八年级数学- 全等三角形专题训练题
八年级数学上册--全等三角形测试题(含答案)
八年级数学上册--全等三角形测试题(含答案)一、选择题(每小题3分,共30分)1.如图所示,,,,AB DE AC DF AC DF =∥∥下列条件中,不能判断ABC DEF △≌△的是( )A .AB=DE B.∠B=∠E C.EF=BC D.EF ∥BC2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列等式不正确的是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE 4.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌ △A B C ''',则补充的这个条件是( )A.BC =B C ''B.∠A =∠A 'C.AC =A C '' D.∠C =∠C ' 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等第3题图第5题图第2题图第1题图边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A.∠A 与∠D 互为余角 B.∠A =∠2C.△ABC ≌△CEDD.∠1=∠28.在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条 件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,其中一定正确的是( )第7题图第6题图A.①②③B.②③④C.①③⑤D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠ 二、填空题(每小题3分,共24分)11. (2014·福州中考)如图所示,在Rt △ABC 中,∠ACB =90︒,点D ,E 分别是边AB ,AC 的中点, 延长BC 到点F ,使CF = BC .若AB =10,则EF 的长是 .12.如图所示,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 . 13.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知在等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE= 度. 15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= .第9题图第14题图第10题图第13题图第15题图16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm,BD =5cm,那么点D 到直线AB 的距离是cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18.如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm,则△DEB 的周长为 cm . 三、解答题(共46分)19.(6分)(2014·福州中考)如图所示,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.(8分)如图所示,△ABC ≌△ADE ,且∠CAD =10°,∠B =∠D =25°,∠EAB =120°,求∠DFB 和∠DGB 的度数.21.(6分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF.第16题图第17题图第20题图第21题图22.(8分)如图所示,在△ABC中,∠C=90°, AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB.第22题图23.(9分)如图所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.第23题图24.(9分)(2014•湖南邵阳中考)如图所示,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.第十二章全等三角形检测题参考答案1. C 解析:由AB∥DE,AC∥DF,可得∠A=∠D,添加AB=DE,可利用“SAS”判断△ABC≌△DEF;添加∠B=∠E,可利用“AAS” 判断△ABC≌△DEF;添加EF∥BC,可得∠B=∠E或∠C=∠F,可利用“AAS”或“ASA” 判断△ABC≌△DEF;而添加EF=BC,利用“SSA”无法判断△ABC≌△DEF.2. B 解析:A.与三角形有两边相等,而夹角不一定对应相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不对应相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵ △ABE≌△ACD,∠1=∠2,∠B=∠C,∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析:∵ △ABC和△CDE都是等边三角形,∴ BC=AC,CE=CD,∠BCA=∠ECD=60°,∴ ∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴ 在△BCD和△ACE中,∴ △BCD≌△ACE(SAS),故A成立.∵ △BCD≌△ACE,∴ ∠DBC=∠CAE.∵ ∠BCA=∠ECD=60°,∴ ∠ACD=60°.在△BGC和△AFC中,∴ △BGC≌△AFC,故B成立.∵ △BCD≌△ACE,∴ ∠CDB=∠CEA,在△DCG和△ECF中,∴ △DCG≌△ECF,故C成立.6. B 解析:∵ BF⊥AB,DE⊥BD,∴ ∠ABC=∠BDE.又∵ CD=BC,∠ACB=∠DCE,∴ △EDC≌△ABC(ASA).故选B.7. D 解析:∵ AC⊥CD,∴ ∠1+∠2=90°.∵ ∠B=90°,∴ ∠1+∠A=90°,∴ ∠A=∠2.在△ABC和△CED中,∴ △ABC≌△CED,故选项B、C正确.∵ ∠2+∠D=90°,∴ ∠A+∠D=90°,故选项A正确.∵ AC⊥CD,∴ ∠ACD=90°,∠1+∠2=90°,故选项D错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB 的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵ AB=AC,∴ ∠ABC=∠ACB.∵ BD平分∠ABC,CE平分∠ACB,∴ ∠ABD=∠CBD=∠ACE=∠BCE.∴ ①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴ ③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. C 解析:A.∵ ∥,∴ ∠=∠.∵ ∥∴ ∠=∠.∵ ,∴ △≌△,故本选项可以证出全等.B.∵ =,∠=∠,∴ △≌△,故本选项可以证出全等.C.由∠=∠证不出△≌△,故本选项不可以证出全等.D.∵ ∠=∠,∠=∠,,∴ △≌△,故本选项可以证出全等.故选C.11.5 解析:根据三角形的中位线性质定理和全等三角形的判定与性质进行解答.∵点D,E分别是边AB,AC的中点,∴AE=CE=AC,DE是△ABC的中位线,∴DE=BC,DE∥BC.∵ CF BC ,∴DE=CF.又∵∠AED=∠ECF=90°,∴△ADE≌△EFC,∴EF=AD=AB=5.12.因为所以△BDE≌△CDA.所以在△ABE中,.13. 135° 解析:观察图形可知:△ABC≌△BDE,∴ ∠1=∠DBE.又∵ ∠DBE+∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14. 60 解析:∵ △ABC是等边三角形,∴ ∠ABD=∠C,AB=BC.∵ BD=CE,∴ △ABD≌△BCE,∴ ∠BAD=∠CBE.∵ ∠ABE+∠EBC=60°,∴ ∠ABE+∠BAD=60°,∴ ∠APE=∠ABE+∠BAD=60°.15. 55° 解析:在△ABD与△ACE中,∵ ∠1+∠CAD=∠CAE +∠CAD,∴ ∠1=∠CAE.又∵ AB=AC,AD=AE,∴ △ABD ≌△ACE(SAS).∴ ∠2=∠ABD.∵ ∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴ ∠3=55°.16. 3 解析:如图所示,作DE⊥AB于E,因为∠C=90°,AD平分∠CAB,所以点D到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以点D到直线AB的距离是3 cm.17. 31.5 解析:如图所示,作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA ,∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF . ∴=×OD ×BC +×OE ×AC +×OF ×AB =×OD ×(BC +AC +AB ) =×3×21=31.5.18. 15 解析:因为CD 平分∠ACB ,∠A =90°,DE ⊥BC , 所以∠ACD =∠ECD ,CD =CD ,∠DAC =∠DEC , 所以△ADC ≌△EDC ,所以AD =DE , AC =EC , 所以△DEB 的周长=BD +DE +BE =BD +AD +BE .又因为AB =AC ,所以△DEB 的周长=AB +BE =AC +BE =EC +BE =BC =15(cm ).19.分析:由已知BE =CF 证得BF =CE ,从而根据三角形全等SAS 的判定,证明△ABF ≌△DCE ,再利用全等三角形的对应角相等得出结论.证明:∵ BE =CF ,∴ BE +EF =CF +EF , 即BF =CE .又∵ AB =DC ,∠B =∠C , ∴ △ABF ≌△DCE . ∴ ∠A =∠D .点拨:一般三角形全等的判定方法有:SAS,ASA,AAS,SSS,证明三角形全等时,要根据题目已知条件灵活选用.20.分析:由△ABC ≌△ADE ,可得∠DAE =∠BAC =(∠EAB -∠CAD ),根据三角形外角性质可得∠DFB =∠FAB +∠B .因为∠FAB =∠FAC +∠CAB ,即可求得∠DFB 的度数;根据三角形外角性质可得∠DGB =∠DFB -∠D ,即可得∠DGB 的度数.第16题答图第17题答图解:∵ △ABC≌△ADE,∴ ∠DAE=∠BAC=(∠EAB-∠CAD)=,∴ ∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°, ∠DGB=∠DFB-∠D=90°-25°=65°.21. 分析:首先根据角之间的关系推出再根据边角边定理,证明△≌△,最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为 ,所以.又因为在△与△中,,,,AE ABEAC BAFAC AF=⎧⎪∠=∠⎨⎪=⎩所以△≌△.所以.(2)因为△≌△,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB.(2)利用角平分线的性质证明△ADC≌△ADE,∴ AC=AE,再将线段AB进行转化.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ △ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23. 证明:∵ DB⊥AC ,CE⊥AB,∴ ∠AEC=∠ADB=90°.∴ 在△ACE与△ABD中,∴ △ACE≌△ABD(AAS),∴ AD=AE.∴ 在Rt△AEF与Rt△ADF中,,, AE AD AF AF=⎧⎨=⎩∴ Rt△AEF≌Rt△ADF(HL),∴ ∠EAF=∠DAF,∴ AF平分∠BAC.24. 分析:(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.解:(1)△ABE≌△CDF,△AFD≌△CEB.(2)选△ABE≌△CDF进行证明.∵AB∥CD,∴∠1=∠2.∵AF=CE,∴AF+EF=CE+EF, 即AE=FC,在△ABE和△CDF中,1=2,,,ABE CDF AE CF⎧⎪=⎨⎪=⎩∠∠∠∠∴△ABE≌△CDF(AAS).点拨:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS.注意:AAA,SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.第24题答图。
八年级数学《全等三角形》专项训练题精选
图12 图9 A 'C A D B E 21图10 C A D B E F 图2 图11 12C A D B E F M N O AB DC EF 图1 图3 45321八年级数学《全等三角形》专项训练题精选1.如图1所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 【 】.(A )2平方厘米 (B )1平方厘米 (C )12平方厘米 (D )14平方厘米2. 工人师傅常用角尺平分一个任意角.做法如下:如图2所示,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射线OC 即是∠AOB 的平分线.这种做法的道理是 【 】.(A )HL (B )SSS (C )SAS (D )ASA3. 在图3所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于【 】.(A )145° (B )180° (C )225° (D )270°4. 根据下列条件,能判定△ABC ≌△A ′B ′C ′的是 【 】.(A )AB =A ′B ′,BC =B ′C ′,∠A =∠A ′ (B )∠A =∠A ′,∠B =∠B ′,AC =B ′C ′(C )∠A =∠A ′,∠B =∠B ′,∠C =∠C ′(D )AB =A ′B ′,BC =B ′C ′,△ABC 的周长等于△A ′B ′C ′的周长5. 如图9所示,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A的大小等于_____度.6. 如图10所示,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则△ABC ≌△DEF ,理由是______.7. 如图11所示,AD ∥BC ,AB ∥DC ,点O 为线段AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N .点E 、F 在直线MN 上,且OE =OF .图中全等的三角形共有____对.8. 如图12所示,要测量河两岸相对的两点A 、B 的距离,在AB 的垂线BF 上取两点C 、D ,使BC =CD ,过D 作BF 的垂线DE ,与AC 的延长线交于点E ,则∠ABC =∠CDE =90°,BC =DC ,∠1=______,△ABC ≌_________,若测得DE 的长为25 米,则河宽AB 长为_________.9.在△ABC 和△DEF 中,已知AB =DE ,∠A =∠D ,若补充下列条件中的任意一条,就能判定△ABC ≌△DEF 的是( )①AC =DF ②BC =EF ③∠B =∠E ④∠C =∠F .A .①②③B .②③④C .①③④D .①②④10.如图,在等腰R t △ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E , 过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:AD ⊥CF ;(2)连接AF ,试判断△ACF 的形状,并说明理由.11.已知:如图①,在△AOB 和△COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =50°(1)求证:①AC =BD ;②∠APB =50°;(2)如图②,在△AOB 和△COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =α,则AC 与BD 间的等量关系为 ,∠APB 的大小为12.已知:∠BAC=90°,AB=AC ,AD=DC ,AE ⊥BD ,求证:∠ADB=∠CDE13.在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E ,又AE=12BD ,求证:BE 平分∠ABC 。
八年级数学上册《第十二章 全等三角形》同步训练题含答案(人教版)
八年级数学上册《第十二章全等三角形》同步训练题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A.3 B.4 C.3或5 D.3或4或52.如图,△ACB≌△A′CB′,∠ACA′=30°,则∠BCB′的度数为()A.20°B.30°C.35°D.40°3.如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°4.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°5.如图ΔABC≌ΔDCB,若∠A=100°,∠DBC=30°则∠ABD的度数为()A.10°B.20°C.30°D.50°6.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图,△ ABC≌△ ADE,若∠BAE=135°,∠DAC=55°,那么∠CFE的度数是()A.80°B.60°C.40°D.20°8.如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC.其中正确的有()个.A.2 B.3 C.4 D.5二、填空题9.如图△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.10.如图△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠BAD的度数等于.11.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=40°,PB=PF,则∠APF= °.12.如图,已知△ABC≌△ADE,∠B=25°,∠E=98°,则∠EAD的度数为.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°则∠BED的大小为.三、解答题14.如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.15.如图,已知△ABC≌△DEF,且∠A=75°,∠B=35°,ED=10cm,求∠F的度数与AB的长.16.如图,已知△ABC≌△ABD,∠CAD=90°,∠CBA=20°求∠D的度数.17.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.19.如图,A,D,E三点在同一直线上,且△BAD≌△ACE .(1)你能说明BD、DE、CE之间的数量关系吗?(2)请你猜想△ABD满足什么条件时BD//CE .参考答案1.C2.B3.C4.D5.B6.D7.C8.A9.9010.70°11.8012.57°13.100o14.解:∵△ABC≌△DEF,∠A=32°,∠B=48°∴∠D=∠A=48°,∠E=∠B=32°在△DEF中,∠D+∠E+∠DFE=180°解得:∠DFE=100°∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+CF∴BF=EC∵BF=3∴EC=3.15.解:∵∠A=75°,∠B=35°∴∠ACB=180°-∠A-∠B=70°∵△ABC≌△DEF,DE=10cm∴∠F=∠ACB=70°,AB=DE=10cm16.解:∵△ABC≌△ABD,∠ABC=20°∴∠ABD=∠ABC=20°∵∠CAD=90°∴∠DAB=45°∴∠D=180°−∠DAB−∠DBA=115° .17.解:∵△ABF≌△DCE∴∠BAF=∠CDE,∠AFB=∠DEC,∠ABF=∠DCE,AB=DC,BF=CE,AF=DE;∴AF∥ED,AC=BD,BF∥CE18.解:∵△ABC≌△ADE∴∠DAE=∠BAC= 12(∠EAB﹣∠CAD)= 12(1200−100)=550.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°19.(1)解:结合图形∵△BAD≌△ACE∴AD=CE∵A,D,E三点在同一直线上∴AE=AD+DE∴BD=CE+DE;(2)解:假如BD//CE则∠BDE=∠E∵△BAD≌△ACE∴∠ADB=∠E∴∠ADB=∠BDE又∵∠ADB+∠BDE=180∘∴∠ADB=∠BDE=90∘∴当∠ADB=∠E=90∘时。
八年级数学:全等三角形的判定测试题(含答案)
八年级数学:全等三角形的判定测试题(含答案)一、选择题1.下列说法中,错误的有()个(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等A、1B、2C、3D、4【答案】B.【解析】(1)周长相等的两个三角形不一定全等,故该说法错误;(2)周长相等的两个等边三角形全等,该说法正确;(3)有三个角对应相等的两个三角形不一定全等,故该说法错误;(4)有三边对应相等的两个三角形全等,此说法正确.共有两个说法正确.故选B.2.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL【答案】A.【解析】做法中用到的三角形全等的判定方法是SSS证明如下∵OM=ONPM=PNOP=OP∴△ONP≌△OMP(SSS)所以∠NOP=∠MOP故OP为∠AOB的平分线.故选A.3. 如图1所示,在△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△EBD≌△ECDD、以上答案都不对【答案】B.【解析】∵在△ABE和△ACE中AB ECEB ACAE AE=⎧⎪=⎨⎪=⎩,∴△ABE≌△ACE(SSS),故选B.4. 如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF【答案】D.【解析】A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选D.5. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.4【答案】D.【解析】以BC为公共边的三角形有3个,以AB为公共边的三角形有0个,以AC为公共边的三角形有1个,共3+0+1=4个,故选D.6. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C.【解析】要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C.二、填空题7.如图,已知AB=AD,需要条件(用图中的字母表示),可得△ABC≌△ADC,根据是.【答案】BC=DC,SSS.【解析】添加条件BC=DC,∵在△ABC和△ADC中AB ADBC CDAC AC=⎧⎪=⎨⎪=⎩,∴△ABC≌△ADC(SSS),8.如图,已知B、E、F、C在同一直线上,BF=CE,AF=DE,则添加条件,可以判断△ABF≌△DCE.【答案】AB=DC.【解析】由条件可再添加AB=DC,在△ABF和△DCE中,AB DCBE CFAF DE=⎧⎪=⎨⎪=⎩,∴△ABF≌△DCE(SSS).9.如图,AC=AD,BC=BD,则△ABC≌△;应用的判定方法是(简写).【答案】ABD;SSS.【解析】∵AC=AD,BC=BD,AB=AB(公共边),∴△ABC≌△ABD(SSS).10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,∠D=60°,∠ABE=28°,则∠ACB= .【答案】46°【解析】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=12∠AFB=46°.11.如图,已知AE=DF、EC=BF,添加,可得△AEC≌△DFB.【答案】AC=DB【解析】AC=DB,在△AEC和△DFB中,AE DFAC BDEC BF=⎧⎪=⎨⎪=⎩,∴△AEC≌△DFB(SSS).12.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.【答案】SSS【解析】由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中AB ADAC ACCB CD=⎧⎪=⎨⎪=⎩∴△ABC≌△ADC(SSS),三、解答题13.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
八年级数学全等三角形专题练习(word版
八年级数学全等三角形专题练习(word版一、八年级数学轴对称三角形填空题(难)1.在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=12BC,则△ABC的顶角的度数为_____.【答案】30°或150°或90°【解析】试题分析:分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.解:①BC为腰,∵AD⊥BC于点D,AD=12 BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=12 BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为30°或150°或90°.点睛:本题考查了含30°交点直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.2.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD 是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.3.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.【答案】4【解析】【分析】以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.【详解】解:如图,使△AOP 是等腰三角形的点P 有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.4.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.5.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°.故答案为30°.【点睛】本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.6.如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM=22-=43;AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22MO OB-=43,∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.7.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】【分析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12)n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12)2018×80°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.8.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22AD AE-=2263-=33,∴EF+BF的最小值为33.9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF 的长,即B′F的长.【详解】解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC =-=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.10.已知,∠MON =30°,点A 1、A 2、A 3在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=a ,则△A 7B 7A 8的边长为______.【答案】64a【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,根据30°角所对直角边等于斜边的一半得到A2B2=2B1A2,进而得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…从而得到答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°.∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°.又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°.∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a.∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°.∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A7B7=64B1A2=64a.故答案为:64a.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A(3,2),点B(1,0),以线段AB为边作等腰三角形ABP,使得点P在坐标轴上.则这样的P点有()A.4个B.5个C.6个D.7个【答案】D【解析】【分析】本题是开放性试题,由题意知A、B是定点,P是动点,所以要分情况讨论:以AP、AB为腰、以AP、BP为腰或以BP、AB为腰.则满足条件的点P可求.【详解】由题意可知:以AP、AB为腰的三角形有3个;以AP、BP为腰的三角形有2个;以BP、AB为腰的三角形有2个.所以,这样的点P共有7个.故选D.【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【答案】C【解析】【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF∆和BEF∆中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF∆和BEF∆中1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF ∆ 和BEF ∆ 中 ={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.13.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】 根据题意在OA 、OB 上截取OE=OF=OP ,作∠MPN=60°,只要证明△PEM ≌△PON 即可反推出△PMN是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,120AOB∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.14.如图,60AOB∠=,OC平分AOB∠,如果射线OA上的点E满足OCE∆是等腰三角形,那么OEC∠的度数不可能为()A.120°B.75°C.60°D.30°【答案】C【解析】【分析】分别以每个点为顶角的顶点,根据等腰三角形的定义确定∠OEC 是度数即可得到答案.【详解】∵60AOB ∠=,OC 平分AOB ∠,∠AOC=30︒,当OC=CE 时,∠OEC=∠AOC=30︒,当OE=CE 时,∠OEC=180OCE COE ∠∠︒--=120︒,当OC=OE 时,∠OEC=12(180COE ∠︒- )=75︒, ∴∠OEC 的度数不能是60°,故选:C.【点睛】此题考查等腰三角形的定义,角平分线的定义,根据题意正确画出符合题意的图形是解题的关键.15.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为( )A .130°B .120°C .110°D .100°【答案】B【解析】 根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC 和ED 的对称点A′,A″,即可得出∠AA′M +∠A″=∠HAA′=60°,进而得出∠AMN +∠ANM =2(∠AA′M +∠A″)即可得出答案:如图,作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.16.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A.2 B.3 C.4 D.5【答案】B【解析】由等边三角形的性质得,点B,C关于AD对称,连接BE交AD于点P,则EP+CP=BE最小,又BE=AD,所以EP+CP的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.17.如图,在等腰△ABC中,AB=AC=6,∠BAC=120°,点P、Q分别是线段BC、射线BA上一点,则CQ+PQ的最小值为()A .6B .7.5C .9D .12【答案】C【解析】【分析】 通过作点C 关于直线AB 的对称点,利用点到直线的距离垂线段最短,即可求解.【详解】解:如图,作点C 关于直线AB 的对称点1C ,1CC 交射线BA 于H ,过点1C 作BC 的垂线,垂足为P ,与AB 交于点Q ,CQ+PQ 的长即为1PC 的长.∵AB=AC=6,∠BAC=120°,∴∠ABC=30°,易得BC=3在Rt △BHC 中,∠ABC=30°,∴HC=33BCH=60°, ∴163CC =在1Rt △PCC 中,1PCC ∠=60°,∴19PC =∴CQ+PQ 的最小值为9,故选:C.【点睛】本题考查了等腰三角形的性质以及利用对称点求最小值的问题,认真审题作出辅助线是解题的关键.18.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)【答案】A【解析】试题分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.试题解析:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选A.考点:1.翻折变换(折叠问题);2.正方形的性质;3.坐标与图形变化-平移.19.如图,已知长方形ABCD,AB=1,BC=2,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为( )A.1 B.3C.3D.3【答案】B【解析】【分析】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,推出AM=MM’可得MA+MD+ME=D’M+MM’+ME,共线时最短;由于点E 也为动点,可得当D’E⊥BC时最短,此时易求得D’E=DG+GE的值.【详解】将△AMD绕点A逆时针旋转60°得到△AM’D’,MD=M’D’,易得到△ADD’和△AMM’均为等边三角形,∴AM=MM’,∴MA+MD+ME=D’M+MM’+ME,∴D′M、MM′、ME共线时最短,由于点E也为动点,∴当D’E⊥BC时最短,此时易求得D’E=DG+GE=4+33,∴MA+MD+ME的最小值为4+33.故选B.【点睛】本题考查轴对称、旋转变换、矩形的性质等知识,解题的关键是学会添加常用辅助线,构造等边三角形解决问题,学会用转化的思想思考问题.20.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为()A.(3,4),(2,4)B.(3,4),(2,4),(8,4)C.(2,4),(8,4)D.(3,4),(2,4),(8,4),(2.5,4)【答案】B【解析】试题解析:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4);②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5-x,P′N=4,OP=5,由勾股定理得:42+(5-x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5-a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5-a)2+42=52,解得:a=2,∴BP″=2,CP″=10-2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=120D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B.。
人教版八年级数学上册《第十二章 全等三角形》测试题-附含答案
人教版八年级数学上册《第十二章全等三角形》测试题-附含答案班级:姓名:得分:总分:150分时间:120分钟一.选择题(共12小题)1.下列各图形中不是全等形的是()A.B.C.D.【解答】解:观察发现B、C、D选项的两个图形都可以完全重合∴是全等图形A选项中两组图画不可能完全重合∴不是全等形.故选:A.2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形【解答】解:A、所有的等边三角形都是全等三角形错误;B、全等三角形是指面积相等的三角形错误;C、周长相等的三角形是全等三角形错误;D、全等三角形是指形状相同大小相等的三角形正确.故选:D.3.如图AB与CD交于点O已知△AOD≌△COB∠A=40°∠COB=115°则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵△AOD≌△COB∴∠C=∠A=40°由三角形内角和定理可知∠B=180°﹣∠BOC﹣∠C=25°故选:A.4.已知△ABC的六个元素如图所示则甲、乙、丙三个三角形中与△ABC全等的是()A.甲、乙B.乙、丙C.只有乙D.只有丙【解答】解:已知△ABC中∠B=50°∠C=58°∠A=72°BC=a AB=c AC=b∠C=58°图甲:只有一条边和AB相等没有其它条件不符合三角形全等的判定定理即和△ABC不全等;图乙:只有两个角对应相等还有一条边对应相等符合三角形全等的判定定理(AAS)即和△ABC全等;图丙:符合SAS定理能推出两三角形全等;故选:B.5.如图已知MB=ND∠MBA=∠NDC下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN【解答】解:A、∠M=∠N符合ASA能判定△ABM≌△CDN故A选项不符合题意;B、AB=CD符合SAS能判定△ABM≌△CDN故B选项不符合题意;C、根据条件AM=CN MB=ND∠MBA=∠NDC不能判定△ABM≌△CDN故C选项符合题意;D、AM∥CN得出∠MAB=∠NCD符合AAS能判定△ABM≌△CDN故D选项不符合题意.故选:C.6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4)你认为将其中的哪一块带去就能配一块与原来大小一样的三角形玻璃?应该带()去.A .第1块B .第2块C .第3块D .第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素 所以不能带它们去 只有第2块有完整的两角及夹边 符合ASA 满足题目要求的条件 是符合题意的.故选:B .7.如图是一个平分角的仪器 其中AB =AD BC =DC 将点A 放在角的顶点 AB 和AD 沿着角的两边放下 沿AC 画一条射线 这条射线就是角的平分线 在这个操作过程中 运用了三角形全等的判定方法是( )A .SSSB .SASC .ASAD .AAS【解答】解:在△ADC 和△ABC 中{AD =AB DC =BC AC =AC∴△ADC ≌△ABC (SSS )∴∠DAC =∠BAC∴AC 就是∠DAB 的平分线.故选:A .8.如图 点A 、D 、C 、E 在同一条直线上 AB ∥EF AB =EF ∠B =∠F AE =10 AC =7 则CD 的长为( )A .5.5B .4C .4.5D .3 【解答】解:∵AB ∥EF∴∠A =∠E在△ABC 和△EFD 中{∠A =∠E AB =EF ∠B =∠F∴△ABC ≌△EFD (ASA )∴AC =ED =7∴AD =AE ﹣ED =10﹣7=3∴CD =AC ﹣AD =7﹣3=4.故选:B .9.如图 ∠B =∠C =90° M 是BC 的中点 DM 平分∠ADC且∠ADC =110° 则∠MAB =( )A .30°B .35°C .45°D .60° 【解答】解:作MN ⊥AD 于N∵∠B =∠C =90°∴AB ∥CD∴∠DAB =180°﹣∠ADC =70°∵DM 平分∠ADC MN ⊥AD MC ⊥CD∴MN =MC∵M 是BC 的中点∴MC=MB∴MN=MB又MN⊥AD MB⊥AB∴∠MAB=12∠DAB=35°故选:B.10.如图AB=AD AE平分∠BAD点C在AE上则图中全等三角形有()A.2对B.3对C.4对D.5对【解答】解:∵AE平分∠BAD∴∠BAE=∠CAE在△ABC和△ADC中{AB=AD∠BAC=∠DAC AC=AC∴△DAC≌△BAC(SAS)∴BC=CD;在△ABE和△ADE中{AB=AD∠BAE=∠DAE AE=AE∴△DAE≌△BAE(SAS)∴BE=ED;在△BEC和△DEC中{BC=DC EC=EC EB=ED∴△BEC≌△DEC(SSS)故选:B.11.如图直线a、b、c表示三条公路现要建一个货物中转站要求它到三条公路的距离相等则可供选择的地址有()A.一处B.两处C.三处D.四处【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点过点P作PE⊥AB PD⊥BC PF⊥AC∴PE=PF PF=PD∴PE=PF=PD∴点P到△ABC的三边的距离相等∴△ABC两条外角平分线的交点到其三边的距离也相等满足这条件的点有3个;综上到三条公路的距离相等的点有4个∴可供选择的地址有4个.故选:D.12.如图AD是△ABC的角平分线DF⊥AB垂足为F DE=DG△ADG和△AED的面积分别为60和35 则△EDF的面积为()A .25B .5.5C .7.5D .12.5【解答】解:如图 过点D 作DH ⊥AC 于H∵AD 是△ABC 的角平分线 DF ⊥AB∴DF =DH在Rt △ADF 和Rt △ADH 中 {AD =AD DF =DH∴Rt △ADF ≌Rt △ADH (HL )∴S Rt △ADF =S Rt △ADH在Rt △DEF 和Rt △DGH 中 {DE =DG DF =DH∴Rt △DEF ≌Rt △DGH (HL )∴S Rt △DEF =S Rt △DGH∵△ADG 和△AED 的面积分别为60和35∴35+S Rt △DEF =60﹣S Rt △DGH∴S Rt △DEF =252.故选:D .二.填空题(共4小题)13.已知△ABC ≌△DEF ∠A =60° ∠F =50° 点B 的对应顶点是点E则∠B 的度数是 70° .【解答】解:∵△ABC ≌△DEF ∠A =60° ∠F =50°∴∠D =∠A =60° ∠C =∠F =50°∴∠B =∠E =70°.故答案为:70°.14.如图BD=CF FD⊥BC于点D DE⊥AB于点E BE=CD若∠AFD=145°则∠EDF=55°.【解答】解:∵FD⊥BC于点D DE⊥AB于点E∴∠BED=∠FDC=90°∵BE=CD BD=CF∴Rt△BED≌Rt△CDF(HL)∴∠BDE=∠CFD∵∠AFD=145°∴∠DFC=35°∴∠BDE=35°∴∠EDF=90°﹣35°=55°故答案为55°.15.如图△ABC中∠C=90°AD平分∠BAC AB=5 CD=2 则△ABD的面积是5.【解答】解:∵∠C=90°AD平分∠BAC∴点D到AB的距离=CD=2∴△ABD的面积是5×2÷2=5.故答案为:5.16.如图四边形ABCD中AB=AD AC=6 ∠DAB=∠DCB=90°则四边形ABCD的面积为18.【解答】解:∵AD=AD且∠DAB=90°∴将△ACD绕点A逆时针旋转90°AD与AB重合得到△ABE.∴∠ABE=∠D AC=AE.根据四边形内角和360°可得∠D+∠ABC=180°∴∠ABE+∠ABC=180°.∴C、B、E三点共线.∴△ACE是等腰直角三角形.∵四边形ABCD面积=△ACE面积=12×AC2=12×62=18;故答案为:18.三.解答题(共20小题)17.如图所示△ABE≌△ACD∠B=70°∠AEB=75°求∠CAE的度数.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.如图已知∠1=∠2 ∠3=∠4 求证:BC=BD.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°且∠3=∠4∴∠ABD=∠ABC在△ADB和△ACB中∴△ADB≌△ACB(ASA)∴BD=BC.19.如图AB=AD AC=AE∠CAE=∠BAD.求证:∠B=∠D.证明:∵∠CAE=∠BAD∴∠CAE+∠EAB=∠BAD+∠EAB∴∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴∠B=∠D.20.如图点B、F、C、E在直线l上(F、C之间不能直接测量)点A、D在l异侧测得AB=DE AB ∥DE∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m BF=3m求FC的长度.(1)证明:∵AB∥DE∴∠ABC=∠DEF在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+FC∴BF=EC∵BE=10m BF=3m∴FC=10﹣3﹣3=4m.21.某段河流的两岸是平行的数学兴趣小组在老师带领下不用涉水过河就测得河的宽度他们是这样做的:①在河流的一条岸边B点选对岸正对的一棵树A;②沿河岸直走20m有一树C继续前行20m到达D处;③从D处沿河岸垂直的方向行走当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.(1)解:河的宽度是5m;(2)证明:由作法知BC=DC∠ABC=∠EDC=90°在Rt△ABC和Rt△EDC中∴Rt△ABC≌Rt△EDC(ASA)∴AB=ED即他们的做法是正确的.22.如图AD为△ABC的高E为AC上一点BE交AD于F且有BF =AC FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.证明:(1)∵AD为△ABC的边BC上的高∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角∴∠BDF=∠AEF=90°∴BE⊥AC.23.如图①点A E F C在同一条直线上且AE=CF过点E F分别作DE⊥AC BF⊥AC垂足分别为E F AB=CD.(1)若EF与BD相交于点G则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置其余条件不变则(1)中的结论是否仍成立?不必说明理由.解:(1)EG=FG理由如下:∵AE=CF∴AE+EF=CF+EF即AF=CE∵DE⊥AC BF⊥AC∴∠AFB=∠CED=90°在Rt△ABF和Rt△CDE中∴Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG;(2)(1)中的结论仍成立理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL)∴BF=DE在△DEG和△BFG中∴△DEG≌△BFG(AAS)∴EG=FG.24.【阅读理解】课外兴趣小组活动时老师提出了如下问题:如图1 △ABC中若AB=8 AC=6 求BC边上的中线AD的取值范围.小明在组内经过合作交流得到了如下的解决方法:延长AD到点E使DE=AD请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是CA.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2 已知:CD=AB∠BDA=∠BAD AE是△ABD的中线求证:∠C=∠BAE.(1)解:∵在△ADC和△EDB中∴△ADC≌△EDB(SAS)故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB∴BE=AC=6 AE=2AD∵在△ABE中AB=8 由三角形三边关系定理得:8﹣6<2AD<8+6∴1<AD<7故答案为:C.(3)证明:如图延长AE到F使EF=AE连接DF∵AE是△ABD的中线∴BE=ED在△ABE与△FDE中∴△ABE≌△FDE(SAS)∴AB=DF∠BAE=∠EFD∵∠ADB是△ADC的外角∴∠DAC+∠ACD=∠ADB=∠BAD∴∠BAE+∠EAD=∠BAD∠BAE=∠EFD ∴∠EFD+∠EAD=∠DAC+∠ACD∴∠ADF=∠ADC∵AB=DC∴DF=DC在△ADF与△ADC中∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
八年级数学三角形全等的判定专题练习
八年级数学三角形全等的判定专题练习一、选择题1.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.43.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个4.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.5.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个6.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE二、填空题7.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.8.如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.9.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.10.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).三、解答题11.如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.12.已知,如图,点D在等边三角形ABC的边AB上,点F在边AC上,连接DF并延长交BC的延长线于点E,EF=FD.求证:AD=CE.13.如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.(1)求证:EC=DA;(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.14.【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△AC D,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.15.如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.16.如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.。
八年级数学-全等三角形的判定练习(含答案)
八年级数学-全等三角形的判定练习(含答案)一、选择题1.如图,点E、F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.AD∥BC B.DF∥BE C.∠D=∠B D.∠A=∠C 【答案】C.【解析】∠D=∠B,理由是:∵在△ADF和△CBE中AD BCD BDF BE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△CBE(SAS),即选项C正确;具备选项A、选项B,选项D的条件都不能推出两三角形全等,故选C.2.如图,若已知AE=AC,用“SAS”说明△ABC≌△ADE,还需要的一个条件是()A.BC=DE B.AB=AD C.BO=DO D.EO=CO【答案】B.【解析】在△ABC与△ADE中AE ACA AAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),故选B.3.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是()A.SSS B.SAS C.ASA D.HL 【答案】B.【解析】∵AB∥CD,∴∠BAC=∠DCA,在△ABC与△CDA中,AB CDBAC DCAAC CA=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△CDA(SAS).故选B.4.如图所示,AB=BD,BC=BE,要使△ABE≌△DBC,需添加条件()A.∠A=∠D B.∠C=∠E C.∠D=∠ED.∠ABD=∠CB E【答案】D.【解析】∵AB=BD,BC=BE,∴要使△ABE≌△DBC,需添加的条件为∠ABE=∠DBC,又∠ABE﹣∠DBE=∠DBC﹣∠DBE,即∠ABD=∠CBE,∴可添加的条件为∠ABE=∠DBC或∠ABD=∠CBE.综合各选项,D选项符合.故选D.5.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是()A.SSS B.SAS C.ASA D.AAS【答案】B.【解析】∵△ABD和△A CE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.6.如图,在△ABC中,AB=AC,∠ABC=40°,BD是∠ABC的平分线,延长BD至E,使DE=AD,则∠ECA的度数为()A.30° B.35° C.40° D.45°【答案】C.【解析】在BC上截取BF=AB,连DF,则有△ABD≌△FBD(SAS),∴DF=DA=DE,又∵∠ACB=∠ABC=40°,∠DFC=180°﹣∠A=80°,∴∠FDC=60°,∵∠EDC=∠ADB=180°﹣∠ABD﹣∠A=180°﹣20°﹣100°=60°,∴△DCE≌△DCF(SAS),故∠ECA=∠DCB=40°.故选C.7.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=40°,则∠DEF的度数是()A.75° B.70° C.65° D.60°【答案】B.【解析】∵AB=AC,∴∠B=∠C=12(180°﹣∠A)=70°,在△BDE和△CEF中,BD CEB CBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CEF(SAS),∴∠BDE=∠CEF,∵∠CED=∠B+∠BDE,即∠CEF+∠DEF=∠B+∠BDE,∴∠DEF=∠B=70°;故选B.8.如图,AD∥BC,AD=CB,要使△ADF≌△CBE,需要添加的下列选项中的一个条件是()A.AE=CF B.DF=BE C.∠A=∠C D.AE=EF 【答案】A.【解析】只有选项A正确,理由是:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵AD∥BC,∴∠A=∠C,在△ADF和△CBE中,AD BCA CAF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),故选A.二、填空题9.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,AD=EC,AE=10,AC=6,则CD 的长为.【答案】2.【解析】∵AB∥EF,∴∠A=∠E,∵AD=EC,∴AD+DC=EC+DC,即AC=ED,在△ABC和△EFD中AB EFA EAC ED=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△EFD(SAS),∴AC=ED=6,∴CD=AC+ED﹣AE=6+6﹣10=2,10.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件.(只要填一个)【答案】AC=DF.【解析】补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,11.如图,△ABC中,AB=AC,点D,E在BC边上,当时,△ABD≌△ACE.(添加一个适当的条件即可)【答案】BD=CE.【解析】BD=CE,理由是:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中AB ACB CBD CE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS).12.如图,已知AC=AE,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个).【答案】AB=AD.【解析】AB=AD,理由是:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△ADE(SAS),13.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D,下列结论:①∠EAB=∠FAC;②∠C=∠EFA;③AD=AC;④AF=AC.其中正确的结论是(填写所有正确结论的序号).【答案】①②④.【解析】在△ABC与△AEF中,AB AEB EBC EF=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△AEF(SAS),∴∠EAB=∠FAC,∠C=∠EFA,AF=AC,∴①②④正确;由已知条件不能得出AD=AC,③不正确.三、解答题14.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.【答案】证明见解析.【解析】∵∠1=∠2,∴∠ACB=∠DCE,在△ABC和△DE C中,CA CDACB DCEBC EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABC≌△DEC(SAS).15.如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:∠ADB=∠FCE.【答案】证明见解析.【解答】证明:∵BC=DE,∴BC+CD=DE+CD,即BD=CE,在△ABD与△FEC中,AB EFB EBD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△FEC(SAS),∴∠ADB=∠FCE.16.已知:如图,在△ABC、△AD E中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E 三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【答案】(1)证明见解析;(2)BD⊥CE.【解析】(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.。
人教版初中数学八年级上册《全等三角形》专题综合练习(提高训练题)
一、选择题
班级:
姓名:
号数:
1.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A. AC=DE
B. ∠BAD=∠CAE
C. AB=AE
D. ∠ABC=∠AED
2.如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是( )
图①
图②
图③
19.在△ABC 和△DCE 中,CA=CB,CD=CE,∠CAB=∠CED=α, (1)如图 1,将 AD、EB 延长,延长线相交于点 O; ①求证:BE=AD; ②用含α的式子表示∠AOB 的度数(直接写出结果); (2)如图 2,当α=45o 时,连接 BD、AE,作 CM⊥AE 于 M 点,延长 MC 与 BD 交于点 N,求证:N 是 BD 的中点。
D。若 OM=5cm,CD=3.4cm,则四边形 CDNM 的周长为
。
三、解答题 16.如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,AB=AC,点 E 是 BD 上一点,且 AE=AD,∠EAD= ∠BAC (1)求证:∠ABD=∠ACD (2)若∠ACB=65o,求∠BDC 的度数。
则∠AFE 的度数是
;
14.已知△ABC 三边长分别为 3,5,7,△DEF 三边长分别为 3, 3x 2 , 2x 1,
若这两个三角形全等,则 x 为
;
15.如图,∠AOB=60o,点 P 在∠AOB 的平分线上,过点 P 作 OA、OB 的垂线,垂
足分别为点 M,N。以点 P 为顶点作∠CPD=60o,两边与 OA、OB 相交于点 C、
的面积是 34,则△ABC 的周长为( )
八年级数学三角形全等(动点问题)(人教版)(专题)(含答案)
A.6-t B.4-t
C.2t D.t
答案:A
解题思路:
点P速度已知,可判断此题为动点问题,按照动点问题的解决方法解决:
①研究基本图形,标注:
②研究动点运动状态,包括起点,终点,状态转折点,速度,时间范围,
如图:
③表达线段长,建等式.
线段BP为已走路程,故BP=t,PC为未走路程,故PC=6-t.
由题意,点P在运动过程中有2个状态转折点,需分成3种情况:
①点P在BC上,对应的时间范围:0≤t≤4;
②点P在CD上,对应的时间范围:4<t≤7;
③点P在DA上,对应的时间范围:7<t≤11.
可知,当点P在CD上运动时,对应的t的取值范围是4≤t≤7.
故选C.
试题难度:三颗星知识点:略
7.(上接第6题)(2)当点P在DA上运动时,线段DP的长可用含t的式子表示为( )cm.
A.1 B.2
C.4 D.5
答案:C
解题思路:
由题意,△DCP≌△DCE,对应关系明确,
要使△DCP≌△DCE,
则需CP=CE,
即 ,
解得 (符合题意)
故选C.
试题难度:三颗星知识点:略
6.已知:如图,在长方形ABCD中,AB=6cm,AD=8cm,点E为BC上一点,且CE=2cm.动点P从点B出发,以每秒2cm的速度沿BC-CD-DA向终点A运动,连接AP,BP,DE.设点P运动时间为t秒.请回答下列问题:
故选A.
试题难度:三颗星知识点:略
4.(上接第3题)(2)若某一时刻,△DCP的面积为10,则此时t的值为( )
A.5 B.
C. D.1
答案:D
八年级数学全等三角形专题训练
15.△ABC 中,∠A:∠C:∠B=4:3:2,且△ABC≌△DEF,则∠ DEF= . 16.如图,已知△ACE≌△DBF,CF=BF,AE=DF,AD=8,BC=2,则 AC= . 17.已知△ABC≌△DEF,且△DEF 的周长为 12,若 AB=5,BC=4, AC= . 18.如图,△ABC≌△ADE,BC 的延长线交 DE 于 F,∠B=30°,∠ AED=110°,∠DAC=10°,则∠DFB 的度数为 .
八年级数学全等三角形专题训练
一.选择题(共 12 小题)
1.下列各组的两个图形属于全等图形的是 ( )
A.
B.Biblioteka C.D.2.下列判断正确的个数是( )
(1)能够完全重合的两个图形全等;
(2)两边和一角对应相等的两个三角形全等;
(3)两角和一边对应相等的两个三角形全等;
(4)全等三角形对应边相等.
A.15° B.20° C.25° D.30° 【考点】全等三角形的性质. 【分析】先根据全等三角形对应角相等求出∠B=∠D,∠BAC=∠DAE,所以 ∠BAD=∠CAE,然后求出∠BAD 的度数,再根据△ABG 和△FDG 的内角和都 等于 180°,所以∠DFB=∠BAD. 【解答】解:∵△ABC≌△ADE, ∴∠B=∠D,∠BAC=∠DAE, 又∠BAD=∠BAC﹣∠CAD,∠CAE=∠DAE﹣∠CAD, ∴∠BAD=∠CAE, ∵∠DAC=60°,∠BAE=100°,
A.1 个B.2 个C.3 个D.4 个 【考点】全等三角形的性质. 【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即 可. 【解答】解:∵△ABC≌△AEF, ∴AC=AF,故①正确; ∠EAF=∠BAC,
八年级数学上册--全等三角形练习题(含答案)
八年级数学上册--全等三角形练习题(含答案)八年级数学上册--全等三角形练题(含答案)一、选择题(每题3分,共30分)1.下列判断不正确的是()A。
形状相同的图形是全等图形B。
能够完全重合的两个三角形全等C。
全等图形的形状和大小都相同D。
全等三角形的对应角相等2.如图,△ABC≌△XXX,∠BAC=85°,∠B=65°,则∠CAD度数为()A。
85°B。
65°C。
40°D。
30°3.如图,XXX做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。
则说明这两个三角形全等的依据是()A。
SASB。
ASAC。
AASD。
SSS4.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E。
若AB=10cm,AC=6 cm,则BE的长度为()A。
10 cmB。
6 cmC。
4 cmD。
2 cm5.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有()A。
5对B。
4对C。
3对D。
2对6.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,则下列选项正确的是()A。
PQ>5B。
PQ≥5C。
PQ<5D。
PQ≤57.在△ABC中,∠B=∠C,与△ABC全等的△DEF中有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A。
∠AB。
∠BC。
∠CD。
∠B或∠C8.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则不正确的是()A。
AB=ACB。
∠BAE=∠CADC。
BE=DCD。
AD=DE9.如图,直线a,b,c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A。
初中数学八年级三角形及三角形全等专题练习题(附含答案)
初中数学八年级三角形及三角形全等专题练习题一、选择题1.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE 的度数为何?()A.115B.120C.125D.1302.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①∠AFB∠∠AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③B.①②④C.①②D.①②③④3.如图,平分,于,于,与的交点为,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.如图,,且.、是上两点,,.若,,,则的长为()A.B.C.D.5.用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是()A.SASB.ASAC.AASD.SSS6.下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等且有一角为30°的两个等腰三角形全等(8)C.有一角和一边相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等7.如图所示,AB∠EF∠CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()A.4对B.3对C.2对D.1对8.如图,在Rt∠ABC中,∠C=90°,AD是∠BAC的平分线,DE∠AB,垂足为E.若AB =10 cm,AC=6 cm,则BE的长度为()A.10 cm B.6 cm C.4 cm D.2 cm9.已知点A(a,1)与点B(5,b)关于y轴对称,则实数a,b的值分别是()A.5,1B.﹣5,1C.5,﹣1D.﹣5,﹣1 10.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣311.如图,等边的边长为3,点在边上,,线段在边上运动,,有下列结论:①与可能相等;②与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为()A.①④B.②④C.①③D.②③12.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1B.3C.3D.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对14.一个正方形周长与一个等腰角形的周长相等,若等腰三形的两边长为和,则这个正方形的对角线长为()A.B.C.D.15.如图所示,∠ABC中AC边上的高线是()A.线段DA B.线段BA C.线段BD D.线段BC二、综合题)16.(1)如图1,∠ABC中,作∠ABC、∠ACB的平分线相交于点O,过点O作EF∠BC 分别交AB、AC于E、F.① 求证:OE=BE;② 若∠ABC的周长是25,BC=9,试求出∠AEF的周长;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,试探求∠BAC与∠PAC的数量关系式.17如图-1,的边在直线上,,且;的边也在直线上,边与边重合,且.(1)在图-1中,请你通过观察、测量,猜想并写出与关系;(2)将沿直线向左平移到图-2的位置时,交于点,连结,.猜想并写出与的关系,请证明你的猜想;(3)将沿直线向左平移到图-3的位置时,的延长线交的延长线于点,连结,.你认为(2)中所猜想的与的关系还成立吗?若成立,给出证明;若不成立,请说明理由.18、如图1,在∠ABC中,AB=AC,∠BAC=30°,点D是∠ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)求∠ADE的度数;(2)求证:DE=AD+DC;参考答案一、选择题1、【答案】C∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选C.2、【答案】A∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..3、【答案】C∵平分∴∠BOC=∠AOC又∵,∴∠AEO=∠BDO=90°又∵OC=OC∴∴OD=OE,CD=CE又∵∠BOD=∠AOE∴∴OA=OB,∠A=∠B∴又∵∠ACD=∠BCE∴故答案为C.4、【答案】D∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.5、【答案】D;6、【答案】D;7、【答案】B解:∵AB∥EF∥CD,∠ABC=90°,∴∠DCB=∠EFB=∠ABC=90°;在△ABC与△DCB中,,∴△ABC≌△DCB(SAS),∴∠ECB=∠EBC,∴EB=EC,BF=CF;同理可证△EFB≌EFC、△ABE≌△DCE;∴图中的全等三角形有3对,故选B.8、【答案】C9、【答案】B∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=-5,b=1,故选B.10、【答案】B解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.故选:B.11、【答案】D解:①∵线段在边上运动,,∴,∴与不可能相等,则①错误;②设,∵,,∴,即,假设与相似,∵∠A=∠B=60°,∴,即,从而得到,解得或(经检验是原方程的根),又,∴解得的或符合题意,即与可能相似,则②正确;③如图,过P作PE⊥BC于E,过D作DF⊥AB于F,设,由,,得,即,∴,∵∠B=60°,∴,∵,∠A =60°,∴,则,,∴四边形面积为:,又∵,∴当时,四边形面积最大,最大值为:,即四边形面积最大值为,则③正确;④如图,作点D关于直线的对称点D1,作D1D2∥PQ,连接CD2交AB于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CDQ′的周长为:,其值最小,∴D1Q′=DQ′=D2P′,,且∠AD1D2=180∠D1AB=180∠DAB =120°,∴∠D1AD2=∠D2AD1==30°,∠D2AC=90°,在△D1AD2中,∠D1AD2=30°,,∴,在Rt△AD2C中,由勾股定理可得,,∴四边形P′CDQ′的周长为:,则④错误,所以可得②③正确,故选:D.12、【答案】B解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EO AB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.13、【答案】B解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.故选:B.14、【答案】A解:①是腰,是底边时,两边的和小于第三边,不能构成三角形,舍去;②是底边和是腰时,等腰三角形的周长是,因而可得正方形的边长是,故这个正方形的对角线长是;故选:A.15、【答案】C由图可知,中AC边上的高线是BD.故选:C.二、综合题16、(1)∠BO平分∠ABC,∠∠EBO=∠OBC,∠EF∠BC,∠∠EDB=∠OBC,∠∠EOB=∠EBO,∠OE=BE (2)∠AEF的周长=AE+AF+EF=AE+AF+EB+FC=AB+AC=25-9=16(3)延长BA,证明P点在∠BAC外角的角平分线上,从而得到2∠PAC+∠BAC=180°17、解:(1)AB=AP;AB∠AP;(2)BQ=AP;BQ∠AP.证明:①由已知,得EF=FP,EF∠FP,∠∠EPF=45°.又∠AC∠BC,∠∠CQP=∠CPQ=45°.∠CQ=CP.在Rt∠BCQ和Rt∠ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∠Rt∠BCQ∠Rt∠ACP,∠BQ=AP.②如图,延长BQ交AP于点M.∠Rt∠BCQ∠Rt∠ACP,∠∠1=∠2.在Rt∠BCQ中,∠1+∠3=90°,又∠3=∠4,∠∠2+∠4=∠1+∠3=90°.∠∠QMA=90°.∠BQ∠AP;(3)成立.证明:①如图,∠∠EPF=45°,∠∠CPQ=45°.又∠AC∠BC,∠∠CQP=∠CPQ=45°.∠CQ=CP.在Rt∠BCQ和Rt∠ACP中,BC=AC,∠BCQ=∠ACP=90°,CQ=CP,∠Rt∠BCQ∠Rt∠ACP.∠BQ=AP.②如图,延长QB交AP于点N,则∠PBN=∠CBQ.∠Rt∠BCQ∠Rt∠ACP,∠∠BQC=∠APC.在Rt∠BCQ中,∠BQC+∠CBQ=90°,∠∠APC+∠PBN=90°.∠∠PNB=90°.∠QB∠AP.18、【答案】解:(1)∵△ABC中,AB=AC,∠BAC=30°,∴∠ABC=∠ACB==75°,∵DB=DC,∠DCB=30°,∴∠DBC=∠DCB=30°,∴∠ABD=∠ABC﹣∠DBC=45°,∵AB=AC,DB=DC,∴AD所在直线垂直平分BC,∴AD平分∠BAC,∴∠BAD=∠BAC=15°,∴∠ADE=∠ABD+∠BAD=60°;(2)如图1,在线段DE上截取DM=AD,连接AM,∵∠ADE=60°,DM=AD,∴△ADM是等边三角形,∴∠ADB=∠AME=120°∵AE=AB,∴∠ABD=∠E,在△ABD和△AEM中,,∴△ABD≌△AEM(AAS),∴BD=ME,∵BD=CD,∴CD=ME,∵DE=DM+ME,∴DE=AD+CD;-。
八年级数学 《全等三角形》专题训练 (5)
八年级数学 《全等三角形》专题训练1. 已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .2. 已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF .求证:AB ∥DC .3. 如图,E 、B 、F 、C 在同一条直线上,若∠D =∠A =90°,EB =FC ,AB =DF .则ΔABC ≌_____,全等的根据是_____.4. 直角三角形全等的判定方法有_____ (用简写).5. 已知如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2.求证:OB =OC .6. 如图,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( )A .90°-∠AB .A ∠-2190oC .180°-2∠AD .A ∠-2145o7. 已知:如图,△AB C .求作:点P ,使得点P 在△ABC 内,且到三边AB 、BC 、CA 的距离相等.作法:8. 已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;9. 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =DC :(2)AD ∥BC .10.如图,已知∠C =90°,AD 平分∠BAC ,BD =2CD ,若点D 到AB 的距离等于5cm ,则BC 的长为_____cm .11.如图,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.12.已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.13.已知:如图,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.14.已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.15.已知:如图所示,以B 为中心,将Rt △EBC 绕B 点逆时针旋转90°得到△ABD ,若∠E =35°,求∠ADB 的度数.16.已知:如图,△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F .求证:DE =DF .17.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A ∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?18.如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.(2)如图,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.19.已知:如图,在RtΔABC中,∠C=90°,沿着过点B的一条直线BE折叠ΔABC,使C点恰好落在AB边的中点D处,则∠A的度数等于_____.20.已知:如图,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证PA=______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______ ∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.21.已知:如图,AD =BC .AC =BD .试证明:∠CAD =∠DBC.22.如图0,△ABC 的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D 、E 、F ,使得△DEF ≌△ABC ,这样的三角形你能找到几个?请一一画出来.23.角的平分线的性质是___________________________.它的题设是_________,结论是_____.24.已知:如图,ΔABC 的外角∠CBD 和∠BCE 的平分线BF 、CF 交于点F.求证:一点F必在∠DAE的平分线上.25.已知:如图,AB=AC,BE=CD.求证:∠B=∠C.26.已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.27.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4 B.3 C.2 D.128.已知:如图,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.29.到角的两边距离相等的点,在_____.所以,如果点P 到∠AOB 两边的距离相等,那么射线OP 是_____.30.能确定△ABC ≌△DEF 的条件是 ( )A .AB =DE ,BC =EF ,∠A =∠EB .AB =DE ,BC =EF ,∠C =∠EC .∠A =∠E ,AB =EF ,∠B =∠DD .∠A =∠D ,AB =DE ,∠B =∠E31.已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).32.已知:如图,在ΔABC 中,BD 、CE 分别平分∠ABC 、∠ACB ,且BD 、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.33.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等34.已知:如图,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.35.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1 B.2 C.3 D.436.如图,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?37.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.38.如图,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC39.如图,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?40.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.41.已知:如图,AB =DE ,AC =DF ,BE =CF .求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______.证明:∵BE =CF ( ),∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB∴______≌______( ).∴ ∠A =∠D (______).42.已知:如图,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE=OF .43.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)44.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.45.如图,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.646.如图,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().47.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF48.“三月三,放风筝”.图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.49.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=ODC.∠CPO=∠DPO D.OC=PC50.如图,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD =6,AD =4,那么BC 等于 ( )A .6B .5C .4D .无法确定51.已知:如图,A 、B 、C 、D 四点在∠MON 的边上,AB =CD ,P 为∠MON 内一点,并且△PAB 的面积与△PCD 的面积相等.求证:射线OP 是∠MON 的平分线.52.如图,CE =DE ,EA =EB ,CA =DB ,求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______,即______=______.在△ABC 和△BAD 中,=______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知∴△ABC ≌△BAD ( ).53.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.54.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.55.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()56.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.57.已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______,只要证______≌______证明:∵ M 为PQ 的中点(已知),∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ).∴ ∠PRM =______(______).即RM .58.已知:如图,四条直线两两相交,相交部分的线段构成正方形ABCD .试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.59.已知:如图,△ABC ≌△DEF ,∠A =85°,∠B =60°,AB =8,EH=2.(1)求∠F 的度数与DH 的长;(2)求证:AB ∥DE .60.已知:(1)如图,线段AC 、BD 交于O ,∠AOB 为钝角,AB =CD ,BF⊥AC 于F ,DE ⊥AC 于E ,AE =CF .求证:BO =DO .(2)若∠AOB 为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.61.已知:如图,AC BD .求证:OA =OB ,OC =OD .分析:要证OA =OB ,OC =OD ,只要证______≌______.证明:∵ AC ∥BD ,∴ ∠C =______.在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC ∴______≌______ ( ).∴ OA =OB ,OC =OD ( ).62.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.63.画一画.已知:如图,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.64.下列各组条件中,可保证△ABC与△A'B'C'全等的是()A.∠A=∠A',∠B=∠B',∠C=∠C'B.AB=A'B',AC=A'C',∠B=∠B'C.AB=C'B',∠A=∠B',∠C=∠C'D.CB=A'B',AC=A'C',BA=B'C'65.已知:如图,∠AOB.求作:∠AOB的平分线OC.66.如图,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.67.利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?68.已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.69.如图,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.35° C.30° D.25°70.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.71.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN72.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.73.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形74.在一池塘边有A、B两棵树,如图.试设计两种方案,测量A、B两棵树之间的距离.75.如图,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D=60°,则∠B的度数是()A.80° B.60° C.40° D.20°76.如图,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:______________________________________________________,理由是:_____________________________________________________.77.已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.78.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.79.已知:如图,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD=CE,需证明Δ______≌△______,理由为______.80.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()81.如图,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.82.如图,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?83.如图,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.84.如图所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____ (2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.85.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.86.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙87.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D=∠B .分析:要证∠D =∠B ,只要证______≌______证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ).∴ ∠D =∠B (______).88.如图,AB =CD ,AD =CB ,AC 、BD 交于O ,图中有 ( )对全等三角形.A .2B .3C .4D .589._____的两个图形叫做全等形.90.填空(1)三角形的三条角平分线_____它到_____________.(2)三角形内....,到三边距离相等的点是______________. 91.判定两直角三角形全等的“HL ”这种特殊方法指的是_____.92.已知:如图,直线l 1,l 2,l 3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?93.已知:如图,在ΔABC 中,AD 是△ABC 的角平分线,E 、F 分别是AB 、AC 上一点,并且有∠EDF +∠EAF =180°.试判断DE 和DF 的大小关系并说明理由.94.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21 C .mn D .2mn95.请分别按给出的条件画△ABC (标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么? ①∠B =120°,AB =2cm ,AC =4cm ;②∠B =90°,AB =2cm ,AC =3cm ;③∠B =30°,AB =2cm ,AC =3cm ;④∠B =30°,AB =2cm ,AC =2cm ;⑤∠B =30°,AB =2cm ,AC =1cm ;⑥∠B=30°,AB=2cm,AC=1.5cm.96.已知:如图,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD。
八年级数学全等三角形测试题
八年级数学全等三角形测试题一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 全等三角形是指形状相同的两个三角形B. 全等三角形的周长和面积分别相等C. 全等三角形是指面积相等的两个三角形D. 所有的等边三角形都是全等三角形解析:选项A:全等三角形不仅形状相同,而且大小也相同,所以A错误。
选项B:全等三角形能够完全重合,所以它们的周长和面积分别相等,B正确。
选项C:面积相等的三角形不一定全等,比如一个底为4,高为3的三角形和一个底为6,高为2的三角形面积相等,但不全等,C错误。
选项D:所有等边三角形形状相同,但大小不一定相同,所以不是所有的等边三角形都是全等三角形,D错误。
2. 如图,已知△ABC≌△DEF,∠A = 50°,∠B = 70°,则∠F的度数为()A. 50°B. 60°C. 70°D. 80°解析:在△ABC中,根据三角形内角和为180°,可得∠C=180°∠A ∠B = 180° 50°70° = 60°。
因为△ABC≌△DEF,全等三角形对应角相等,所以∠F = ∠C = 60°,答案为B。
3. 如图,在△ABC和△DEC中,已知AB = DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC = EC,∠B = ∠EB. BC = EC,AC = DCC. ∠B = ∠E,∠A = ∠DD. BC = DC,∠A = ∠D解析:选项A:AB = DE,BC = EC,∠B = ∠E,根据SAS(边角边)可判定△ABC≌△DEC。
选项B:AB = DE,BC = EC,AC = DC,根据SSS(边边边)可判定△ABC≌△DEC。
选项C:AB = DE,∠B = ∠E,∠A = ∠D,根据AAS(角角边)可判定△ABC≌△DEC。
人教新版 八年级(上)数学 第12章 全等三角形 专项训练(含解析)
八年级(上)数学第12章全等三角形专项训练一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD=6,则图中阴影部分的面积为()A.12B.20C.24D.4810.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC≌△BAD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为cm.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为m.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣=BF﹣BE()即=在△ABC和△DEF中,所以△ABC≌△DEF().20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.参考答案一.选择题(共10小题)1.如图,△ABC≌△A'B'C',其中∠A=36°,∠C'=24°,则∠B=()A.150°B.120°C.90°D.60°解:∵△ABC≌△A'B'C',∴∠C=∠C′=24°,∵∠A=36°,∴∠B=180°﹣24°﹣36°=120°,故选:B.2.如图,AC与DB交于点O,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCB C.BO=CO,∠A=∠D D.AB=DC,∠ACB=∠DBC 解:A.在△ABC和△DCB中,∵,∴△ABC≌△DCB(SSS),故A选项不合题意;B.在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故B选项不合题意;C.∵BO=CO,∴∠ACB=∠DBC,在△ABC和△DCB中,∵,∴△ABC≌△DCB(AAS),故C选项不合题意;D.∵AB=DC,∠ACB=∠DBC,不能证明△ABC≌△DCB,故D选项符合题意;故选:D.3.如图,△ABC≌△CDE,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直解:∵△ABC≌△CDE,∴AC=CE,∠A=∠BCD,∠B=∠D,∠ACB=∠E,∴∠ACB+∠BCD=∠ACB+∠A,当∠B=∠D≠90°时,∠ACB+∠BCD=∠ACB+∠A≠90°,则∠ACE≠90°,即AC和CE不互相垂直,故选:B.4.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是()A.带②去B.带①去C.带③去D.三块都带去解:带③去符合“角边角”可以配一块同样大小的三角板.故选:C.5.在如图所示的6×6网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.3个B.4个C.6个D.7个解:如图所示:一共有6个符合题意的点.故选:C.6.如图,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是()A.∠B=∠D B.BC=DE C.∠1=∠2D.AB=AD解:A、添加∠B=∠D,由“AAS”可证△ABC≌△ADE,故选项A不合题意;B、添加BC=DE,由“SAS”可证△ABC≌△ADE,故选项B不合题意;C、添加∠1=∠2,由“ASA”可证△ABC≌△ADE,故选项C不合题意;D、添加AB=AD,不能证明△ABC≌△ADE,故选项D符合题意;故选:D.7.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.8.如图,已知在△ABC中,AB=AC,∠A=50°,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A.55°B.60°C.65°D.70°解:∵AB=AC,∠A=50°,∴∠B=∠C=65°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠CDE=∠BFD,∵∠CDF=∠B+∠BFD=∠CDE+∠EDF,∴∠EDF=∠B=65°,故选:C.9.如图,在△ABC中,AB=AC,BD=CD,点E,F是AD上的任意两点.若BC=8,AD =6,则图中阴影部分的面积为()A.12B.20C.24D.48解:∵AB=AC,BD=CD,AD=AD,∴△ADC≌△ADB(SSS),∴S△ADC=S△ADB,BD=BC,∵BC=8,∴BD=4,∵S△BEF=S△CEF,AD=6,∴S阴影=S△ADB=.故选:A.10.如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',则下列说法正确的是()A.下滑过程中,始终有CC'=DD'B.下滑过程中,始终有CC'≠DD'C.若OC<OD,则下滑过程中,一定存在某个位置使得CC'=DD'D.若OC>OD,则下滑过程中,一定存在某个位置使得CC'=DD'解:将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C'时,另一端D向右滑到D',可得:CD=C'D',A、下滑过程中,CC'与DD'不一定相等,说法错误;B、下滑过程中,当△OCD与△OD'C'全等时,CC'=DD',说法错误;C、若OC<OD,则下滑过程中,不存在某个位置使得CC'=DD',说法错误;D、若OC>OD,则下滑过程中,当△OCD与△OD'C'全等时,一定存在某个位置使得CC'=DD',说法正确;故选:D.二.填空题(共8小题)11.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件AC=BD就可以判断△ABC≌△BAD.解:添加AC=BD,理由:∵∠C=∠D=90°,∴△ACB和△BDA都是直角三角形,在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD(HL),故答案为:AC=BD.12.如图,△ABC≌△ADE,如果AB=5cm,BC=7cm,AC=6cm,那么DE的长是7cm.解:∵△ABC≌△ADE,BC=7,∴DE=BC=7(cm),故答案为:7cm.13.如图,已知△ABC≌△ADE,若∠A=60°,∠B=40°,则∠BED的大小为100°.解:∵△ABC≌△ADE,∴∠D=∠B=40°,∴∠BED=∠A+∠D=60°+40°=100°,故答案为:100°.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为4cm.解:过点D作DE⊥AB于E,∵BD:DC=2:1,BC=12,∴DC=4,∵AD平分∠BAC,DC⊥AC,DE⊥AB,∴DE=DC=4,即D到AB的距离为4cm,故答案为:4.15.如图,在Rt△ABC中,∠C=90°,AB=16,AD平分∠BAC交BC于点D,若CD=4,则△ABD的面积为32.解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=×AB×DE=32,故答案为:32.16.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是7.解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,在△ADC和△AFC中,∵,∴△ADC≌△AFC(AAS),∴AD=AF,在△CBE≌△CBF中,∵,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE=5+2=7,故答案为:7.17.如图,已知,在△ABC中,AB=AC,点D是BC中点,DE⊥AB于点E,DF⊥AC于点F,DE=3,则DF的长是3.解:∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∵点D是BC中点,∴BD=CD,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴DE=DF=3,故答案为:3.18.有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,于是先在平地上取一个可以直接到达点A和点B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE.经测量DE,EC,DC的长度分别为800m,500m,400m,则A,B之间的距离为800m.解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=800.答:A,B之间的距离为800m.故答案是:800.三.解答题(共7小题)19.如图,已知点B,E在线段CF上,CE=BF,∠C=∠F,∠ABC=∠DEF.试说明:△ABC≌△DEF.解:因为CE=BF(已知)所以CE﹣BE=BF﹣BE(等式的性质)即BC=EF在△ABC和△DEF中,所以△ABC≌△DEF(ASA).解:因为CE=BF(已知),所以CE﹣BE=BF﹣BE(等式的性质),即BC=EF,在△ABC和△DEF中,所以△ABC≌△DEF(ASA).故答案为:BE;等式的性质;BC=EF;ASA.20.已知:如图,E、F是AB上两点,AC∥BD,AC=BD,AE=BF,问:CF=DE吗?说明理由.解:CF=DE,理由:∵AE=BF,∴AF=BE.∵AC∥BD,∴∠A=∠B.在△ACF和△BDE中,,∴△ACF≌△BDE(SAS).∴CF=DE.21.如图,已知线段AC、BD相交于点E,连接AB、DC、BC,AE=DE,∠A=∠D.求证:△ABE≌△DCE.【解答】证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE(ASA).22.如图,已知在△ABC和△AEF中,AB=AC,AE=AF,∠CAB=∠EAF.BE交FC于O 点,(1)求证:BE=CF;(2)当∠BAC=70°时,求∠BOC的度数.【解答】(1)证明:∵∠CAB=∠EAF,∴∠CAB+∠CAE=∠EAF+∠CAE,∴∠BAE=∠CAF,在△BAE和△CAF中∴△BAE≌△CAF(SAS),∴BE=CF;(2)∵△BAE≌△CAF,∴∠EBA=∠FCA,即∠DBA=∠OCD,∵∠BDA=∠ODC,∴∠BAD=∠COD,∵∠BAC=70°,∴∠BAD=70°,∴∠COD=70°,即∠BOC=70°.23.如图AB=AD,AC=AE,∠BAE=∠DAC.求证:(1)∠C=∠E;(2)AM=AN.【解答】证明:(1)∵∠BAE=∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠C=∠E;(2)∵△ABC≌△ADE,∴∠B=∠D,在△ABM和△ADN中,,∴△ABM≌△ADN(ASA),∴AM=AN.24.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.解:(1)AD∥BE,理由:∵AB∥CD,∴∠B=∠DCE,∵∠B=∠D,∴∠DCE=∠D,∴AD∥BE;(2)∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA).25.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是PC=PD.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学- 全等三角形专题训练题
1、如图,已知MB=ND ,∠MBA=∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( ) (A ) ∠M=∠N (B ) AB=CD (C ) AM=CN (D ) AM ∥CN
2、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍
无法判断
△ABE ≌△ACD 的是( ) (A ) AD=AE (B ) ∠AEB=∠ADC (C ) BE=CD (D ) AB=AC
3、已知,如图,M 、N 在AB 上,AC=MP ,AM=BN ,BC=PN 。
求证:AC ∥MP
4、已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。
求证:AF=CE 。
F E
A
C
D
B
M
P
C
B
N
C
N
M
A
B
D
E
B
D
A
C
5、已知,如图,AB 、CD 相交于点O ,△ACO ≌△BDO ,CE ∥DF 。
求证:CE=DF 。
6、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
7、已知,如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点,求证:△BCF ≌△DCE
F
E
O
D
C
B
A
A
E
D
C B
G
F
E
D
C
A B
8、如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选
① AB=AC ② BD=CD ③ BE=CF
9、如图,EG ∥AF ,请你从下面三个条件中任选出两个作为已知条件,另一个作为结论,推出一个正确的命题。
① AB=AC ② DE=DF ③ BE=CF
D
C
F
E
D
C A
B
G
10、如图,四边形ABCD 中,AB=AD ,AC 平分∠BCD ,AE ⊥BC ,AF ⊥CD ,
图中有没有和△ABE 全等的三角形?请说明理由。
10、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重
合), 以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。
求证:① △BCG ≌△DCE
② BH ⊥DE
11、如图,△ABC 中,AB=AC ,过A 作GB ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一
F
E
D
C
A B
┐
F
E
D
C
A
B
G
H
对给出证明。
12、如图所示,己知AB ∥DE ,AB=DE ,AF=DC ,请问图中有哪几对全等三角
形,并选其中一对给出证明。
13、如图,AB=AD ,BC=CD ,AC 、BD 交于E ,由这些条件可以得出若干结论。
请你写出其中三个正确的结论(不要添加字母和辅助线)。
E
G
F E
D
C
A
B
E
D C
A
B
14、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是BC 上任一点,PE
⊥AB ,PF ⊥AC 垂足分别为E 、F , 求证:① PE+PF=CD.
② PE – P F=CD.
15、已知,如图5,△ABC 中,AB=AC ,∠BAC=900,D 是AC 的中点,AF ⊥BD 于E ,交BC 于F ,连结DF 。
求证:∠ADB=∠CDF 。
F
E
D
C
A
3
N
1
M
B
2
M
F
E
D
C
A
3
1
B
2
F E
D
C
A G P
F E
D
C A
B
G
P。