指派问答(含非标准规定指派问答)

合集下载

非标准指派问题

非标准指派问题

非标准指派问题在日常工作中,我们经常会遇到一些非标准指派问题,这些问题可能会给我们的工作带来一些困扰和挑战。

因此,我们需要对这些非标准指派问题进行深入的分析和解决,以便更好地应对各种工作场景。

首先,非标准指派问题可能会出现在项目任务的安排上。

在实际工作中,由于各种原因,我们可能会接到一些非常规的任务指派,这些任务可能与我们的专业领域不太相关,或者超出了我们的工作范围。

面对这种情况,我们需要及时与领导沟通,明确任务的目的和意义,同时也要评估任务的可行性和风险,以便做出正确的决策。

其次,非标准指派问题还可能出现在工作流程的安排上。

在团队协作中,我们可能会遇到一些非常规的工作流程,这些流程可能会影响到我们的工作效率和质量。

为了解决这些问题,我们需要与团队成员进行有效的沟通和协调,找到最适合的工作流程,并在实践中不断进行优化和调整,以确保工作的顺利进行。

此外,非标准指派问题还可能出现在资源分配上。

在工作中,我们可能会面临一些非常规的资源分配问题,例如人力、物力、财力等方面的不足或不合理分配。

为了解决这些问题,我们需要与相关部门或领导进行有效的沟通,协调资源的调配和分配,确保各项工作能够得到充分的支持和保障。

最后,非标准指派问题也可能出现在工作目标的设定上。

在实际工作中,我们可能会接到一些非常规的工作目标,这些目标可能会与我们的实际情况不太符合,或者存在一定的难度和挑战。

为了解决这些问题,我们需要与领导或团队成员进行充分的沟通和协商,明确工作目标的意义和价值,同时也要合理评估目标的可行性和实现路径,以便更好地完成工作任务。

总之,非标准指派问题是我们在工作中经常会遇到的挑战,我们需要以积极的态度和有效的方法来解决这些问题,以便更好地应对各种工作场景,提高工作效率和质量。

希望通过我们的努力,能够更好地应对和解决各种非标准指派问题,为团队的发展和工作的顺利进行贡献力量。

指派问题详解

指派问题详解

第一章绪论1、指派问题的背景及意义指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的一件事,如何安排人员使得总费用最少?若考虑每个职工对工作的效率(如熟练程度等),怎样安排会使总效率达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值.虽然指派问题可以用0-1规划问题来解,设X(I,J)是0-1变量, 用X(I,J)=1表示第I个人做第J件事, X(I,J)=0表示第I个人不做第J件事. 设非负矩阵C(I,J)表示第I个人做第J件事的费用,则问题可以写成LINGO程序SETS:PERSON/1..N/;WORK/1..N/;WEIGHT(PERSON, WORK): C, X ;ENDSETSDATA:W=…ENDDATAMIN=@ SUM(WEIGHT: C*X);@FOR(PERSON(I): @SUM(WORK(J):X(I,J))=1);@FOR(WORK(J): @SUM(PERSONM(I):X(I,J))=1);@FOR(WEIGHT: @BIN(X));其中2*N个约束条件是线性相关的, 可以去掉任意一个而得到线性无关条件.但是由于有N^2个0-1变量, 当N很大时,用完全枚举法解题几乎是不可能的. 而已有的0-1规划都是用隐枚举法做的,计算量较大. 对于指派问题这种特殊的0-1规划,有一个有效的方法——匈牙利算法,是1955年W. W. Kuhn利用匈牙利数学家D.König的二部图G的最大匹配的大小等于G的最小顶点覆盖的大小的定理提出的一种算法,这种算法是多项式算法,计算量为O(N3).匈牙利算法的基本原理是基于以下两个定理.定理1设C=(C ij)n×n是指派问题的效益矩阵,若将C中的任一行(或任一列)减去该行(或该列)中的最小元素,得到新的效率矩阵C’,则C’对应的新的指派问题与原指派问题有相同的最优解.证明:设X’是最优解, 即@SUM(WEIGHT: C*X’)<= @SUM(WEIGHT: C*X), 则当C中任一行或任一列减去该行或该列的最小数m时,得到的阵C’还是非负矩阵, 且@SUM(WEIGHT: C’*X’)<=@SUM(WEIGHT: C*X)-m=@SUM(WEIGHT: C’*X)定理2效率矩阵C中独立的0元素的最多个数等于覆盖所有0元素的最少直线数. 当独立零元素的个数等于矩阵的阶数时就得到最优解.3、理论基础定义:图G的一个匹配M是图G中不相交的边的集合. 属于匹配M中的边的所有端点称为被该匹配M饱和, 其他的顶点称为M-未饱和的. 如果一个匹配M 饱和了图G的所有顶点,则称该匹配M是一个完全匹配. 可见顶点数是奇数的图没有完全匹配. 一个匹配M称为是极大匹配, 如果它不能再扩张成更大的一个匹配. 一个匹配称为是最大匹配, 如果不存在比它更大的匹配.定义:对于一个匹配M, 图G的一个M-交替路是图G中的边交替地在M中及不在M中的边组成. 从M-未饱和点出发到M-为饱和点结束的M-交替路称为一条M-增广路. 把M-增广路中不是M中的边改成新的匹配M’中的边, 把M-增广路中M中的边不作为M’中的边, 在M-增广路以外的M中的边仍作为M’中的边, 则M’的大小比M大1. 故名M-增广路. 因此最大匹配M不存在M-增广路.定义:若图G和图H有相同的顶点集V, 我们称G和H的对称差,记为G∆H,是一个以V为顶点集的图, 但其边集是G和H的边集的对称差: E(G∆H)=E(G) ∆E(H)=E(G)⋂E(H)-(E(G)⋃E(H))=(E(G)-E(H)) ⋂ (E(H)-E(G))定理: (Berge, 1957) 图G的一个匹配M是最大匹配,当且仅当G中没有M-增广路.证明: 我们只要证明, G中没有M-增广路时, M是最大匹配. 用反证法, 若有一个比M大的匹配M’. 令G的一个子图F, E(F)=M∆M’, 因M和M’都是匹配, F的顶点的最大度数至多是2, 从而F由不相交的路和环组成, 它们的边交替地来自M和M’, 于是F中的环的长度是偶数. 由于M’比M大, F中存在一个连通分支,其中M’中的边数大于M中的边数. 这个分支只能是起始和终止的边都在M’中. 而这就是一条G中的M-增广路. 与假设矛盾. 证毕.定理(Hall, 1935)设G是一个二部图, X和Y是其二分集, 则存在匹配M 饱和X当且仅当对于X中的任意子集S, Y 中与S中的点相邻的点组成的集合N(S)中元素的个数大于等于集合S中元素的个数.证明:必要性是显然的. 对于充分性, 假设 |N(S)|≥|S|, ∀S⊂X, 考虑G的一个最大匹配M, 我们用反证法,若M没有饱和X, 我们来找一个集合S不满足假设即可. 设u∈X是一个M-未饱和顶点, 令S⊂X和T⊂Y分别是从u出发的M-交替路上相应的点.我们来证明M中的一些边是T到S-u上的一个匹配. 因为不存在M-增广路,T中的每个点是M-饱和的. 这意味着T中的点通过M中的边到达S中的一个顶点. 另外, S-u中的每个顶点是从T中的一个顶点通过M中的一条边到达的. 因此M 中的这些边建立了T与S-u的一个双射, 即|T|=|S-u|. 这就证明了M中的这些边是T到S-u上的一个匹配,从而意味着T⊂N(S), 实际上, 我们可证明T=N(S). 这是因为连接S和Y-T中的点y的边是不属于M的, 因为不然的话, 就有一条到达y的M-增广路, 与y∉T矛盾. 故|N(S)|=|T|=|S-u|=|S|-1<|S|, 与假设矛盾.当X与Y的集合的大小相同时的Hall定理称为婚姻问题,是由Frobenius(1917)证明的.推论: k-正则的二部图(X的每一点和Y的每一点相关联的二部图)(k>0)存在完全匹配.证明: 设二分集是X,Y. 分别计算端点在X和端点在Y的边的个数, 得k|X|=k|Y|, 即|X|=|Y|.因此只要证明Hall的条件成立即可. 使X饱和的匹配就是完全匹配. 考虑∀S⊂X, 设连接S与N(S)有m条边, 由G的正则性, m=k|S|. 因这m条边是与N(S)相关联的, m≤k|N(S)|, 即k|S|≤ k|N(S)|, 即|N(S)|≥|S|. 这就是Hall的条件.用求M-增广路的方法来得到最大匹配是很费时的. 我们来给出一个对偶最优化问题.定义:图G的一个顶点覆盖是集合S⊂V(G), 使得G的每条边至少有一个端点在S中. 我们称S中的一个顶点覆盖一些边, 若这个顶点是这些边的公共端点.因为匹配的任意两条边不能被同一个顶点覆盖, 所以顶点覆盖的大小不小于匹配的大小: |S|≥|M|. 所以当|S|=|M| 时就同时得到了最大的匹配和最小的顶点覆盖.定理(König [1931],Egerváry[1931])二部图G的最大匹配的大小等于G的最小顶点覆盖的大小.证明: 设M是G的任一个匹配, 对应的二分集是X,Y. 设U是一个最小的顶点覆盖, 则|U|≥|M|, 我们只要由顶点覆盖U来构造一个大小等于|U|的匹配即完成证明. 令R=U⋃X, T=U⋃Y, 令H, H’分别是由顶点集R⋂(Y-T)及T⋂(X-R)诱导的G的子图. 我们应用Hall的定理来证明H有一个R到Y-T中的完全匹配,H’有一个从T到X-R中的完全匹配. 再因这两个子图是不相交的, 这两个匹配合起来就是G中的一个大小为|U|的匹配.因为R⋂T是G的一个覆盖, Y-T与X-R之间没有边相联接. 假设S⊂R, 考虑在H中S的邻接顶点集N(S), N(S) ⊂Y-T. 如果|N(S)|<|S|, 因为N(S)覆盖了不被T覆盖的与S相关联所有边, 我们可以把N(S) 代替S作为U中的顶点覆盖而得到一个更小的顶点覆盖. U的最小性意味着H中Hall条件成立. 对H'作类似的讨论得到余下的匹配. 证毕.最大匹配的增广路算法输入: 一个二分集为X,Y的二部图G,一个G中的匹配M, X中的M-未饱和顶点的集合U.思路: 从U出发探求M-交替路,令S⊂X,T⊂Y为这些路到达过的顶点集. 标记S中不能再扩张的顶点. 对于每个x∈(S⋂T)-U, 记录在M-增广路上位于x前的点.初始化: S=U,T=∅.叠代: 若S中没有未标记过的顶点, 结束并报告T⋂(X-S)是最小顶点覆盖而M是最大匹配.不然, 选取S中未标记的点x, 考虑每个y∈N(x)且xy∉M, 若y是M-未饱和的, 则得到一个更大的匹配,它是把xy加入原来的匹配M得到的,将x从S中去除. 不然, y是由M中的一条边wy相连接的, w∈X, 把y加入T(也有可能y本来就在T中), 把w加入S. w未标记, 记录w前的点是y. 对所有关联到x的边进行这样的探索后, 标记x. 再次叠代.定理: 增广路算法可以得到一个相同大小的匹配和顶点覆盖.证明: 考虑这个算法终止的情况, 即标记了S中所有的点. 我们要证明R=T⋂(X-S)是大小为|M|的一个顶点覆盖.从U出发的M-交替路只能通过M中的边进入X中的顶点, 所以S-U中的每个顶点通过M与T中的顶点匹配, 并且没有M中的边连接S和Y-T. 一旦一条M-交替路到达x∈S, 可以继续沿着任何未饱和的边进入T, 由于算法是对于x的所有邻域顶点进行探索才终止的,所以从S 到Y-T 没有未饱和边. 从而S 到Y-T 没有边, 证明了R 是一个顶点覆盖.因为算法是找不到M-增广路时终止, T 的每一个顶点是饱和的. 这意味着每个顶点y ∈T 是通过M 匹配与S 中的一个顶点. 由于U ⊂S, X-S 的每个顶点是饱和的, 故M 中与X-S 相关联的边不和T 中的点相连接. 即它们与是饱和T 的边不同的, 这样我们可见M 至少有|T|+|X-S|条边. 因不存在一个比顶点覆盖更大的匹配, 所以有|M|=|T|+|X-S|=|R|.设二部图G 的二分集X 和Y 都是n 个元素的点集, 在其边j i y x 上带有非负的权ij w , 对于G 的一个匹配M, M 上各边的权和记作w(M).定义: 一个n ×n 矩阵A 的一个横截(transversal)是A 中的n 个位置, 使得在每行每列中有且只有一个位置(有的文献中把横截化为独立零元素的位置来表示).定义: 指派问题就是给定一个图G=n n K ,(完全二部图, 即每个X 中的顶点和Y 中的每个顶点有边相连接的二部图)的边的权矩阵A, 求A 的一个横截, 使得这个横截上位置的权和最大. 这是最大带权匹配问题的矩阵形式.定义: 对于图G=n n K ,,设其二分集是X ,Y ,给定G 的边j i y x 的n ×n 权矩阵W={ij w }.考虑G 的子图v u G ,, 设其二分集是U ⊂X ,V ⊂Y, 边集是E(v u G ,), 对于子图v u G ,的带权覆盖u,v 是一组非负实数{i u },{j v },使得ij j i w v u ≥+,)(,v u j i G E y x ∈∀, v u G ,的带权覆盖的费用是∑∑+j i v u 记为C(u,v), 最小带权覆盖问题就是求一个具有最小费用C(u,v)的带权覆盖u,v.引理: 若M ⊂E(v u G ,)是一个带权二部子图v u G ,的最大匹配, 且u, v 是v u G ,的带权覆盖, 则C(u,v)≥w(M). 而且, C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀. 这时M 是v u G ,最大带权匹配, u,v 是v u G ,的最小带权覆盖, 定义这时的v u G ,为G 的相等子图(equality subgraph ).证明: 因为匹配M 中的边是不相交的, 由带权覆盖的定义就得C(u,v)≥w(M). 而且C(u,v)=w(M)当且仅当ij j i w v u =+,M y x j i ∈∀成立. 因一般地有C(u,v)≥w(M).所以当C(u,v)=w(M)时. 意味着没有一个匹配的权比C(u,v)大, 也没有一个覆盖的费用比w(M)小.Kuhn 得到一个指派问题的算法,命名为匈牙利算法, 为的是将荣耀归于匈牙利数学家König 和Egerv áry.指派问题的匈牙利算法(Kuhn[1955], Munkres[1957]):输入G=n n K ,的边的权矩阵A, 及G 的二分集X,Y.初始化: 任取一个可行的带权覆盖,例如)(max ij ji w u =,0=j v ,建立G 的相等子图v u G ,, 其二分集是X, Y ’⊂Y, 求v u G ,的一个最大匹配M. 这个匹配的权和w(M)=C(u,v), M 的带权覆盖是具有最小费用的.叠代: 如M 是G 的一个完全匹配, 停止叠代, 输出最大带权匹配M. 不然, 令U 是X 中的M-未饱和顶点. 令S ⊂X, T ⊂Y 是从U 中顶点出发的M-交替路到达的顶点的集合.令},:min{T Y y S x w v u j i ij j i -∈∈-+=ε.对于所有的S x i ∈, 将i u 减少ε, 对于所有的T y j ∈,将j v 增加ε,形成新的带权覆盖u ’,v ’及对应的新的相等子图v u G '',.如果这个新的相等子图含有M-增广路, 求它的最大匹配M ’, 不然不改变M 再进行叠代.定理: 匈牙利算法能找到一个最大权匹配和一个最小费用覆盖.证明: 算法由一个覆盖开始,算法的每个叠代产生一个覆盖,仅在相等子图有一个完全的匹配为止。

指派问题

指派问题
令 B (m cij )mn ,这样就把系数矩阵C的原最大化指派问题化ij 成系数矩阵 为B的最小化指派问题。两者具有相同的最优解。 2)人数与事数不等的指派问题 对于人数与事数不等的指派问题,通过如下方法,将其化为标准的指派问题: (1)如果人少事多,增加一些虚拟“人”,虚拟“人”做事的费用系数取为
数学模型为:
max Z 85x11 92x12 73x13 90x14 95x21 87x22
78x23 95x24 82x31 83x32 79x33 90x34
86x41 90x42 80x43 88x44 甲
A
x11 x12 x13 x14 1
xx3211
6 4
9 8 0 0
4
0 6 3 6 5
经行运算即可得每行每列都有 0 元素的系数矩阵,
再按上述步骤运算,得到:
5 0 2 0 2
2 3 0 0
0
0 10 5 7 2
9 8 0 0
4
0 6 3 6 5
所画 0元素少于n,未得到最优解。
5 0 2 0 2 2 3 0 0 0 0 10 5 7 2 9 8 0 0 4 0 6 3 6 5
将前面的例题连续作进行下
任务 人
A
B
C
D
E

12 7
9
7
9

8
9
6
6
6

7 17 12 14 9

15 14 6
6 10

4 10 7 10 9
12 7 9 7
8
9 66
9
6
7 6
5 0 2 0 2
2 3 0 0

【精品】指派问题——匈牙利法

【精品】指派问题——匈牙利法
0 6 2 1 -1 Cij= 0 5 3 1 -1 0 0 0 0 1 1 1 3 2 0 2 +1 5 1 0 0 4 2 0 0 1 2 3 2 2 4 3 1 0 2 1 0 0 2
最优解:x13=1,x21=1,x32=1,x44=1
若◎元素的数目m=n,则该指派问题的最优 解已经得到,否则转入Step 3;
13
指派问题的匈牙利解法——步骤(续)
Step 3. 设有 m<n 个◎, 找最少覆盖所有0的直线
1) 对没有◎的行打√
2) 对已打√行中含所在列打√ 3) 对已打√列中含◎所在行打√ 4) 重复2)~3), 直至没有要打√的行和列为止 5) 对没有打√的行划横线, 对打√的列划竖线 得到最少覆盖所有0的直线数l。
i 1 j1 ik n n j1 n j1
n
n
n
cijx ij c kjx kj (s)
i 1 j1 ik j1
z (s)
指派问题的匈牙利解法
• 根据此定理,可以对 做如下改变,目的是 找出C 中的 n个不同行不同列的0元素: • 将 C的每一行减去该行中的最小元素,得 到C’矩阵 ,则C’ 的每行中均至少出现一个 0元素,且所有cij0 。同样,对C 的列亦进 行如此计算,由此,我们完全可以从原效 率矩阵 出发,得到一个新的效率矩阵 ,使 C的每行每列中均至少存在一个0元素,而 不改变问题的最优解。
Z=15
独立练习 • P161第6.4题
6.5.4 非标准形式的指派问题 • 非标准型指派问题求解的总原则是化非标准 形式为标准形式,然后用匈牙利解法求解。 (1) 最大化指派问题 设效率矩阵为 C (cij )nn ,其中最大元素

5.5 指派问题

5.5 指派问题

cij 为第 i 个人为完成第 j 项任务时的工时消
3. 指派问题数学模型—标准形式 如果一个指派模型满足以下三个条件:
1)目标要求为min
2)效率矩阵(cij)为m阶方阵
3)效率矩阵中所有元素cij≥0,且为常数
则称上面的数学模型为指派问题的标准形.
4. 指派模型的标准形的特点: 含有m×m个决策变量,均为0-1变量 m+m=2m个约束方程 给定一个指派问题时,必须给出效率矩阵(系数矩阵) C=(cij)mxm,且cij0,因此必有最优解 。
0 1 0 0
0 0 0 1
指派问题的解矩阵应具有如下特点: (1)解矩阵(xij)中各行各列的元素之和都是1; (2)可行解(最优解)中恰含有4个非零元,即4个1; (3)可行解(最优解)矩阵中的1恰取于不同行不同列。
人 工作 译成英文 译成日文 译成德文 译成俄文 任务
甲 2 15 13 4 1
定理1 如果从指派问题效率矩阵[cij]的每一行元素中分别 减去(或加上)一个常数ui(被称为该行的位势), 从每一列分别减去(或加上)一个常数vj(称为该列的位势) 得到一个新的效率矩阵[bij], 若其中bij=cij-ui-vj, 则[bij]的最优解的结构等价于[cij]的最优解的结构.
证明:将从[bij]中得到的解 代入分配问题模型的目标函数式,有
从只有一个0元素的行(或列)开始,
给这个0元素加圈,记, 这表示对这行所 代表的人,只有一种任务可指派。 然后划去所在的列(或行)的其他0元素,记作Ø。 这表示这列所代表的任务已指派完,不必再考虑别人
0
6
13
7 6 3 0
0 9 2 0

5 1
0
给只有一个0元素的列(或行)中的0元素加圈, 记, 然后划去所在的行(或列)的其他0元素,记作Ø。 这表示这行所代表的人已指派完, 不必再考虑他做别的任务了。 反复进行上述两步,直到所有的0元素都被圈出和 划掉为止。

指派问题(含非标准指派问题)

指派问题(含非标准指派问题)

第五章 整数规划§1 整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。

其模型为:Max(或min)z=∑=nj j jx c1s.t ⎪⎪⎩⎪⎪⎨⎧=≥=≥=≤∑=nj nj i ij ij xx x nj x m i b x a ,,,2,10,2,1),(211若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。

§5 指 派 问 题 一. 指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。

例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。

诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。

由于指派问题的多样性,有必要定义指派问题的标准形式。

指派问题的标准形式(以人和事为例)是:有n 个人和n 件事,已知第i 个人作第j 件事的费用为),2,1,(n j i c ij =,要求确定人和事之间的一一对应的指派方案,是完成这n 件事的总费用最少。

为了建立标准指派问题的数学模型,引入2n 个0-1变量:⎩⎨⎧=10ij x这样,问题的数学模型可写成 ∑∑===ni nj ij ijx cz 11min (5.1)s.t ⎪⎪⎪⎩⎪⎪⎪⎨⎧======∑∑==n j i x n i x n j x ij n j ij n i ij ,2,1,1,0,2,11,2,1111 (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。

注:○1 指派问题是产量(i a )、销量(j b )相等,且i a =j b =1,i ,j=1,2,…n 的运输中部分或全部取整数 若指派第i 人作第j 件事若不指派第i 人作第j 事i ,j=1,2,…n(5.2) (5.4)问题。

○2 有时也称ijc 为第i 个人完成第j 件工作所需的资源数,称之为效率系数(或价值系数)。

第4章整数规划——指派问题

第4章整数规划——指派问题


13 11 2 0 10 11 57 4 4 2 13 7 0 0 6 9 5 32 0 0
0 0 X 1 0
0 0 1 1 0 0 0 0 0 0 1 0

故可得到指派问题的最优解X,这样 安排能使总的维修时间最少,维修时间为 z=4+4+9+11=28(小时)。
X (2)
都是指派问题的最优解。
4 指派问题
4.3 指派问题的求解 指派问题既是一类特殊的整数规划问题,又是特殊的运输问 题,因此可以用多种相应的解法来求解,然而这些解法都没有充 分利用指派问题的特殊性质,有效地减少计算量,直到1955年库 恩(W. W. Kuhn)提出的匈牙利法才有效地解决了指派问题。 匈牙利法的理论基础 定义2 独立零元素组 在效率矩阵中,有一组在不同行不同 列的零元素,称为独立零元素组,其每个元素称为独立零元素。 5 0 2 0 2 3 0 0 C 【例4】 已知效率矩阵 0 5 6 7 4 8 0 0 求其独立零元素组。
4 指派问题
0 , 不 指 派 第 i小 组 维 修 第 j台 机 床 x ij ( i , j 1, 2 ,3, 4 ) 1, 指 派 第 i 小 组 维 修 第 j 台 机 床 机车 该问题的数学模型为: 1 2 3 4 4 小组 min z cij xij i 1 j 1 1 x11 x12 x13 2 x11 15 x12 2 x21 x22 x23 任务约束 4 x 1, j 1, 2 , 3 , 4 3 x31 x32 x33 ij i 1 4 x41 x42 x43 人员约束 4 x ij 1, i 1, 2 , 3, 4 j 1 x ij 0 或 1 i , j 1 , 2 , 3 , 4

最短路径、指派、运输问题

最短路径、指派、运输问题

第二步:进行试指派以寻求最优解。
(1)进行行检验:从只有一个0元素的行开始,给这 个0元素加(),记作(0);再划去(0)所在列的其它 0元素,记作φ。若遇到有两个0元素以上的行,先放下。 (2)进行列检验:给只有一个0元素的列0元素加() ,记作(0);然后划去(0)所在行的0元素,记作φ。 (3)再对两个以上0元素的行和列标记,任意取一个 加()。
B1 A1 A2 A3 4 7 6
B2 8 9 9
B3 7 17 12
B4 15 14 8
B5 12 10 7
A4
A5
6
6
7
9
14
12
6
10
10
6
三、其它指派问题
(1)目标函数求最大值的指派问 题 对于此问题可做一个新的 矩阵B=(bij)。找出原矩阵的最 大元素m,令B=(bij)=m-cij

产 量 与 销 量 平 衡
解: 设产地Ai到销地Bi的运量为xij,由问题构造运量平衡表
可以知道:
(1)产销平衡 (2)Ai运出量等于产量 (3)Bj运入量等于销量
a b
i 1 i j1
m
n
j
x
j 1
n
ij
ai
x
i 1
m
ij
bj
运量平衡表
销地Bi 运价 产地Ai A1 A2 C11 C21 C12 C22 B1 B2
4 2 (cij ) 4 3 3 3 3 2 4 6 5 6 1 - 1 3 5 - 2 0 1 4 - 3 5 -2 1 2 1 0 0 3 0 - 1 3 4 3 - 2 0 1 2 1-3 4 3 -2 1 -2 2 1 0 0 1 2 0 2 0 3 (b ) ij 1 3

4.5 指派问题

4.5 指派问题

23
OR:SM
五、非标准指派问题
工作
例:现有4份工作,6个人应聘,由
1 2 3 4 56

于个人的技术专长不同,他们承担
1 12 7 9 7 0 0
各项工作所需时间如下表所示,且
2 7 17 12 14 0 0
规定每人只能做一项工作,每一项
3 15 14 6 6 0 0
工作只能由一个人承担,试求使总
75 50 150 230 50 25 0 100 180
65 70 170 250 65 0 5 105 185
82 55 200 280 55 27 0 145 225
然后找出矩阵每列的最小元素,再分别从每列中减去,有:
0 11 122 202 0 11 22 22
25
0
100
180
25
运筹学--管理科学方法
李军
桂林电子科技大学商学院
第四章 整数规划
内S容ub提ti要tle
问题背景与数学描述
一般
的ILP
分枝定界法 原理
求解 割平面法
步骤
整数
规划 特殊的ILP
0-1规划 指派问题
进一步讨论
建模 求解 特点分析
整数规划应用
今天要研究 的内容?
2
2013-5-29
2
引例1:趣味问题
( 0) 6 17 17
30 ×0 ( 0) ×0
×0 ×0 ×0 (0)
32
( 0)
45
45
(0 ) 6 17 17
或 30 ×0 ×0 (0)
×0 ×0 (0) ×0
32
( 0)
45
45

指派问题

指派问题

13 0 5 1
7 6 3 0
0 9 ( b ij ) 2 0
第二步: 进行试指派,以寻求最优解。为此,按以 下步骤进行。 经第一步变换后,系数矩阵中每行每 列都已有了0元素;但需找出n个独立的0 元素。若能找出,就以这些独立0元素对 应解矩阵(xij)中的元素为1,其余为0, 这就得到最优解。当n较小时,可用观察 法、试探法去找出n个独立0元素。若n较 大时,就必须按一定的步骤去找,常用 的步骤为:
•减数得零—求初始匹配 •圈零划线—查是否最大匹配 •找数调整—求新的最优匹配 运筹学
指派问题的解法
第一步: 使指派问题的系数矩阵经变换,在各行各列中 都出现0元素。 (1) 从系数矩阵每行元素减去该行的最小元素; (2) 再从所得系数矩阵的每列元素中减去该列 的最小元素。 若某行(列)已有0元素,那就不必再减了。


7 4 0 11 0
0 3 8 8 4
2 0 3 0 1
0 0 5 0 4
2 0 0 4 3
运筹学
已具有n个独立0元素。这 就得到了最优解,相应的解 矩阵为: 由解矩阵得最优指派方案 甲—B,乙—D,丙—E,丁—C,戊—A

0 0 0 0 1
想想看!
运筹学
指派问题的形式表述
给定了一系列所要完成的任务(tasks)以及 一系列完成任务的被指派者(assignees), 所需要解决的问题就是要确定出哪一个人 被指派进行哪一项任务,使总的效率最高?
运筹学
指派问题的假设
被指派者的数量和任务的数量是相同的 每一个被指派者只完成一项任务 每一项任务只能由一个被指派者来完成
表1
任 人员 甲 乙 丙 丁 务

4.5 指派问题

4.5 指派问题

4.5 指派问题有n项任务要分给n个人去完成,每人完成一项.由于任务的性质以及个人的专长不同,因此,各人完成不同任务的效率就有差别,如何分配这些工作任务,使总的效率最高?这类问题称为指派问题.在现实生活中,诸如若干项合同要选择若干个投标者来承包,若干班级要安排在各教室上课等等均属于这类指派问题.如果我们记x ij= 1,当指派第i人做第j项工作;0,不指派第i人做第j项工作.那么指派问题的数学模型可以表示为在x ij=0或1,以及x ij=1(j=1,2,…n), ∑x ij=1(i=1,2,…n)的约束条件下求目标函数z=∑∑c ij x ij的最大(或最小)值,其中c ij表示第i个人完成第j项任务的效率(或成本、时间、费用等).可以看出,指派问题是特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题,因此,它可以用多种方法来解.[案例13]附表给出五位工人完成五种工作所能取得的效益,试求出分配该五位工人分别担任一项工作的方案,使取得的效益最大.(上海市第五届中学生数学知识应用竞赛决赛试题五)分析(1)按题目要求,应选取表中的不同行、不同列的五个数据,还要求选取的这五个数的和最大,如果逐一验算,需考5!=120种方案.实际上,这是一个典型的“指派问题”。

(2)要求目标函数最大.为此,可将表中最大的一个数减去表中每一个数,由此可将最大化问题化归为最小化问题.表1表2解 (l) 将表中最大数80减去表中每一个数得表1.(2) 每列减去本列的最小数,并在有0的位置上考虑安排工作,得表2.(3) 第3、4行未满足,减去本行中最小数,得表3.(4) 由于第四列己满足,故将第1、3行减1,第四列加1.此时(3,1)格为0,但(5,1)格已安排工作,注意到(5,5)为0,故可作简单调整得表4.表3表4(5)现在只有第4行未满足,减去本行最小数得表5.表5至此,我们已得到问题的解: x14=1, x22=1, x31=1, x43=1, x55=1,即分配工人A做第4、B做第2、C做第1、D 做第3、E做第5件工作,可以取得最大效益为17+50十18十28+80=193.[案例14]某商业公司计划开办五家新商店,为了尽早建成营业,商业公司决定由5家建筑公司分别承建已知建筑公司A i(i=1,2,…5)对新商店B j(j=1,2,…,5)的建造费用的报价(万元)为c ij(i,j=1,2.…,5),见下表.试问商业公司应当对这5家建筑公司怎样分配建造任务,才能使总的建造费用最少?解这是最小化指派问题,可直接利用表上作业法进行操作,见表1-3.最优方案为:让A1承建B3,A2承建B2,A3承建B1,A4承建B4,A5承建B5,此时能使总的建造费用最少,为7+9+6+6+6=34万元表1表2说明将表1第2、3行减去本行最小数后,(2,2)格为0,与(4,2)格冲突,但(4,4)格为0,于是调整为(2,2)、(4,4)安排任务,(4,2)不做安排,这就得到了表2.表2到表3也使用了这种微调的技巧.表3。

《指派问题》课件

《指派问题》课件

指派问题的扩展研究
多目标指派问题
应用场景:生产调度、资源 分配等

解决方法:线性规划、启发 式算法等
定义:指派问题在多个目标 下的扩展
挑战:如何在多个目标之间 找到最优解
动态指派问题
动态指派问题的定 义
动态指派问题的应 用场景
动态指派问题的求 解方法
动态指派问题的优 化策略
大规模指派问题
问题定义:大规模 指派问题是指在给 定一组任务和一组 资源,如何将任务 分配给资源,使得 总成本最小化或总 收益最大化。
混合算法
混合算法的概念: 将多种算法进行 组合,以获得更 好的优化效果
混合算法的优点: 能够充分利用各 种算法的优点, 提高优化效果
混合算法的应用: 在指派问题中, 混合算法可以结 合多种算法,如 遗传算法、模拟 退火算法等,以 提高优化效果
混合算法的挑战: 如何合理选择和 组合各种算法, 以获得最佳的优 化效果
应用场景:大规 模指派问题广泛 应用于物流、供 应链、生产调度 等领域。
研究方法:大规 模指派问题的研 究方法包括启发 式算法、遗传算 法、神经网络等。
挑战与展望:大规 模指派问题的挑战 在于如何设计高效 的算法,以及如何 解决大规模问题中 的优化问题。未来 的研究方向包括分 布式计算、并行计 算等。
禁忌搜索法:在搜索过程中引入禁忌表,避免重复搜索已搜索过的解
元启发式方法
基本概念:元启发式 方法,也称为元启发 式算法,是一种基于 启发式策略的优化方 法。
特点:元启发式方 法具有自适应性、 鲁棒性和易于实现 等特点。
应用:元启发式方法 在指派问题、路径规 划、调度等问题中都 有广泛的应用。
实例:遗传算法、模 拟退火算法、蚁群算 法等都是元启发式方 法的典型代表。

指派问题

指派问题
x11 x12 ... x1n 1 ... xn1 xn 2 ... xnn 1 x11 x21 ... xn1 1 ... x1n x2 n ... xnn 1
与模型1相比:
1. 约束相同;
2 寻找独立0元素
若看作第三列 上的惟一0元素
用一直线覆 盖所在行
0 0 0 0 0
3 1 2 0 2
0 11 8 7 7 3 3 2 1 5 0 4 3 4 0
只圈出4个0, 即:只有4个独 立的0元素,少 于系数矩阵的 阶数5。
第二列只有惟 一0元素
若C=(cij)n×n的第一行各元素分别加上一个常数k, 得到一个新矩阵C’=(c’ij) n×n
c11 k c C ' 21 cn1 c12 k ... c1n k c22 ... c2 n ... ... cn 2 ... cnn
效率矩阵C’
练习 有一份中文说明书,需译成英、日、德、俄 法五种文字。分别记作E、J、G、R、F。现有甲、乙 、丙、丁、戊五人,他们将中文说明书翻译成不同语 种的说明书所需时间如下表。问应指派何人去完成何 工作,使所需总时间最少?
任务 人
E 12 8 7
J 7 9 17
G 9 6 12
R 7 6 14
F 9 6 9
第五节 指派问题
assignment problem
• • • • 指派问题的数学模型 指派问题解的特点 指派问题的求解方法——匈牙利法 非标准形式的指派问题
一、指派问题的数学模型
例、有四项任务需分派给甲、乙、丙、丁四个人去 做,这四个人都能承担上述四项任务,但完成各项任 务所需时间如下表所示。问应如何分派任务可使完成 任务的总工时最少?

指派问题的算法

指派问题的算法

指派问题的算法分析与实现摘要在企业、公司的运营与管理中,管理者总是希望把人员最佳分派以发挥其最大工作效率,从而降低成本、提高效益。

然而,如果没有科学的方法是很难实现优化管理的,由此我们引入了指派问题。

指派问题多是求项目的工时最少,而很多情况下人们并不关心项目总工时的多少,而只关心项目能否在最短的时间内完成,即历时最少的指派问题。

这类问题研究的是n个人执行n项任务,执行每项任务的人数以及总的指派人项数均有限制,要求最优指派。

在运筹学中求解整数规划的指派问题通常是通过匈牙利算法来求解,但指派问题也可以归结为一个0-1整数规划问题,本文先对指派问题进行陈述,引出对实际问题的求解。

在指派问题的背景、描述中充分理解该问题,先运用匈牙利算法实现指派问题,然后再建立一个0-1整数规划模型,并运用matlab和lingo编译程序对问题进行编译,运用软件解决模型问题,最终实现指派问题在实际问题中的运用。

通过运用匈牙利算法和0-1整数规划同时对指派问题求解,我们发现用0-1整数规划的方法来求解可以更简单,也更方便程序的阅读和理解。

与此同时,我们还对0-1整数规划问题由整数数据深入研究到小数数据。

最后通过实例来说明运用matlab,lingo编译程序来解决整数规划问题的简便和有效性。

关键词:指派问题;匈牙利算法;0-1整数规划;matlab模型;lingo模型1. 问题陈述指派问题又称分配问题,其用途非常广泛,比如某公司指派n个人去做n 件事,各人做不同的事,如何安排人员使得总费用最少?若考虑每个职工对工作效率(如熟练程度等),怎样安排会使总销量达到最大?这些都是一个企业经营管理者必须考虑的问题,所以该问题有重要的应用价值。

假设有n 件工作分派给n 个人来做,每项工作只能由一人来做,每个人只能做一项工作。

若给出各人对各项工作所具有的工作效率。

问应该如何安排人选,及发挥个人特长又能使总的效率最大。

为此用0-1整数规划来实现指派问题即如何安排人选。

指派问题

指派问题
指派问题
指派问题 数学试验
§4 指派问题
指派问题是整数规划的一类重要问题。也是在实际生活中经常 遇到的一种问题:由n项不同的工作或任务,需要n个人去完成 (每人只能完成一项工作)。由于每人的知识、能力、经验等 不同,故各人完成不同任务所需的时间(或其它资源)不同。 问应只排哪个人完成何项工作所消耗的总资源最少? 一。 指派问题的数学模型 引进0-1变量
-4 -7 -6 -6 -6
0 0 → 0 0 0
4 3 11 8 2 10 7 3 3 6 2 1 1 8 0 4 3 6 4 0
-1 -3

0 0 → C1 = 0 0 0
3 0 11 8 1 7 7 3 ✓ 2 3 2 1 ✓ 0 5 0 4 2 3 4 0
在只有一个0元素的行(或列)加圈,表示此人只能做该事 (或此事只能由该人来做),每圈一个“0”,同时把位于同 列(或同行)的其他零元素划去。表示此时已不能再由他 人来做(或此人已不能做其它事)。如此反复,直到矩阵 中所有零元素都被圈去或划去为至。 在遇到所有行和列中,零元素都不止一个时,可任选其中 一个加圈,然后划去同行、同列其他未被标记的零元素。 例
-7 -6 -6 -7
1 0 X * = 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
从而导出匈牙利解法的思想:
二。匈牙利解法 匈牙利法是1955年由库恩(W.W.Kuhn)根据匈牙利 数学家狄·考尼格(d.konig)关于矩阵中独立零元素的定理 发明的。 匈牙利法的基本原理: 定理1 将效率矩阵的某一行(或某一列)的各个元素都减去 同一个常数t (t可正可负),得到新的矩阵,则以新矩阵为 效率矩阵的指派问题与原指派问题的最优解相同。但其最 优值比原最优值减少t 。 解:设效率矩阵C为

指派问题(含非标准指派问题)

指派问题(含非标准指派问题)

第五章 整数规划§1 整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。

其模型为:Max(或min)z=∑=nj jj xc 1s.t ⎪⎪⎩⎪⎪⎨⎧=≥=≥=≤∑=nj nj i ij ij xx x n j x m i b x a ,,,2,10,2,1),(211若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。

§5 指 派 问 题 一. 指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。

例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。

诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。

由于指派问题的多样性,有必要定义指派问题的标准形式。

指派问题的标准形式(以人和事为例)是:有n 个人和n 件事,已知第i 个人作第j 件事的费用为),2,1,(n j i c ij =,要求确定人和事之间的一一对应的指派方案,是完成这n 件事的总费用最少。

为了建立标准指派问题的数学模型,引入2n 个0-1变量:⎩⎨⎧=10ij x这样,问题的数学模型可写成 ∑∑===ni nj ij ijx cz 11min (5.1)s.t ⎪⎪⎪⎩⎪⎪⎪⎨⎧======∑∑==n j i x n i x n j x ij n j ij ni ij ,2,1,1,0,2,11,2,1111 (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。

注:○1 指派问题是产量(i a )、销量(j b )相等,且i a =j b =1,i ,j=1,2,…n 的运输中部分或全部取整数 若指派第i 人作第j 件事若不指派第i 人作第j 事i ,j=1,2,…n(5.2)(5.4)问题。

○2 有时也称ijc 为第i 个人完成第j 件工作所需的资源数,称之为效率系数(或价值系数)。

4.4 指派问题

4.4 指派问题

指派问题与匈牙利法
Page 14
若◎ 元素的数目m 等于矩阵的阶数n(即:m=n),那么这指 派问题的最优解已得到。若m < n, 则转入下一步。
3) 用最少的直线通过所有0元素。其方法:
① 对没有◎的行打“√”; ② 对已打“√” 的行中所有含Ø元素的列打“√” ; ③ 再对打有“√”的列中含◎ 元素的行打“√” ; ④ 重复①、②直到得不出新的打√号的行、列为止; ⑤ 对没有打√号的行画横线,有打√号的列画纵线,这就得到覆盖
所有0元素的最少直线数 l 。
注:l 应等于m,若不相等,说明试指派过程有误,回到第2步,另行试 指派;若 l=m < n,表示还不能确定最优指派方案,须再变换当前的系 数矩阵,以找到n个独立的0元素,为此转第4步。
指派问题与匈牙利法
• 4) 变换矩阵(bij)以增加0元素

Page 15
在没有被直线通过的所有元素中找出最小值,没有被直线通过 的所有元素减去这个最小元素;直线交点处的元素加上这个最 小值。新系数矩阵的最优解和原问题仍相同。转回第2步。
0 0 1 0 0 0 1 0 0 0 1 0
即完成4个任务的总时间最少 为:2+4+1+8=15
指派问题与匈牙利法
指派问题的求解步骤:
Page 12
1) 变换指派问题的效率矩阵 (cij)为(bij),使在(bij)的各行各列 中都出现0元素,即 从(cij)的每行元素都减去该行的最小元素; 再从所得新系数矩阵的每列元素中减去该列的最小元素。
独立0元素的个数l=4<5,故画直线调整矩阵。
指派问题与匈牙利法
Page 22
2 2 4 4 ◎ 0

0 5 1 Ø 0

第二题 指派问题

第二题 指派问题

0 13 11 2
6
0
10
11
0 5 7 4
0 1 4 2
2)试指派(找独立0元素) 4 2
0 13 7 0
6
0
6
9
0 5 3 2
0 1 0 0
0Ø 13 7 ◎0
6◎06ຫໍສະໝຸດ 90◎ 5 3 2

1
◎0
Ø0
独立0元素的个数为4 , 指派问题的最优指 派方案即为甲负责D工作,乙负责B工作, 丙负责A工作,丁负责C工作。这样安排 能使总的工作时间最少,为4+4+9+11 =28。
0Ø 4 4 0◎ 6
总费用为=7+9+4+3+5=28
分配问题与匈牙利法
Ø0 Ø0 3 ◎0 3
1
6
0Ø 2
◎0
3 2 0◎ 0Ø 3
2
◎0
2
3
Ø0
0◎ 4 4 0Ø 6
总费用为=8+9+4+3+4=28
分配问题与匈牙利法
课堂练习:用匈牙利法求解下列指派问题。
练习1:
练习2:
A
B
C
D
E

25
29
31
42
37

39
38
26
20
33

34
27
28
40
32

24
42
36
23
45
分配问题与匈牙利法
解: 1) 这是不平衡的指派问题,首先转换为标准型,再用匈牙利 法求解。
2) 由于任务数多于人数,所以假定一名虚拟人,设为戊。因为工 作E必须完成,故设戊完成E的时间为M(M为非常大的数),其 余效率系数为0,则标准型的效率矩阵表示为:

第五节指派问题

第五节指派问题

0
2
0 0 0
3 0 8 0
8 3 5 4 1 4
2 0 0 4 3
0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
由解矩阵可得指派方案和最优值为32。
例2 某大型工程有五个工程项目,决定向社会公开招标,有五家 建筑能力相当的建筑公司分别获得中标承建。已知建筑公司Ai(I=1, 2,3,4,5)的报价cij(百万元)见表,问该部门应该怎样分配建造 任务,才能使总的建造费用最小?
步4:继续变换系数矩阵,目的是增加独立0元素的个数。方 法是在未被直线覆盖的元素中找出一个最小元素,然后在打“” 行各元素中都减去这一元素,而在打“”列的各元素都加上这 一最小元素,以保持原来0元素不变(为了消除负元素)。得到新 的系数矩阵,返回步2。 以例说明匈牙利法的应用。
例1:求解效率矩阵为如下的指派问题的最优指派方案。
第四步:对上述矩阵进行变换,目的是增加独立0元素的个数。方法是 在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素 中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以 保持原来0元素不变(消除负元素)。得到新的系数矩阵。(它的最优 解和原问题相同,为什么?)
7 4 0 11 0
9 6
7 6
12 14 6 6 7 10 0 10
9 6 9 10 9 2 0 2 4 5
5 2 0 9 0
0 10
2 0 5 7
3 0 0 8 0 0 6 3 6
2 0 2 4 5
2 0 5 7
匈牙利解法的关键是指派问题最优解的以下性质:若从指派 问题的系数矩阵C=(cij)的某行(或某列)各元素分别减去一个 常数k,得到一个新的矩阵C’=(c’ij),则以C和C’为系数矩阵的两 个指派问题有相同的最优解。(这种变化不影响约束方程组,而 只是使目标函数值减少了常数k,所以,最优解并不改变。) 作变换,其不变性是最优解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 整数规划§1 整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。

其模型为:Max(或min)z=∑=nj j jx c1s.t ⎪⎪⎩⎪⎪⎨⎧=≥=≥=≤∑=nj nj i ij ij xx x nj x m i b x a ,,,2,10,2,1),(211若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。

§5 指 派 问 题 一. 指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。

例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。

诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。

由于指派问题的多样性,有必要定义指派问题的标准形式。

指派问题的标准形式(以人和事为例)是:有n 个人和n 件事,已知第i 个人作第j 件事的费用为),2,1,(n j i c ij =,要求确定人和事之间的一一对应的指派方案,是完成这n 件事的总费用最少。

为了建立标准指派问题的数学模型,引入2n 个0-1变量:中部分或全部取整数⎩⎨⎧=10ij x这样,问题的数学模型可写成 ∑∑===n i nj ij ijx cz 11min (5.1)s.t ⎪⎪⎪⎩⎪⎪⎪⎨⎧======∑∑==n j i x n i x n j x ij n j ij n i ij ,2,1,1,0,2,11,2,1111 (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。

注:○1 指派问题是产量(i a )、销量(j b )相等,且i a =j b =1,i ,j=1,2,…n 的运输问题。

○2 有时也称ijc 为第i 个人完成第j 件工作所需的资源数,称之为效率系数(或价值系数)。

并称矩阵C= n n ij c ⨯)(=⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n c c c c c c c c c 212222111211(5.5) 为效率矩阵(或价值系数矩阵)。

并称决策变量ij x 排成的n ×n 矩阵X=n n ij x ⨯)(= ⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n x x x x x x x x x 212222111211 (5.6) 为决策变量矩阵。

(5.6)的特征是它有n 个1,其它都是0。

这n 个1位于不同行、不同列。

每一种情况为指派问题的一个可行解。

共n!个解。

若指派第i 人作第j 件事若不指派第i 人作第j 事i ,j=1,2,…n(5.2) (5.4)其总的费用 z =C ⊙X这里的⊙表示两矩阵对应元素的积,然后相加。

问题是:把这n 个1放到X 的2n 个位置的什么地方可使耗费的总资源最少?(解最优) 例1 已知效率矩阵C= ⎪⎪⎪⎪⎪⎭⎫⎝⎛0084765000320205则X (1)= ⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********0010, X (2)= ⎪⎪⎪⎪⎪⎭⎫⎝⎛1000000101000010都是指派问题的最优解例12/P-149:某商业公司计划开办五家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司A i (i=1,2,…5)对新商店B j (1,2,…5)的建造费用的报价(万元)为ij c (i ,j=1,2,…5),见表5-9。

商业公司应当对5家建筑公司怎样分派建筑任务,才能使总的建筑费用最少?表5-9解:这是一标准的指派问题。

若设0-1变量ij x =⎩⎨⎧01则问题的数学模型为Min z=411x +812x +…+1054x +655xs.t ⎪⎪⎪⎩⎪⎪⎪⎨⎧======∑∑==5,2,1,1,05,2,115,2,115151 j i x i x j x ij j ij i ij若看成运输问题,且ij x 如上所述,则表5-9为当A i 承建B j 时 当A i 不承建B j 时i,j=1,2, (5)当然,第一行的1应放在(1,1)位置,此位置同时是第一列的费用最小。

但一般情况下没有这么好。

需找一适合一般的方法。

二. 匈牙利解法原理:虽然指派问题是一类特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题,因此,它可以用多种相应的解法来求解。

但是,这些解法都没有充分利用指派问题的特殊性质,有效地减少计算量。

1955年,库恩(W.W.Kuhn )提出了匈牙利法。

定理1:设指派问题的效率矩阵为C= n n ij c ⨯)(,若将该矩阵的某一行(或某一列)的各个元素都减去统一常数t (t 可正可负),得到新的效率矩阵n n ijc C ⨯'=')(,则以C '为效率矩阵的新的指派问题与原指派问题的最优解相同。

但其最优解比原最优解之减少t.证明:设式(5.1)~(5.4)为原指派问题。

现在C 矩阵的第k 行个元素东减去同一常数t,记新的指派问题的目标函数为Z '.则有Z '=∑=ni 1∑='nj ijij xc 1=∑≠=n k i i 1∑='nj ijijxc 1+∑='nj ijij xc 1=∑≠=n ki i 1∑=nj ij ijx c1+∑=-nj kj kj x t c 1)(=∑≠=n ki i 1∑=nj ij ijx c1+∑=nj kj kj x c 1-t ∑=n j kj x 1=∑=ni 1∑=nj ij ijx c1-t ·1=Z-t因此有Min Z '=min(Z-t)=minZ-t而新问题的约束方程同原指派问题。

因此其最优解比相同,而最优解差一个常数。

推论:若将指派问题的效率矩阵每一行即每一列分别减去各行及各列的最小元素,则得到新指派问题与原指派问题有相同的最优解。

证明:结论是显然的。

只要反复运用定理1便可得证。

当将效率矩阵的每一行都减去各行的最小元素,将所得的矩阵的每一列在减去当前列中最小元素,则最后得到新效率矩阵C '中必然出现一些零元素。

设ijc '=0,从第i 行来看,它表示第i 个人去干第j 项工作效率(相对)最好。

而从第j 列来看,这个0表示第j 项工作以第i 人来干效率(相对)最高。

定义:在效率矩阵C 中,有一组在不同行不同列的零元素,称为独立零元素组,此时每个元素称为独立零元素。

例2: 已知C= ⎪⎪⎪⎪⎪⎭⎫⎝⎛0084765000320205则{12c =0,24c =0,31c =0,43c =0}是一个独立零元素组,12c =0,24c =0,31c =0,43c =0分别称为独立零元素。

{12c =0,23c =0,31c =0,44c =0}也是一个独立零元素组,而{14c =0,23c =0,31c =0,44c =0}就不是一个独立零元素组,因为14c =0与44c =0这两个零元素位于同一列中。

根据以上对效率矩阵中零元素的分析,对效率矩阵C 中出现的的独立零元素组中零元素所处的位置,在决策变量矩阵中令相应的ij x =1,其余的ij x =0。

就可找到指派问题的一个最优解。

就上例中X (1)= ⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********0010,就是一个最优解。

同理X (2)= ⎪⎪⎪⎪⎪⎭⎫⎝⎛1000000101000010也是一个最优解。

但是在有的问题中发现效率矩阵C 中独立零元素的个数不够n 个,这样就无法求出最优指派方案,需作进一步的分析。

首先给出下述定理。

定理2 效率矩阵C 中独立零元素的最多个数等于能覆盖所有零元素的最少直线数。

我们不证它,说一下意思: 例3:已知矩阵C 1= ⎪⎪⎪⎪⎪⎭⎫⎝⎛0084765000320205,C 2= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛5636040084275500003220205,C 3= ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛341404008653300003420207分别用最少直线去覆盖各自矩阵中的零元素:C 1= ⎪⎪⎪⎪⎪⎭⎫⎝⎛0084765000320205, C 2= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛5636040084275500003220205, C 3= ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛341404008653300003420207可见,C 1最少需要4条线,C 2最少需要4条线,C 3最少需要5条线,方能划掉矩阵中所有的零。

即它们独立零元素组中零元素最多分别为4,4,5。

三. 匈牙利法求解步骤:我们以例题来说明指派问题如何求解: 例4 给定效率矩阵C= ⎪⎪⎪⎪⎪⎭⎫⎝⎛9118713161491514410413152求解该指派问题。

解:ⅰ)变换效率矩阵,将各行各列都减去当前各行、各列中最小元素。

C= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛9118713161491514410413152 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛24104750111006211130 ⎪⎪⎪⎪⎪⎭⎫⎝⎛00102350960607130= C '这样得到的新矩阵C '中,每行每列都必然出现零元素。

ⅱ)用圈0法求出新矩阵C '中独立零元素。

(1)进行行检验行变换 2 4 9 7 min列变换 Min 0 0 4 2对C '进行逐行检验,对每行只有一个未标记的零元素时,用○记号将该零元素圈起。

然后将被圈起的零元素所在的列的其它未标记的零元素用记号×划去。

如C '中第2行、第3行都只有一个未标记的零元素,用○分别将它们圈起。

然后用×划去第1列其它未被标记的零元素(第2列没有),见C ''C ' ⎪⎪⎪⎪⎪⎭⎫⎝⎛00102350960607130=C ''在第i 行只有一个零元素ij c =0时,表示第i 人干第j 件工作效率最好。

因此优先指派第i 人干第j 项工作,而划去第j 列其它未标记的零元素,表示第j 项工作不再指派其它人去干(即使其它人干该项工作也相对有最好的效率)。

重复行检验,直到每一行都没有未被标记的零元素或至少有两个未被标记的零元素时为止。

本题C ''中第1行此时也只有1个未被标记的零元素。

因此圈起C ''中第1行第4列的零元素14c ,然后用×划去第4列中未被标记的零元素。

这是第4行也只有一个未被标记的零元素43c ,再用○圈起,见C '''C '' ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00102350960607130=C ''' (2)进行列检验与进行行检验相似,对进行了行检验的矩阵逐列进行检验,对每列只有一个未被标记的零元素,用记号○将该元素圈起,然后技改元素所在行的其他未被标记的零元素打×。

相关文档
最新文档