和动量守恒

三、动量和能量一、专题框架【知识点回顾】一、动量定理1.定理内容:物体所受合外力的冲量等于它动量的变化, 表达式:Ft=mv′-mv.2.动量定理是根据牛顿第二定律F=ma、运动学公式v=v0+at和力F是恒定的情况下推导出来的.因此能用牛顿第二定律和运动学公式能解的恒力问题,凡不涉及加速度和位移的,用动量定理求解较为方便.3.动量与参考系的选取有关,所以用动量定理必须注意参考系的选取,一般以地球为参考系.4.动量定理和研究对象是质点,或由质点构成的系统5.牛顿第二定律的动量表达式为F=(p′-p)/△t,要用其解释一些生活中现象.(如玻璃杯落在水泥地摔碎而落在地毯上无事)二、动量守恒定律1.内容:相互作用的几个物体组成的系统,如果不受外力作用,或它们受到的外力之和为0,则系统的总动量保持不变.2.动量守恒定律的适用条件内力不改变系统的总动量,外力才能改变系统的总动量,在下列三种情况下,可以使用动量守恒定律:(1)系统不受外力或所受外力的矢量和为0.(2)系统所受外力远小于内力,如碰撞或爆炸瞬间,外力可以忽略不计.(3)系统某一方向不受外力或所受外力的矢量和为0,或外力远小于内力,则该方向动量守恒(分动量守恒).3.动量守恒定律的不同表达形式及含义①p=p′(系统相互作用前总动量p等于相互作用后总动量p′);②ΔΡ=0(系统总动量的增量等于0);③ΔΡ1=- ΔΡ2(两个物体组成的系统中,各自动量增量大小相等、方向相反),4.理解要点1.动量守恒定律的研究对象是相互作用物体组成的系统.2.系统“总动量不变”不仅是系统初、末两个时刻总动量相等,而且是指系统在整个过程中任意两个时刻的总动量都相等.3.公式是矢量式,根据教学大纲,动量守恒定律应用只限于一维情况.应用时,先选定正方向,而后将矢量式化为代数式.4.注意动量守恒定律的矢量性、相对性、同时性。

【典型例题】1.利用动量定理时应注意重力的冲量.例题1、某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m.在着地过程中,估计他双脚的平均作用力为自身所受重力的几倍?例题2: 质量为60kg的建筑工人不慎从高空跃下,由于弹性安全带的作用,使他悬挂起来,已知弹性安全带的缓冲时间为1.2s,要使安全带对人的平均作用力不超过1000N,则安全带不能超过多长?2.子弹打木块类问题.子弹打木块实际上是一种完全非弹性碰撞。

专题六 第1讲 动量 动量守恒定律

专题六 第1讲 动量 动量守恒定律

m1v1′+m2v2′ 2.公式:m1v1+m2v2=____________.
3.动量守恒定律成立的条件 (1)系统不受外力或者所受外力之和为零. (2)系统受外力,但外力远小于内力,可以忽略不计.
(3)系统在某一个方向上所受的合外力为零,则该方向上动
量守恒. (4)全过程的某一阶段系统受的合外力为零,则该阶段系统 动量守恒.
做功,但一定有冲量.
【跟踪训练】 1.关于物体的动量和动能,下列说法中正确的是( A ) A.一物体的动量不变,其动能一定不变 B.一物体的动能不变,其动量一定不变 C.两物体的动量相等,其动能一定相等 D.两物体的动能相等,其动量一定相等
2.(双选)如图 6-1-1 所示,质量相同的两个小物体 A、B 处于同一高度.现使 A 由静止开始沿固定的光滑斜面自由下滑,
3.如图 6-1-2 所示,一物体分别沿三个倾角不同的光 滑斜面由静止开始从顶端下滑到底端 C、D、E 处,三个过程 中重力的冲量依次为 I1、I2、I3 , 动量变化量的大小依次为Δp1、 Δp2、Δp3,则有( )
A.I1<I2<I3,Δp1<Δp2<Δp3 B.I1<I2<I3,Δp1=Δp2=Δp3 C.I1=I2=I3,Δp1=Δp2=Δp3 D.I1=I2=I3,Δp1>Δp2>Δp3 图 6-1-2
可见合外力等于物体动量的变化率. Δp 可解释两类现象. (2)由 F= Δt ①当Δp 一定时,Δt 越短,力 F 就越大;Δt 越长,力 F 就越小. ②当 F 一定时,Δt 越长,动量变化量Δp 越大;Δt 越短, 动量变化量Δp 越小.
【跟踪训练】
4.下列对几种物理现象的解释中,正确的是( A.击钉时不用橡皮锤,是因为橡皮锤太轻 )
解析:从碰撞客观实际出发,由于 A 追上 B 发生碰撞,碰 后 A 的速度必等于或小于 B 的速度,且两球质量相等,故 B 选 项错误;由碰撞动量守恒验证,D 选项错误;再从碰撞中动能 关系,即碰后总动能只有守恒或减少来看,C 选项错误,A 选 项正确. 答案:A

08专题:动量定理与动量守恒定律专题(含答案)

08专题:动量定理与动量守恒定律专题(含答案)

08专题:动量定理与动量守恒定律专题1.(多选)(2017·全国卷Ⅲ)一质量为 2 kg 的物块在合外力F的作用下从静止开始沿直线运动。

F随时间t变化的图线如图所示,则( )A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零2.质量为m的运动员从下蹲状态向上起跳,经时间t身体伸直并刚好离开水平地面,该过程中,地面对他的冲量大小为I,重力加速度大小为g.下列说法正确的是()A.运动员在加速上升过程中处于超重状态 B.运动员离开地面时的速度大小为I mC.该过程中,地面对运动员做的功为22ImD.该过程中,人的动量变化大小为I-mgt3.如图所示,abc是竖直面内的光滑固定轨道,ab段水平,长度为2R;bc段是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力F的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其轨迹最高点的过程中,以下说法正确的是()A.重力与水平外力合力的冲量等于小球的动量变化量B.小球对圆弧轨道b点和c点的压力大小都为5mgC.小球机械能的增量为3mgRD.小球在到达c点前的最大动能为21)mgR4.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( ) A.小球以后将向右做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为20 2 mvD .小球在弧形槽内上升的最大高度为204gν 5.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。

某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点。

甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站(设甲、乙距离空间站足够远,速度均指相对空间站的速度)。

专题跟踪检测(十) 动量定理 动量守恒定律

专题跟踪检测(十)  动量定理 动量守恒定律

专题跟踪检测(十)动量定理动量守恒定律1.如图所示,带立杆的小车放在光滑水平面上,小球P用轻绳系在立杆上,把小球拉开一定角度,然后将小球P和小车同时由静止释放。

在小球P从静止开始摆到最低点的过程中()A.小球P的机械能守恒B.小球P和小车组成的系统动量守恒C.细线的拉力对小球P始终不做功D.小球P重力的瞬时功率先增大后减小解析:选D小球P和小车组成的系统在水平方向不受外力,竖直方向所受外力不为零,系统只在水平方向动量守恒,故B错误;由于车和球这个系统水平方向上动量守恒,所以当小球下摆时,车子也会随之反方向移动,动能增加,绳对车的拉力对车做正功,系统机械能守恒,则绳对小球的拉力做负功,小球的机械能减少,故A、C错误;小球在刚释放时,速度为零,重力瞬时功率为零,在最低点时,重力方向与速度方向垂直,则重力瞬时功率为零,可知小球P从静止开始摆到最低点的过程中,重力的功率先增大后减小,故D正确。

2.垫球是排球运动中通过手臂的迎击动作,使来球从垫击面上反弹出去的一项击球技术。

若某次从垫击面上反弹出去竖直向上运动的排球,之后又落回到原位置,设整个运动过程中排球所受阻力大小不变,则()A.球从击出到落回的时间内,重力的冲量为零B.球从击出到落回的时间内,空气阻力的冲量为零C.球上升阶段阻力的冲量小于下降阶段阻力的冲量D.球上升阶段动量的变化量等于下降阶段动量的变化量解析:选C整个过程中,重力不为零,作用时间不为零,根据I G=mgt可知,重力冲量不为零,选项A错误;由于整个过程中,阻力都做负功,所以上升阶段的平均速度大于下降阶段的平均速度,即上升过程所用时间比下降过程所用时间少,根据I f=ft可知上升阶段阻力冲量小于下降阶段阻力冲量,整个过程中阻力冲量不为零,选项B错误,C正确;设初速度为v0,上升阶段,初速度为v0,末速度为零,动量变化量为Δp1=0-m v0=-m v0;下降阶段,初速度为零,末速度小于v0,动量变化量为Δp2<m v0-0=m v0,两者不相等,选项D错误。

完整版)动量、动量守恒定律知识点总结

完整版)动量、动量守恒定律知识点总结

完整版)动量、动量守恒定律知识点总结龙文教育动量知识点总结一、对冲量的理解冲量是力在时间上的积累作用,可以用公式I=Ft计算XXX或平均力F的冲量。

对于变力的冲量,常用动量定理求。

对于合力的冲量,有两种求法:若物体受到的各个力作用的时间相同,且都为XXX,则I合=F合.t;若不同阶段受力不同,则I合为各个阶段冲量的矢量和。

二、对动量定理的理解动量定理指出,冲量等于物体动量的变化量,即I合=Δp=p2-p1=mΔv=mv2-mv1.冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。

需要注意的是,ΔP的方向由Δv决定,与p1、p2无必然的联系,计算时先规定正方向。

三、对动量守恒定律的理解动量守恒定律指出,相互作用的物体所组成的系统的总动量在相互作用前后保持不变。

需要注意的是,动量守恒定律的条件有三种:理想条件、近似条件和单方向守恒。

在满足这些条件的前提下,可以应用动量守恒定律求解问题。

四、碰撞类型及其遵循的规律碰撞类型包括一般的碰撞、完全弹性碰撞和完全非弹性碰撞。

对于这些碰撞类型,需要遵循相应的规律,如系统动量守恒、系统动能守恒等。

需要特别注意的是,在等质量弹性正碰时,两者速度交换,这是根据动量守恒和动能守恒得出的结论。

五、判断碰撞结果是否可能的方法判断碰撞结果是否可能,需要检查碰撞前后系统动量是否守恒,系统的动能是否增加,以及速度是否符合物理情景。

动能和动量之间的关系是EK=p=2mEK/2m。

六、反冲运动反冲运动是指静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象。

在反冲运动中,系统动量守恒。

人船模型是反冲运动的典型例子,需要满足动量守恒的条件。

七、临界条件处理“最”字类临界条件如压缩到最短、相距最近、上升到最高点等的关键是,系统各组成部分具有共同的速度v。

八、动力学规律的选择依据在选择动力学规律时,需要根据题目涉及的时间t和物体间相互作用的情况进行选择。

如果涉及时间t,优先选择动量定理;如果涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒。

专题06 动量守恒定律——高考物理复习核心考点归纳识记

专题06 动量守恒定律——高考物理复习核心考点归纳识记

高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。

高考物理一轮基础复习: 专题23 动量 动量定理 动量守恒定律

高考物理一轮基础复习: 专题23 动量 动量定理 动量守恒定律

高考物理一轮基础复习:专题23 动量动量定理动量守恒定律姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)满载砂子的总质量为M的小车,在光滑水平面上做匀速运动,速度为v0。

在行驶途中有质量为m 的砂子从车上漏掉,则砂子漏掉后小车的速度应为()A . v0B .C .D .2. (2分) (2019高二下·昌乐月考) 一炮弹质量为m,以一定的倾角斜向上发射,达到最高点时速度大小为v,方向水平.炮弹在最高点爆炸成两块,其中一块恰好做自由落体运动,质量为 m,则爆炸后另一块瞬时速度大小为()A . vB . vC . vD . 03. (2分)两小球A和B , A球系在一根长为L的轻质细绳OA上,B球系在轻质橡皮绳OB上,现将两球都拉到如图所示的水平位置上,让两绳均拉直(此时橡皮绳为原长),然后无初速释放.不计空气阻力,当两球通过最低点时,橡皮绳与细绳等长.关于小球A和B ,下列说法正确的是()A . 通过最低点时小球A的机械能大于小球B的机械能B . 两小球从释放至运动到最低点的全程中机械能均守恒C . 两小球从释放至运动到最低点的过程中重力的冲量一定相等D . 小球A运动到最低点时的速率大于小球B运动到该点的速率4. (2分) (2019高三上·鹤岗月考) “飞针穿玻璃”是一项高难度的绝技表演,曾度引起质疑。

为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是()A . 测出玻璃厚度和飞针穿越玻璃前后的速度B . 测出玻璃厚度和飞针穿越玻璃所用的时间C . 测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D . 测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度5. (2分) (2017高二下·宁夏期末) 质量为60kg的建筑工人,不慎从高空跌下,幸好弹性安全带的保护使他悬挂起来.已知弹性安全带的缓冲时间是1.5s,安全带自然长度为5m,g取10m/s2 ,则安全带所受的平均冲力的大小为()A . 500 NB . 1 100 NC . 600 ND . 1 000 N6. (2分) (2018高一下·辽宁期中) 质量m=100 kg的小船静止在平静水面上,船两端载着m甲=60 kg、m乙=40 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,则小船的运动速率和方向为()A . 0.6 m/s,向左B . 3 m/s,向左C . 0.6 m/s,向右D . 3 m/s,向右7. (2分) (2017高三上·黄陵期末) 质量为M的原子核,原来处于静止状态.当它以速度v放出质量为m 的粒子时(设v的方向为正方向),剩余部分的速度为()A .B .C .D .8. (2分) (2019高二上·中山期中) 随着交通日益拥挤、车辆速度越来越快,事故的发生更为频繁,所以汽车安全性变得尤其重要。

动量定理、动量守恒定理大题50题含问题详解

动量定理、动量守恒定理大题50题含问题详解

大全1.(18分)如图(a )所示,“ ”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b )所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求:(1) 斜面BC 的长度;(2) 滑块的质量;(3) 运动过程中滑块克服摩擦力做的功.2. (11分)甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?0 F/N t/s-5 12 1 2 3 图(b ) 图(a ) A θ B C 力传感器大全3.(2011·新课标全国卷)如图,A 、B 、C 三个木块的质量均为m 。

置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体,现A 以初速v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C 与A ,B 分离,已知C 离开弹簧后的速度恰为v 0,求弹簧释放的势能。

【详解】设碰后A 、B 和C 的共同速度大小为v ,由动量守恒有,3mv=mv 0 ①设C 离开弹簧时,A 、B 的速度大小为v1,由动量守恒有,3mv=2mv 1+mv 0 ②设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有,12 (3m )v 2+Ep=12 (2m )v 12+12mv 02 ③ 由①②③式得弹簧所释放的势能为Ep=13m v 024.一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示。

高三物理【动量定理 动量守恒定律】复习整合

高三物理【动量定理 动量守恒定律】复习整合

[真题再练] 1.(2020·全国卷Ⅰ)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作 用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
B.0.27 N
C.0.022 N
D.0.027 N
解析:D 由题知,水滴质量为 m=0.5 g,重力加速度为 g=10 m/s2,屋檐高度为 h =4 m,设水滴刚落到石板上时速度为 v.水滴从屋檐开始下落到石板上,忽略空气阻力, 水滴的机械能守恒,有 mgh=12mv2.水滴从接触石板到速度为零的过程中,取向下为正方 向,对水滴由动量定理得(mg-F)t=0-mv,解得 F≈0.027 N,由牛顿第三定律可知,D 正确.
动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程. 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒). 3.规定正方向,确定初、末状态动量. 4.由动量守恒定律列出方程. 5.代入数据,求出结果,必要时讨论说明.
[精选模拟] 视角 1:动量守恒的判断 1.关于下列四幅图所反映的物理过程的说法正确的是( )
8 次这样推物块后,运动员退行速度的大小大于 5.0 m/s,反弹的物块不能再追上运动员.不
计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg
B.53 kg
C.58 kg
D.63 kg
解析:BC 设运动员和物块的质量分别为 m、m0,规定运动员运动的方向为正方向, 运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为 v1、v0,则根 据动量守恒定律 0=mv1-m0v0,解得 v1=mm0v0,物块与弹性挡板撞击后,运动方向与运动 员同向,当运动员再次推出物块 mv1+m0v0=mv2-m0v0,解得 v2=3mm0v0,第 3 次推出后 mv2+m0v0=mv3-m0v0, 解得 v3=5mm0v0,依次类推,第 8 次推出后,运动员的速度 v8=15mm0 v0, 根据题意可知 v8=15mm0v0>5 m/s, 解得 m<60 kg,第 7 次运动员的速度一定小于 5 m/s, 则 v7=13mm0v0<5 m/s, 解得 m>52 kg,综上所述,运动员的质量满足 52 kg<m<60 kg,AD 错 误,BC 正确.

高中物理专题复习 动量及动量守恒定律

高中物理专题复习  动量及动量守恒定律

高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。

由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。

碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。

在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。

全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。

⑴弹簧是完全弹性的。

Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。

⑵弹簧不是完全弹性的。

Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。

这种碰撞叫非弹性碰撞。

⑶弹簧完全没有弹性。

Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。

这种碰撞叫完全非弹性碰撞。

可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。

在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量定理和动量守恒定律的应用1. A、B、C三个质量相等的小球以相同的初速度v0分别竖直上抛、竖直下抛、水平抛出.若空气阻力不计,设落地时A、B、C三球的速度分别为v1、v2、v3,则 [ ]A、经过时间t后,若小球均未落地,则三小球动量变化大小相等,方向相同B、A球从抛出到落地过程中动量变化的大小为mv1-mv0,方向竖直向下C、三个小球运动过程的动量变化率大小相等,方向相同D、三个小球从抛出到落地过程中A球所受的冲量最大2. 某消防队员从一平台上跳下,下落2m后双脚触地,接着他用双腿弯屈的方法缓冲,使自身重心又下降了.在着地过程中地面对他双脚的平均作用力估计为[ ]A、自身所受重力的2倍B、自身所受重力的5倍C、自身所受重力的8倍D、自身所受重力的10倍3. 一个质点受到合外力F作用,若作用前后的动量分别为p和p’,动量的变化为△p,速度的变化为△v,则A、p=-p’是不可能的B、△p垂直于p是可能的C、△P垂直于△v是可能的D、△P=O是不可能的。

4. 一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。

若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ, 则( )A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零5. 质量为m的木块下面用细线系一质量为M的铁块,一起浸没在水中从静止开始以加速度a匀加速下沉(如图),经时间t1s后细v 1线断裂,又经t2s 后,木块停止下沉.试求铁块在木块停上下沉瞬间的速度.6、 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v 。

7、设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

8、质量为m 的人站在质量为M ,长为L 的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远9、如图所示,一质量为M 的平板车B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,A 、B 间动摩擦因数为μ,现给A 和B 以大小相等、方向相反的初速度v0,使A 开始向左运动,B 开始向右运动,最后A 不会滑离B ,求:(1)A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

s 2 d s 1 v 0 v动量定理及动量守恒定律的应用1、下列说法中不正确的是()A.物体的动量发生改变,则合外力一定对物体做了功;B.物体的运动状态改变,其动量一定改变;C.物体的动量发生改变,其动能一定发生改变 D.物体的动能发生改变,其动量一定发生改变。

2、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m当它们从抛出到落地时,比较它们的动量的增量△P,有()A.平抛过程最大 B.竖直上抛过程最大 C.竖直下抛过程最大 D.三者一样大3.质量为的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为,小球与软垫接触的时间为,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2) [ ]A.10N·s B.20N·s C.30N·s D.40N·s4、如图所示,A、B两物体的质量比m A∶m B=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()、B系统动量守恒、B、C系统动量守恒 C.小车向左运动 D.小车向右运动5. 船静止在水中,若水的阻力不计,当先后以相对地面相等的速率,分别从船头与船尾水平抛出两个质量相等的物体,抛出时两物体的速度方向相反,则两物体抛出以后,船的状态是 [ ]A.仍保持静止状态 B.船向前运动 C.船向后运动 D.无法判断6、如图所示,与轻弹簧相连的物体A停放在光滑的水平面上。

物体B沿水平方向向右运动,跟与A相连的轻弹簧相碰。

在B跟弹簧相碰后,对于A、B和轻弹簧组成的系统,下列说法中正确的是()A.弹簧压缩量最大时,A、B的速度相同B.弹簧压缩量最大时,A、B的动能之和最小C.弹簧被压缩的过程中系统的总动量不断减小 D.物体A的速度最大时,弹簧的弹性势能为零7. 如图所示,水平地面上O点的正上方竖直自由下落一个物体m,中途炸成a,b两块,它们同时落到地面,分别落在A点和B点,且OA>OB,若爆炸时间极短,空气阻力不计,则()A.落地时a的速率大于b的速率B.落地时在数值上a的动量大于b的动量C.爆炸时a的动量增加量数值大于b的增加量数值D.爆炸过程中a增加的动能大于b增加的动能8.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的a块的速度方向仍沿原来的方向,则 [ ]A.b的速度方向一定与原速度方向相反 C.a、b一定同时到达水平地面B.从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大D.在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等9、两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg,m B=2 kg,v A=6 m/s,v B=2 m/s。

当A追上B并发生碰撞后,两球A、B速度的可能值是()A.v A′=5 m/s,v B′= m/s B.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s,v B′= m/s10、如图所示,小球A和小球B质量相同,球B置于光滑水平面上,当球A从高为h处由静止摆下,到达最低点恰好与B相碰,并粘合在一起继续摆动,它们能上升的最大高度是A.h B.h/2 C.h/4 D.h/811、如图所示,自行火炮连同炮弹的总质量为M,当炮管水平,火炮车在水平路面上以υ1的速度向右匀速行驶中,发射一枚质量为m的炮弹后,自行火炮的速度变为υ2,仍向右行驶,则炮弹相对炮筒的发射速度υ0为( )A .错误!未指定书签。

122()m m mυυυ-+ B .错误!未指定书签。

12M()m υυ-C .错误!未指定书签。

122()2m m m υυυ-+ D .错误!未指定书签。

1212())m m m υυυυ---( 12、如图甲所示,质量为M 的木板静止在光滑水平面上,一个质量为m的小滑块以初速度υ0从木板的左端向右滑上木板.滑块和木板速度随时间变化的图象如图乙所示,某同学根据图象作出如下一些判断,正确的是( )A .滑块与木板间始终存在相对运动B .滑块始终未离开木板C .滑块的质量大于木板的质量D .在t 1时刻滑块从木板上滑出13、某实验小组在“实验:探究碰撞中的不变量”的实验中,采用如图所示装置通过半径相同的A 、B 两球的碰撞来进行探究。

图中PQ是斜槽,QR 为水平槽。

实验时先使A 球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。

重复上述操作10次,得到10个落点痕迹。

再把B 球放在水平槽上靠近末端的地方,让A 球仍从位置G 自静止开始滚下,和B 球碰撞后,A 、B球分别在记录纸上留下各自的落点痕迹。

重复这种操作10次。

图中的O点是水平槽末端R 在记录纸上的垂直投影点。

B 球落点痕迹如图所示,其中米尺水平放置,且平行于G 、R 、O 所在平面,米尺的零点与O 点对齐。

(1)碰撞后B 球的水平射程应取为 cm 。

(2)在以下选项中,哪些是本次实验必须进行的测量 (填选项号)A 、水平槽上未放B 球时,测量A 球落点位置到O 点的距离;B 、A 球与B 球碰撞后,测量A 球落点位置到O 点的距离;C 、测量A 球或B 球的直径;D 、测量A 球或B 球的质量(或两球质量之比);E 、测量G 点相对水平槽面的高度。

14、质量m 1=10g 的小球在光滑的水平桌面上以v 1=30cm/s 的速率向右运动,恰好遇上在同一条直线上向左运动的另一个小球.第二个小球的质量为m 2=50g ,速率v 2=10cm/s .碰撞后,小球m 2恰好停止.那么,碰撞后小球m 1的速度是多大,方向如何15、炮弹在水平飞行时,其动能为E k0=800J ,某时它炸裂成质量相等的两块,其中一块的动能为E k1=625J ,求另一块的动能E k216、如图所示,光滑水平面上,质量为2m 的小球B 连接着轻质弹簧,处于静止;质量为m 的小球A 以初速度v 0向右匀速运动,接着逐渐压缩弹簧并使B 运动,过一段时间,A 与弹簧分离,设小球A 、B 与弹簧相互作用过程中无机械能损失,弹簧始终处于弹性限度以内。

求当弹簧被压缩到最短时,弹簧的弹性势能E .17、如图所示,ABC 是光滑轨道,其中BC 部分是半径为R 的竖直放置的半圆.一质量为M 的小木块放在轨道水平部分,木块被水平飞来的质量为m 的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C ,已知木块对C 点的压力大小为(M+m)g ,求:子弹射入木块前瞬间速度的大小.18、如图所示,质量m A 为的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为,木板右端放着质量m B 为的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为,小物块的动能E KB 为,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .动量定理及动量守恒定律的应用1、下列说法中不正确的是( )A .物体的动量发生改变,则合外力一定对物体做了功;B .物体的运动状态改变,其动量一定改变;C .物体的动量发生改变,其动能一定发生改变D .物体的动能发生改变,其动量 m2m A B v 0一定发生改变。

2、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m当它们从抛出到落地时,比较它们的动量的增量△P,有()A.平抛过程最大 B.竖直上抛过程最大 C.竖直下抛过程最大 D.三者一样大3.质量为的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为,小球与软垫接触的时间为,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2) [ ]A.10N·s B.20N·s C.30N·s D.40N·s4、如图所示,A、B两物体的质量比m A∶m B=3∶2,它们原来静止在平板车C上,A、B间有一根被压缩了的弹簧,A、B与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有()、B系统动量守恒、B、C系统动量守恒 C.小车向左运动 D.小车向右运动5. 船静止在水中,若水的阻力不计,当先后以相对地面相等的速率,分别从船头与船尾水平抛出两个质量相等的物体,抛出时两物体的速度方向相反,则两物体抛出以后,船的状态是 [ ]A.仍保持静止状态 B.船向前运动 C.船向后运动 D.无法判断6、如图所示,与轻弹簧相连的物体A停放在光滑的水平面上。

相关文档
最新文档