碳碳复合材料简介
碳碳复合材料
二、碳/碳复合材料的应用
C/C复合材料作为刹车盘
二、碳/碳复合材料的应用
2. 先进飞行器 导弹、载人飞船、航天飞机等,在再入环境时飞行器头 部受到强激波,对头部产生很大的压力,其最苛刻部位 温度可达2760℃,所以必须选择能够承受再入环境苛刻 条件的材料。 设计合理的鼻锥外形和选材,能使实际流入飞行器的能 量仅为整个热量1%~10%左右。对导弹的端头帽也要 求防热材料,在再入环境中烧蚀量低,且烧蚀均匀对称, 同时希望它具有吸波能力、抗核爆辐射性能和全天候使 用的性能。 三维编织的C/ C复合材料,其石墨化后的热导性足以满 足弹头再入时由160℃气动加热至1700℃时的热冲击要 求,可以预防弹头鼻锥的热应力过大引起的整体破坏; 其低密度可提高导弹弹头射程,已在很多战略导弹弹头 上得到应用。除了导弹的再入鼻锥,C/C 复合材料还可 作热防护材料用于航天飞机。
碳/碳复合材料CVD工艺
在CVD过程中特殊问题--防止预成型体封口。 在工艺参量控制时应使反应气体和反应生成气 体的扩散速度大于沉积速度。
预成型体和基体碳
碳/碳复合材料制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充, 逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束 碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
二、碳/碳复合材料的应用
C/C在航天领域中的应用
二、碳/碳复合材料的应用
二、碳/碳复合材料的应用
3. 固体火箭发动机喷管上的应用 C/C 复合材料自上世纪70 年代首次作为固体火箭发动机 (SRM) 喉衬飞行成功以来,极大地推动了固体火箭发动 机喷管材料的发展。 采用 C/C 复合材料的喉衬、扩张段、延伸出口锥,具有 极低的烧蚀率和良好的烧蚀轮廓, 可提高喷管效率1 %~ 3%,即可大大提高固体火箭发动机的比冲。 喉衬部一般采用多维编织的高密度沥青基C/C复合材料, 增强体多为整体针刺碳毡、多向编织结构等,并在表面 涂覆SiC以提高抗氧化性和抗冲蚀能力。 美国在此方面的应用有:①“民兵2Ⅲ”导弹发动机第三 级的喷管喉衬材料; ②“北极星”A27 发动机喷管的收 敛段;③MX 导弹第三级发动机的可延伸出口锥(三维编织 薄壁 C/C 复合材料制品)。 俄罗斯用在潜地导弹发动机的喷管延伸锥(三维编织薄壁 C/C复合材料制品) 。
碳碳复合材料
气相沉积法
-预成型体。 主要工艺参数:温度、压力、时间。 成本问题:重要的是如何尽可能缩短工艺各工序,降
低成本。
预成型体和基体碳
制备的基本思路 先将碳增强材料预先制成预成型体,然后再以基体碳填充,
逐渐形成致密的C/C复合材料。 预成型体是一个多孔体系,含有大量孔隙,即使是在用成束
碳纤维编织的预成型体中,纤维束中的纤维之间仍含有大量 的孔隙。
一、碳/碳复合材料概述
我国碳/碳复合材料的研究和开发主要集中在航天、 航空等高技术领域,较少涉足民用高性能、低成本碳 /碳复合材料的研究。
目前整体研究水平还停留在对材料宏观性能的追求上, 对材料组织结构和性能的可控性、可调性等基础研究 还相当薄弱,难以满足国民经济发展对高性能碳/碳 复合材料的需求。
预成型体和基体碳
树脂碳:为无定形(非 晶态)碳,在偏光显微 镜下为各向同性。
图7-l4为碳纤维/酚醛 树脂碳基复合材料的 偏光显微组织。
可以看出树脂碳在碳 化时收缩所形成的显 微开裂。
碳/碳复合材料CVD工艺
CVD反应过程 1)反应气体通过层流流动向沉积衬底的边界层扩散; 2)沉积衬底表面吸附反应气体; 3)反应气体产生反应并形成固态产物和气体产物; 4)气体产物分解吸附,并沿一边界层区域扩散; 5)产生的气体产物排出。
化学气相沉积法
在沉积法中也可用等离子弧法。这种方法已经用来制 取微细碳化物,如碳化钛、碳化钽、碳化铌等。等离 子弧法的基本过程是使氢通过等离子体发生器将氢加 热到平均30000C的高温, 再将金属氯化物蒸气和碳 氢化合物气体喷入炽热的 氢气流(火焰)中,则金 属氯化物随即被还原、碳 化,在反射墙上骤冷而得 到极细的碳化物。
碳碳复合材料
(1)摩擦与减摩材料 飞机刹车盘
刹车部件需满足以下设计条件: 刹车片材料的要求:
Carbon/carbon brake used on the Boeing 767 airplane
战车、高速列车、汽车用刹车片
密封材料
电刷材料
(2)烧蚀材料
固体火箭发动机喷管
喷管结构简化,部件数量减少30%以上,极大地提高喷管的可靠性 C/C喷管轻质,大幅度减轻喷管结构质量,可减重30~50%
树脂(沥青)碳均是由碳纤维预制体浸渍树脂或沥青 浸渍剂后,经固化、再经碳化后所获得的基体碳。C/C复合 材料浸渍剂的选择原则:
★ 碳化率(焦化率):希望碳化率高,提高效率; ★ 粘度:易于浸润碳纤维,并易于流入预制体孔隙; ★ 碳化后能否形成开孔形裂缝或孔隙; ★ 碳化后强度:碳化后收缩是否破坏预制体的结构; ★ 显微结构:是否有利于C/C复合材料的性能 ★ 价格:符合上述条件,价格越便宜越好。
沥青液态压力浸渍-碳化 工艺是在常压、250℃下先浸 渍,然后在此温度下加压至 100MPa压力下继续浸渍,再 此压力下经650℃碳化。
同样需经历多次PIC工艺 使/C复合材料致密化。
● HIPIC工艺
HIPIC工艺是热等静压浸 渍碳化工艺(Hot Isostatic Pressure Carbonization),即 在等静压炉中进行PIC工艺。
这种工艺能够进一步减少 浸渍-碳化次数,获得高致 密性、性能优良的沥青碳基 体的C/C复合材料。
● HIPIC工艺
● HIPIC工艺过程:
❖ 将已经压力浸渍沥青的预制体 放入石墨罐,并以沥青填充;
❖ 将石墨罐密封,排气(真空), 放置HIP炉的工作区;
❖ 按工艺规范加热,加压; ❖ 低温(180℃)时,填充沥青压入
《碳碳复合材料简介》课件
高强度与高刚度
具有出色的强度和刚度,适用 于要求高强度和轻质化的领域。
良好的耐损性
具有优异的耐磨、耐热疲劳和 耐腐蚀性能。
碳碳复合材料的应用领域
1
航空航天
广泛应用于飞机结构、发动机部件和导弹热防护等领域。
2
能源工业
用于核电站中的炭碳复合材料管道和储罐,以及燃烧器等高温设备。
3
汽车工业
用于制造高性能汽车制动系统、排气系统和座椅结构。
碳碳复合材料的优势与局限性
优势
高温性能卓越,具有较高的强度和刚度。
局限性
制备工艺复杂,生产成本较高。
碳碳复合材料的发展趋势
随着技术的进步,碳碳复合材料将继续发展,更广泛地应用于航空航天、能 源、汽车等领域。同时,制备工艺将更加成熟,并不断降低生产成本。
结论和总结
碳碳复合材料具有独特的优点,是一种重要的高性能材料。它在航空航天、能源和汽车工业等领域发挥着重要 作用,并有着广阔的发展前景。
《碳碳复合材料简介》 PPT课件
碳碳复合材料是一种由碳纤维和炭素基体组成的高性能复合材料。它具有高 强度、高刚度、高温性能和优异的耐损性。
什么是碳碳复合材料
碳碳复合材料是一种由碳纤维和炭素基体组成的复合材料。碳纤维提供高强 度和高刚度,炭素基体则提供高温抗氧化性能。
碳碳复合材料的制备方法
1 化学气相沉积 (CVD)
通过化学反应在碳纤维表 面沉积炭素来制备碳碳复 合材料。
2 航空电弧加热法 (AIR) 3 热解石墨化 (HTI)
利用航空电弧对碳纤维进 行加热,使其与炭素基体 结合。
先将碳纤维石墨化,然后 与绿石墨和残余碳反应形 成碳碳复合材料。
碳碳复合材料的性质与特点
cc复合材料
(3)涂层与基体碳之间要能良好结合,形 成较高的结合强度,对多层涂层来说, 各层之间也要有良好的结合强度,以免 分层或脱落;
(4)涂层与基体、涂层的各层之间的热膨 胀系数要尽可能接近,避免在较大的热 应力作用下涂层出现裂纹或剥落;
碳/碳复合材料
碳/碳复合材料的端头帽 碳/碳复合材料加工件
1.碳碳复合材料特性及性能
1.1碳碳复合材料特性 C/C复合材料是新材料领域中重点研究和开发 的一种新型超高温材料,它具有以下显著特 点:
(1)密度小(<2.0 g/cm ),仅为镍基高温合金的 1/4,陶瓷材料的1/2,这一许多结构或装备 要求轻型化至关重要。
3.1内部抗氧化技术 该化技术是从两方面来解决C/C 复合材料的
抗氧化问题。 (1)改进纤维的抗氧化问题。纤维抗氧化性能 的提高手段有两种,一是提高纤维的石墨化度, 从而提高纤维的抗氧化性;另一种方法是在纤 维的表面进行涂层,使纤维得到保护。
(2)提高C/C 材料基体的抗氧化性。可以通过 加入氧化抑制剂的方法来提高C/C 材料基体的 抗氧化性,如加入含磷化合物等,通过磷与氧 的作用,使氧失去氧化活性,从而达到抗氧化 的目的,但效果并不理想。另外一种方法是在 基体中加入抗氧化组分,如重金属、陶瓷等可 以提高C/C 复合材料的抗氧化性;还可以在基 体中加入有机硅、有机钛等,使基体C被SiC和 TiC取代,也可达到抗氧化的目的。
2.1.2 热梯度式(差温式)CVD技术 将热梯度式CVD技术应用于碳刹车盘的制备, 其基本思路是在碳盘工件的径向(而不是厚度
方向)形成温度梯度,并通过压差使碳源气逆 温度梯度定向流动,从而提高了增密速度。并 研究了温度、气氛压力及其流量等参数对CVD 增密过程的影响。发现当温度、气氛压力搭配 合理时,热梯度式CVD增密效果大大优于均温 式,总致密时间仅为相应均温式的1/3。若在差 温式CVD基础上实现差温-差压式CVD可进一步 改善CVD增密效果。
碳碳复合材料概述
碳碳复合材料概述第一篇:碳碳复合材料概述碳/碳复合材料碳/碳复合材料概述摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。
关键词碳碳复合材料制备工艺性能应用1前言C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。
碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。
此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。
故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。
因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。
2碳碳复合材料的发展碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段:60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表;90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。
由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。
当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。
从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。
碳碳复合材料(Composite materials)简介
1
碳碳复合材料 (Composite materials)
简介
材料基础培训-碳碳复合材料(Composite materials)简介
C/C复合材料
• 碳碳复合材料可以通过渗透一种碳先驱体 到碳纤维预制体中,然后再升温到大约 1000℃碳化,或者1000℃通过CVD方法, 然后经过多次浸渍、碳化或CVD,最后加 热到2000℃以上石墨化。
材料基础培训-碳碳复合材料(Composite materials)简介
碳基体
• 一般有三种碳基体先驱体
– 热塑型沥青 – 热固型树脂 – CVI方法
• 选择哪种方法的原则:很到程度上依赖于 生成复合材料部件的几何形状。
– 厚度薄的部件主要采用CVI方法; – 厚度厚的部件使用树脂或沥青渗透; – 复杂形状的几何部件使用树脂渗透。 – 一般利用混合方法对碳纤维增强复合材料进行
• CC复合材料的拉伸强度随着温度的升高而 增大的主要机制:
– 排出气体(吸收的水)的影响 – 基体强度与温度的依赖性 – 纤维基体界面 – 蠕变变形的影响 – 热应力的影响 – 纤维强度的影响
材料基础培训-碳碳复合材料(Composite materials)简介
基体强度与温度的依赖性
材料基础培训-碳碳复合材料(Composite materials)简介
因此,材料性能是细观组分材料响应的宏观表现
材料基础培训-碳碳复合材料(Composite materials)简介
有限元方法
• 模拟实验法
– 含有缺陷 – 细观结构没有周期性
• 特征体元法
– 具有周期的细观几何结构 – 细观结构复杂
材料基础培训-碳碳复合材料(Composite materials)简介
碳碳复合材料概述
碳碳复合材料概述1概述碳/碳复合材料就是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体得复合材料,就是具有特殊性能得新型工程材料,也称为“碳纤维增强碳复合材料”。
碳/碳复合材料完全就是由碳元素组成,能够承受极高得温度与极大得加热速率。
它具有高得烧蚀热与低得烧蚀率,抗热冲击与在超热环境下具有高强度,被认为就是超热环境中高性能得烧蚀材料。
在机械加载时,碳/碳复合材料得变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。
它得主要优点就是:抗热冲击与抗热诱导能力极强,具有一定得化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下得强度与刚度可保持不变,抗辐射,易加工与制造,重量轻。
碳/碳复合材料得缺点就是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。
1958年,科学工作者在偶然得实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员得普遍重视。
尽管碳/碳复合材料具有许多别得复合材料不具备得优异性能,但作为工程材料在最初得10年间得发展却比较缓慢,这主要就是由于碳/碳得性能在很大程度上取决于碳纤维得性能与谈集体得致密化程度。
当时各种类型得高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好得解决。
在20世纪60年代中期到70年代末期,由于现代空间技术得发展,对空间运载火箭发动机喷管及喉衬材料得高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术得发展起到了有力得推功作用。
那时,高强与高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性得编织技术也得到了发展,更为主要得就是碳/碳得制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。
这就是碳/碳复合材料研究开发迅速发展得阶段,并且开始了工程应用。
由于20世纪70年代碳/碳复合材料研究开发工作得迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料得结构设计,以及力学性能、热性能与抗氧化性能等方面基础理论及方法得研究,进一步促进与扩大了碳/碳复合材料在航空航天、军事以及民用领域得推广应用。
碳碳(C、C)复合材料介绍(ppt 38页)
•CFC产品在生产设备里面的应用,可以减 轻托盘和承载框的重量,因此可以提高生 产能力,减少操作时间,并且可以节省能 源;另外,由于不需要反复操作,可以延 长产品的使用寿命。
•在玻璃瓶搬运中,可以帮助整列排放。
•C/C材料做成的堆放条即使在玻璃瓶 的温度很高的情况下搬运,也不会产 生热变形。因此,可以大幅降低堆放 条的更换和维修次数。
•我们具有高温炉行业的制作经验,根 据这些经验,我们可以制作长度达到3 米以上的产品。
摩擦材料领域
滑动
停止
摩擦系数
小
大
应 用 实 例
•螺旋桨翼,叶片 •滑板 •轴承
高机械性能领域-电极材
•由于C/C具有良好的耐腐蚀性,所以可以应用在 腐蚀的环境中。而且产品同时可以实现强度高, 厚度更小,质量更轻的特点。
使用C/C材料所带来的节能案例
• 日本的某一家工厂(钎焊汽车散热器机件)原来有2条生产线。为了 提高生产能力,工厂考虑再增加1条生产线。同时将石墨料架材质改 为C/C,发现能提高生产效率。
高机械性能领域
高机械性能C/C材料介绍:
以前,机械领域的部件多用陶瓷,铝,CFRP等材料制 备,随着该行业的快速大型化,高速化的发展,对于材 料的轻量化和耐热性提出了更高的要求。为了满足客户 的需求,因此提出了高性能C/C材料。
高性能C/C材料的特征:
➢重量轻 ➢高弹性 ➢低热膨胀 ➢高刚度和韧性 ➢高耐热冲击性
耐热材料领域-炉内材料-炉体
•根据C/C符合材料具有“质量轻,强度高,没有热变性”的特性,可以制作 出热处理炉的炉体部分。 •产品与原来石墨材质的炉体相比,由于产品本身强度大,可以采用更少的 材料;从而减轻重量。 •并且增加了热效率性能,提高了生产效率。
碳碳复合材料
碳/碳复合材料什么是碳/碳复合材料?它是碳纤维及其织物增强的碳基体复合材料,具有低密度(<2.0g/cm3)、高强度、高比模量、高导热性、低膨胀系数、摩擦性能好,以及抗热冲击性能好、尺寸稳定性高等优点,尤其是在1650℃以上应用的少数备选材料,最高理论温度更高达2600℃,因此被认为是全球最有发展前途的高温材料之一。
虽然碳/碳复合材料有很多十分优良的高温性能,但它在温度高于400℃的有氧环境中发生氧化反应,从而导致材料的性能急剧下降。
所以,碳/碳复合材料在高温有氧环境下的应用必须有氧化防护措施。
碳/碳复合材料的氧化防护主要通过以下两种途径,即在较低的温度下可以采取基体改性和表面活性点的钝化对碳/碳复合材料进行保护;随着温度的升高,则必须采用涂层的方法来隔绝碳/碳复合材料与氧的直接接触,以达到氧化防护的目的。
当前使用最多的是涂层的方法,随着科技不断进步,对碳/碳复合材料超高温性能的依赖越来越多,而在超高温条件下唯一可行的氧化防护方案只能是涂层防护。
值得一提的是,C/C基复合材料是近一些年来全球最受重视的一种更耐高温的新材料。
因为只有C/C复合材料是被认为唯一可做为推重比20以上,发动机进口温度可达1930-2227℃涡轮转子叶片的后继材料,曾经是美国21世纪重点发展的耐高温材料,尤其是全球先进工业国家拼力追求的最高战略目标。
所谓C/C基复合材料,就是碳纤维增强碳基本复合材料,它把碳的耐熔性与碳纤维的高强度及高刚性结合于一体,使其呈现出非脆性破坏。
由于C/C基复合材料具有重量轻、高强度,优越的热稳定性和极好的热传导性,因此,是当今最理想的耐高温材料,特别是在1000-1300℃的高温环境下,它的强度不仅没有下降,反而能够提高。
特别是在1650℃以下时仍然还保持着室温环境下的强度和风度。
因此C/C基复合材料在宇航制造业中具有非常大的发展潜力。
值得一提的是,C/C基复合材料在航空发动机应用的一个主要问题是抗氧化性能较差,所以,近几年美国通过采取一系列的工艺措施,让这一问题获得解决,并且逐步应用在新型发动机上。
碳碳复合材料
战车、高速列车、汽车用刹车片
导热、隔热材料
保温毡
加热体
发展趋势
1.今后将以结构C/C复合材料为主,向功能和 多功能C/C复合材料发展;
2.在编制技术方面:由单向朝多向发展; 3.机械针织技术方面:由简单机械向高度机械
化、微机化和计算机程控全自动化发展; 4.应用方面:由先进飞行器向普通航空和汽车、
碳碳复合材料
索引
0.历史 1、定义 2、材料概述 3、性能特点 4.制备工艺 5.应用概述 6.发展趋势和应用前景
C/C复合材料来源于Chance-
历史
Vought由于实验室事故,在碳纤维树
脂基复合材料固化时超过规定的温度,
却 导致树脂碳化, 形成碳碳复合材
料。
我国对此的研究和开发主要集中在
非航天高温结构领域发展,向民用化和低成本化发 展。
思考题
1.简述气相沉积法和液相浸渍法的工艺原理 2.请完整粗略复述材料合成过程 3.石墨化的原理
医学资料
• 仅供参考,用药方面谨遵医嘱
石墨化:利用热活 化将热力学不稳定 的炭原子实现由乱 层结构向石墨晶体 结构的有 序转 化。
应用概述
碳/碳复合材料以其优异的高温力学和热物理性能, 结合基体改性和抗氧化涂层技术,一直是先进国 家战略导弹弹头端头、发动机喷管、高超声速飞 行器关键热端部件首选的防热、热结构材料
军机、民机用刹车盘
应用和工作环境来选择纤维种类和编织方式,例如,
对重要的结构选用高强度、高模量纤维,对要求导 热系数低的则选用低模量炭纤维,如粘胶基炭纤维。
坯体可通过长纤维(或带)缠绕、碳毡、短纤维模压或喷
射成型、石墨布叠层的方向石墨纤维针刺增强以及多向织 物等方法制得
碳碳复合材料
碳碳复合材料
碳碳复合材料是一种由碳纤维和碳基基体组成的复合材料。
碳纤维是一种高强度、轻质的纤维材料,可以抵抗高温和
化学腐蚀。
碳基基体则提供了材料的机械强度和耐磨性能。
碳碳复合材料具有以下特点:
1. 高温耐性:碳碳复合材料能够在高达3000°C的温度下
保持其稳定性和强度。
2. 轻质高强:碳纤维的轻质性能使得碳碳复合材料具有较
高的比强度和刚度。
3. 良好的机械性能:碳碳复合材料具有优异的抗拉、压缩
和抗剪强度,使其适用于各种高性能应用。
4. 耐磨性能:碳碳复合材料具有出色的耐磨性,可用于制
造高速运动部件和摩擦材料。
5. 抗氧化性:碳碳复合材料能够抵抗氧化和腐蚀,因此可
以在恶劣的环境条件下使用。
碳碳复合材料广泛应用于航空航天、汽车制造、能源领域以及高温和特殊工程等领域。
例如,它们可以用于制造火箭喷嘴、涡轮叶片、制动系统、石油炼厂设备等。
由于其优异的性能和广泛的应用领域,碳碳复合材料被视为一种重要的高性能材料。
碳碳复合材料
碳碳复合材料
碳碳复合材料是一种具有优异性能的新型材料,它由碳纤维和碳基胶粘剂组成,经过高温热处理而成。
这种材料具有高强度、高模量、耐高温、耐腐蚀等特点,因此在航空航天、汽车制造、船舶建造等领域有着广泛的应用。
首先,碳碳复合材料具有极高的强度和硬度。
碳纤维本身就是一种高强度材料,而且经过特殊工艺制成的碳碳复合材料,在高温环境下依然能够保持其强度和硬度,因此在航空航天领域被广泛应用于制造飞机机身、导弹外壳等部件。
其次,碳碳复合材料具有优异的耐高温性能。
这种材料在高温环境下不会发生
软化、熔化等现象,因此被广泛应用于航空发动机、航天器热屏蔽结构等部件的制造。
它能够承受极高的温度,保证设备在极端环境下的正常运行。
另外,碳碳复合材料还具有良好的耐腐蚀性能。
在恶劣的环境下,例如海水、
化学品腐蚀等,碳碳复合材料能够保持其原有的性能,不会发生腐蚀、氧化等现象,因此在船舶建造、化工设备制造等领域有着广泛的应用。
总的来说,碳碳复合材料是一种具有广泛应用前景的新型材料,它在航空航天、汽车制造、船舶建造等领域有着重要的地位。
随着科技的不断进步,碳碳复合材料的性能将会得到进一步提升,其应用范围也将会不断扩大。
相信在不久的将来,碳碳复合材料将会成为各个领域中不可或缺的材料之一。
cc复合材料
沉积碳
沉积碳是含碳的烷,烯, 炔类有机化合物前驱体,经 热解后沉积在预制体碳纤维 上的碳。 在C-C复合材料中采用 CVD/CVI工艺时,多采用 的CVD碳的前驱体多为甲烷 丙烷,乙烯,丙烯或乙炔,有 的还采用天然气作为前驱体。 在液相气化CVD(CLVD) 则采用煤油等含碳前驱体。
沉积碳
沉积碳是通过CVD/CVI将热解碳沉积在预制体碳纤维表面,并不断沉 积增厚。CVD/CVI工艺原理可有以下过程:
* 预制体(preform,或预成型体)是采用编织方式成 2维,3 维或多维,带30%~70%孔隙的碳纤维层,板,体等形状。 也可以用浸渍树脂或沥青的碳纤维直接进行编织。有些是 采用编织好的层状(2维)或碳毡迭层,并在Z向进行穿刺 制成碳纤维预制体。
总之,C-C复合材料的性能,形状取决于预制体的形状和 碳纤维的分布方式。
压力梯度工艺:
压力梯度 CVD工艺是利用反应气体通过预制体时的强制流动,预制体对流动 气体产生阻力,在预制体上下,内外形成压力梯度。
工艺特点: 随着反应气体压力的增加,扩散速度及反应速度加快,沉积速度加快
孔隙开口端由于气体流动加快后,不易密封,并随着孔隙沉积碳的不断沉积 填充,预制体上下,内外的压力梯度增大
应用及发展
碳/碳复合材料由于其独特的性能,已广泛应用于 航空航天、汽车工业、医学等领域,碳碳复合材 料的发展主要受宇航工业发展的影响。它具有高 的灼烧热,低的烧蚀率抗热冲击和超热环境下具 有高强度等一系列优点,被认为是一种高性能的 的烧蚀材料。 除此之外,还广泛应用于汽车工业,医学等领域。
碳碳复合材料坩埚
等温法 压力梯度法 温度梯度法 化学液气相沉积法
碳碳复合材料讲解
03
飞机刹车 材料关键
技术
C/C复合材料产业现状
C/C复合飞机刹车材料预制体成型技术 C/C复合飞机刹车材料快速致密化技术 C/C复合飞机刹车材料的氧化防护技术 C/C复合飞机刹车材料再生修复技术
ቤተ መጻሕፍቲ ባይዱ
C/C复合材料产业现状
03
C/C复合飞机刹车材料预制体成型技术
预制体是C/C复合材料的增强骨架,它直接决定或影响着后续制备复合 材料的力学、热物理和摩擦等性能。
03
①先进碳/ 碳复合飞机刹车材料关键技术研究
先进碳/碳复合材料是我国大型飞机和高性能军机的关键刹车材料,碳/ 碳(C/C)复合材料刹车盘(简称碳盘)是飞机刹车装置普遍使用的关键器材, 它不仅是一种摩擦元件,而且是一种热库和结构元件。碳盘替换传统的钢刹 车盘可以获得明显减重以及大幅度进步刹车盘性能和使用寿命的效果,因此, 自从20世纪70年代装机首飞成功以来,目前国际上已有100余种大中型民航 客 机和先进军机采用了碳刹车技术,是否采用碳刹车装置已成为衡量现代航 空 机轮水平的重要标志之一。
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术
为了解决制备周期长这一关键题目,国外进行了大量的研发工作。 早在1994年,美国Textron公司报道,他们研发的高效工艺能在8h内制 备出碳盘样品,但主要题目是该方法一炉只能制备一个样品,至今仍未 能实现工程化。Vaidyaraman S等人研究的强制活动热梯度法能使沉积 速率进步12~30倍,但仅适用于制备外形简单的小样品(直径小于 100mm,厚度小于10mm),同样一炉只能制备一个样品,仍然无法
03
C/C复合材料产业现状
C/C复合飞机刹车材料快速致密化技术
碳碳复合材料应用单晶炉热场
高温稳定性
碳碳复合材料具有出色的耐高温 性能,能够在单晶炉热场中保持 稳定的物理和化学性质,确保单
晶炉热场的稳定运行。
轻质高强
碳碳复合材料具有轻质、高强的 特点,能够有效减轻单晶炉热场 的重量,提高热场的热效率,降
低能耗。
长寿命
碳碳复合材料的化学性质稳定, 不易与炉内物质发生反应,能够 保证单晶炉热场的长寿命运行。
未来发展方向与展望
新型碳碳复合材料的研发
随着科技的不断进步,未来将会有更多新型的碳碳复合材料出 现,这些新材料将具有更高的性能和更广泛的应用领域。
优化制备工艺
目前碳碳复合材料的制备工艺还存在一些问题,如成本高、周 期长等,未来将通过优化制备工艺,降低成本、缩短周期,提 高碳碳复合材料的可重复性和可扩展性。
碳碳复合材料在单晶炉热场中的解决方案
抗氧化涂层处理
通过涂覆抗氧化涂层,提高碳碳复合材料在高温 环境下的稳定性。
材料匹配设计
在设计和制造过程中,充分考虑材料的热膨胀系 数匹配问题,以减少热应力。
优化制备工艺
通过优化制备工艺,提高碳碳复合材料的性能和 稳定性,减少长期使用中的性能衰退。
05 结论
碳碳复合材料在单晶炉热场中的重要性
03 碳碳复合材料在单晶炉热 场中的应用
碳碳复合材料在单晶炉热场中的优势
高温性能优异
轻质高强
碳碳复合材料具有出色的高温稳定性,能 够在极高的温度下保持结构和性能的稳定 性,满足单晶炉热场的高温需求。
碳碳复合材料具有轻质、高强的特点,能 够有效减轻单晶炉热场的重量,同时提高 设备的机械强度和刚性。
轻质高强
碳碳复合材料具有轻质、高强 的特点,能够有效减轻结构重 量,提高结构强度。
碳碳复合材料
3.1 物理性能
3.1.2 热学及烧蚀性能
碳/碳复合材料具有碳元素所特有的耐烧蚀、抗热震、高导热率和低膨胀系 数等性能。其导热性在常温下可与铝合金比拟;热膨胀系数远比金属低且随材 料的密度降低而降低;同时具有最好的生物相容性。
烧蚀防热是利用材料的分解、解聚、蒸发、气化及离子化等化学和物理过 程带走大量热能,并利用消耗材料本身来换取隔热效果。同时,也可利用在一 系列的变化过程中形成的隔热层,使物体内部温度不致升高。
料
壹 | 碳/碳复合材料概述 贰 | 碳/碳复合材料的制备 叁 | 碳/碳复合材料的性能 肆 | 碳/碳复合材料的应用
壹 | 碳/碳复合材料概述
1.1 简介
碳/碳复合材料是以碳(石墨)纤维为基体/增强体通过加工和碳化处理制成的全 碳质复合材料。
其全碳质结构不仅保留了纤维增强材料优异的力学性能和灵活的结构可设计性, 还兼具碳素材料诸多优点,如低密度(<2.0g/cm3)、低的热膨胀系数、高导热导电 性、优异的耐热冲击、耐烧蚀及耐摩擦性等,是如今在1650℃以上应用的少数备选 材料,最高理论温度高达2600℃,因此被认为是最有发展前途的高温材料之一。该 材料力学性能随温度升高不降反升,使其成为航空航天、汽车、医学等领域理想的 结构材料。
2.2 基体碳制备
2.2.1 化学气相沉积 (CVD)/化学气相浸透(CVI)
原理:通过气相的分解或反应生成固态物质并在某固定基体(基底)上成核、生长。 CH4(g) 加热 C(s)+2H2(g) 一般认为,CVD(CVI)经历以下过程:
• 反应气体通过层流向沉积基体的边界层扩散; • 沉积基体表面吸附反应气体,反应气体产生反应并形成固态和气体产物; • 所产生的气体产物解吸附,并沿边界层区域扩散; • 产生的气体产物排除。
碳碳复合材料
碳碳复合材料碳碳复合材料是一种由碳纤维和碳基复合材料组成的复合材料。
它具有优异的力学性能和热学性能,被广泛应用于航天、航空、能源、汽车等领域。
碳纤维是碳碳复合材料的主要组成部分之一,它具有轻、强、刚、耐高温等特点。
碳纤维的强度比钢高五倍,刚度更高,而且密度只有一般钢材的四分之一。
这种优异的性能使得碳纤维成为航天航空领域中的重要材料,如制造飞机翼、导弹外壳等。
同时,碳纤维还可以用来制造汽车部件,如车身和刹车盘,以提高汽车的性能和燃油效率。
碳基复合材料是由含碳基体和碳基增强材料组成的复合材料。
它具有良好的导热性能和高温稳定性,可以在高温和极端环境下工作。
碳基复合材料通常用于制造火箭喷嘴、导弹外壳等需要耐高温和高速摩擦的部件。
此外,碳基复合材料还具有良好的耐磨性能和耐腐蚀性能,可以用于制造机械密封件和化学设备。
碳碳复合材料由碳纤维和碳基复合材料通过炭化、烧结等工艺制得。
碳纤维和碳基复合材料相结合,互补了各自的优点,形成了一种具有良好力学性能和热学性能的复合材料。
碳纤维可以增加碳基复合材料的强度和刚度,而碳基复合材料可以提高碳纤维的热传导性能和高温稳定性。
由于碳碳复合材料的优异性能,它被广泛应用于航天、航空、能源和汽车等领域。
在航天领域,碳碳复合材料可以用于制造导弹外壳、火箭喷嘴等高温高速工作的部件。
在航空领域,碳碳复合材料可以用于制造飞机翼、垂直尾翼等,提高飞机的性能和安全性。
在能源领域,碳碳复合材料可以用于制造核反应堆的导热元件,提高核反应堆的效率和安全性。
在汽车领域,碳碳复合材料可以用于制造车身和刹车盘,提高汽车的性能和燃油效率。
总之,碳碳复合材料具有优异的力学性能和热学性能,被广泛应用于航天、航空、能源和汽车等领域,对推动高科技产业的发展和提高产品性能起到了重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
及零部件等
四 发展趋势及应用
(1) 因其良好的生物相容性 ,在生物医学方面 ,可作人体骨 骼的替代材料 ,比如人工髋关节、 膝关 节、 牙根等.
(2) 汽车、 赛车的制动系统. (3) 在核反应堆中制造无线电频率限幅器. (4) 利用其高导电率和很高尺寸稳定性 ,制造卫星通讯抛物 面无线电天线反射器. (5) 用碳/碳复合材料代替石棉制造熔融玻璃的滑道 ,其寿命 可提高100倍以上. (6) 制作高温紧固件.在700 ℃ 以上 ,金属紧固件强度很低 , 而碳/碳复合材料在高温下呈现优异承 载能力 ,可作高温下使用的螺栓、 螺母、 垫片等.
(7) 制作热压模具和超塑性加工模具.在陶瓷和粉未冶金 生产中采用碳/碳复合材料制作热压模 具 ,可减少模具厚度 ,缩短加热周期 ,节约能源和提高产 量;用碳/碳复合材料制作钛合金超塑性加工模 具 ,因其低膨胀性和钛合金的相容性 ,可提高成型效率 , 并减少成型时钛合金的折叠缺陷.
(8) 制作加热元件.与传统的石墨发热体强度低、 脆 ,加工与运输困难相比 ,碳/碳复合材料的强度 高 ,韧性好 ,可减少发热体体积 ,扩大工作区.
CC复合材料
Байду номын сангаас姚祥瑞
目录
• 定义 • 性能 • 制备工艺 • 发展前景及用途
一 定义
• 碳/碳复合材料是复合材料 的一种 ,它是以碳为基体 ,由 碳纤维或其制品(碳毡或碳布) 增强的复合材料.
二 性能
• 它兼有碳的惰性和碳纤维的高 强度 ,具有良好的机械性能、 耐 热性、 耐腐蚀性、 磨擦减振特 性及热、电传导特性等特点.而 且 ,其质轻 ,比强度和比弹性模 量都很高 ,更重要的是这种材料 随着温度的升高(可达2 200 ℃) 其强度不降低 ,甚至比室温条件 下还高。
工艺.有的文献称化学气相沉积工艺是最早采用的一种致密化方 法 ,其工艺过程如图2所示.主要原理是利用碳氢化合物气体在高 温下分解并沉积炭于预制体.与液相浸渍工艺相比 ,化学气相沉积 工艺不仅过程便于精确控制 ,而且所制备的材料还具有结构均匀、 完整、 致密性好、石墨化程度高等优点.目前国外主要用等温 CVI法生产碳/碳复合材料刹车盘.
3.4
常规化学气相沉积方工艺(等温法)仍有许多不足: 由于受到气相扩散速率和表面反应速率的制约 , 在一个较窄的工艺条件下进行.因此 ,对沉积炭显 微组织的选择余地有限 ,得到的通常为光滑层(S L)组织 ,要想提高沉积炭温度 ,以得到粗糙层(RL) 炭 ,则又易形成表面的气孔堵死 ,以及表层和里层 的密 度差提高[6 ].同时 ,等温 CVI制备碳/碳复合材料 周期长(约 1 000 - 1 500 h) 、 原料气利用率低 ( < 5 %) ,需要数次石墨化和机加工 ,需用大量高 能耗的贵重设备 ,成本很高
三 制备工艺
制备碳/碳复合材料主要步骤为: 预制体成型 → 致密化处理 →
最终高温热处理
3.1
预制体成型
• 在进行预制体成型前,根据所设计复合 材料的应用和工作环境来选择纤维种类和 编织方式.例如 ,对重要的结构选用高强度、 高模量纤维.对要求导热系数低的则选用低 模量炭纤维 ,如粘胶基炭纤维 成型方法为用短纤维增强: (1) 压滤法; (2) 喷涂法; (3) 热压法; (4) 浇注法 用连续长纤维增强: (1) 预浸布层压、 铺压、 缠绕等做成层压板、 回转体和异 形薄壁结构; (2) 编织技术.
达到致密预制体.此工艺存在问题是: (1) 工艺繁复、 周期长、 效率低; (2) 液体难以浸渍到预制体微孔中; (3) 有些浸渍液在常压和减压下炭化收率低 ,
必须加压 (4) 有些浸渍液炭化时粘附性过好 ,易于阻
塞气孔口 ,难 以达到致密要求 ,如树脂
3.4
化学气相沉积(Chemical Vapor Infiltration ,简称 CVI)
3.2
致密化处理
成型后的预制体含有许多孔 隙,密度也低 ,不能直接应用 ,须 将炭沉积于预制体 ,填满其孔隙 , 才能成为真正的结构致密、 性能 优良的碳/碳复合材料 ,此即致密 化过程.传统的致密化工艺大体分 为液相浸渍和化学气相沉积(CVI) 两种.
3.3
液相浸渍工艺 液相浸渍工艺一般在常压或减压下进行. 重复浸渍 — — — 炭化 — — — 石墨化 ,