计量经济学第8章ppt课件
合集下载
多重共线性PPT课件
2-2
多重共线性的性质
多重共线性(multicollinearity)原先的含义指一 个回归模型中的一些或全部解释变量之间存 在一种“完全”或者准确的线性关系。 l 1 X1 + l 2 X 2 + L + l k X k = 0 现在共线性更为广义,既包括上述完全共线 性,也包括非完全(高度)共线性的形式。
2-18
8.4 多重共线性的实际后果
OLS估计量的方差和标准误较大。 置信区间变宽。 t值不显著 。 R 2值较高,但t值并不都是统计显著的。 OLS估计量及其标准误对数据的微小变化非常敏感, 即它们很不稳定。 回归系数符号有误。 难以评估各个解释变量对回归平方和(ESS)或者 R 2 的贡献。
2-15
出现“高度”但“不完全”多重共线性 时的估计问题
仍以上述三变量回归模型为例。 假定 X 3i = l X 2i + vi ,其中 å vi x2i = 0
回归系数估计:
b2 =
(邋yi x2i )(l
2
2 2 x2 + v i i )- (l 2 2i 2 2 2i
邋yi x2i +
l 1 X1 + l 2 X 2 + L + l k X k + ui = 0
2-3
为什么CLRM假定无多重共线性?
如果多重共线性是完全的,则X变量的回归 系数将是不确定的,并且它们的标准误为无 穷大。 如果多重共线性是不完全的,则虽然回归系 数可以确定,却有较大的标准误(相对于系 数本身来说),也即系数不能以很高的精度 或准确度加以估计。
2-26
8.7 扩展一例:1960-1982年期间美国的鸡肉需求
第八章-虚拟变量回归
1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:
计量经济学课件PPT课件
非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
PPT-第8章-自相关-计量经济学及Stata应用
p
QBP n
ˆ
2 j
d
2(
p)
j1
(8.7)
经改进的“Ljung-Box Q 统计量”(Ljung and Box, 1979)为
p ˆ2
QLB
n(n
2)
j1
n
j
j
d 2 ( p)
(8.8)
13
这两种 Q 统计量在大样本下等价,但 Ljung-Box Q 统计量的小 样本性质更好,为 Stata 所采用。
则待估参数多达(n 1),随样本容量n 同步增长,也将导致估计量 不一致。
而且,对n1的估计将很不准确,因为只有一对数据(e1, en )可用 于此估计;类似地,对n2 的估计也不准确,因为只有两对数据
(e1, en1)、(e2 , en )可用于估计;以此类推。
正确的做法是,包括足够多阶数的自相关系数,并让此阶数 p随 着样本容量n 而增长。
n t 2
et2
2
n t 2
et et 1
tn1et2
e n 2
t2 t1
(8.9)
2 2
n t 2
ete
t 1
tn1et2
2(1
ˆ1)
其中, ˆ1为残差的一阶自相关系数。
15
当d 2时, ˆ1 0,无一阶自相关; 当d 0时, ˆ1 1,存在一阶正自相关; 当d 4时, ˆ1 1,存在一阶负自相关。
DW 检验的另一缺点是,其 d 统计量的分布还依赖于数据矩阵 X ,无法制表,须使用其上限分布dU 与下限分布dL (dL d dU )来 间接检验。
即便如此,仍存在“无结论区域”。 DW 统计量的本质就是残差的一阶自相关系数,没有太多信息。
计量经济学_詹姆斯斯托克_第8章_非线性的回归模型
Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)
计量经济学第八章完整课件
多元线性回归分析
多元线性回归模型
多元线性回归模型是用来描述因变量和多个自 变量之间线性关系的模型。
模型的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
其中,Y是因变量,X1, X2, ..., Xp是自变量, β0, β1, ..., βp是模型的参数,ε是误差项。
回归分析的应用领域
经济学、金融学、社会学、生物学等。
回归分析的分类
1 2
一元线性回归分析
研究一个因变量与一个自变量之间的线性关系。
多元线性回归分析
研究一个因变量与多个自变量之间的线性关系。
3
非线性回归分析
研究因变量与自变量之间的非线性关系。
回归分析的步骤
确定研究问题
01
明确研究目的,确定因变量和自变量。
主成分分析
将多个高度相关的解释变量组合成少数几个主成分,用主成分代 替原始变量进行回归分析。
岭回归
通过在回归系数上加上一个小的正则项,解决多重共线性问题, 使估计的系数更加稳定。
THANKS
感谢观看
模型修正
对模型进行修正,以消除异方差性的影响。例如,可 以使用加权最小二乘法等方法对模型进行修正。
04
自相关性与处理
自相关性的定义
01
自相关性是指时间序列数据中,当前值与过去值之 间存在相关性。
02
在计量经济学中,自相关性是指一个随机误差项的 各期值之间存在相关性。
03
自相关性可能导致模型估计的不准确,因此需要对 其进行检验和处理。
相关性检验
通过计算解释变量之间的相关系数,判断是否存在 高度相关性。相关系数接近1或-1,表明存在多重 共线性。
多元线性回归模型
多元线性回归模型是用来描述因变量和多个自 变量之间线性关系的模型。
模型的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
其中,Y是因变量,X1, X2, ..., Xp是自变量, β0, β1, ..., βp是模型的参数,ε是误差项。
回归分析的应用领域
经济学、金融学、社会学、生物学等。
回归分析的分类
1 2
一元线性回归分析
研究一个因变量与一个自变量之间的线性关系。
多元线性回归分析
研究一个因变量与多个自变量之间的线性关系。
3
非线性回归分析
研究因变量与自变量之间的非线性关系。
回归分析的步骤
确定研究问题
01
明确研究目的,确定因变量和自变量。
主成分分析
将多个高度相关的解释变量组合成少数几个主成分,用主成分代 替原始变量进行回归分析。
岭回归
通过在回归系数上加上一个小的正则项,解决多重共线性问题, 使估计的系数更加稳定。
THANKS
感谢观看
模型修正
对模型进行修正,以消除异方差性的影响。例如,可 以使用加权最小二乘法等方法对模型进行修正。
04
自相关性与处理
自相关性的定义
01
自相关性是指时间序列数据中,当前值与过去值之 间存在相关性。
02
在计量经济学中,自相关性是指一个随机误差项的 各期值之间存在相关性。
03
自相关性可能导致模型估计的不准确,因此需要对 其进行检验和处理。
相关性检验
通过计算解释变量之间的相关系数,判断是否存在 高度相关性。相关系数接近1或-1,表明存在多重 共线性。
计量经济学第八章非平稳时间序列和协整模型PPT培训课件
单位根检验的实例分析
以ADF检验为例,通过实际数据的应用,可以判断该序列是否具有单位根,进而判断其是否平稳。如果该序列不 平稳,可以通过差分或其他变换方法使其平稳,以便进行后续分析。
05 非平稳时间序列的差分模 型
差分模型的建立与原理
差分模型的基本概念
非平稳时间序列是指时间序列数据的统计特 性随时间而变化,无法通过简单的数学变换 使其稳定。差分模型是处理非平稳时间序列 的一种常用方法,通过差分操作消除时间序 列的非平稳特性。
差分模型的参数估计与检验
参数估计
差分模型的参数可以采用最小二乘法、最大似然法等统计方法进行估计。通过最小化残差平方和或最 大化似然函数,求解出模型参数的值。
参数检验
在估计出参数后,需要对参数进行检验,以判断模型是否符合实际数据。常见的检验方法包括残差检 验、异方差性检验、自相关性检验等。通过检验可以判断模型的有效性和适用性。
单位根检验的方法与步骤
01
02
单位根检验的方法:常 单位根检验的步骤 见的单位根检验方法包 括ADF (Augmented Dickey-Fuller) 检验、 PP (Phillips-Perron) 检 验和KPSS (Kwiatkowski-PhillipsSchmidt-Shin) 检验等。
单位根检验的定义与原理
单位根检验的定义
单位根检验是一种用于检验时间序列数据是否具有平稳性的 统计方法。如果一个时间序列数据存在单位根,则该序列是 非平稳的。
单位根检验的原理
单位根检验基于随机游走模型,即一个随机过程,其中每个 观测值都是前一个观测值加上一个随机扰动。如果一个时间 序列数据符合随机游走模型,那么它就具有单位根。
03 非平稳时间序列与协整模 型的关系
以ADF检验为例,通过实际数据的应用,可以判断该序列是否具有单位根,进而判断其是否平稳。如果该序列不 平稳,可以通过差分或其他变换方法使其平稳,以便进行后续分析。
05 非平稳时间序列的差分模 型
差分模型的建立与原理
差分模型的基本概念
非平稳时间序列是指时间序列数据的统计特 性随时间而变化,无法通过简单的数学变换 使其稳定。差分模型是处理非平稳时间序列 的一种常用方法,通过差分操作消除时间序 列的非平稳特性。
差分模型的参数估计与检验
参数估计
差分模型的参数可以采用最小二乘法、最大似然法等统计方法进行估计。通过最小化残差平方和或最 大化似然函数,求解出模型参数的值。
参数检验
在估计出参数后,需要对参数进行检验,以判断模型是否符合实际数据。常见的检验方法包括残差检 验、异方差性检验、自相关性检验等。通过检验可以判断模型的有效性和适用性。
单位根检验的方法与步骤
01
02
单位根检验的方法:常 单位根检验的步骤 见的单位根检验方法包 括ADF (Augmented Dickey-Fuller) 检验、 PP (Phillips-Perron) 检 验和KPSS (Kwiatkowski-PhillipsSchmidt-Shin) 检验等。
单位根检验的定义与原理
单位根检验的定义
单位根检验是一种用于检验时间序列数据是否具有平稳性的 统计方法。如果一个时间序列数据存在单位根,则该序列是 非平稳的。
单位根检验的原理
单位根检验基于随机游走模型,即一个随机过程,其中每个 观测值都是前一个观测值加上一个随机扰动。如果一个时间 序列数据符合随机游走模型,那么它就具有单位根。
03 非平稳时间序列与协整模 型的关系
计量经济学第8章
6443.33 8631.94 1
最高收入户
7593.95 10962.1 0
8262.42 12083.79 1
表 回归结果
这表明1998年、1999年我国城镇居民消费函数并没有显著差 异。因此,可以将两年的样本数据合并成一个样本,估计城镇居 民的消费函数,结果如下:
回归结果
虚拟变量的特殊应用
0
1
0
1988.1
3929.8 25 0
0
0
1984.4
4270.6 12
1
0
0
1988.2
4126.2 26 0
0
1
1985.1
3044.1 13
0
0
0
1988.3
4015.1 27 0
1
0
1985.2
3078.8 14 0
0
1
1988.4
4904.2 28 1
0
0
由于受取暖用煤的影响,每年第四季度的销售量大大高于其
设根据同一总体两个样本估计的回归模型分别为
为“相异回归”(Dissimilar regressions)。 上述情况中,只有第(1)种情况模型结构是稳定的,其余情况都表明模 型结构不稳定。
3.分段回归
回归系数反映了奖金的提高程度。使用虚拟变量既能如实描述不同阶段 的经济关系,又未减少估计模型时的样本容量,保证了模型的估计精度。
后期变动一个单位对Y的影响,即x的滞后影响。 如果 b = bi 存在,i=0,1,2…,k
b 称为长期分布或总分布乘数。表示X 变动一个单
位时,由于滞后效应而形成的对Y值的总的影响。
分布滞后模型的参数估计
对分布滞后模型直接采用OLS不适宜 • 没有先验准则确定滞后期长度;
计量经济学 第8章 联立方程模型
问题探讨与思考
• 1.如何识别内生变量、外生变量和前定变量? • 2.为什么要阶条件和秩条件结合起来进行联立模型方程的识别? • 3.联立方程模型参数的单方程估计和系统估计有何不同?
练习
•
程序(EViews)
• • • • • • • • • • • • • • • • • • • • wfopen E:\data\data810.xls @freq A @id @date(year) system macro1 macro1.append cons=c(1)+c(2)*gove macro1.append inv=c(3)+c(4)*gove macro1.append gdp=c(5)+c(6)*gove macro1.append inst gove macro1.ls show macro1.results system macro2 macro2.append cons=c(1)+c(2)*gdp macro2.append inv=c(3)+c(4)*gdp macro2.append inst gove macro2.ls show macro2.results system macro3 macro3.append cons=c(1)+c(2)*gdp+c(3)*cons(-1) macro3.append inv=c(4)+c(5)*gdp+c(6)*inv(-1) macro3.append inst cons(-1) inv(-1) gove macro3.tsls show macro3.results
案例分析
•
模型的识别
•
间接最小二乘估计法
新的模型
计量经济学(内蒙古大学) 第八章 经典单方程计量经济学模型:专门问题(滞后变量模型)
内蒙古大学经济管理学院
第四章: 经典单方程计量经济学模型: 专门问题(滞后变量模型)
经世致用 管人悟道
内蒙古大学经济管理学院
在许多情况下被解释变量Y 不仅受到同期的解
释变量Xt 的影响,而且和X的滞后值Xt-1, Xt-2 ,
…,有很强的相关性 。
例如,人们的储蓄和当期的收入以及过去几期的收 入有着很强的相关性;固定资产的形成不仅取决 于现期投资额而且还取决于前几个时期的投资额 的影响等。这样的社会现象还有很多,有经济方 面的,也有其它领域的,对这些问题进行讨论就
经世致用 管人悟道
6
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
于是,由该例可以得到以下消费函数关系式
Yt 常量 0.4 X t 0.3X t 1 0.2 X t 2 ut
式中, Y=消费支出,X=收入。该方程就 是一个分布滞后模型,它表示收入对消费的 影响分布于不同时期。
在经济活动中,某一个经济变量的影响不仅 取决于同期各种因素,而且也取决于过去时期的各 种因素,有时还受自身过去值的影响。例如,居民 现期消费水平,不仅受本期居民收入影响,同时受 到前几个时期居民收入的影响。
把这些过去时期的变量,称作滞后变量, 把那些包括滞后变量作为解释变量的模型称作 滞后解释变量模型。
经世致用 管人悟道
5
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
什么是分布滞后模型? 例如:消费者每年收入增加10000元,假如,该
消费者把各年增加的收入按照以下方式分配:当年
增加消费支出4000元,第二年再增加消费支出3000
元,第三年再增加消费支出2000元,剩下的1000元 作为储蓄。第三年的消费支出不仅取决于当年的收 入,还与第一年和第二年的收入有关。当然,还可 以和前面更多期有关。
第四章: 经典单方程计量经济学模型: 专门问题(滞后变量模型)
经世致用 管人悟道
内蒙古大学经济管理学院
在许多情况下被解释变量Y 不仅受到同期的解
释变量Xt 的影响,而且和X的滞后值Xt-1, Xt-2 ,
…,有很强的相关性 。
例如,人们的储蓄和当期的收入以及过去几期的收 入有着很强的相关性;固定资产的形成不仅取决 于现期投资额而且还取决于前几个时期的投资额 的影响等。这样的社会现象还有很多,有经济方 面的,也有其它领域的,对这些问题进行讨论就
经世致用 管人悟道
6
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
于是,由该例可以得到以下消费函数关系式
Yt 常量 0.4 X t 0.3X t 1 0.2 X t 2 ut
式中, Y=消费支出,X=收入。该方程就 是一个分布滞后模型,它表示收入对消费的 影响分布于不同时期。
在经济活动中,某一个经济变量的影响不仅 取决于同期各种因素,而且也取决于过去时期的各 种因素,有时还受自身过去值的影响。例如,居民 现期消费水平,不仅受本期居民收入影响,同时受 到前几个时期居民收入的影响。
把这些过去时期的变量,称作滞后变量, 把那些包括滞后变量作为解释变量的模型称作 滞后解释变量模型。
经世致用 管人悟道
5
内蒙古大学经济管理学院
一、分布滞后模型的概念及相关问题
什么是分布滞后模型? 例如:消费者每年收入增加10000元,假如,该
消费者把各年增加的收入按照以下方式分配:当年
增加消费支出4000元,第二年再增加消费支出3000
元,第三年再增加消费支出2000元,剩下的1000元 作为储蓄。第三年的消费支出不仅取决于当年的收 入,还与第一年和第二年的收入有关。当然,还可 以和前面更多期有关。
计量经济学课件全完整版
ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
计量经济学全册课件(完整)pptx
预测与置信区间
阐述如何利用一元线性回归模型进行 预测,并给出预测值的置信区间,以 评估预测的不确定性。
2024/1/28
8
多元线性回归模型
模型设定与参数估计
介绍多元线性回归模型的基本形 式,解释多个自变量对因变量的 影响,以及最小二乘法在多元线 性回归中的应用。
模型的统计性质
探讨多元线性回归模型的统计性 质,包括回归系数的解释、拟合 优度的度量、多重共线性的诊断 与处理等。
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义 ,阐述最小二乘法(OLS)进行参数 估计的原理。
模型的统计性质
探讨一元线性回归模型的统计性质, 包括回归系数的解释、拟合优度的度 量(如R方)、回归系数的显著性检 验等。
贝叶斯计量经济学的定义
贝叶斯计量经济学是应用贝叶斯统计推断方法,对经济模 型进行参数估计、假设检验和预测的一门学科。
贝叶斯计量经济学的研究对象
贝叶斯计量经济学主要关注经济模型的参数估计和不确定 性问题,如线性回归模型、时间序列模型、面板数据模型 等。
贝叶斯计量经济学的研究方法
贝叶斯计量经济学的研究方法主要包括先验分布的设定、 后验分布的推导、马尔科夫链蒙特卡罗模拟(MCMC)等 。
介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
计量经济学模型估计
介绍如何在EViews中建立计量经济学 模型,进行参数估计、模型检验和预 测等操作。
24
Stata软件介绍及操作指南
Stata软件概述
Stata是一款流行的计量经济学软件,具有强大 的数据处理和统计分析功能。
《计量经济学》ppt课件
04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型
计量经济学第八章分布滞后模型
(1)经验加权法
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1
0 .8 6
X
t2
0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。
根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
•递减型: 即认为权数是递减的, X 的近期值对 Y 的 影响较远期值大。 如消费函数中,收入的近期值对消费的影 响作用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8
1.
滞后效应与与产生滞后效应的原因
因变量受到自身或另一解释变量的前几期值 影响的现象称为滞后效应。 表示前几期值的变量称为滞后变量。 如:消费函数 通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响: Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
该模型可用OLS法估计。假如参数估计结果为:
ˆ0
=0.5
ˆ 1 =0.8
则原模型的估计结果为:
0 .8 0 .8 Yˆ t 0 . 5 Xt X 2 4
t 1
0 .8 6
X
t2
0 .8 8
X
t3
0 .5 0 .4 X t 0 .2 X
t 1
0 . 133 X
①在解释变量x之后必须指定k和m的值,d为可选项, 不指定时取默认值0;1强制b0趋于0;2强制bk趋于0; 3强制两端趋于0。
②如果有多个具有滞后效应的解释变量,则分别用几 个PDL项表示;例如: LS Y C PDL(x1,4,2) PDL(x2,3,2,2) ③在估计分布滞后模型之前,最好使用互相关分析命 令CROSS初步判断滞后期的长度k; 命令格式为: CROSS Y X 接着输入滞后期 p 之后,将输出 yt 与 xt , xt-1…xt-p的各期相关系数,以判断较为合适的滞后 期长度k。 例 表给出了中国电力基本建设投资X与发电 量Y的相关资料,拟建立一多项式分布滞后模型 来考察两者的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、乘法方式
1 D= 0
反常情况 Y 正常情况
Y=b0+b1 X+b11 DX+ u
反常 正常
反常情况:
Y = b0 + (b1+ b11)X + u 正常情况:
Y = b0 + b1 X + u
b0
X
虚拟变量与其它自变量之间的关系是相乘关系, 这种引入虚拟变量方式为乘法方式,其作用在 于调整模型中的斜. 率。
0
0
.
由于受取暖用煤的影响,每年第四季度的销售量大大高于其 它季度。图7.1.7给出了直接用yt对t回归的拟合直线。数据拟合效 果不好。鉴于是季节数据,初步设三个季节变量如下:
.
在EViews软件中,生成D2数据的EViews命令是GENR D2= @SEAS(2) ,D3、D4类似。以时间t为解释变量(1982年1季度取t = 1,EViews命令是 :GENR T= @TREND(1981:1))的煤销售量(yt)模型回归结果如表所 示。
0
0
1
1986.4
4946.8 20 1
0
0
ห้องสมุดไป่ตู้1983.3
2943.6 7
0
1
0
1987.1
3209.0 21 0
0
0
1983.4
4193.4 8
1
0
0
1987.2
3608.1 22 0
0
1
1984.1
3001.9 9
0
0
0
1987.3
3815.6 23 0
1
0
1984.2
2969.5 10
0
0
1
1987.4
4.混合回归
模型结构的稳定性检验主要有两个用途:一是分析模型结构对样本变化 的敏感性,如多重共线性检验;二是比较两个(或多个)回归模型之间的差异 情况,即分析模型结构是否发生了显著变化。
利用一些特定的统计检验(如邹氏检验法,是美国计量经济学家邹至庄 教授于1960年提出的一种检验两个或两个以上计量经济模型间是否存在差异 的统计方法),可以检验模型结构的稳定性问题,使用虚拟变量也可以得到相 同的检验结果。
5332.3 24 1
0
0
1984.3
3287.5 11
0
1
0
1988.1
3929.8 25 0
0
0
1984.4
4270.6 12
1
0
0
1988.2
4126.2 26 0
0
1
1985.1
3044.1 13
0
0
0
1988.3
4015.1 27 0
1
0
1985.2
3078.8 14 0
0
1
1988.4
4904.2 28 1
.
虚拟变量的定义
• 虚拟变量(dummy variables),是一种离 散结构的量,用来描述所研究变量的发 展或变异而建立的一类特殊变量,常用 来表示职业、性别、季节、灾害、经济 结构变化、受教育程度等定性变量的影 响。习惯上用D表示虚拟变量,虚拟变 量的取值通常为0和1。
.
虚拟变量的引入
• 虚拟变量在模型中可以作自变量,也可以作因变量。 • 虚拟变量的引入方式
表 回归结果
.
由于D3,D2的系数没有显著性,剔除虚拟变量D3,D2,得煤销 售量(yt)模型回归结果如表7.1.6所示。
表 回归结果
.
.
2.检验模型的结构稳定性
利用不同的样本数据估计同一形式的计量经济模型,可能会得到不同的 估计结果。如果估计的参数之间存在着显著差异,则称模型结构是不稳定的, 反之则认为是稳定的。
0
1
0
1982.2
2647.2 2
0
0
1
1985.4
4483.2 16
1
0
0
1982.3
2912.7 3
0
1
0
1986.1
2881.8 17
0
0
0
1982.4
4087.0 4
1
0
0
1986.2
3308.7 18
0
0
1
1983.1
2806.5 5
0
0
0
1986.3
3437.5 19
0
1
0
1983.2
2672.1 6
3、一般方式
1 D= 0
反常情况 Y 正常情况
Y=b0+b01D+b1 X+ b11D X+u
反常 正常
反常情况:
Y=(b0+b01)+(b1+b11) X+u
b01
正常情况:
Y = b0 + b1 X+u
b0
X 虚拟变量与其它自变量之间的关系既是相加关系
又是相乘关系,这种引入虚拟变量方式为一般方
第8章 虚拟变量和滞后变量
8.1 虚拟变量 8.2 滞后变量
.
8.1 虚拟变量
• 问题的提出 • 虚拟变量的定义 • 虚拟变量的引入方式 • 虚拟变量的特殊应用 • 模型中引入虚拟变量的作用 • 虚拟变量设置的原则
.
问题的提出
• 经济变量
– 定性变量 – 定量变量
建立和应用计量经济学模型时,除了要考虑定量 变量的影响外,经常还要考虑定性变量的影响。例如, 职业对个人收入的影响、战争与和平对发展经济的影 响、繁荣与萧条对就业的影响、文化程度对工资的影 响、自然灾害对农业生产的影响、季节对销售量的影 响等。所以需要考虑在模型中引入定性变量。
式,其作用在于调整模型中的截距和斜率。
.
虚拟变量的特殊应用 1.调整季节波动 2.检验模型的结构稳定性 3.分段回归 4.混合回归
.
1.调整季节波动
使用虚拟变量也可以反映季节因素的影
响。例如,利用季度数据分析某公司利润y与销售收入x之间的相互关
系时,为研究四个季度对利润的季节性影响,引入三个虚拟变量(设第
设根据同一总体两个样本估计的回归模型分别为
.
.
为“相异回归”(Dissimilar regressions)。 上述情况中,只有第(1)种情况模型结构是稳定的,其余情况都表明模 型结构不稳定。
3.分段回归
.
.
回归系数反映了奖金的提高程度。使用虚拟变量既能如实描述不同阶段 的经济关系,又未减少估计模型时的样本容量,保证了模型的估计精度。
– 加法方式 – 乘法方式 – 一般方式
• 虚拟变量模型应用举例
.
1、加法方式
1 D= 0
反常情况 Y 正常情况
Y = b0 + b1 X + b2 D + u
反常 正常
反常情况:
Y = (b0 + b2 ) + b1 X + u
b2
正常情况:
Y = b0 + b1 X + u
b0
X 虚拟变量与其它自变量之间的关系是相加关系, 称这种引入虚拟变量方式为加法方式,其作用在 于调整模型中的截. 距
1季度为基础类型):
.
例 用虚拟变量处理季节数据模型 中国1982-1988年市场用煤销售量(yt)季节数据(《中国统计年鉴》 1987,1989)见表
.
表
中国市场用煤销售量季节数据
年与季度
yt
t
D4
D3
D2
年与季度
yt
t
D4
D3
D2
1982.1
2599.8 1
0
0
0
1985.3
3159.1 15