线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

合集下载

4~20ma隔离器原理

4~20ma隔离器原理

4~20ma隔离器原理
4~20mA隔离器是一种常用的信号隔离器,用于将4~20mA电流信号转换为其他类型的信号,实现信号的隔离和传输。

其工作原理如下:
1. 输入端:隔离器的输入端接收4~20mA电流信号作为输入信号。

2. 隔离:输入端的信号经过隔离器内部的隔离元件进行隔离,使得输入端与输出端之间电气隔离。

3. 调理:隔离器内部的电路对输入信号进行调理处理,如信号放大、滤波、线性化等。

这样可以增强输入信号的稳定性和准确性。

4. 输出端:经过处理后的信号通过输出端以其他形式输出,如4~20mA电流信号、0~10V电压信号等。

5. 隔离和传输:输入信号和输出信号之间通过隔离器实现电气隔离,确保输入信号不会影响输出信号,并且能够安全地传输信号到目标设备。

总结来说,4~20mA隔离器的工作原理是通过接收输入端的
4~20mA电流信号,经过内部的隔离、调理处理,将处理后的信号通过输出端以其他形式输出,并且实现对输入信号和输出信号之间的电气隔离和传输。

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明HCNR200/201的内部框图如下所示其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

plc光耦隔离模块

plc光耦隔离模块

PLC光耦隔离模块概述PLC光耦隔离模块是一种常用的电子元件,用于将PLC(可编程逻辑控制器)的输入和输出信号进行隔离,以保护PLC和外部设备之间的电路免受干扰和损坏。

光耦隔离模块通过光电转换技术实现信号的隔离传输,具有高速、高精度、低功耗等特点。

本文将详细介绍PLC光耦隔离模块的工作原理、结构和应用场景,并对其优缺点进行分析。

工作原理PLC光耦隔离模块主要由光电转换器、隔离电路和输出电路组成。

其工作原理如下:1.输入信号:PLC的输入信号经过光电转换器转换为光信号。

2.光电转换:光信号被光电转换器转换为电信号。

3.隔离电路:电信号通过隔离电路进行隔离,避免干扰和电流回流。

4.输出电路:隔离后的信号通过输出电路转换为PLC可接受的信号。

通过光电转换和隔离电路的作用,PLC光耦隔离模块实现了输入和输出信号的隔离传输,从而保护了PLC和外部设备之间的电路。

结构PLC光耦隔离模块通常采用模块化设计,具有紧凑的外形和多种接口。

其主要结构包括:1.外壳:通常由塑料或金属材料制成,具有良好的抗干扰性和绝缘性能。

2.输入端子:用于接收PLC的输入信号。

3.输出端子:用于输出隔离后的信号给PLC或外部设备。

4.电源接口:用于连接电源,为光电转换器和隔离电路提供供电。

5.指示灯:用于显示模块的工作状态,如电源、输入、输出等。

应用场景PLC光耦隔离模块广泛应用于工业自动化控制系统中,特别适用于以下场景:1.高电压隔离:当PLC与高电压设备(如电机、变频器等)连接时,光耦隔离模块可以将高电压信号隔离传输,保护PLC的稳定运行。

2.电磁干扰隔离:在工业环境中,电磁干扰是常见的问题。

光耦隔离模块可以有效隔离输入和输出信号,防止电磁干扰对PLC产生干扰。

3.地电隔离:当PLC与地电位不同的设备连接时,光耦隔离模块可以实现地电隔离,避免因地电位差导致的电流回流和损坏。

4.信号转换:光耦隔离模块还可以实现不同信号类型之间的转换,如模拟信号到数字信号的转换。

利用光耦实现模拟隔离放大电路的原理及设计

利用光耦实现模拟隔离放大电路的原理及设计

本文提出了一种新的隔离放大器的设计方案,该方案结构简单,且选用通用器件,易于实现。

通过将本电路与AD公司的AD210AN集成模拟隔离放大器进行实验对比。

本隔离放大电路在带宽上要优于集成模拟隔离放大器。

隔离放大器按传输信号的类型。

可以分为模拟隔离和开关隔离放大器。

模拟隔离放大器的生产商和产品种类均较少,且产品价格比较昂贵。

开关隔离放大器的生产商较多,产品种类也多,价格较低,相对便宜。

高价位的模拟隔离放大器限制了其应用范围。

而文献[2]中提到的双通道隔离放大器结构复杂。

且对隔离间距有较高的要求,而文献[3]中所提到的光电耦合隔离放大器则对元器件参数有较高的要求。

文献[4]中提到的隔离放大器对隔离器件间距也有特殊要求。

1新型电路原理笔者设计的隔离放大器的原理电路。

本隔离放大电路主要由光电耦合器和运算放大器构成。

光电耦合器选用普通光耦TLP521,运算放大器则选择通用运算放大器LF353。

通过这两种普通器件的搭配.所得到的隔离放大器性能和专用模拟隔离放大器的性能相近。

放大器加普通光耦组成的隔离放大电路。

本隔离放大电路由输入和隔离输出两部分构成,且两部分使用隔离的电源(Vcc1、Vee1和Vcc2、Vee2供电。

输入部分由运放U1,电阻R1、R2、R3、R4、R5,电容C1、C2,光电耦合器OPT1、OPT2、OPT3、OPT4的发光二极管部分OPT1_A、OPT2_A、OPT3_A、OPT4_A和OPT1、OPT3的光敏三极管部分OPT1_B、OPT3_B组成,由正电源Vcc1和负电源Vee1供电。

OPT1_A、OPT2_A和OPT3_A、OPT4_A 的电流构成差动放大输入。

R1和R2为运放的输入电阻,R3和R4可为四个光耦的发光二极管(LED)提供偏置和控制电流。

运放U1和光耦OPT1、OPT3组成了一个射级跟随器,R5上的电压即为运放的输入电压。

运放的带宽决定着构成隔离放大器的带宽。

现有的集成模拟隔离放大器的带宽均在100kHz以下,而常用运放的带宽是这个带宽的几倍到几十倍。

4-20ma隔离变送模块

4-20ma隔离变送模块

4-20ma隔离变送模块
4-20mA隔离变送模块是一种常见的工业控制设备,它通常用于
将传感器测量到的信号转换成标准的4-20mA电流信号,并且具有隔
离功能,可以有效地隔离输入和输出信号,保护控制系统不受外部
干扰影响。

这种模块通常被广泛应用于工业自动化领域,例如压力、温度、液位等参数的测量和控制过程中。

在工业控制系统中,4-20mA电流信号是一种常见的标准信号类型,它具有很好的抗干扰能力和远距离传输能力。

隔离变送模块的
作用是将传感器产生的信号进行放大、滤波和隔离处理,然后输出
标准的4-20mA电流信号给控制系统,从而实现对被测参数的准确测
量和控制。

这种模块通常具有输入端和输出端的隔离功能,可以有效地防
止由于接地环路、电磁干扰等原因引起的测量误差和系统故障。

此外,一些4-20mA隔离变送模块还具有多种保护功能,如过载保护、
短路保护等,可以提高系统的稳定性和可靠性。

在选择4-20mA隔离变送模块时,需要考虑输入信号类型、量程
范围、精度要求、安装方式等因素,并且需要根据实际的控制系统
要求进行合理的配置和安装。

总的来说,4-20mA隔离变送模块在工业控制领域扮演着重要的角色,它的应用可以提高系统的稳定性、精度和可靠性,从而实现工业过程的自动化和智能化控制。

4-20MA

4-20MA

4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。

为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。

4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA 高于20mA的信号用于各种故障的报警。

4~20mA电流环有两种类型:二线制和三线制。

当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。

二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。

4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI拥有一些很方便的用于RTD和电桥的变送器芯片。

由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。

4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。

电子器件和传感器调整起来不够方便。

现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。

4-20ma信号

4-20ma信号

4~20mA电流变送器的工业控制应用4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输信号就会受到噪声的干扰而不纯洁;第二,传输线的电阻会产生电压降,那么接收端的信号就会产生误差;第三,在现场如何提供仪表放大器的不同的工作电压也是个问题。

为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。

4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。

4~20mA电流环有两种类型:二线制和三线制。

当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。

二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。

4~20mA产品的典型应用是传感和测量应用,在工业现场有许多种类的传感器可以被转换成4~20mA的电流信号,TI 拥有一些很方便的用于RTD和电桥的变送器芯片。

由于TI的变送器芯片含有通用的功能电路比如电压激励源、电流激励流、稳压电路、仪表放大器等,所以可以很方便地把许多传感器的信号转化为4~20mA的信号。

4~20mA的校正传统的4~20mA校正,要求特殊的夹具固定,需要特别的激光或手动电阻器调整,而调整是相互影响的,需要一个测试、调整,再测试、再调整的过程,调整次数和范围有限。

电子器件和传感器调整起来不够方便。

现代的数字化4~20mA校正,它允许电子器件和传感器在封装之后进行调整;可通过计算机计算出校正系数来简化数值调整;可以有无限的调整次数,并且有很好的分辨率和较宽的调整范围;调整过程中不存在相互影响;电子器件和传感器可以很方便地调整。

4-20ma变送器设计原理

4-20ma变送器设计原理

4-20ma变送器设计原理4-20mA变送器是一种常见的工业控制设备,用于将传感器测量的物理量转换为标准的4-20mA电流信号,以便与其他设备进行通信和控制。

在设计4-20mA变送器时,需要考虑一些重要的原理和参考内容,以确保其正常运行和可靠性。

一、4-20mA信号的优势和适用场景1.抗干扰能力强:4-20mA信号采用电流数据传输,相对于电压信号来说,更抗干扰,能更好地适应工业现场复杂的电磁环境。

2.传输距离长:4-20mA信号传输的电流不容易受电阻值的影响,可以长距离传输,在数千米的距离上也能保持信号的稳定性。

3.便于判断故障:对于4-20mA变送器,0mA和4mA可以用来表示故障状态,通过监测电流大小可以方便地判断传感器或变送器是否正常工作。

二、4-20mA变送器的设计原理1.电源供电:4-20mA变送器一般采用两种供电方式,一种是直流供电,一种是二线制供电。

直流供电方式可以采用稳压电源或者电池供电,确保电源电压稳定可靠;二线制供电则是利用安装在控制系统上的直流电源供电,节省了电源线的布线成本。

2.信号采集:4-20mA变送器需要采集传感器测量的物理量并转换为相应的电流。

一般采用放大器、运放、AD转换器等电路来实现信号的放大和电流的转换。

在设计时需要考虑信号输入范围、增益调节、精度和稳定性等因素。

3.线性转换:4-20mA变送器需要将所采集到的物理量转换为标准的4-20mA电流信号。

这个转换过程一般通过电路中的放大器和电流环路来实现。

其中,0-10V信号一般通过放大器将其转换为0-1mA的电流信号,然后再通过流环的调节,将电流调整为4-20mA。

4.电流输出:4-20mA电流信号输出需要满足控制系统的要求,输出的电流应当稳定准确。

因此,在设计中需要考虑电路中的温漂校准、负载电阻的影响、电流稳定性等因素。

三、4-20mA变送器设计的参考内容1.电源的选择和稳定性:选择适合的电源电压和电流输出,通过稳压电源或者滤波电路来保证电源电压的稳定性和纹波的小。

光耦的工作原理及应用

光耦的工作原理及应用

光耦的工作原理及应用
光耦是一种常用于隔离和传输电信号的光电器件,它由发光二极管(LED)和光敏晶体管(光电二极管)组成。

光耦通过光学和电学相互作用来实现输入和输出信号之间的电气隔离,从而提高电路系统的安全性和稳定性。

光耦的工作原理基于发光二极管发射光信号,并被光敏晶体管转换成相应的电信号。

当输入端施加电压,LED发光,发射的光穿过内部隔离层作用于光敏晶体管,使其导通并输出电信号。

这种光学隔离的设计使得输入端和输出端完全电气隔离,有效防止了干扰和噪声的传播,提高了电路的抗干扰能力。

在实际应用中,光耦有着广泛的用途。

一方面,光耦常用于电力电子设备中,如开关电源、逆变器等,用于隔离控制信号和功率信号,防止电流反馈和高压击穿等问题。

另一方面,光耦也被广泛应用于通信领域,如串口通信、光纤通信等,用于隔离不同系统之间的信号传输,提高通信稳定性和安全性。

此外,光耦还常用于医疗设备、汽车电子、工业控制等领域。

在医疗设备上,光耦可以用于隔离敏感信号,防止电气噪声对患者造成影响;在汽车电子上,光耦可以实现车内控制系统和驱动系统之间的隔离,提高汽车电子系统的可靠性;在工业控制方面,光耦可以用于PLC控制、传感器信号隔离等,确保工业自动化系统的稳定性和安全性。

总的来说,光耦作为一种重要的光电器件,在电子领域有着广泛的应用前景。

它通过光学隔离的方式,实现了电路系统的信号隔离和传输,在提高系统稳定性、可靠性和安全性方面发挥着关键作用。

随着科技的不断进步,相信光耦将在更多领域展现其价值,为电子设备的发展和应用带来更多新的可能性。

1。

4-20ma工作原理剖析

4-20ma工作原理剖析

4-20ma一般仪器仪表的信号电流都为4-20mA,指最小电流为4mA,最大电流为20mA 。

传输信号时候,要考虑到导线上也有电阻,如果用电压传输则会在导线的产生一定的压降,那接收端的信号就会产生一定的误差了!所以使用电流信号作为变送器的标准传输!中文名4-20ma最小电流4mA最大电流20mA特点具有传感器的线性化电路概述一般仪器仪表的信号电流都为4-20mA,指最小电流为4mA,最大电流为20mA 。

传输信号时候,要考虑到导线上也有电阻,如果用电压传输则会在导线的产生一定的压降,那接收端的信号就会产生一定的误差了!所以使用电流信号作为变送器的标准传输!那么为什么选择4-20mA而不是0-20mA呢?为了减少接线的复杂性,传感器选择2线要比多线简单的多,2线既要传输信号,又要给传感器供电,所以设计者从中盗窃4mA 电流给传感器放大电路供电,这样4-20mA的标准就确定了。

4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。

为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。

4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。

4~20mA电流环有两种类型:二线制和三线制。

当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。

二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。

4~20mA产品的典型应用是传感和测量应用。

4-20mA变送器的电路设计

4-20mA变送器的电路设计

4-20mA变送器的电路设计工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。

这种将物理量转换成电信号的设备称为变送器。

工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。

变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。

显示仪表只需要串在电路中即可。

这种变送器只需外接2根线,因而被称为两线制变送器。

工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。

这使得两线制传感器的设计成为可能。

在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。

两者之间距离可能数十至数百米。

按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。

1.两线制变送器的结构与原理两线制变送器的原理是利用了4~20mA信号为自身提供电能。

如果变送器自身耗电大于4mA,那么将不可能输出下限4mA值。

因此一般要求两线制变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA。

这是两线制变送器的设计根本原则之一。

4-20mA电流光纤中继器的原理和应用以及注意事项

4-20mA电流光纤中继器的原理和应用以及注意事项

4-20mA电流光纤中继器的原理和应用
荣锋
1、采用4-20mA电流传输原因
工业上最广泛采用的是用4~20mA电流来传输模拟量。

采用电流信号的原因是不容易受干扰。

并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。

上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。

下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。

常取2mA作为断线报警值。

电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。

最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。

当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。

2、二线制原理
图1
图2
如图1最后一个图,两线制就是把变送器当成一个负载,具体实现如图2,内部的电压电流变换电路,将电流变为电压,实现内部电路供电。

图3是电路的一个具体实现,电路比较简单。

图3
3、需要光中继原因
一般电流传输几百米,但是实际工况可能需要几千米远,甚至更远。

因此需要电流中继器。

使用时,只需要知道进去什么电流信号,出来还是什么电流信号就可以了。

具体的接线方法可以看产品说明书,主要是线制问题。

中继的具体原理如
下:.先电流采样,然后变为光信号,发送出去,接收端接到光信号变为电流信号,输出。

4~20 mA电流环隔离模块的研究与设计

4~20 mA电流环隔离模块的研究与设计

前 常 用 的 隔 离 模 块 的 类 型 、工 作 原 理 和 特 点 ,介 绍 了 一 种 独 特 的 电 磁 隔 离 、后 级 馈 电 、接 收 型 隔 离 电 路 ,并 设 计 了 一
款由分立元件搭建的低成本 4~20 mA 无源电流环隔离模块。
关键词: 4~20 mA;抗干扰;电磁隔离;无源模块
电路原理介绍 3.2
(1)硬件电路框图,如图 6 所示。
图 6 硬件电路框图
(2)电 源 电 路 工 作 原 理 :电 流 环 在 输 入 端 形 成 的 电 压 降 ,加 载 到 由 三 极 管 、变 压 器 构 成 的 推 挽 自 激 振 荡 电 路 上 ,微 调 电 容 可 调 节 振 荡 频 率 在 100 kHz 左 右 。 示 波 器 实 测 振 荡 电 路 输 出 波 ,形 如 图 7 所示。电流互感线圈的初级从振荡线圈的次级取 出 振 荡 信 号 ,电 流 互 感 器 输 出 后 ,采 用 2 个 肖 特 基 二 极 管 进 行 整 流 ,再 进 行 电 容 滤 波 ,输 出 的 直 流 电 压 最 终 给 用 户 现 场 侧 两 线 制 变 送 器 供 电 ,同 时 实 现 了向后级的信号反馈。
ห้องสมุดไป่ตู้
such as signal crosstalk,ground line interference,common-mode and differential mode noise. So 4~20 mA current
loop isolation modules are frequently used. This paper analyzes the types,working principles and characteristics of the

光电隔离的4-20mA输出电路以及设计要点

光电隔离的4-20mA输出电路以及设计要点

光电隔离的4-20mA输出电路以及设计要点我们的一款控制器需要通过4-20mA的信号控制外部负载。

要求4-20mA的信号需要与控制器实现电气隔离;输出电流数值的精度在全温度范围内需要达到5%的精度要求;分辨率需要达到0.05mA;经过一番考虑之后,我设计了以上的电路;4-20mA输出电路电路原理单片机输出PWM信号通过光耦合之后,之后再经过R、C滤波网络滤成直流,直流信号经过运放构成的电压跟随器进行阻抗变化之后,送到由电流环芯片XTR115;XTR115由其转成电流信号输出到负载;假设单片机输出的PWM信号的频率为f,周期为T,占空比为α,当R、C滤波网络的时间常数远大于PWM信号的周期T时(一般需要为周期T的10倍,其滤得的直流信号幅度为VH*α。

根据XTR115的规格书,输出电流I=100*VH*α/(Rin+Rout)。

几个设计要点1) N沟通MOS的可靠导通和截止光耦6N135的参数如下:最大正向导通电流:25mA;正向导通电压:1.4V-1.75V;电流传输比(正向电流为4mA)>=5%;将正向导通电流的最小值设置为4mA左右;根据IF=(V3.3V-VF)/R25=4mA,可以选择R25为300Ω;当PWM输出低时,光耦最小导通电流为4mA;最小输出电流为4mA*5%=0.2mA;N沟通MOS的门-源级最小电压为0.2mA*R7;为了让N沟通MOS AO3400的导通电压尽量小,这里选取GS的最小驱动电压为4.0V;因此R7=4.0V/0.2mA=20KΩ。

此时,AO3400的源、漏极的导通电阻最大为35mΩ;2) 精度、分辨率以及其它根据输出电流I=100*VH*α/(Rin+Rout)。

VH为XT115的参考电压2.5V,当占空比为100%时,输出电流选为25mA。

算得Rin取值为10KΩ,精度选为1%;为了达到0.05mA的分辨率,最小占空比为0.05/25=0.2%。

综合考虑电流输出的响应时间等,PWM的频率选为1KHz,脉宽的最小调节宽度为1us。

4-20ma工作原理解读

4-20ma工作原理解读

4-20ma一般仪器仪表的信号电流都为4-20mA,指最小电流为4mA,最大电流为20mA 。

传输信号时候,要考虑到导线上也有电阻,如果用电压传输则会在导线的产生一定的压降,那接收端的信号就会产生一定的误差了!所以使用电流信号作为变送器的标准传输!中文名4-20ma最小电流4mA最大电流20mA特点具有传感器的线性化电路概述一般仪器仪表的信号电流都为4-20mA,指最小电流为4mA,最大电流为20mA 。

传输信号时候,要考虑到导线上也有电阻,如果用电压传输则会在导线的产生一定的压降,那接收端的信号就会产生一定的误差了!所以使用电流信号作为变送器的标准传输!那么为什么选择4-20mA而不是0-20mA呢?为了减少接线的复杂性,传感器选择2线要比多线简单的多,2线既要传输信号,又要给传感器供电,所以设计者从中盗窃4mA 电流给传感器放大电路供电,这样4-20mA的标准就确定了。

4~20mA电流环工作原理在工业现场,用一个仪表放大器来完成信号的调理并进行长线传输,会产生以下问题:第一,由于传输的信号是电压信号,传输线会受到噪声的干扰;第二,传输线的分布电阻会产生电压降;第三,在现场如何提供仪表放大器的工作电压也是个问题。

为了解决上述问题和避开相关噪声的影响,我们用电流来传输信号,因为电流对噪声并不敏感。

4~20mA的电流环便是用4mA表示零信号,用20mA表示信号的满刻度,而低于4mA高于20mA的信号用于各种故障的报警。

4~20mA电流环有两种类型:二线制和三线制。

当监控系统需要通过长线驱动现场的驱动器件如阀门等时,一般采用三线制变送器,这里XTR位于监控的系统端,由系统直接向XTR供电,供电电源是二根电流传输线以外的第三根线。

二线系统是XTR和传感器位于现场端,由于现场供电问题的存在,一般是接收端利用4~20mA的电流环向远端的XTR供电,通过4~20mA来反映信号的大小。

4~20mA产品的典型应用是传感和测量应用。

plc光耦隔离模块

plc光耦隔离模块

PLC光耦隔离模块是一种用于工业自动化领域的设备,它可以将PLC(可编程逻辑控制器)与外部设备或传感器进行隔离,从而保护PLC内部电路免受外部干扰。

光耦隔离模块采用光电耦合器作为核心部件,实现信号的隔离和转换。

本文将介绍PLC光耦隔离模块的基本原理、优点和应用领域,以及光耦隔离模块的设计和应用注意事项。

一、基本原理PLC光耦隔离模块的核心部件是光电耦合器,它利用光信号作为媒介传输电流。

当电流流过光耦模块时,半导体芯片会产生发光现象,这些光信号通过光纤传输到PLC内部,从而实现信号的隔离和转换。

光电耦合器具有较高的输入阻抗和较低的输出阻抗,可以有效地减少信号传输过程中的损耗和干扰。

二、优点1. 隔离效果好:PLC光耦隔离模块采用光电耦合器进行信号隔离,可以有效地减少外部干扰对PLC内部电路的影响,提高系统的稳定性和可靠性。

2. 成本低:与使用继电器等开关元件的隔离模块相比,PLC光耦隔离模块的成本较低,而且不需要大量的机械部件,可以降低设备的制造成本。

3. 响应速度快:PLC光耦隔离模块的响应速度较快,可以满足工业自动化领域对设备响应速度的要求。

三、应用领域1. 工业自动化领域:PLC光耦隔离模块可以用于工业自动化领域的各种设备中,如生产线、机器人、物流系统等。

2. 电力控制领域:PLC光耦隔离模块可以用于电力控制领域的各种设备中,如变频器、开关电源等。

3. 智能家居领域:PLC光耦隔离模块可以用于智能家居领域的各种设备中,如智能照明、智能安防等。

四、设计和应用注意事项1. 输入输出阻抗匹配:在设计PLC光耦隔离模块时,需要注意输入输出阻抗的匹配,以确保信号传输的稳定性。

一般来说,光电耦合器的输入阻抗应该尽可能地接近PLC的输出阻抗,以减少信号损失和失真。

2. 电源隔离:在设计PLC光耦隔离模块时,需要注意电源的隔离。

可以采用变压器、电感、电容等元件进行电源隔离,以确保PLC和外部设备之间的电源不会相互干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 线形光耦介绍
光隔离是一种很常用的信号隔离形式。

常用光耦器件及其外围电路组成。

由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。

对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。

对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。

一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。

集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。

模拟信号隔离的一个比较好的选择是使用线形光耦。

线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。

这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。

市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。

这里以HCNR200/201为例介绍2. 芯片介绍与原理说明
HCNR200/201的内部框图如下所示
其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。

1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。

输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即
K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。

在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。

相对于HCNR200,HCNR201提供更高的线性度。

采用HCNR200/201进行隔离的一些指标如下所示:
* 线性度:HCNR200:0.25%,HCNR201:0.05%;
* 线性系数K3:HCNR200:15%,HCNR201:5%;
* 温度系数: -65ppm/oC;
* 隔离电压:1414V;
* 信号带宽:直流到大于1MHz。

从上面可以看出,和普通光耦一样,线性光耦真正隔离的是电流,要想真正隔离电压,需要在输出和输出处增加运算放大器等辅助电路。

下面对
HCNR200/201的典型电路进行分析,对电路中如何实现反馈以及电流-电压、电压-电流转换进行推导与说明。

3. 典型电路分析
Agilent公司的HCNR200/201的手册上给出了多种实用电路,其中较为典型的一种如下图
设输入端电压为Vin,输出端电压为Vout,光耦保证的两个电流传递系数分别为K1、K2,显然,,和之间的关系取决于和之间的关系。

将前级运放的电路提出来看,如下图所示:
设运放负端的电压为,运放输出端的电压为,在运放不饱和的情况下二者满足下面的关系:
Vo=Voo-GVi (1)
其中是在运放输入差模为0时的输出电压,G为运放的增益,一般比较大。

忽略运放负端的输入电流,可以认为通过R1的电流为IP1,根据R1的欧姆定律得:
通过R3两端的电流为IF,根据欧姆定律得:
其中,为光耦2脚的电压,考虑到LED导通时的电压()基本不变,这里的作为常数对待。

根据光耦的特性,即
K1=IP1/IF (4)
将和的表达式代入上式,可得:
上式经变形可得到:
将的表达式代入(3)式可得:
考虑到G特别大,则可以做以下近似:
这样,输出与输入电压的关系如下:
可见,在上述电路中,输出和输入成正比,并且比例系数只由K3和R1、R2确定。

一般选R1=R2,达到只隔离不放大的目的。

4. 辅助电路与参数确定
上面的推导都是假定所有电路都是工作在线性范围内的,要想做到这一点需要对运放进行合理选型,并且确定电阻的阻值。

4.1 运放选型
运放可以是单电源供电或正负电源供电,上面给出的是单电源供电的例子。

为了能使输入范围能够从0到VCC,需要运放能够满摆幅工作,另外,运放的工作速度、压摆率不会影响整个电路的性能。

TI公司的LMV321单运放电路能够满足以上要求,可以作为HCNR200/201的外围电路。

4.2 阻值确定
电阻的选型需要考虑运放的线性范围和线性光耦的最大工作电流IFmax。

K1已知的情况下,IFmax又确定了IPD1的最大值IPD1max,这样,由于Vo的范围最小可以为0,这样,由于
考虑到IFmax大有利于能量的传输,这样,一般取
另外,由于工作在深度负反馈状态的运放满足虚短特性,因此,考虑IPD1的限制,
这样,
R2的确定可以根据所需要的放大倍数确定,例如如果不需要方法,只需将R2=R1即可。

另外由于光耦会产生一些高频的噪声,通常在R2处并联电容,构成低通滤波器,具体电容的值由输入频率以及噪声频率确定。

4.3 参数确定实例
假设确定Vcc=5V,输入在0-4V之间,输出等于输入,采用LMV321运放芯片以及上面电路,下面给出参数确定的过程。

* 确定IFmax:HCNR200/201的手册上推荐器件工作的25mA左右;
* 确定R3:R3=5V/25mA=200;
* 确定R1:;
* 确定R2:R2=R1=32K。

光耦隔离PLC应用。

相关文档
最新文档