勾股定理能力提高练习题.doc
勾股定理桥梁问题(一)
勾股定理桥梁问题(一)勾股定理桥梁问题简介勾股定理是数学中的一个基本定理,它在实际生活中的应用非常广泛。
而勾股定理桥梁问题则是一个具体的应用场景,涉及到利用勾股定理来解决桥梁相关的工程问题。
相关问题及解释以下是一些与勾股定理桥梁问题相关的具体问题,并对每个问题进行解释。
1. 如何确定桥梁的长度?桥梁的长度是指两个桥墩之间的距离。
利用勾股定理,可以通过测量桥墩间的水平距离和垂直距离来计算桥梁的长度。
根据勾股定理,桥梁的长度等于水平距离的平方加上垂直距离的平方再开平方根。
2. 如何确定桥梁的高度?桥梁的高度是指桥梁下部结构的最低点与地面之间的垂直距离。
类似于确定桥梁的长度,利用勾股定理,可以通过测量桥梁下部结构的水平距离和垂直距离来计算桥梁的高度。
3. 如何确定桥梁的斜度?桥梁的斜度是指桥面的坡度或倾斜程度。
利用勾股定理,可以通过测量桥梁斜边的水平距离和垂直距离来计算桥梁的斜率。
斜率是指垂直距离除以水平距离的比值。
4. 如何确定桥梁的弯曲程度?桥梁的弯曲程度是指桥面的曲率或弧度。
利用勾股定理,可以通过测量桥梁的曲线段长和垂直距离来计算桥梁的弯曲程度。
根据勾股定理,弧度等于垂直距离除以曲线段长的比值。
5. 如何确定桥梁的支撑结构?桥梁的支撑结构是指桥梁的基础和承重墩柱等部分。
利用勾股定理,可以通过计算桥梁的长度、高度、斜度和弯曲程度来确定支撑结构的设计。
6. 如何确定桥梁的荷载能力?桥梁的荷载能力是指桥梁能够承受的最大重量。
利用勾股定理,可以通过测量桥梁的支撑结构和计算桥梁的长度、高度、斜度和弯曲程度来确定桥梁的荷载能力。
结论勾股定理桥梁问题是一个涉及到桥梁工程中多个参数的综合问题。
通过利用勾股定理,我们可以计算出桥梁的长度、高度、斜度、弯曲程度以及支撑结构和荷载能力等重要参数,帮助工程师们进行桥梁设计和施工。
勾股定理的应用不仅在数学领域中具有重要意义,同时也对实际生活和工程领域有着重要的应用价值。
勾股定理及一次函数能力提高训练
M N P l 勾股定理及一次函数能力提高训练1.如图,∠MON=60°,PA ⊥OM 于点A ,PB ⊥ON 于点B,且PA=2,PB=11,求OP 的长。
2.如图,点M 是BC 的中点,直线l ⊥BC 于点D ,若BC=83.25,MD=12,求AB 2-AC 2。
3.如图,在Rt △ABC 中,∠C=90°,∠A=15°,BC=1,求三角形ABC 的面积。
4.如图,在△ABC 中,AB=AC,AD 垂直于BC 于点D ,P 为线段DC上任意一点。
求证:AP 2=AB 2-PB 〃PC 。
O BA ABC M A B C A C BD P D图15.如图,在Rt △ABC 中,点P 是AC 的中点,PD ⊥BC 于点D ,若BC=9,DC=3,求AB 2的值。
6.如图所示,在△ABC 中,AD 为高,若AB+CD=AC+BD ,试判断△ABC 的形状。
7.如图1,把两个全等的等腰直角三角板ABC 和EFG 叠放在一起,使三角板EFG 的直角顶点G 与三角板ABC 的斜边AB 的中点重合,两三角板重叠部分(阴影部分)的面积记为S 阴。
(1)图1中,S 阴=kS △ABC ,则k=( );(2)将三角板EFG 绕点G 顺时针选转角度α(0°﹤α﹤90°)得到图2,在旋转过程中,S 阴是否改变?并说明理由;(3)在图2中,若S 阴=49cm 2,AH=6cm,求: ○1K 、H 两点之间的距离;○2点H 到EF 的距离。
B C D C B D B A C G E F A B G E FC K H图28.在平面直角坐标系中,边长为2的正方形OABC 的两点A 、C 分别在y 轴、x 轴的正半轴,点O 是原点(如图1)。
现将正方形OABC绕点O 顺时针旋转,当点A 第一次落在直线y=x 上停止,旋转过程中,AB 边交直线y=x 与点M ,BC 边交x 轴于点N 。
勾股定理大题
1、住院医师规范化培训中,以下哪项是师资培训的重要目标?A. 提高医师的数学运算能力B. 增强医师的临床诊疗技能与教学能力C. 提升医师的文学作品鉴赏力D. 加强医师的物理实验操作能力(答案:B)2、在住培师资培训中,关于临床带教方法,下列哪项描述是不正确的?A. 应注重理论与实践相结合B. 鼓励住院医师自主学习与探索C. 只需传授理论知识,无需关注实践操作D. 强调临床思维与决策能力的培养(答案:C)3、住院医师规范化培训师资应具备的核心素质不包括?A. 扎实的医学专业知识B. 良好的临床操作技能C. 精通外语,特别是医学英语D. 优秀的教学与沟通能力(答案:C)4、以下哪项不是住培师资在培训住院医师时应遵循的原则?A. 以患者为中心,确保医疗安全B. 强调团队协作,培养团队精神C. 过分依赖高科技医疗设备,忽视基本功训练D. 注重医德医风教育,培养职业素养(答案:C)5、在住培师资培训中,关于临床案例教学的说法,哪项是正确的?A. 案例应尽量选择罕见病例,以增加挑战性B. 案例应具有代表性,能够反映常见疾病的诊疗过程C. 案例分析时,只需关注诊断结果,无需讨论诊疗思路D. 案例教学不适用于住院医师的初期培训阶段(答案:B)6、住院医师规范化培训中,师资应如何指导住院医师进行临床操作?A. 直接示范,让住院医师模仿B. 先让住院医师自行操作,再给予指导C. 通过视频教学代替实际操作指导D. 在确保安全的前提下,逐步引导住院医师参与并独立完成操作(答案:D)7、关于住培师资的继续教育,以下哪项说法是不正确的?A. 师资应定期参加专业培训,更新医学知识B. 师资的继续教育应以提升临床技能为主,无需关注教学理论C. 鼓励师资参与学术交流,拓宽视野D. 师资的继续教育应涵盖医德医风、法律法规等内容(答案:B)8、在住培师资培训中,关于住院医师评估与反馈的说法,哪项是正确的?A. 评估应主要依据住院医师的理论考试成绩B. 反馈应具体、及时,并注重正面激励C. 评估与反馈只需在培训结束时进行D. 评估应侧重于住院医师的个人品质,而非专业能力(答案:B)9、住院医师规范化培训中,师资在指导住院医师进行科研活动时,应重点强调?A. 科研项目的经费申请与管理B. 科研论文的发表数量与期刊影响因子C. 科研思维的培养与科研方法的掌握D. 科研成果的商业化应用与转化(答案:C)10、以下哪项不是住培师资在培训住院医师时应关注的能力培养?A. 临床诊疗能力B. 医学人文素养C. 科研创新能力D. 高级数学运算能力(答案:D)。
北师大版2020八年级数学上册第一章勾股定理自主学习单元综合能力达标测试题1(附答案详解)
北师大版2020八年级数学上册第一章勾股定理自主学习单元综合能力达标测试题1(附答案详解)1.在△ABC中,∠C=90°,AC=6cm,BC=8cm,则AB等于()A.2cm B.8cm C.10cm D.100cm2.等腰三角形底长为24,底边上的高为5,则这个三角形的周长为( )A.37 B.60 C.34 D.533.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形4.如图,等腰三角形ABC底边上的高AD为4 cm,周长为16 cm,则△ABC的面积是()A.14 cm2B.13 cm2C.12 cm2D.8 cm25.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A.3.5 B.4 C.4.5 D.56.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.35B.45C.23D.327.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为( )A.12 m B.13 m C.16 m D.17 m8.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB 长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.79.以下各组数为边长,不能组成直角三角形的是().A.1.5,2,2.5 B.40,50,60 C.7,25,24 D.54,1,3410.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了右图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2018次后形成的图形中所有的正方形的面积和是()A.2017 B.2018 C.2019 D.111.在ABC ∆中,90,ACB CD ∠=︒是高,若,,BC a AC b ==,,AB c CD h ==,AD k BD p ==,且3,4a b ==,则____,____,____,____c p k h ====.12.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动______米.13.已知,如图,△OBC 中是直角三角形,OB 与x 轴正半轴重合,∠OBC=90°,且OB=1,BC=3,将△OBC 绕原点O 逆时针旋转60°再将其各边扩大为原来的2倍,使OB 1=OC ,得到△OB 1C 1,将△OB 1C 1绕原点O 逆时针旋转60°再将其各边扩大为原来的2倍,使OB 2=OC 1,得到△OB 2C 2,…,如此继续下去,得到△OB 2015C 2015,则点C 2015的坐标是_____.14.如图ABC 与ADE 都是以A 为直角顶点的等腰直角三角形,DE 交AC 于点F ,若5AB =,32=AD ,当CEF △是直角三角形时,则BD 的长为__________.15.如图,在四边形ABCD 中,AD BC ∥,DE BC ⊥,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,2ACD ACB ∠=∠.若4DG =,1EC =,则DE 的长为__________.16.如图,在ABC 中,AB 32=,BC 1=,ABC 45∠=,以AB 为边作等腰直角ABD ,使ABD 90∠=,连接CD ,则线段CD 的长为________.17.如图,△OPQ 是边长为2的等边三角形,若正比例函数的图象过点P ,则它的表达式是y =_____18.如图,正方形网格中,每个小正方形的边长为1,则网格上的ABC △是__________三角形.19.三角形中两条较短的边为a +b ,a-b(a>b),则当第三条边为_______时,此三角形为直角三角形.20.如图,在直角三角形纸片ABC 中,∠ACB =90°,AC =2,BC =4,点D 在边AB 上,以CD 为折痕将△CBD 折叠得到△CPD ,CP 与边AB 交于点E ,若△DEP 为直角三角形,则BD 的长是_____21.如图,在等边△ABC 中,D 为BC 上一点,∠BAD =3∠CAD, BC=2.(1)求△ABC 的面积;(2)求CD 的值.22.(1)在右面的方格纸中,以线段AB为一边,画一个正方形;(2)如果图中小方格的面积为1平方厘米,你知道(1)中画出的正方形的面积是多大吗?解释你的计算方法.23.如图,直角坐标系中的网格由单位正方形构成.△ABC中,A点坐标为(2,3)、B (-2,0)、C(0,-1).(1)AB的长为_____,∠ACB的度数为______;(2)若以A、B、C及点D为顶点的四边形为平行四边形,请写出D点的坐标___________,并在图中画出平行四边形.24.如图是一个三级台阶,它的每一级的长、宽和高分别等于5 cm,3 cm和1 cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?25.小明剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,则△ACD的周长为cm;(2)如果∠B0,则∠CAD= 度;35操作二:如图2,小明拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.26.如图1所示,等边△ABC 中,AD 是BC 边上的中线,根据等腰三角形的“三线合一”特性,AD 平分∠BAC ,且AD ⊥BC ,则有∠BAD=30°,BD=CD=12AB .于是可得出结论“直角三角形中, 30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC 中,∠ACB=90°,BC 的垂直平分线交AB 于点D ,垂足为E ,当BD=5cm ,∠B=30°时,△ACD 的周长= .(2)如图3所示,在△ABC 中,AB=AC ,∠A=120°,D 是BC 的中点,DE ⊥AB ,垂足为E ,那么BE :EA= .(3)如图4所示,在等边△ABC 中,D 、E 分别是BC 、AC 上的点,且AE=DC ,AD 、BE 交于点P ,作BQ ⊥AD 于Q ,若BP=2,求BQ 的长.27.已知四边形ABCD 中,10AB =,8BC =,26CD =,45DAC ∠=︒,15DCA =︒∠.(1)求ADC 的面积.(2)若E 为AB 中点,求线段CE 的长.28.在Rt△ABC 中,∠C=90°,BC=3,AC=4.现在要将交ABC 扩充成等腰三角形,且扩充的部分是以AC为直角边的直角三角形,求扩充后等腰三角形的周长.赵佳同学是这样操作的:如图 1 所示,延长BC 到点 D,使CD=BC,连接AD.所以,△ADB 为符合条件的三角形.则此时△ADB的周长为____________.请你在图2、图3中再设计两种扩充方案,并直接写出扩充后等腰三角形的周长.图2的周长:______________;图3的周长:______________.29.如图(1),Rt△AOB中,∠A=90°,∠AOB=60°,OB=23,∠AOB的平分线OC交AB于C,过O点做与OB垂直的直线ON.动点P从点B出发沿折线BC﹣CO 以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点C出发沿折线CO﹣ON以相同的速度运动,当点P到达点O时P、Q同时停止运动.(1)求OC、BC的长;(2)设△CPQ的面积为S,求S与t的函数关系式;(3)当P在OC上Q在ON上运动时,如图(2),设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.30.如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?参考答案1.C【解析】【分析】已知直角三角形两直角边,可以直接利用勾股定理来求斜边.【详解】解:∵在△ABC中,∠C=90°,AC=6cm,BC=8cm,∴斜边22AB=+=.6810故选C.【点睛】运用勾股定理:a,b,c是直角三角形的三条边,c为斜边,则满足c2=a2+b2是解题的关键. 2.B【解析】【分析】根据等腰三角形的性质和勾股定理可求得等腰三角形的腰,据此即可得解.【详解】解:如图:BC=24cm,AD=5cm,△ABC中,AB=AC,AD⊥BC;则BD=DC=BC=6cm;Rt△ABD中,AD=5cm,BD=12cm;由勾股定理,得:AB===13cm,∴△ABC的周长是13+13+24=60cm,故选:B.【点睛】本题主要考查了等腰三角形的性质以及勾股定理的应用.3.D【解析】分析:根据勾股定理的逆定理即可判断.详解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选D.点睛:此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.4.C【解析】【分析】设BD=xcm,由题意表示出AB的长度,根据勾股定理列方程求出x,进而求出△ABC的面积.【详解】设BD=xcm,∵等腰△ABC,∴AB=AC,∵AD⊥BC,∴BD=CD=xcm,∴AB=12(16﹣2x),由勾股定理可得:[12(16﹣2x)]2=x2+42,解得x=3,∴BC=2BD=6cm,∴S△ABC=12×6×4=12cm2.故选C.【点睛】本题关键在于设未知数,根据勾股定理列方程求解.5.C【解析】试题分析:如图,设水深h尺,在Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得,AC 2=AB 2+BC 2,即(h+3)2=h 2+62,∴h 2+6h +9=h 2+36,6h =27,解得h=4.5.故答案选C .考点:勾股定理.6.B 【解析】【分析】首先根据折叠可得CD=AC=3,BC=4,∠ACE=∠DCE ,∠BCF=∠B /CF ,CE ⊥AB ,然后求得△BCF 是等腰直角三角形,进而求得∠B /GD=90°,CE-EF=125,ED=AE=95,从而求得B /D=1,DF=35,在Rt △B /DF 中,由勾股定理即可求得B /F 的长. 【详解】解:根据首先根据折叠可得CD=AC=3,B /C=B4,∠ACE=∠DCE ,∠BCF=∠B /CF ,CE ⊥AB ,∴BD=4-3=1,∠DCE+∠B /CF=∠ACE+∠BCF ,∴∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B /FC=135°,∴∠B /FD=90°,∵S △ABC =12AC×BC=12AB×CE , ∴AC×BC=AB×CE ,∵根据勾股定理求得AB=5,∴CE=125,∴EF=125,22AC CE -=95∴DE=EF-ED=35, ∴B /22B D DF '-=45 故选:B .【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的角是解本题的关键.7.D【解析】【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.【点睛】考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.8.B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:∴故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.9.B【解析】分析:判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.详解:A. ()()2221.52 2.5+=,是直角三角形,故此选项错误;B. 222405060,+≠不是直角三角形,故此选项正确;C. 22272425,+=是直角三角形,故此选项错误;D. 22235144⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,是直角三角形,故此选项错误. 故选B.点睛:考查勾股定理的逆定理:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.10.C【解析】【分析】根据勾股定理和正方形的面积公式,知“生长”1次后,以直角三角形两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是2×1=2;“生长”2次后,所有的正方形的面积和是3×1=3,推而广之即可求解. 【详解】设直角三角形的是三条边分别是a ,b ,c .根据勾股定理,得a 2+b 2=c 2,即正方形A 的面积+正方形B 的面积=正方形C 的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2019×1=2019. 故选:C .【点睛】此题主要是能够根据勾股定理发现每一次得到的新的正方形的面积和与原正方形的面积之间的关系.11.5,91612,,555【解析】【分析】运用勾股定理可求解c,由三角形面积公式可求解h,再利用勾股定理可分别求解出k和p. 【详解】由勾股定理得:c2=a2+b2=9+16=25,则c=5;由三角形面积公式可得:ab=ch,则3×4=5×h,则h=125;由勾股定理得:b2=k2+h2,则16= k2+(125)2,则k=165,a2=p2+h2,则9= p2+(125)2,则p=95.【点睛】本题考查了勾股定理和三角形面积公式的应用.12.2【解析】【分析】如图,先利用勾股定理求出BC的长,再利用勾股定理求出CE的长,根据BE=BC-CE即可得答案.【详解】如图,AB=DE=10,AC=6,DC=8,∠C =90°,∴BC=2222106AB AC-=-=8,CE=2222108DE DC-=-=6,∴BE=BC-CE=2(米),故答案为2.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.13.(22016,0)【解析】∵∠OBC=90°,OB=1,BC=,∵将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,∴OC1=2OC=2×2=4=22,OC2=2OC1=2×4=8=23,OC3=2OC2=2×8=16=24,…,OC n=2n+1,∴OC2015=22016,∵2015÷6=335…5,∴点C2015与点C5在同一射线上,在x轴正半轴,坐标为(22016,0).点睛:根据直角三角形得出∠BOC=60°,然后求出OC1、OC2、OC3、…、OC n的长度,再根据周角等于360°,每6个为一个循环组,求出点C2015是第几个循环组的第几个点,再根据变化规律写出点的坐标即可.14.113【解析】∵△ABC、△ADE都是以A为直角顶点的等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∴在△ABD和△ACE中:AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE,∴BD=CE.①如图1,当∠CFE=90°时,AF⊥DE,∴AF=EF=22AE=23232=,∴CF=AC-AF=5-3=2,∴在Rt△CEF中,223213+=∴13②如图2:当∠CEF=90°时,∠AEC=90°+45°=135°,∵△ABD ≌△ACE ,∴∠ADB=∠AEC=135°,∴∠ADB+∠ADE=135°+45°=180°,∴点B 、D 、F 三点共线,过点A 作AG ⊥DE 于点G ,则AG=DG=22AD=2323⨯=, ∴在Rt △ABG 中,BG=22534-=,∴BD=BG-DG=4-3=1.综上所述,131.1515【解析】∵AD BC ∥,DE BC ⊥.∴DAC ACB ∠=∠,90ADE DEC ∠=∠=︒.∵G 为AF 的中点.∴AG GD GF ==.∴ADG DAG ACB ∠=∠=∠.∴2DGC ADG DAG ACB ∠=∠+∠=∠.∵DG DC =.∵4DG =,1EC =.∴4DC =,∵90DEC ∠=︒. ∴222241DE DC EC =-=-15=.点睛:本题考查了勾股定理,直角三角形斜边上中线性质的应用,解此题的关键是求出DG=DC 后利用勾股定理求DE 的长.16.13【解析】【分析】延长BC 交AD 于点E ,根据等腰直角三角形的性质求出AD ,再求出BE=DE=12AD 并得到BE ⊥AD ,然后求出CE ,在Rt △CDE 中,利用勾股定理列式计算即可得CD 的长.【详解】延长BC 交AD 于点E ,∵∠ABD=90°,∠ABC=45°,∴∠DBC=45°,∵AB=BD ,∴BE=DE=12AD ,BE ⊥AD , ∵2,∴AD=6,∴DE=BE=3,∵BC=1,∴CE=2,∴CD2=DE2+CE2∴【点睛】本题考查的是等腰三角形和勾股定理,熟练掌握这两点是解题的关键.17.【解析】分析:过点P作PD⊥x轴于点D,由等边三角形的性质可知OD=12OQ=1,再根据勾股定理求出PD的长,故可得出P点坐标,再利用待定系数法求出直线OP的解析式即可.详解:解:过点P作PD⊥x轴于点D,∵△OPQ是边长为2的等边三角形,∴OD=12OQ=12×2=1,在Rt△OPD中,∵OP=2,OD=1,∴PD=∴P(1,设直线OP的解析式为y=kx(k≠0),k,∴直线OP的解析式为y..点睛:本题考查的是用待定系数法求正比例函数的解析式,先根据题意得出点P 的坐标是解答此题的关键.18.直角三角形【解析】∵2223213AB =+=,2224652BC =+=,2221865AC =+=,∴222AB BC AC +=,∴ABC △为直角三角形.点睛:本题考查了勾股定理逆定理的应用,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.192222a b +【解析】 22a b a b ++-()()2222a b +. 2222a b +204552. 【解析】【分析】分两种情形:①如图1中,当∠EDF =90°时,作CH ⊥AB 于H .只要证明CH =DH ,即可解决问题;②如图2中,当∠DEF =90°时,设DE =x ,则EF =2x ,DF =BD 5,构建方程即可解决问题.【详解】解:如图1中,当∠EDF =90°时,作CH ⊥AB 于H .在Rt△ACB中,∵AC=2,BC=4,∴AB=2224+=25,∴CH=AC BCAB⋅=455.∵∠ACB=∠AHC=90°,∴∠ACH+∠BCH=90°,∠BCH+∠B=90°,∴∠ACH=∠B=∠F.∵CH∥DF,∴∠F=∠HCE,∴∠ACH=∠HCE,∠DCE=∠DCB,∴∠HCD=45°,∴HC=HD=45.∵AH=22AC CH-=255,∴BD=AB﹣AH﹣DH=25﹣655=455.如图2中,当∠DEF=90°时,设DE=x,则EF=2x,DF=BD=5x.∵AE+DE+BD=25,∴255+x+5x=25,∴x=2﹣255,∴BD=5x=25﹣2.综上所述:BD的长为455或25﹣2.故答案为455或52.【点睛】本题考查了翻折变换、勾股定理、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的首先思考问题,属于中考填空题中的压轴题.21.(1)S△ABC32)3【解析】【分析】(1)过点A作AM⊥BC于M,根据已知可得BM=CM=12BC=1,然后根据勾股定理求得AM的长,再利用三角形的面积公式进行求解即可;(2)过点D作DN⊥AC于N,根据已知则可得到△ADM≌△AND,从而得DM=DN,AN=AM=3,继而得CN=AC-AB=2-3,设DM=DN=x,则CD=CM-DM=1-x,在Rt△CDN中,利用勾股定理求得x即可得.【详解】(1) 过点A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=CM=12BC=1,∠BAM=∠CAM=30°,在Rt△CAM中,AM2+CM2=AC2,∴AM 2+12=22 ,∴AM=3,∴S△ABC=12BC·AM =12×2×3=3;(2)∵∠BAD=3∠CAD,∠BAD+∠CAD=∠BAC=60°,∴∠CAD=14∠BAC=15°,∠MAD=∠MAC-∠DAC=15°,∴AD平分∠MAC ,过点D作DN⊥AC于N,则△ADM≌△AND,∴DM=DN,3∴3,设DM=DN=x,则CD=CM-DM=1-x,在Rt△CDN中,DN2+CN2=CD2,x232=(1-x)2 ,解得:3-3,∴3【点睛】本题考查了等边三角形的性质,勾股定理、全等三角形的判定与性质等,添加辅助构造直角三角形进行解题是关键.22.(1)作图见解析;(2)正方形的面积是53,解释见解析.【解析】试题分析:(1)在网格中分别过点A作AD⊥AB于点A,过点B作BC⊥AB于点B,并使AD=AB=BC,再连接CD即可得到所求正方形;(2)如图,由勾股定理易得AB=22+=,再由正方形的面积公式即可计算出正2753方形ABCD的面积了.试题解析:(1)如图,过A、B分别作AD⊥AB,BC⊥AB,并且使得AD=BC=AB,连接CD,则图中所得四边形ABCD为所求正方形;(2)如图,∵图中小方格为的面积为1cm2,∴小方格的边长为1cm,∴AB=222753+=,=AB2=53.∴S正方形ABCD23.(1)5 90°(2)(0,4)或(4,2)或(-4,-4),平行四边形如图.【解析】分析:(1)由勾股定理即可求得AB,BC,AC的值,然后由勾股定理逆定理,可判定△ABC是直角三角形; (2)首先根据题意画出图形,然后根据图可求得平行四边形中D 点的坐标.详解:(1)根据点A 和点B 的坐标可知:AB =()22223++=5;同理可得BC =()22111++=5,AC =2224+=5, 所以有(5)2+(25)2=52,即222BC AC AB +=,故△ABC 是直角三角形,且∠ACB =90°. (2)点D 的坐标为(0,4)或(4,2)或(-4,-4),所作平行四边形如图所示.点睛:考查平行四边形的性质, 坐标与图形性质,注意数形结合思想在解题中的应用. 24.蚂蚁爬行的最短线路为13 cm .【解析】试题分析:根据题意,先将图形平面展开(如图所示),根据“两点之间,线段最短”可得蚂蚁爬行的最短距离为线段AB 的长,再用勾股定理求得AB 的长即可.试题解析:如图所示,将台阶展开.∵AC=3×3+1×3=12,BC=5,∴AB 2=AC 2+BC 2=132,∴AB=13(cm).∴蚂蚁爬行的最短线路为13 cm .点睛:本题考查了平面展开-最短路径问题,解决这类问题的基本思路是化曲面问题为平面问题,再用所学的知识解决.25.操作一:(1)14 cm ;(2)∠CAD =20度;操作二:CD=4.5cm【解析】【分析】操作一:(1)依据DE 垂直平分AB ,可得AD=BD ,依据△ACD 的周长=AD+CD+AC=BD+CD+AC=BC+AC 进行计算即可;(2)依据DE 垂直平分AB ,可得AD=BD ,即可得出∠B=∠BAD=35°,再根据Rt △ABC中,∠BAC=90°-35°=55°,即可得到∠CAD=55°-35°=20°;操作二:设CD=DE=x ,则BD=12-x ,Rt △ABC 中,15AB ==,BE=15-9=6,依据Rt △BDE 中,DE 2+BE 2=BD 2,可得方程x 2+62=(12-x )2,即可得CD=4.5cm .【详解】操作一:(1)由折叠可得,DE 垂直平分AB ,∴AD =BD ,∴△ACD 的周长为AD +CD +AC =BD +CD +AC =BC +AC =8+6=14(cm )故答案为14;(2)由折叠可得,DE 垂直平分AB ,∴AD =BD ,∴35B BAD ∠=∠=,又∵Rt △ABC 中,903555BAC ∠=-=,∴553520CAD ∠=-=,故答案为20;操作二:∵AC=9cm ,BC=12cm ,∴15AB ==(cm ),根据折叠性质可得AC=AE=9cm ,∴BE=AB ﹣AE=6cm ,设CD=x ,则BD=12﹣x ,DE=x ,在Rt △BDE 中,由题意可得方程x 2+62=(12﹣x )2,解之得x=4.5,∴CD=4.5cm .【点睛】考查线段的垂直平分线的性质,三角形的内角和以及勾股定理,掌握勾股定理是解题的关键.26.(1)15cm ;(2)3:1;(3)【解析】整体分析:(1)由“直角三角形中,30°角所对的直角边等于斜边的一半”求AC 的长;(2)连接AD ,由“三线合一”得∠BAD=60°,利用直角三角形中的30°角所对的直角边的性质,分别把BE ,EA 用BD 表示;(3)证明△BAE≌△ACD,得∠BPQ=60°,结合勾股定理求解.解:(1)∵DE 是线段BC 的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD .又∵在△ABC 中,∠ACB=90°,∠B=30°, ∴AC=12AB , ∴△ACD 的周长=AC+AB=3BD=15cm .故答案为15cm ;(2)连接AD ,如图所示.∵在△ABC 中,AB=AC ,∠A=120°,D 是BC 的中点,∴∠BAD=60°.又∵DE⊥AB,,EA=12AD ,AD ,∴EA=1212AD , ∴BE:AE=3:1.故答案为3:1.(3)∵△ABC 为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE 和△ACD 中,AE=CD ,∠BAC=∠ACB,AB=AC ,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ 为△ABP 外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°,∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2,∴PQ=1,2BP PQ -2221-3.27.(1)933-(2)5【解析】试题分析:(1)如图,过点C 作CF ⊥AD 于点F ,由此可得∠CFA=90°,由已知条件可得∠CDF=60°,从而可得∠DCF=30°,即可由CD 的长度求得DF 、CF 及AF 的长度,从而可得AD 的长度,就可计算出△ADC 的面积了;(2)在Rt △ACF 中由CF 32CAF=45°可求得AC 的长,结合已知的AB=10、BC=8可的AC 2+BC 2=AB 2,从而可证得∠ACB=90°,结合点E 是AB 的中点,即可得到CE=12AB=5. 试题解析:(1)过点C 作CF AD ⊥,交AD 延长线于点F ,∵45DAC ∠=︒,15DCA ∠=︒,∴CDF DAC DCA ∠=∠+∠ 451560=︒+︒=︒,在Rt CFD 中,26CD =,∴ 162DF CD ==, ()()222226632CF CD DF =-=-=,∴ 326AD AF DF =-=-,∴ 12ADC S AD CF =⨯ ()1236322=⨯-⨯ 933=-.(2)在Rt AFC 中,∵ 45DAC ∠=︒,32CF =∴ 22326AC CF ===,在ABC 中,∵ 2222268AC BC AB +=+=∴ △ABC 是直角三角形,又∵ E 为AB 中点,∴ 1110522CE AB ==⨯=. 28.16 5 403 【解析】试题分析:利用勾股定理可求出AB 的长进而得出△ADB 的周长;再根据题目要求扩充成AC 为直角边的直角三角形,利用AB=BD ,AD=BD ,分别得出答案.试题解析:∵在Rt △ABC 中,∠C=90°,BC=3,AC=4,CD=BC ,∴5=,则AD=AB=5,故此时△ADB 的周长为:5+5+6=16;如图2所示:AD=BD 时,设DC=x ,则AD=x+3,在Rt △ADC 中,(x+3)2=x 2+42,解得:x=76, 故AD=3+76=256 , 则此时△ADB 的周长为:256+256+5=403 ; 如图3所示:AB=BD 时,在Rt △ADC 中,=则此时△ADB的周长为:故答案为(1)16;(2)403. 【点睛】本题主要考查对勾股定理,等腰三角形的性质等知识点的理解和掌握,能通过分类求出等腰三角形的所有情况是解此题的关键.29.(1)OC=2,BC=2;(2)S 与t 的函数关系式是:S=22(02)4)t t ⎧<≤⎪⎪-+<≤;(3)当t 为83时,△OPM 是等腰三角形. 【解析】整体分析:(1)先求出OA ,判断OC=CB ,再在Rt △AOC 中用勾股定理列方程求解;(2)分点P 在BC 上,与点C 重合,在CO 上,与点O 重合四种情况分类讨论,注意画出相应的图形,利用三角形的面积公式和三角形面积的和差关系求解;(3)因为等腰三角形的腰不确定,所以需要分三种情况讨论,利用等腰三角形的性质列方程求解.(1)解:∵∠A=90°,∠AOB=60°,∴∠B=30°,∴OA=12由勾股定理得:AB=3,∵OC平分∠AOB,∴∠AOC=∠BOC=30°=∠B,∴OC=BC,在△AOC中,AO2+AC2=CO2,∴(3)²+(3﹣OC)2=OC2,∴OC=2=BC,答:OC=2,BC=2.(2)解:①当P在BC上,Q在OC上时,0<t<2,则CP=2﹣t,CQ=t,过P作PH⊥OC于H,∴∠HCP=60°,∠HPC=30°,∴CH=12CP=12(2﹣t),HP=32(2﹣t),∴S△CPQ=12CQ×PH=12×t×3(2﹣t),即S=﹣3t2+3t;②当t=2时,P在C点,Q在O点,此时,△CPQ不存在,∴S=0,③当P在OC上,Q在ON上时2<t<4,过P作PG⊥ON于G,过C作CZ⊥ON于Z,∵CO=2,∠NOC=60°,∴3CP=t﹣2,OQ=t﹣2,∠NOC=60°,∴∠GPO=30°,∴OG=12OP=12(4﹣t),34﹣t),∴S△CPQ=S△COQ﹣S△OPQ=12×(t﹣2)×3﹣12×(t﹣2)×34﹣t),即3233.④当t=4时,P 在O 点,Q 在ON 上,如图(3)过C 作CM ⊥OB 于M ,CK ⊥ON 于K ,∵∠B=30°,由(1)知BC=2,∴CM=12BC=1, 有勾股定理得:3∵3,∴333,∴S=12PQ×CK=12×2×33 综合上述:S 与t 的函数关系式是:S=2233(02)333(24)t t t ⎧+<≤⎪⎪⎨⎪+<≤⎪; (3)解:如图(2),∵ON ⊥OB ,∴∠NOB=90°,∵∠B=30°,∠A=90°,∴∠AOB=60°, ∵OC 平分∠AOB ,∴∠AOC=∠BOC=30°,∴∠NOC=90°﹣30°=60°, ①OM=PM 时,∠MOP=∠MPO=30°, ∴∠PQO=180°﹣∠QOP ﹣∠MPO=90°, ∴OP=2OQ ,∴2(t ﹣2)=4﹣t ,解得:t=83, ②PM=OP 时,∠PMO=∠MOP=30°, ∴∠MPO=120°,∵∠QOP=60°,∴此时不存在; ③OM=OP 时,过P 作PG ⊥ON 于G ,OP=4﹣t ,∠QOP=60°, ∴∠OPG=30°,∴GO=12(4﹣t ),34﹣t ), ∵∠AOC=30°,OM=OP ,∴∠OPM=∠OMP=75°, ∴∠PQO=180°﹣∠QOP ﹣∠QPO=45°,∴34﹣t ),∵OG+QG=OQ,∴12(4﹣t)+3(4﹣t)=t﹣2,解得:t=623+综合上述:当t为83或6233+时,△OPM是等腰三角形.30.25cm【解析】分析: 将立体图形展开成平面图形,然后根据两点之间线段距离最短,利用根据勾股定理进行求解,根据立体展开成平面图形情况分类讨论进行进行比较.详解:将长方体沿CH,HE,BE剪开翻折,使面ABCD和面BEHC在同一个平面内,连接AM,如图1,由题意可得:MD=MC+CD=5+10=15cm,AD=20cm,在Rt△ADM中,根据勾股定理得:AM=25cm,将长方体沿CH、GD、GH剪开翻折,使面ABCD和面D CH G在同一个平面内,连接AM,如图2,由题意得:BM=BC+MC=20+5=25(cm),AB=10cm,在Rt△ABM中,根据勾股定理得:AM29cm,将长方体沿CD、CH、GH剪开翻折,连接AM,如图3,由题意得:AC=AB+BC=10+20=30(cm),MC=5cm,在Rt△ACM中,根据勾股定理得:AM37cm,∵25<29<37则需要爬行的最短距离是25cm.点睛:本题考查了勾股定理的拓展应用,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.。
《九章算术》中勾股名题[精华]
《九章算术》中勾股名题《九章算术》中的勾股问题,是具有历史意义的世界著名算题.勾股问题即直角三角形问题.《九章算术》专设勾股章来研究勾股问题,共24个问题.引葭(jiā)赴岸《九章算术》勾股章第6题:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”本题的意思是:有一水池一丈见方,池中生有一棵类似芦苇的植物,露出水面一尺,如把它引向岸边,正好与岸边齐,问水有多深,该植物有多长?分析:让我们一起来熟悉一下图形吧.在Rt△ABC中,b为池深,c为葭长,且葭出水一尺,即c=b+1尺,由题意a为5尺.不用问下面该勾股定理大显身手了,剩下的问题你能解决了吧?这一问题在世界数学史上很有影响.印度古代数学家婆什迦罗的《丽罗瓦提》一书中有按这一问题改编的“风动红莲”;阿拉伯数学家阿尔·卡西的《算术之钥》也有类似的“池中长茅”问题;欧洲《十六世纪的算术》一书中又有“圆池芦苇”问题.所有问题内容大体一致,但比我国此类问题的研究要晚几百年甚至上千年!风动红莲该题出自婆什迦罗(Bhāskara,1114~1185),十二世纪印度杰出的数学家,著有《算法本原》,《丽罗瓦提》等书,包括算术和代数“求根”等问题,流传很广.此题与《九章算术》中的“引葭赴岸”如出一辙.波平如镜一湖面,半尺高处出红莲,鲜艳多姿湖中立,猛遭狂风吹一边;红莲斜卧水淹面,距根生处两尺远;渔翁发现忙思考,湖水深浅有多少?勾股容圆《九章算术》勾股章第16题:“今有勾八步,股十五步.问勾中容圆径几何?”所谓“勾中容圆”是指直角三角形的内切圆,内切圆的问题大家还不熟悉,通过此题了解即可,不必深究.井中立木《九章算术》勾股章第24题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”此题要用到比例线段的有关知识,此处我们不必深究,只需少作了解即可.《春雨的色彩》说课稿一、教材内容分析:春天里万物复苏,百花争艳、绿草如荫、一派迷人的景色。
第一章 勾股定理(能力提升)(解析版)
第一章勾股定理能力提升卷班级___________ 姓名___________ 学号____________ 分数____________(考试时间:60分钟试卷满分:100分)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的班级、姓名、学号填写在试卷上。
2.回答第I卷时,选出每小题答案后,将答案填在选择题上方的答题表中。
3.回答第II卷时,将答案直接写在试卷上。
第Ⅰ卷(选择题共30分)一、选择题:本题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(本题3分)一个直角三角形的三边分别是6cm、8cm、x cm,则x=()cmA.100cm B.10cm C.10cm 或.100cm 或28cm【答案】C【解析】试题分析:当6cm、8cm 两边是直角边时,22x=+=,当6cm、x cm 两边是直角6810边时,22x=-==,所以x="10cm" 或cm,故选C.8628272.(本题3分) 如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【答案】B【解析】试题分析:观察图形根据勾股定理分别计算出a=2+42=√17、b=2+42=5、c=4,因为a、b、c大于0,所以分别求a2=17、b2=25、c2=16,比较大小即可得c2<a2<b2,可得a 、b 、c 的大小为c <a <b .故选B3.(本题3分)如图,牧童家在B 处,A 、B 两处相距河岸的距离AC 、BD 分别为500m 和300m,且C 、D 两处的距离为600m ,天黑牧童从A 处将牛牵到河边去饮水,在赶回家,那么牧童最少要走( )A .800mB .1000mC .1200mD .1500m【答案】B【解析】 作点A 关于CD 的对称点A ′,连接A ′B ,则A ′B 的长即为AP +BP 的最小值,过点B 作BE ⊥AC ,垂足为E ,则CE =BD ,CD =BE ,再利用勾股定理求出A ′B 的长即可.作点A 关于CD 的对称点A ′,连接A ′B ,则A ′B 的长即为AP +BP 的最小值,过点B 作BE ⊥AC ,垂足为E ,∵CD =600m ,BD =300m ,AC =500m ,∴A ′C =AC =500m ,CE =BD =300m ,CD =BE =600m ,∴A ′E =A ′C +CE =500+300=800m ,在Rt △A ′CE 中,1000A B '==,故选B.4.(本题3分)将一根长为17cm 的筷子,置于内半径为3cm 、高为8cm 的圆柱形水杯中.设筷子露在杯子外面的长度为cm x ,则x 的取值范围是( )A .68x ≤≤B .79x ≤≤C .810x ≤≤D .911x ≤≤【答案】B【解析】如图,当筷子的底端在D 点时,筷子露在杯子外面的长度最长,此时1789cm x =-=();当筷子的底端在A 点时,筷子露在杯子外面的长度最短在Rt △ABD 中,6cm AD =,8cm BD =,所以2222226810AB AD BD =+=+=,则10cm AB =,此时17107cm x =-=(),所以x 的取值范围是79x ≤≤.故选B .5.(本题3分)已知一个直角三角形的两边长分别为3和5,则第三边长为( )A .4B .2C .4D .2或【答案】C【解析】因为一个直角三角形的两边长分别为3和5,所以当5是此直角三角形的斜边长时,设另一直角边长为x ,则由勾股定理得222253416x =-==,解得4x =;当5是此直角三角形的直角边长时,设斜边长为x ,则由勾股定理得2225334x =+=,解得x =选C .6.(本题3分)如图,一场大风后,一棵与地面垂直的树在离地面1m 处的A 点折断,树尖B 点触地,经测量BC =3m ,那么树高是 ( )A .4mB C .+1)m D .+3)m【答案】C【解析】 由题意知树枝折断部分、竖直部分和折断部分构成了直角三角形,根据题目提供数据分别求出竖直部分和折断部分,二者的和即为本题的答案.解:由题意知:AC =1,BC =3,由勾股定理得:AB ===,∴树高为:AC +AB =(+1)m , 7.(本题3分)如图,在平面直角坐标系中,点A 的坐标为(4,0),点B 的坐标为(0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 的坐标为( )A .(1,0)B .(-1,0)C .(-5,0)D .(5,0)【答案】B【解析】 ∵点A 的坐标为(4,0),点B 的坐标为(0,3),∴3BO =,4AO =,∴5AB ==.∵以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,∴541CO =-=,则点C 的坐标为(-1,0).故选B .8.(本题3分)如图,在△AB C 中,∠B =40°,EF ∥AB ,∠1=50°,CE =3,EF 比CF 大1,则EF 的长为( )A .5B .6C .3D .4【答案】A【解析】设EF=x,则CF=x-1,∵EF∥AB,∴∠CFE=∠B=40°,又∵∠CEF=∠1=50°,∴∠C=180°-50°-40°=90°,∴CE2+CF2=EF2,即32+(x-1)2=x2,解得:x=5,∴EF=5.故选A.9.(本题3分)如图,在Rt△中,∠°,cm,cm,则其斜边上的高为()A.6 cm B.8.5 cm C.cm D.cm【答案】C【解析】由勾股定理可知cm,再由三角形的面积公式,有,得.10.(本题3分)小红要求△ABC最长边上的高,测得AB=8 cm,AC=6 cm,BC=10 cm,则可知最长边上的高是()A.48 cm B.4.8 cm C.0.48 cm D.5 cm【答案】B【解析】试题分析:先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.:∵AB2+AC2=62+82=100,BC2=102=100,∴三角形是直角三角形.根据面积法求解:即解得故选B.第II卷(非选择题)二、填空题(共15分)11.(本题3分)甲船以15海里/时的速度离开港口向北航行,乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距______海里.【答案】50【解析】试题分析:如图所示,甲、乙两船行驶的方向正好构成直角三角形,OA=15×2=30海里,OB=20×2=40海里,由勾股定理得AB50海里.12.(本题3分)下列四组数:①4,5,8;②7,24,25;③6,8,10;,2.其中可以为直角三角形三边长的有__.(把所有你认为正确的序号都写上)【答案】②③④【解析】因为42+52≠82;72+242=252;62+82=102;2222+=,所以可以为直角三角形三边长的有②③④.故答案为②③④.13.(本题3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB 的长度为 cm .【答案】5【解析】解:根据题意知:圆锥的底面半径为3cm ,高为4cm ,故圆锥的母线长AB =" 32+42" =5cm .14.(本题3分)在△AB C 中,∠C = 90°,(1)若68a b ==,,则c = ;(2)若2430,a c ==,则b = ;(3)若2425b c ==,,则a = .【答案】(1)10 (2)18 (3)7【解析】试题解析:(1)在Rt △AB C 中,∠C = 90°,68a b ==,∴c 10=(2)在Rt △AB C 中,∠C = 90°,a 2430c ==,,∴b 18==(3) 在Rt △AB C 中,∠C = 90°,2425b c ==,∴a 7==15.(本题3分)如图:隔湖有两点A 、B ,为了测得A 、B 两点间的距离,从与AB 方向成直角的BC 方向上任取一点C ,若测得CA =50 m,CB =40 m ,那么A 、B 两点间的距离是_________.【答案】30米【解析】试题分析:根据勾股定理即可求得结果. 由题意得.3040502222m CB CA AB =-=-=三、解答题(共55分)16.(本题8分)如图,在△AB D 中,∠D =90°,C 是BD 上一点,已知BC =9,AB =17,AC =10,求AD 的长.【答案】8【解析】【分析】先设CD =x ,则BD =BC +CD =9+x ,再运用勾股定理分别在△ACD 与△AB D 中表示出AD 2,列出方程,求解即可.【详解】解:设CD =x ,则BD =BC +CD =9+x .在△AC D 中,∵∠D =90°,∴AD 2=AC 2﹣CD 2,在△AB D 中,∵∠D =90°,∴AD 2=AB 2﹣BD 2,∴AC 2﹣CD 2=AB 2﹣BD 2,即102﹣x 2=172﹣(9+x )2,解得x =6,∴AD 2=102﹣62=64,∴AD=8.故AD的长为8.17.(本题8分)如图,在△AB C中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。
提高学生勾股定理运用能力的教案
提高学生勾股定理运用能力的教案1. 教学目标本教案旨在帮助学生提高勾股定理的应用能力,使学生能够在各种问题中熟练运用勾股定理解决问题。
通过本课程的学习,学生将能够:- 掌握勾股定理的基本概念和计算方法;- 学会如何运用勾股定理解决各种问题;- 培养学生的逻辑思维和数学分析能力。
2. 教学方法本教案采用“探究式教学法”,通过引导学生主动发现问题和探索解决方法,培养学生的探究能力和分析能力。
同时,结合具体的问题,采用“数据分析法”和“案例教学法”推动学生的理论学习和实践运用的结合。
3. 教学过程3.1 加强勾股定理基础知识的掌握教师将介绍勾股定理的基本定义及公式,学生需要掌握直角三角形及各边之间的关系,理解“勾股”与“勾股定理”之间的联系。
针对不同的学生,教师还可以分别讲解勾股定理的证明方法,以便理解勾股定理的本质。
3.2 应用于具体问题中的应用学习完勾股定理的基础知识后,教师会提供一系列实际问题,让学生运用勾股定理解决问题,例如:- 如何计算直角三角形斜边的长度;- 如何确定棱锥、棱台和球台的体积;- 如何确定人的视力等问题。
教师将引导学生分析问题,整合已有的数学知识和技能,发现规律,并运用勾股定理解决问题。
3.3 进一步拓展应用范围在学生理解勾股定理的基础上,教师还可以拓展勾股定理的应用范围,让学生在深化理论认知的同时掌握更多应用技能,例如:- 如何在计算机图像处理中使用勾股定理;- 如何在物理力学中使用勾股定理;- 如何在航空航天中使用勾股定理。
同时,通过案例教学的方式,让学生看到勾股定理在实际应用中的重要作用,培养学生运用理论知识解决实际问题的动力和信心。
4. 教学评估本教案采用“反思性评估”的方式,教师将引导学生回顾整个学习过程,总结所获取的知识和技能,反思自我和团体的学习成果。
通过课后作业和小组讨论,教师可以了解学生对勾股定理的理解程度,进而制定差异化教学策略和补救措施,并最终完成学生考核和综合评估。
2022高考数学(文)二轮复习专题能力提升练(四) Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题力量提升练(四)(120分钟150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·淄博一模)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,其中正(主)视图、侧(左)视图中的两条虚线相互垂直,则该几何体的体积是( )A.56B.34C.12D.16【解析】选A.由三视图可知:该几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的体积为1,四棱锥的体积为:13×1×1×12=16,故组合体的体积V=1-16=56.2.如图,已知某品牌墨水瓶的外形三视图和尺寸,则该墨水瓶的容积为(瓶壁厚度忽视不计)( ) A.8+π B.8+4π C.16+π D. 16+4π【解析】选C.几何体为圆柱体和长方体的组合体,所以V=π+2×4×2=16+π.3.在正方体ABCD-A1B1C1D1中,已知M,N分别是A1B1,BB1的中点,过M,N,C1的截面截正方体所得的几何体如图所示,那么该几何体的侧视图是( )【解析】选B.依据题意得:该几何体的侧视图是点A,D,D1,A1,在平面BCC1B1上的投影,且NC1是被拦住的线段,应为虚线;所以符合条件的是B选项.4.(2021·枣庄二模)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.35πcm 3B.1063πcm 3 C.70πcm 3 D.2123πcm 3【解题提示】由已知的三视图可得:该几何体是一个圆台与半球的组合体,分别计算半球与圆台的体积,相加可得答案.【解析】选D.由已知的三视图可得:该几何体是一个圆台与半球的组合体,球的半径与圆台的下底面半径均为4cm ,故半球的体积为:12×43×π×43=1283π(cm 3),圆台的上底面半径为2cm ,高为3cm ,故圆台的体积为:13π(42+4×2+22)×3=843π(cm 3),故组合体的体积V=1283π+843π=2123π(cm 3).5.(2021·郑州一模)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.24C. 30D. 48【解析】选B.由三视图可知其直观图如图所示,其由三棱柱截去一个三棱锥所得,三棱柱的体积V=12×4×3×5=30,三棱锥的体积V 1=13×12×4×3×3=6,故该几何体的体积为24.6.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A.α∥β且l ∥αB.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【解析】选D.由m ⊥平面α,直线l 满足l ⊥m ,且l ⊄α,所以l ∥α,又n ⊥平面β,l ⊥n ,l ⊄β,所以l ∥β.又直线m ,n 为异面直线,且m ⊥平面α,n ⊥平面β,则α与β相交.否则,若α∥β,则推出m ∥n ,与m ,n 异面冲突.故α与β相交,且交线平行于l .7.已知某几何体的三视图如图所示,则该几何体的体积为( )A.3B.103C.113D.83【解题提示】几何体是直三棱柱截去一个三棱锥,结合直观图分别求出直三棱柱的体积和截去的三棱锥的体积,相减可得几何体的体积.【解析】选B.由三视图知:几何体是直三棱柱截去一个三棱锥,如图:直三棱柱的体积为12×2×2×2=4.截去的三棱锥的体积为13×12×2×1×2=23,所以几何体的体积V=4-23=10 3.8.(2021·青岛二模)某几何体的三视图如图所示,则此几何体的表面积为( )A.1403π+4√13π B.36π+2√13πC.32π+2√13πD.44π+2√13π【解题提示】首先依据三视图把该几何体的直观图整理出来,进一步利用立体图的相关的数据求出结果. 【解析】选D.依据三视图得知:该几何体是由下面是一个半径为4的半球,上面是一个底面半径为2,高为3的圆锥构成的组合体.首先求出上面圆锥的侧面开放面的半径r=√13,圆锥的底面周长为l=4π,所以圆锥的侧面面积为:S1=12·4π·√13=2√13π,剩余的侧面面积为:S2=2π·16+16π-4π=44π,所以组合体的表面积为:S=S1+S2=44π+2√13π.9.(2021·烟台二模)某几何体在网格纸上的三视图如图所示,已知网格纸上小正方形的边长为1,则该几何体的体积为( )A.4π3B.5π3C.7π3D.8π3【解析】选A.由已知的三视图可得:该几何体是一个圆柱和四分之一球组成的组合体,圆柱底面半径和球的半径R均为1,故四分之一球的体积为:14×43πR3=13π,圆柱的高h=1,故圆柱的体积为:πR2h=π,故组合体的体积V=13π+π=4π3. 10.在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2√3,点A,B,C,D在球O上,球O 与BA1的另一个交点为E,与CD1的另一个交点为F,AE⊥BA1,则球O的表面积为( )A.6πB.8πC.12πD.16π【解题提示】连结EF,DF,说明三棱柱ABE-DCF是球O的内接直三棱柱,求出球的半径,即可求解球的表面积.【解析】选B.连结EF,DF,易证得BCFE是矩形,则三棱柱ABE-DCF是球O的内接直三棱柱,由于AB=2,AA1=2√3,所以tan∠ABA1=√3,即∠ABA1=60°,又AE⊥BA1,所以AE=√3,BE=1,所以球O的半径R=12√22+12+(√3)2=√2,所以球O的表面积为:4πR2=4π(√2)2=8π.二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.(2021·日照一模)若某几何体的三视图如图所示,则此几何体的体积是. 【解题提示】画出几何体的直观图,然后利用三视图的数据求解几何体的体积即可.【解析】由三视图知此几何体为边长为2的正方体截去一个三棱锥(如图),所以此几何体的体积为:2×2×2-13×12×1×2×2=223.答案:22312.一个几何体的三视图如图所示,则该几何体的体积是.【解析】由已知的三视图可以推断该几何体是一个底面如正视图所示的六棱柱,由俯视图可得棱柱的高h=2,由割补法,可得棱柱的底面面积S=2·3=6,故棱柱的体积V=2·6=12.答案:1213.某三棱锥的三视图如图所示,则该三棱锥的四个面中,面积最大的面的面积是.【解题提示】由三视图想象出直观图,一般需从俯视图构建直观图,先确定最大的面,再求其面积.【解析】由三视图可知,该几何体有两个面是直角三角形,如图,底面是正三角形,最大的面是VAB,其边长分别为:2,√22+22=2√2,√22+22=2√2,故其面积为:12×2×√8−1=√7.答案:√7【方法技巧】与三视图有关问题的解题技巧:(1)留意长宽高的关系:三视图中长对正,高平齐,宽相等.(2)由三视图想象出直观图,一般需从俯视图构建直观图.14.(2021·德州一模)已知一个三棱锥的三视图如图所示,其中俯视图是顶角为120°的等腰三角形,则该三棱锥的四个表面中,面积最大的值为. 【解析】如图所示:该三棱锥是P-ABC,其中PA⊥底面ABC,PA=2,其底面为顶角∠BAC=120°的等腰三角形,BC=2√3.取BC的中点D,连接AD,可得AD=1.其面积最大的表面是侧面△PBC.由于PD=√PA2+AD2=√5.所以S△PBC=12BC·PD=12×2√3×√5=√15.答案:√1515.如图,用一边长为√2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢外形保持不变,则鸡蛋最高点与蛋巢底面的距离为.【解析】由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,由于鸡蛋的体积为43π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为√1−(12)2=√32, 而垂直折起的4个小直角三角形的高为12,故鸡蛋最高点与蛋巢底面的距离为√32+1+12=√32+32.答案:3+√32三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)如图所示是某三棱柱被削去一个底面后的直观图与侧(左)视图、俯视图.已知CF=2AD ,侧(左)视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【解析】取CF 中点P ,过P 作PQ ∥CB 交BE 于Q ,连接PD ,QD ,则AD ∥CP ,且AD=CP .所以四边形ACPD 为平行四边形, 所以AC ∥PD.又BC ∥PQ ,易知平面PDQ ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB 和四棱锥D-PQEF ,所以V=V 三棱柱PDQ-CAB +V D-PQEF =12×22sin60°×2+13×(1+2)×22×√3=3√3.17.(12分)如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=√2. (1)证明:平面A 1BD ∥平面CD 1B 1. (2)求三棱柱ABD-A 1B 1D 1的体积.【解析】(1)由于四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=√2,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,所以BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1.(2)由题意可得A 1O 为三棱柱ABD-A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O=√A 1A 2−AO 2=√2−1=1,所以三棱柱ABD-A 1B 1D 1的体积V=S △ABD·A1O=AB22·A 1O=22×1=1.【误区警示】解答本题易消灭以下三种错误:一是对棱柱的性质不生疏,造成思路受阻;二是对面面平行的判定的理解不彻底,造成证明不严谨失分;三是对棱柱的体积公式记忆不准或计算错误而失分.18.(12分)(2021·日照二模)如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M在线段EF上.(1)求证:BC⊥平面ACFE.(2)当EM为何值时,AM∥平面BDF?证明你的结论.【解题提示】(1)由已知,若证得AC⊥BC,则据面面垂直的性质定理即可.转化成在平面ABCD 中,能否有AC⊥BC,易证成立.(2)设AC∩BD=N,则面AMF∩平面BDF=FN,只需AM∥FN即可.而CN∶NA=1∶2.故应有EM∶FM=1∶2.【解析】(1)在梯形ABCD中,由于AB∥CD,AD=DC=CB=a,∠ABC=60°,所以四边形ABCD是等腰梯形,且∠DCA=∠BAC=30°,∠DCB=120°,所以∠ACB=∠DCB-∠DCA=90°,所以AC⊥BC.又由于平面ACFE⊥平面ABCD,交线为AC,所以BC⊥平面ACFE. (2)当EM=√33a时,AM∥平面BDF,在梯形ABCD中,设AC∩BD=N,连接FN,则CN∶NA=1∶2,由于EM=√33a,而EF=AC=√3a,所以EM∶MF=1∶2,所以MF AN,所以四边形ANFM是平行四边形,所以AM∥NF,又由于NF⊂平面BDF,AM⊄平面BDF,所以AM∥平面BDF.19.(12分)(2021·淄博二模)有一个全部棱长均为a的正四棱锥P-ABCD,还有一个全部棱长均为a的正三棱锥,将此三棱锥的一个面与正四棱锥的一个侧面完全重合在一起,得到一个如图所示的多面体.(1)证明:P,E,B,A四点共面.(2)求三棱锥A-PDE的体积.(3)在底面ABCD内找一点M,使EM⊥平面PBC,指出M的位置,并说明理由.【解题提示】(1)取PB的中点F,连接AF,EF,CF,AC,由已知得∠AFC为二面角A-PB-C的平面角,∠EFC为二面角E-PB-C的平面角,由余弦定理得cos∠AFC=-13,cos∠EFC=13,从而∠AFC+∠EFC=π,由此能证明P,E,B,A四点共面.(2)由已知得AP∥BE,BE∥平面APD,从而V A-PDE=V B-APD=V P-ABD,由此能求出三棱锥A-PDE的体积.(3)ME⊥平面PBC,交平面PBC于点H,又PB=PC=BC,则H为△PBC的重心,从而得H为△ACE的重心,从而求出M为线段AC的中点.【解析】(1)取PB的中点F,连接AF,EF,CF,AC,所以AF⊥PB,EF⊥PB,CF⊥PB,且AF=CF=√32a,所以∠AFC为二面角A-PB-C的平面角,∠EFC为二面角E-PB-C的平面角,在△AFC中,由余弦定理得:cos∠AFC=AF2+CF2−AC22AF·CF =-13,在△EFC中,由余弦定理得:cos∠EFC=EF2+CF2−EC22EF·CF =13,所以∠AFC+∠EFC=π,所以P,E,B,A四点共面.(2)由于P,E,B,A四点共面,∠PAB=60°,∠ABE=120°,所以AP∥BE,BE∥平面APD,所以V A-PDE=V B-APD=V P-ABD=13×12×a×a×√22a=√212a3.(3)连接AC,取AC的中点M,M即为所求点.由于ME⊥平面PBC,交平面PBC 于点H,易知H是△PBC的垂心,又PB=PC=BC,则H为△PBC的重心,在△ACE中,由于CHHF =21,所以点H为△ACE的重心,所以M为线段AC的中点,即M即为所求点.20.(13分)如图,在多面体ABCDEF中,四边形ABCD是菱形,AC,BD相交于点O,EF∥AB,AB=2EF,平面BCF⊥平面ABCD,BF=CF,点G为BC的中点.(1)求证:直线OG∥平面EFCD.(2)求证:直线AC⊥平面ODE. 【证明】(1)由于四边形ABCD是菱形,AC∩BD=O,所以点O是BD的中点,由于点G为BC的中点,所以OG∥CD,又由于OG⊄平面EFCD,CD⊂平面EFCD,所以直线OG∥平面EFCD.(2)由于BF=CF,点G为BC的中点,所以FG⊥BC,由于平面BCF⊥平面ABCD,平面BCF∩平面ABCD=BC,FG⊂平面BCF,FG⊥BC,所以FG⊥平面ABCD,由于AC⊂平面ABCD,所以FG⊥AC,由于OG∥AB,OG=12AB,EF∥AB,EF=12AB,所以OG∥EF,OG=EF,所以四边形EFGO为平行四边形,所以FG∥EO,由于FG⊥AC,FG∥EO,所以AC⊥EO,由于四边形ABCD是菱形,所以AC⊥DO,由于AC⊥EO,AC⊥DO,EO∩DO=O,EO,DO在平面ODE 内,所以AC⊥平面ODE.21.(14分)如图甲,☉O的直径AB=2,圆上两点C,D在直径AB的两侧,且∠CBA=∠DAB=π3.沿直径AB折起,使两个半圆所在的平面相互垂直(如图乙),F为BC的中点,E为AO的中点.依据图乙解答下列各题:(1)求证:CB⊥DE.(2)求三棱锥C-BOD的体积.(3)在劣弧BD⏜上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.【解题提示】(1)利用等边三角形的性质可得DE⊥AO,再利用面面垂直的性质定理即可得到DE⊥平面ABC,进而得出结论.(2)由(1)知DE⊥平面ABC,利用转换底面的方法,即可求三棱锥的体积.(3)存在,G为劣弧BD⏜的中点.连接OG,OF,FG,通过证明平面OFG∥平面ACD,即可得到结论.【解析】(1)在△AOD中,由于∠OAD=π3,OA=OD,所以△AOD为正三角形,又由于E为OA的中点,所以DE⊥AO,由于两个半圆所在平面ACB与平面ADB相互垂直且其交线为AB,所以DE⊥平面ABC.又CB⊂平面ABC,所以CB⊥DE.(2)由(1)知DE⊥平面ABC,所以DE为三棱锥D-BOC的高.由于D为圆周上一点,且AB为直径,所以∠ADB=π2,在△ABD中,由AD⊥BD,∠BAD=π3,AB=2,得AD=1,DE=√32.由于S△BOC=12S△ABC=12×12×1×√3=√34,所以V C-BOD=V D-BOC=13S△BOC·DE=13×√34×√32=18.(3)存在满足题意的点G,G为劣弧BD⏜的中点.证明如下:连接OG,OF,FG,易知OG⊥BD,又AD⊥BD,所以OG∥AD,由于OG⊄平面ACD,所以OG∥平面ACD.在△ABC中,O,F分别为AB,BC的中点,所以OF∥AC,OF⊄平面ACD,所以OF∥平面ACD,由于OG∩OF=O,所以平面OFG∥平面ACD.又FG⊂平面OFG,所以FG∥平面ACD. 关闭Word文档返回原板块。
人教版数学八年级下第17章《勾股定理》章节能力提升测试题
人教版数学八年级下第17章《勾股定理》章节能力提升测试题一、 选择题(每题3分,共30分)1. 如图,边长为x 的边等于5的有( )A .1个B .2个C .3个D .4个2. 在Rt △ABC 中,∠C =90°,已知a ∶b =3∶4,c =10,其中a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则△ABC 的面积为( ) A .24 B .12 C .28 D .303. 若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则下列等式中,成立的是( )A .222c b a =+B .222c a =C .222a c =D .222b c =4. 下列命题的逆命题成立的是 ( )A .若a >b >0,则2a >2bB .如果两个角都是直角,那么它们相等C .如果天上下大雨,那么地上一定湿D .如果一个三角形的三边满足2a +2b =2c ,那么这个三角形是直角三角形 5. 如图,台阶(都是直角)下端点B 到上端点A 的最短距离是( )A .8B .15C .17D .25第5题 第6题6. 如图,直线l 上有三个正方形a b c ,,,若a c ,的边长分别为6和8,则b 的面积为( ) A .4 B .25 C .55 D .100 7. 下列说法错误的是( )A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形B .△ABC 中,若()()c b c b a -+=2,则△ABC 是直角三角形C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形3x x x A B2 43 536D .△ABC 中,若c b a ::=5∶4∶3,则△ABC 是直角三角形( ) 8. 直角三角形中一直角边的长为9,另两边长为连续自然数,则此直角三角形的周长为( ).A. 121B. 120C. 90D. 不能确定9. 如图,在△ABC 中,∠ACB =90°,AC =12,BC =5,AM =AC ,BN =BC ,则MN 的长为( ).A. 2B. 2.6C. 3D. 4(第8题)10. 如图是一块长、宽、高分别是6cm,4cm 和3cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ).A. 85cmB. 97cmC. 109cmD. 9cmA. 2+10B. 2+210C. 12D. 18二、 填空题(每题3分,共30分)11. 在△ABC 中,∠C =90°.(1)已知a =2.4,b =3.2,则c =________;(2)已知∠A =45°,c =18,则a =________.12. 在Rt △ABC 中,∠C =90°,a ∶b =5∶12,c =39,则a +b =________.13. 在△ABC 中,AB =2,AC =2,∠B =30°,则∠BAC 的度数是________. 14. 把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式: 15. 如图,在△ABC 中,∠C =90°,BC =60cm ,CA =80cm ,一只蜗牛从点C 出发,以每分钟20cm 的速度沿CA →AB →BC 的路径再回到点C ,需要________min.(第15题)16. 如图 ,正方形网格中的每个小正方形边长为1,△ABC 的三个顶点在格点上,则△ABC 中AB 边上的高为17. 长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.(第17题)18. 如图,在ABC V 中,90C ∠=︒,22.5B ∠=︒,DE 垂直平分AB ,E 为垂足,交BC 于点D,若BD =,则AC 的长为______cm .19. 如图,AD 是△ABC 的中线,∠ADC =45°,把△ABC 沿AD 对折,点C 落在点C ′的位置,若BC =2,则BC ′=________.20. 以直角三角形的三边a ,b ,c (c 为斜边)为直径分别向三角形外作半圆,若以a 为直径的半圆的面积为258π,以c 为直径的半圆的面积为1698π,那么以b 为直径的半圆的面积为________.ABCED三、解答题(第21~24题每题6分,第25、26题每题8分,共40分)21. 已知a、b、c是三角形的三边长,a=2n2+2n,b=2n+1,c=2n2+2n+1(n为大于1的自然数),试说明△ABC为直角三角形.22. 如图所示是一个三级台阶,它的每一级的长、宽、高分别等于55cm、10cm、6cm,A 和B是这两个台阶的两个相对的端点,则一只蚂蚁从点A出发经过台阶爬到点B的最短路线有多长?(第22题)23. 如图所示是由边长为1的小正方形组成的网格.(1)求四边形ABCD的面积;(2)你能判断AD与CD的位置关系吗?说出你的理由.(第23题)24. 如图,铁路上A、B两点相距25km, C、D为两村庄,若DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?25. 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面ABCD 倒下到AB C D '''的位置,连结CC ', 设,,AB a BC b AC c ===,请利用四边形BCC D ''的面积证明勾股定理:222a b c +=.26. 如图,A 、B 是公路l (l 为东西走向)两旁的两个村庄,A 村到公路l 的距离AC =1km ,B 村到公路l 的距离BD =2km ,B 村在A 村的南偏东45°方向上. (1)求出A 、B 两村之间的距离; (2)为方便村民出行,计划在公路边新建一个公共汽车站P ,要求该站到两村的距离相等,请用尺规在图中作出点P 的位置.(保留清晰的作图痕迹,并简要写明作法)(第26题)参考答案:1. B 解析:第1个图和第4个图中x 的值为5.2. B 解析:设a =3x ,b =4x ,根据勾股定理可知c =5x ,所以5x =10,解得x =2,所以aD 'AB 'DC 'AA BC b ca =6,b =8,所以△ABC 的面积为12ab =12.3. B 解析:这是一个等腰直角三角形,∠A =90°,所以a b c . 4. D 解析:D 项是勾股定理及其逆定理.5. C 解析:构造一个直角三角形,使得AB 是斜边,两条直角边分别长8和15. 6. D7. C 解析:若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是锐角三角形.8. C 解析:设另外两边长分别为a ,a +1,根据勾股定理有(a +1)2-a 2=81,解得a =40,所以这个直角三角形的三边长分别为9,40,41.9. D 解析:先利用勾股定理求出AB 长为13,所以MN =AM +BN -AB =4. 10. A 解析:先设法将这个长方体展开,运用勾股定理求出最短路线. 11. (1)4 (2)9 212. 51 解析:设a =5k ,b =12k ,则c =13k ,解得a =15,b =36. 13. 105°或15°14. 解析:如果三角形三边长a ,b ,c ,满足222a b c +=,那么这个三角形是直角三角形15. 12 解析:先由勾股定理得出AB 的长为100cm.16. 由勾股定理得:1323222=+=AC ,211222=+=BC1323222=+=AB 所以BC 边上的高为222⎪⎭⎫ ⎝⎛-BC AB =2113-=225 设AB 边上的高为h ,在由三角形面积公式的:2252211321⨯⨯=⨯⨯=∆h S ABC 所以,可以解得13135=h 17. 2(3-2) 18. 2419. 2 解析:可先证明△BC ′D 是等腰直角三角形. 20. 18π21.证222c b a =+,用勾股定理逆定理得∠C=90°(第22题)22. 如图所示,将这个台阶展开成一个平面图形,则最短路线就是AB 的长.在Rt △ABC 中,BC =48,AC =55,由勾股定理,得AB 2=BC 2+AC 2=482+552=5329=732,所以AB =73,所以蚂蚁由点A 出发经过台阶爬到点B 的最短路线长为73cm.23. (1)12.5(2)连接AC ,在△ADC 中,由于AD 2=12+22=5,CD 2=22+42=20,AC 2=52=25,所以AD 2+CD 2=AC 2,即△ADC 是直角三角形,所以AD ⊥CD .24. 15km 25. 证明:Q 四边形BCC D ''为直角梯形,21()()22BCC D a b S BC C D BD ''+'''∴=+⋅=梯形 Q Rt ABC △≌ Rt AB C ''△,BAC BAC '∴∠=∠.90CAC CAB B AC CAB BAC '''''∴∠=∠+∠=∠+∠=︒.ABC CAC D AC BCC D S S S S '''''∴=+△△△梯形+2211122222c ab ab c ab +=++=. 22222()2.22a b c aba b c ++∴=∴+=.26. (1)设AB 与CD 的交点为O ,根据题意可得∠A =∠B =45°. ∴ △ACO 和△BDO 都是等腰直角三角形.∴ AO =2,BO =2 2.∴ A 、B 两村的距离为AB =AO +BO =2+22=32(km).(2)(第26题)作法:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于两点M 、N ,作直线MN ;②直线MN 交l 于点P ,点P 即为所求.。
能力提升2_3勾股定理中的八种模型与真题训练【2022中考数学三轮冲刺能力提升+真题对点练】原卷版
专题2.3勾股定理中的八种模型与真题训练题型一:直角三角形中的锐角平分线模型一.选择题(共3小题)1.(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE∥AB交AC于点E,已知CE=3,CD=4,则AD长为()A.7B.8C.4D.42.(2021•云浮模拟)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ACD沿直线AD折叠,使点C落在斜边AB上的点E处,则CD的长为()cm.A.B.C.3D.3.(2018•岐山县三模)如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为()A.2.4B.2.5C.2.8D.3二.解答题(共1小题)4.(2018•巨野县一模)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.题型二:勾股定理之图形的折叠模型一.选择题(共5小题)1.(2019•肥城市二模)如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.4cm B.5cm C.cm D.cm 2.(2022•武安市一模)如图1,矩形纸片ABCD中,AB=5,AD=12,要在矩形纸片内折出一个菱形.现有两种方案:甲:如图2,取两组对边中点的方法折出菱形EFGH.乙:如图3,沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB的方法得到菱形AECF.下列说法正确的是()A.甲、乙折出的菱形面积一样大B.乙折出的四边形不是菱形C.甲折出的菱形面积大D.乙折出的菱形面积大3.(2020•霞山区一模)如图,将矩形ABCD沿直线BD折叠,使点C落在点C'处,BC'交AD于点E,AD=16,AB=8,则BE的长是()A.14B.12C.10D.84.(2020•乐东县一模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BE的长为()A.1B.2C.D.5.(2020•饶平县校级模拟)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm二.填空题(共3小题)6.(2021•斗门区一模)如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为.7.(2020•黄石模拟)在△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于点E,交斜边于点F,则DE的长为.8.(2016•朝阳)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.题型三:勾股定理之赵爽弦图模型一.选择题(共3小题)1.(2021春•连江县期中)如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,其中A,B,C,D四个小正方形的面积之和等于12,则最大的正方形的边长为()A.2B.C.3D.42.(2021春•曾都区校级月考)我国古代数学家赵爽的弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形如图,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较大的锐角为θ,那么sinθ的值为()A.B.C.D.3.(2021秋•鹿城区校级期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,分别以AC,BC,AB为一边在△ABC外面做三个正方形,记三个正方形的面积依次为S1,S2,S3,已知S1=4,则S3为()A.8B.16C.4D.4+4二.填空题(共1小题)4.(2021秋•鹿城区校级月考)图1是一个勾股定理演示教具的正面示意图,当它倒过来时,大正方形中的全部墨水恰能注满两个小正方形.王老师有一个内长为11寸,内宽为9寸的木质盒子(如图2).现要自制一个这样的教具(由三个正方形和一个直角三角形组成),使得教具恰好摆入这个盒子中,以便保护和携带(如图3所示,A,B,C,D,E五点均紧贴盒子边缘,教具的厚度等于木盒的内高).此时盒子的空间利用率为.题型四:勾股定理之大树折断模型一.选择题(共1小题)1.(2021春•饶平县校级期末)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米二.填空题(共2小题)2.(2021秋•朝阳区校级月考)折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)3.(2021秋•靖江市校级期中)《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为尺.三.解答题(共2小题)4.(2022春•东莞市月考)求下列图形中阴影部分的面积.5.(2021春•安徽月考)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长.题型五:勾股定理之风吹荷花模型一.填空题(共2小题)1.(2021秋•晋州市期末)如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动m.2.(2021秋•宽城区期末)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何?”(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇AB,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处.问水的深度是多少?则水深DE为尺.二.解答题(共2小题)3.(2021秋•邓州市期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度.4.(2019秋•姜堰区期中)在平静的湖面上,有一朵荷花高出水面1尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.此时,捕鱼的人发现,花在水平方向上离开原来的位置5尺远,求湖水的深度.题型六:等边三角形中的378和578模型一.选择题(共2小题)1.在△ABC中,AB=16,AC=14,BC=6,则△ABC的面积为()A.24B.56C.48D.1122.已知在△ABC中,AB=7,AC=8,BC=5,则∠C=()A.45°B.37°C.60°D.90°二.填空题(共4小题)3.(2021秋•青岛期中)若一个等腰三角形的周长为16cm,一边长为6cm,则该等腰三角形的面积为cm2.4.(2012秋•乐清市校级月考)如图,在△ABC中,已知AB=5,BC=8,AC=7,动点P、Q 分别在边AB、AC上,使△APQ的外接圆与BC相切,则线段PQ的最小值等于.5.(2022春•仙桃校级月考)已知在△ABC中,AB=7,AC=8,BC=5,则sin C=.6.△ABC如图所示,已知AC=8,AB=7,BC=5,则tan C=,tan A=,tan B =.三.解答题(共1小题)7.(2021春•北镇市期中)如图,△ABC为等边三角形,AB=6,D是AC的中点,E是BC延长线上的一点,且CE=CD,过点D作DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.题型七:勾股定理之蚂蚁行程模型一.填空题(共4小题)1.(2019•景泰县校级二模)如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为cm.(π取3)2.(2018•石家庄模拟)如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B 点,最少要用秒钟.3.(2008•大庆)如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是cm.4.(2007•金昌)如图,圆锥的母线长OA为8,底面圆的半径为4.若一只蚂蚁在底面上点A处,在相对母线OC的中点B处有一只小虫,蚂蚁要捉到小虫,需要爬行的最短距离为.题型八:勾股定理之垂美四边形模型一.解答题(共6小题)1.(2021•姑苏区校级二模)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中肯定是垂美四边形的是.(2)性质探究:如图1,已知四边形ABCD是垂美四边形,直接写出其两组对边AB、CD与BC、AD之间的数量关系.(3)问题解决:如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,已知AC=4,AB=5,求GE的长.2.(2021•南明区模拟)如图,我把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.①如图2,当∠ACB=90°,连接PQ,求PQ;②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=2,则S△ABC=.3.(2020•科尔沁区模拟)定义:我们把对角线互相垂直的四边形称为“垂美四边形”.(1)概念理解:如:图1,四边形ABCD中,BA=BC,DA=DC,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图2,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.若AC=4,AB=5,求GE的长.4.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.已知AC=4,AB=5,求GE的长.5.(2019•兰州模拟)阅读理解:如图1,我们把对角线互相垂直的四边形叫做垂美四边形.垂美四边形有如下性质:垂美四边形的两组对边的平方和相等.已知:如图1,四边形ABCD是垂美四边形,对角线AC、BD相交于点E.求证:AD2+BC2=AB2+CD2证明:∵四边形ABCD是垂美四边形∴AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2.拓展探究:(1)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;问题解决:如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.求GE长.6.(2021•新北区一模)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:我们已经学习了平行四边形、菱形、矩形、正方形,在这四种图形中是垂美四边形的是.(2)性质探究:如图2,已知四边形ABCD是垂美四边形,试探究其两组对边AB,CD与BC,AD之间的数量关系,并写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,CE交AB于点M,已知AC=4,AB=5,求GE的长.【真题训练】一.选择题(共3小题)1.(2017•安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm 2.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米3.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.35二.填空题(共2小题)4.(2014•宜宾)如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=.5.(2009•安顺)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.三.解答题(共2小题)6.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE、BG、GE.已知AC=4,AB=5,求GE的长.7.(2016•衢州)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.猜想结论:(要求用文字语言叙述)写出证明过程(先画出图形,写出已知、求证).(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.。
人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A(能力提升 附答案详解)
(1)设A′B′与CB相交于点D,
①当旋转角为β=25°,∠B′DB=°;
②当AB∥CB′时,求证:D是A′B′的中点;
(2)如图2,E是AC边上的点,且 ,P是A′B′边上的点,且∠A′PC=60°,连接EP、CP,已知AC=10,①当β=°时,EP长度最大,最大值为;
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是.
21.计算: cos45°.
22.(1)用计算器求图中∠A的正弦值、余弦值、正切值.
即S=y2﹣y1.
故选C.
点睛:本题是一道二次函数综合题,主要考查了二次函数的图象和性质.解题的关键在于要利用二次函数图象上的点并结合梯形面积公式由题意得: , ,故选答案B.
考点:函数的综合运用.
9.C
【解析】
∵直角△ABC中,∠C=90°,
∴tan∠BAC= ,
人教版(五四制)2019-2020九年级数学第一学期期末模拟测试题A
(能力提升附答案详解)
1.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是( )
A. B. C. D.
2.投一个普通骰子,有下述说法:①朝上一面的点数是偶数;②朝上一面的点数是整数;③朝上一面的点数是3的倍数;④朝上一面的点数是5的倍数。将上述事件按可能性的大小从大到小排列为()
又∵AC=30cm,tan∠BAC= ,
∴BC=AC⋅tan∠BAC=30× = (cm).
2024学年初中名校数学能力提升题专项(勾股定理)练习(附答案)
2024学年初中名校数学能力提升题专项(勾股定理)练习班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•忻城县期中)在Rt△ABC中,∠C=90°,且AB=10,BC=6,则AC等于( )A.12 B.8 C.4 D.22.(2023春•黔西南州期末)如图,在△ABC中,∠B=90°,AC=,则AB2+BC2的值是( )A.2 B.3 C.2D.43.(2023秋•溧水区期中)在△ABC中,∠C=90°,∠A,∠B,∠C的对应边分别是a,b,c,则下列式子成立的是( )A.a2+b2=c2B.a2+c2=b2C.a2﹣b2=c2D.b2+c2=a24.(2023秋•西安月考)如图,三个正方形围成一个直角三角形,图中的数据是它们的面积,则正方形A的面积为( )A.72 B.64 C.60 D.545.(2023春•合川区校级期中)平面直角坐标系内,点P(1,)到原点的距离是( )A.B.2 C.+1 D.46.(2023春•中宁县期末)如图,在△ABC中,AB=AC=4,∠B=15°,CD是腰AB上的高,则CD的长( )A.4 B.2 C.1 D.7.(2023春•普陀区校级期末)如图所示,以数轴上的单位长度线段为边作一个正方形,以表示数1的点为圆心、正方形的对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A.﹣B.1﹣C.﹣1+D.﹣1﹣8.(2023春•兰山区期末)如图,边长为1的正方形网格图中,点A,B都在格点上,若,则BC 的长为( )A.B.C.D.9.(2023秋•高新区校级月考)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD平分∠CAB,交BC于D,DE⊥AB于E,则CD等于( )A.2cm B.3cm C.4cm D.5cm10.(2023秋•海曙区期中)勾股定理是人类最伟大的科学发现之一,在我国算术《周髀算经》中早有记载.如图以直角三角形纸片的各边分别向外作正三角形纸片,再把较小的两张正三角形纸片按如图的方式放置在最大正三角形纸片内.若已知图中阴影部分的面积,则可知( )A.直角三角形纸片的面积B.最大正三角形纸片的面积C.最大正三角形与直角三角形的纸片面积和D.较小两个正三角形纸片重叠部分的面积二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023秋•溧阳市期中)若直角三角形两直角边长分别为9和40,则斜边长为.12.(2023秋•天桥区校级月考)在如图所示的方格纸中,建立直角坐标系,点A表示(3,4),则OA= .13.(2023秋•临沭县校级月考)在△ABC中,BC=6,BC边上的高AD=4,且BD=2,则△ACD的面积为 .14.(2023春•中山市期末)平面直角坐标系中有两点A(m,﹣1),B(3,4),当m取任意实数时,线段AB长度的最小值为.15.(2023秋•建邺区校级期中)如图,△ABC中,∠C=90°,AC=4,BC=3,若CH是△ABC的高线,则CH= .16.(2023秋•秦淮区期中)如图,在Rt△ABC中,∠ACB=90°,AB=4cm,分别以AC,BC为边作正方形,面积分别记为S1,S2,则S1+S2= cm2.17.(2023秋•云岩区月考)如图,在Rt△ABC中,∠ABC=90°,AC=5,BC=,分别以△ABC的三边为直径画半圆,则两个月形图案(阴影部分)的面积之和是.18.(2023秋•仁寿县校级月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为时,能使DE=CD?三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023秋•温州期中)如图,在△ABC中,AB=AC,AD平分∠BAC,已知BC=10,AD=12,求AC 的长.20.(2023秋•玉林期中)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求线段CD的长.21.(2023秋•碑林区校级期中)在△ABC中,AB=13,BC=14,AC=15,AD为BC边上的高,求AD的长.22.(2023秋•苏州期中)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成如图2所示的“赵爽弦图”,得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长;(2)已知图2中小正方形面积为36,求大正方形的面积?23.(2023春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.24.(2023秋•大丰区期中)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC:BC=3:4,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.。
北师大版2020八年级数学上册第一章勾股定理自主学习单元综合能力达标测试题C(附答案详解)
北师大版2020八年级数学上册第一章勾股定理自主学习单元综合能力达标测试题C (附答案详解)1.如图,在Rt △ABC 中,∠ACB =90°,AB =4.分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2的值等于( ).A .2πB .3πC .4πD .8π2.如图,已知线段AB ,过点B 作AB 的垂线,并在垂线上取BC =12AB ;连接AC ,以点C 为圆心,CB 为半径画弧,交AC 于点D ;再以点A 为圆心,AD 为半径画弧,交AB 于点P ,则AP AB的值是( )A B C 35 D .23.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( )A .120cmB .130cmC .140cmD .150cm4.已知直角三角形纸片的两条直角边分别为a 和b (a <b ),过锐角的三角形顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则有( )A .a 2﹣2ab +b 2=0B .a 2﹣2ab ﹣b 2=0C .a 2﹣2ab ﹣b 2=0D .a 2+2ab ﹣b 2=05.若△ABC 的三边长a ,b ,c 满足(a-b )2+|b-2|+(c 2-8)2=0,则下列对此三角形的形状描述最确切的是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形 6.生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n 个三角形的面积为( )A .nBC .2nD 7.如图,高速公路上有A 、B 两点相距25km ,C 、D 为两村庄,已知DA =10km ,CB =15km .DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个服务站E ,使得C 、D 两村庄到E 站的距离相等,则AE 的长是( )km .A .5B .10C .15D .258.下列各组数是勾股数的一组是( )A .6,7,8B .1 2C .5,12,13D .0.3,0.4,0.5 9.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm10.有一个直角三角形的两边长分别为5和12,则第三边长为( )A .13BC .13D .无法确定 11.如图,已知Rt ABC 的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.12.已知在Rt △ABC 中,∠C=90°,,直线L 过AB 中点O ,过点A 、C 分别向直线L 作垂线,垂足分别为E 、F .若CF=1,则EF=__.13.如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在网格中画出一个以AB 为边的等腰三角形,使另一个顶点在格点上,且另两边的长都是无理数.14.如图,在平面直角坐标系中,长方形MNPO 的边OM 在x 轴上,边OP 在y 轴上,点N 的坐标为(3,9),将矩形沿对角线PM 翻折,N 点落在F 点的位置,且FM 交y 轴于点E ,那么点F 的坐标为_____.15.已知Rt ABC ∆中,∠C=90°, a+b=14, c=10, 则Rt ABC ∆的面积等于____. 16.如图,圆柱的底面周长是14cm ,圆柱高为24cm ,一只蚂蚁如果要沿着圆柱的表面从下底面点A 爬到与之相对的上底面点B ,那么它爬行的最短路程为_________.17.如图,直线1L ,2L ,3L 分别过正方形ABCD 的三个顶点A ,D ,C ,且相互平行,若1L ,2L 的距离为2,2L ,3L 的距离为4,则正方形的对角线长为______.18.根据下图中的数据,确定A =_______,B =_______,x =_______.(A,B 表示面积,x 表示边长)19.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要______米.20.若直角三角形斜边上的高和中线分别是5cm和6cm,则斜边长为,面积为.21.有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.22.如图,有一圆柱油罐,已知油罐的底面圆的周长是12米,高是5米,要从点A起环绕油罐建梯子,梯子的顶端正好到达点A的正上方点B,则梯子最短需多长?(6分)23.如图,是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)在(1)的前提下,在第二象限内的格点上找一点C,使点C与线段AB组成一个以AB 为底的等腰三角形,且腰长是无理数,则C点的坐标是;(3)求((2)中△ABC的周长(结果保留根号);(4)画出((2)中△ABC关于y轴对称的△A'B'C'.24.如图,在ABC ∆中,15AB =,14,13BC AC ==, AD 为BC 边上的高,点D 为垂足,求ABC ∆的面积.25.如图,D 、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等,设BC=a ,AC=b ,AB=c ,给出以下几个结论:①如果AD 是BC 边中线,那么CE 是AB 边中线;②;③BD 的长度为; ④若∠BAC=90°,△ABC 的面积为S ,则S=AE•BD .其中正确的结论是 (将正确结论的序号都填上)26.如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥DC ,AB =BC ,且AE ⊥BC .(1)求证:AD =AE ;(2)若AD =8,DC =4,求AB 的长.27.画图计算:(1)已知△ABC ,请用尺规在图1中△ABC 内确定一个点P ,使得点P 到AB 和BC 的距离相等,且满足P 到点B 和点C 的距离相等(不写作法,保留作图痕迹).(2)如图2,如果点P 是(1)中求作的点,点E 、F 分别在边AB 、BC 上,且PE =PF . ①若∠ABC =60°,求∠EPF 的度数;②若BE =2,BF =8,EP =5,求BP 的长.(3)如图3,如果点P 是△ABC 内一点,且点P 到点B 的距离是7,若∠ABC =45°,请分别在AB 、BC 上求作两个点M 、N ,使得△PMN 的周长最小(不写作法,保留作图痕迹),则△PMN 的最小值为______.28.如图是盼盼家新装修的房子,其中三个房间甲、乙、丙.他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA ,如果梯子的底端P 不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB .(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B 处,若 1.6MA =米, 1.2AP =米,则甲房间的宽AB =______米;(2)当盼盼在乙房间时,测得 2.4MA =米, 2.5MP =米,且90MPN ∠=︒,求乙房间的宽AB ;(3)当盼盼在丙房间时,测得 2.8MA =米,且75MPA ∠=︒,45NPB ∠=︒.①求MPN ∠的度数;②求丙房间的宽AB.参考答案1.A【解析】根据半圆面积公式结合勾股定理,可知S 1+S 2等于以斜边为直径的半圆面积. 解:∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,2218S BC π=, ∴()2221211288S S AC BCAB πππ+=+==. 故选A .“点睛”本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边的平方是解答此题的关键.2.A【解析】【分析】由已知条件和勾股定理可知:设AB =2a ,BC =a ,则AC ,根据作图可知:AD =AC﹣CD 1)a ,即AP 1)a ,从而求出AP AB的值. 【详解】解:∵BC ⊥AB ,∴∠ABC =90°,设AB =2a ,BC =a ,则AC ,∵CD =BC =a ,∴AD =AC ﹣CD 1)a ,∵AP =AD ,∴AP 1)a ,∴AP AB . 故选:A .【点睛】此题考查的是勾股定理及尺规作图,根据尺规作图判断图中相等的线段是解决此题的关键.3.B【解析】试题解析:如图,由题意得:AC=10×5=50cm,BC=20×6=120cm,故AB130=cm.故选B.4.D【解析】【分析】如图,根据等腰三角形的性质和勾股定理可得a2+a2=(b﹣a)2,整理即可求解.【详解】解:如图,a2+a2=(b﹣a)2,2a2=b2﹣2ab+a2,a2+2ab﹣b2=0.故选:D.【点睛】本题考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.5.C【解析】【分析】现根据非负数的非负性质求出a =b =2,c 再根据勾股定理逆定理可得在△ABC 的三边长a,b,c 满足a 2+b 2=c 2,则这个三角形是直角三角形,又由于a=b ,因此可判定为等腰直角三角形.【详解】因为(a-b )2+|b -2|+(c 2-8)2=0,所以a-b=0, b -2=0, c 2-8=0,所以因为a 2=4,b 2=4,c 2=8,所以a 2+b 2=c 2,所以△ABC 是直角三角形,又因为a=b,所以△ABC 是等腰直角三角形,【点睛】本题主要考查非负数的非负性质和勾股定理逆定理,解决本题的关键是要熟练掌握非负数的非负性质和勾股定理逆定理.6.D【解析】【分析】根据勾股定理分别求出1OA 、2OA ⋯,根据三角形的面积公式分别求出第一个、第二个、第三个三角形的面积,总结规律,根据规律解答即可.【详解】解:第1个三角形的面积111122=⨯⨯=,由勾股定理得,1OA ==则第2个三角形的面积112==2OA则第3个三角形的面积112=⋯则第n个三角形的面积=,故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么222a b c.+=7.C【解析】【分析】根据题意设出AE的长为x,再由勾股定理列出方程求解即可.【详解】解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.所以,E应建在距A点15km处.故选:C.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.8.C【解析】【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【详解】解:A 、∵2226+78 ,∴此选项不符合题意;BC 、∵2225+12=13,∴此选项符合题意;D 、∵0.3,0.4,0.5不是正整数,∴此选项不符合题意.故选:C .【点睛】本题考查勾股数.解题的关键是掌握勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断. 9.C【解析】【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm ,FC=18-2=16cm ,再利用勾股定理计算出SF 长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF 的长,由勾股定理,SF 2=SC 2+FC 2=122+(18-1-1)2=400,SF=20 cm ,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.10.C【解析】【分析】题目中没有明确直角边和斜边,故要分情况讨论,再结合勾股定理即可求得结果.【详解】当1213=,当12=,故选C.【点睛】本题考查的是勾股定理,是基础应用题,只需学生熟练掌握勾股定理,即可完成.11.24【解析】【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC的面积,阴影部分的面积是三角形ABC的面积加以AC为直径和以BC为直径的两个半圆的面积再减去以AB为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC为直径的半圆的面积:π×(6÷2)2×12=92π=4.5π,以BC为直径的半圆的面积:π×(8÷2)2×=8π,以AB为直径的半圆的面积:π×(10÷2)2×12=12.5π,三角形ABC的面积:6×8×12=24,阴影部分的面积:24+4.5π+8π−12.5π=24;故答案是:24.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.12.1或3【解析】【分析】分两种情形分别求解即可解决问题:①如图1中,当点A、C在直线l的同侧时;②如图2中,当点A、C在直线l的异侧时.【详解】①如图1中,当点A、C在直线l的同侧时,连接CO.∵,∠ACB=90°,OA=OB,∴OC⊥AB,∵∠AOE+∠EAO=90°,∠AOE+∠COF=90°,∴∠EAO=∠COF,∵∠AEO=∠CFO=90°,∴△AEO≌△OFC,∴CF=OE=1,AE=OF.=,∴2∴OF=AE=2,∴EF=3.②如图2中,当点A、C在直线l的异侧时,连接CO.∵,∠ACB=90°,OA=OB.∴OC⊥AB,同法可证:△AEO≌△OFC,∴CF=OE=1,AE=OF.∴AE=()22512-=,∴OF=AE=2,∴EF=2-1=1.故答案为1或3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题13.【解析】 试题分析:要想画出一个以AB 为边的等腰三角形,使另一个顶点在格点上,且另两边的长都是无理数.必须是边长在小正方形的对角线上,题目中已经给出了一个边,那么另外等腰三角形的边也一定是在多个小正方形的对角线上.解:∵AB=,那么以AB 为腰的等腰三角形(且另一个顶点在格点上)在此图形中没有了,只有AB 为底边才可以得到题目要求中的三角形,如下图:△ABC 、△ABD 、△ABE .点评:此题主要考查学生对勾股定理的理解和掌握,此题的难点“要求使另一个顶点在格点上,且另两边的长都是无理数”.这就要求边长必须在小正方形的对角线上,因此此题有一定难度,属于中档题.14.(﹣165,365) 【解析】【分析】作FH⊥OP于H,FG⊥x轴于G.首先证明△PFE≌△MOE,推出OE=FE,OM=PF=3,设OE=x,那么PE=9−x,DE=x,在Rt△PFE中,PE2=FE2+PF2,构建方程求出x即可解决问题.【详解】如图,作FH⊥OP于H,FG⊥x轴于G,∵点N的坐标为(3,9),∴MO=3,MN=9,根据折叠可知:PF=OM,而∠PFE=∠MOE=90°,∠FEP=∠MEO,∴△PFE≌△MOE,∴OE=FE,OM=PF=3,设OE=x,那么PE=9−x,DE=x,∴在Rt△PFE中,PE2=FE2+PF2,∴(9−x)2=x2+32,∴x=4,∴EF=4,PE=5,∴FH=•PF EFPE=125,∴HE165 =,∴FG=HO=4+165=365,∴F(−165,365),故答案为(−165,365).【点睛】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形,学会利用参数构建方程解决问题.15.24【解析】【分析】根据已知及勾股定理可求得直角三角形两边的长,再根据面积公式即可求得其面积.【详解】∵Rt △ABC 中,∠C=90°,a+b=14,c=10,∴由题意得2221410a b a b c c +=⎧⎪+=⎨⎪=⎩把c=10代入其他方程得:2214100a b a b +=⎧⎨+=⎩,①,②由①得:a=14−b ,代入②得:()2214-100b b +=,即214480b b -+=,因式分解得:(b-6)(b-8)=0,解得b=6,b=8,把b=6代入①得a=8;把b=8代入①得a=6;∴方程的解为:6886a a b b ==⎧⎧⎨⎨==⎩⎩或, 不论a 、b 取哪一组数据,Rt △ABC 的面积均是ABC S ∆=12×6×8=24. 故答案为:24.【点睛】 本题主要考查了勾股定理,掌握勾股定理是解题的关键.16.25cm【解析】【分析】把圆柱沿母线展开,点B 展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,再根据勾股定理计算出AB′的长度即可.【详解】把圆柱沿母线展开,点B 展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图所示:∵AC=24,CB′=7,∴在Rt △ACB′,25=,∴最短路程为25cm .故答案是:25cm.【点睛】考查了平面展开-最短路径问题,先把立体图形展开成平面图形,再根据两点之间,线段最短和勾股定理求解.17.【解析】【分析】添加垂直辅助线,通过证明三角形全等将已知线段转化到同一个直角三角形中,利用勾股定理得解.【详解】解:如图,作2⊥AE l 于点E ,2⊥CF l 于点F ,连接AC ,则2,4AE CF ==.由正方形ABCD 可得,90AD CD ADC ︒=∠=,由垂直可得90AED DFC ︒∠=∠= 90,90ADE CDF ADC DCF CDF ︒︒∴∠+∠=∠=∠+∠=ADE DCF ∴∠=∠()ADE DCF AAS ∴∆≅∆4ED CF ∴==根据勾股定理可得AD ===对角线AC ====故答案为:【点睛】本题考查了全等三角形的证明及勾股定理,利用全等三角形的性质及勾股定理求线段长是解题的关键.18.A=225 B=144 x=40【解析】【分析】根据勾股定理直接求解即可.【详解】根据勾股定理,求得A 的边长为=15,故A=152=225;B=169-25=144;.故答案为:(1) A=225, (2)B=144, (3) x=40.【点睛】考查了勾股定理的运用,熟记一些常用的勾股数:9,12,15;9,40,41等,在计算的时候便于节省时间.19.17【解析】【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】由勾股定理得:楼梯的水平宽度22=-=,13512∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为17.【点睛】考查勾股定理,熟练掌握勾股定理是解题的关键.20.12cm,30cm2.【解析】试题分析:根据直角三角形的斜边上中线性质求出AB,根据三角形的面积公式求出即可.解:∵CD是Rt△ACB斜边AB上的中线,∴AB=2CD=2×6cm=12cm,∴Rt△ACB的面积S=AB×CE=12cm×5cm=30cm2,故答案为:12cm,30cm2.考点:直角三角形斜边上的中线.21.(1)如图所示见解析,AQ→QG为最短路线;(2)小虫爬行的最短路程为100 cm.【解析】【分析】(1)根据轴对称性质,通过作对称点将折线转化成两点之间线段距离最短.(2)根据AE=40cm,AA′=120cm,可得:A′E=120-40=80(cm),再根据EG=60cm,可得:A′G2=A′E2+EG2=802+602=10000,A′G=100cm,进而可得:AQ+QG=A′Q+QG=A′G=100cm.【详解】 (1)如图所示,AQ→QG 为最短路线,(2)因为AE =40cm,AA′=120cm,所以A′E =120-40=80(cm),因为EG =60cm,所以A′G 2=A′E 2+EG 2=802+602=10000, 所以A′G =100cm,所以AQ +QG =A′Q +QG =A′G =100cm,所以小虫爬行的最短路程为100cm.【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.22.13m .【解析】试题分析:求环绕油罐一周的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.试题解析:解:如图,将圆柱体展开,连接A 、B ,根据两点之间线段最短,梯子最短是AB=22125 =13(m ).答:梯子最短是13米.考点:勾股定理的应用.23.(1)详见解析;(2)(-1,1);(3)210;(4)详见解析.【解析】【分析】(1)把点A 向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;(2)作线段AB 的垂直平分线,寻找满足腰长是无理数的点C 即可;(3)利用格点三角形分别求出三边的长度,即可求出△ABC 的周长;(4)分别找出A 、B 、C 关于y 轴的对称点,顺次连接即可.【详解】解:(1)建立平面直角坐标系如图所示;(2)(-1,1);,,∴△ABC 的周长=(4)画出△A 'B 'C ′如图所示.【点睛】本题考查了作图,勾股定理,熟练正确应用勾股定理是解题的关键.24.84【解析】【分析】设BD 为x ,则14CD x =-,利用勾股定理得出方程,然后进行解答即可.【详解】解:设BD =x ,则14CD x =-,在ABD ∆和ACD ∆使用勾股定理可以得到:22221513(14)x x -=--,解得:9x =,又∵222AD AB BD =-,∴12AD =,1842ABC S BC AD ∆=⋅⋅=. 【点睛】本题主要考查勾股定理,关键是利用勾股定理得出方程解答.25.②③④【解析】试题分析:当AD 是BC 边中线时,则BD=CD ,∵△ABD 与△ACD 的周长相等,∴AB=AC ,但此时,不能得出AC=BC ,即不能得出CE 是AB 的中线,故①不正确;∵△ABD 与△ACD 的周长相等,BC=a ,AC=b ,AB=c ,∴AB+BD+AD=AC+CD+AD ,∴AB+BD=AC+CD ,∵AB+BD+CD+AC=a+b+c ,∴AB+BD=AC+CD=. ∴BD=﹣c=, 同理AE=, 故②③都正确;当∠BAC=90°时,则b 2+c 2=a 2,∴AE•BE=×=[a ﹣(c ﹣b )][a ﹣(c ﹣b )]=bc=S ,故④正确;综上可知正确的结论②③④,故答案为②③④.考点:三角形综合题.26.:解:(1)连接AC ,∵AB∥CD,∴∠ACD=∠BAC,∵AB=BC,∴∠ACB=∠BAC,∴∠ACD=∠ACB,∵AD⊥DCAE⊥BC,∴∠D=∠AEC=90°,∵AC=AC,∴△ADC≌△AEC,∴AD=AE;(2)由(1)知:AD=AE,DC=EC,设AB=x,则BE=x﹣4,AE=8,在Rt△ABE中∠AEB=90°,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10.说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.【解析】:(1)连接AC,证明△ADC与△AEC全等即可;(2)设AB=x,然后用x表示出BE,利用勾股定理得到有关x的方程,解得即可.27.(1)见解析;(2)①∠EPF=120°;②BP【解析】【分析】(1)作∠ABC的平分线BM,线段BC的垂直平分线EF,直线EF交射线BM于点P,点P即为所求;(2)①由Rt△PME≌Rt△PNF(HL),推出∠EPM=∠FPN,推出∠EPF=∠MPN,即可解决问题;②由Rt△PMB≌Rt△PNB(HL),推出BM=BN,由Rt△PME≌Rt△PNF(HL),推出EM=FN,推出BE+BF=BM-EM+BN+NF=2BN=10,推出BN=NM=5,再利用勾股定理即可解决问题;(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值;【详解】解:(1)如图,点P即为所求;(2)①连接BP,作PM⊥AB于M,PN⊥BC于N.∵BP平分∠ABC,PM⊥AB,PN⊥BC,∴PM=PN,∵PE=PF,∠PME=∠PNF=90°,∴Rt△PME≌Rt△PNF(HL),∴∠EPM=∠FPN,∴∠EPF=∠MPN,∵∠MPN=360°﹣90°﹣90°﹣60°=120°,∴∠EPF=120°.②∵PB=PB,PM=PN,∠PMB=∠PFB=90°∴Rt△PMB≌Rt△PNB(HL),∴BM=BN,∵Rt△PME≌Rt△PNF(HL),∴EM=FN,∴BE+BF=BM﹣EM+BN+NF=2BN=10,∴BN=NM=5,∵BE=2,PE=5,∴EM=3,PM4,∴BP(3)分别作点P关于边AB、BC的对称点E、F,连接EF,分别与边AB、BC交于点M、N,连接PM、PN.则线段EF的长度即为△PMN的周长的最小值.∵点E与点P关于AB对称,点F与点P关于BC对称,∴∠EBA=∠PBA,∠FBC=∠PBC,BE=BF=BP=7.∴EF=∴△PMN周长的最小值为故答案为【点睛】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用轴对称解决最短问题,属于中考常考题型.28.(1)3.2;(2)3.1米;(3)①60°;②2.8米.【解析】【分析】(1)根据勾股定理求出MP,即可求出AB;∆≅∆,即可求出乙房间的宽AB;(2)根据勾股定理求出AP,根据等角替换证明AMP BPN(3))①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用三角形全等即可求出丙房间的宽AB .【详解】(1)∵ 1.6MA =, 1.2AP =,∴2MP ===,∴BP=MP∴2 1.2 3.2AB AP BP =+=+=米.(2)∵ 2.5MP PN ==, 2.4MA =,∴0.7AP ===. ∵180MPN ∠=︒,∴90APM BPN ∠+∠=︒,∵90APM AMP ∠+∠=︒,∴AMP BPN ∠=∠.在AMP ∆与BPN ∆中, 90AMP BPN MAP PBN MP PN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴AMP BPN ∆≅∆,∴ 2.4MA PB ==,0.7PA NB ==,∴ 2.40.7 3.1AB PA PB =+=+=米.(3)①18060MPN APM BPN ∠=︒-∠-∠=︒;②过点N 作MA 的垂线,垂足为点D ,连接MN .∵梯子的倾斜角45BPN ∠=︒,90B ∠=︒,∴BNP ∆为等腰直角三角形,∵PM PN =,180457560MPN ∠=︒-︒-︒=︒,∴PNM ∆为等边三角形,604515MND ∠=︒-︒=︒.∵75APM ∠=︒,∴15AMP ∠=︒.MN MP A MDNAMP MND =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴()AMP DNM AAS ∆≅∆,∴ 2.8MA DN AB ===米.【点睛】本题考查了全等三角形的性质与判定,解直角三角形的应用,根据PM=PN 以及∠MPN 的度数得到△PMN 为等边三角形是解题的关键.。
人教版小升初数学复习专项《勾股定理》能力达标卷
人教版小升初数学复习专项《勾股定理》能力达标卷一、基础题1、勾股定理的内容:如果用a,b和c分别表示直角三角形的两条直角边和斜边,那么(),即直角三角形的两条直角边的()等于斜边的()。
2、直角三角形的两条直角边分别是5厘米和12厘米,则这个直角三角形的面积是多少?3、如图在直角三角形ABC中,AB=3,BC=4,则AC等于多少?4、如图在直角三角形ABC中,AB=5,BC=12,则AC等于多少?5、如图在直角三角形ABC中,AB=8,AC=17,则BC等于多少?二、提高题1、如图在直角三角形ABC中,AB=6,BC=8,那么AC上的高BD是多少?2、如图,阴影部分是一个长方形,则这个长方形的面积是多少?3、如图所示,在直角三角形ABC中,周长是24,AB:BC=3:4,那么这个直角三角形的面积等于多少?4、如图所示,在等腰三角形ABC中,腰长AB是10厘米,底边BC是16厘米,则这个等腰三角形的面积是多少?5、如图所示,在直角三角形ABC中,∠B=90°,以AC为直径的圆恰好经过点B,若AB=8,BC=6,则阴影部分的面积是多少?6、“中国号”帆船在中峡湾航行,由于风向的原因先向正东方向航行了3千米,然后向正南方向航行了4千米,这时它离出发点的距离是多少千米?7、如图所示,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是多少?8、如图所示,有两棵树,一树高是10米,另一棵树高是4米,两棵树相距8米,一只鸟从一棵树稍飞到另一棵树梢,至少要飞行多少米?三、竞赛题1、如下图所示,求出梯形ABCD的面积。
2、如图所示,在直角三角形ABC 中,AB =4,分别以AC ,BC 为直径画半圆,面积分别计为1S ,2S ,则1S +2S 的值是多少?3、已知某经济开发区有一块四边形的空地ABCD ,如图所示,经测量∠B=90°,AB =400米,AD =1300米,CD =1200米,BC =300米,计算这块空地的面积是多少?4、如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE =3厘米,AB =8厘米,求图中阴影部分的面积。
八年级数学下第17章综合能力检测卷勾股定理
八年级数学下第17章综合能力检测卷勾股定理时间:60分钟满分:100分一、选择题(每题3分,共30分)1.下列各组线段中,能构成直角三角形的是 ( )A.5,9,12B.7,12,13C.0.3,0.4,0.5D.3,4,62.如图所示的各直角三角形中,其中边长x=5的个数是 ( )A.1B.2C.3D.43.如图,数轴上点A,B分别表示数1,2,过点B作PQ⊥AB,以点B为圆心、AB长为半径画弧,交PQ于点C,以原点O为圆心、OC长为半径画弧,交数轴于点M,则点M表示的数是 ( )35674.下列命题的逆命题成立的是( )A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等5.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C),若线段AD的长为正整数,则点D共有 ( )A.5个B.4个C.3个D.2个6.如图,梯子AB靠在墙上,底端A到墙根O的距离为2m,顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′ ( )A.小于1mB.大于1mC.等于1mD.小于或等于1m7.如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为 ( )A.3-1B.3+1C.5+1D.5+18.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个完全相同的直角三角形围成的.在直角三角形ABC 中,若直角边AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 ( )A.12B.36C.66D.769.如图,在△ABC 中,AB=AC=5,BC=8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D,PE ⊥AC 于点E,则PD+PE 的长是 ( ) A.4.8 B.4.8或3.8 C.3.8 D.510.如图,正方形ABCD 的边长为2,其面积标为S 1,以CD 为斜边向外作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为S 2……按照此规律继续下去,则S 2018的值为 ( ) A. 201522B.201622C.20151()2D.20161()2二、填空题(每题3分,共18分)11.一个三角形的三边长之比为5:12:13,它的周长为120,则它的面积为 . 12.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .13.已知m,n,d 为一个直角三角形的三边长,且25816m n n -=--,则此三角形的面积为 .14.如图,在Rt △ABC 中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD 沿BD 折叠,使点C 落在AB 边的C ′处,那么△ADC ′的面积是 .15.如图,Rt △ABC 的面积为20cm 2,在斜边AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为 .16.如图,圆柱形容器的高为18cm,底面周长为24cm,在容器内壁离下底面4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,离容器上底面2cm 的A 处,则蚂蚁从外壁A 处到达内壁B 处的最短距离为 cm. 三、解答题(共52分)17.(6分)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.(1)从点A 出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为2(2)以(1)中的AB 为边的一个等腰三角形ABC,使点C 落在格点上,且另两边的长都是无理数.18.(8分)如图,在Rt△ABC中,∠A=90°,在D处有甲、乙两人同时出发,甲沿DA,AB过桥到达B处,乙沿DC过桥由C处直达B处.已知DA=6km,AB=6km,DC=2km,假设甲、乙两人速度相同,问甲、乙两人谁先到达B处?19.(8分)如图,在△ABC中,AB=6,AC=10,边BC上的中线AD=4,延长AD到点E,使DE=AD,连接CE.(1)求证:△AEC是直角三角形;(2)求BC边的长.20.(8分)在△ABC中5.AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.21.(10分)清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长分别为3,4,5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述:“若直角三角形的三边长分别为3,4,5的整数倍,设其面积为S,则第一步,6S=m;第二步第三步,分别用3,4,5乘k,得三边长”. (1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.22.(12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点. 特例感知①等腰直角三角形 勾股高三角形;(填“是”或“不是”)②如图1,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高,若BD=2AD=2,试求线段CD 的长度;深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高,试探究线段AD与CB的数量关系,并给予证明;推广应用如图3,等腰三角形ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D作BC边的平行线与AC边交于点E,若CE=a,试求线段DE的长度.八年级数学下第17章综合能力检测卷参考答案1.C【解析】A项,52+92≠122,不能构成直角三角形;B项,72+122≠132,不能构成直角三角形;C项,0.32+0.42=0.52,能构成直角三角形;D项,32+42≠62,不能构成直角三角形.故选C.2.B【解析】A项,5x=;C项,xx=;B项,7=8;D项,x=5.故选B.3.B【解析】由题中作图知,∠OBC=90°,0B=2,BC=1,由勾股定理得OC==所以故选B.4.C【解析】A项,逆命题是三个角对应相等的两个三角形全等,不成立;B项,逆命题是绝对值相等的两个数相等,不成立;C项,逆命题是同位角相等,两直线平行,成立;D项,逆命题是相等的两个角都是45°,不成立.故选C.5.C【解析】过点A作AE⊥BC于点E,因为AB=AC,所以BE=CE=4.在Rt△ABE中,由勾股定理得3AE===,因为垂线段最短,所以AD的取值范围是3≤AD<5,又线段AD的长为正整数,所以AD=3或4.由对称性可知,使AD=4的点D有2个,所以点D共有3个.故选C.6.A【解析】在Rt△AOB中,∵OA=2m,0B=7m,∴.AB==由题意可知A′B′m,又OA′=3m,∴,OB'==∴BB′=)m<1m.故选A.名师点睛:对于实际问题,首先根据题意建立数学模型,然后利用直角三角形的三边之间的关系和一些常识(如:墙与地面垂直、梯子的长度不变等)来完成题中的问题. 7.D【解析】∵∠ADC=2∠B,∠ADC=∠B+∠BAD.∴∠B=∠BAD,∴DB=DA=5.在Rt△ADC 中,2222(5)254 1.DC AD AC =-=-=-=∴BC=BD+DC=5+1.故选D. 8.D【解析】根据题意,得将边长为6的直角边分别向外延长一倍所得的四个直角三角形的斜边长都是2212513,+=,所以这个风车的外围周长为13×4+6×4 =76.故选D. 9.A【解析】如图,过点A 作AF ⊥BC 于点F,连接AP.在△ABC 中,∵AB=AC=5,BC= 8,∴BF=4.在△ABF 中,由勾股定理,得22 3.AF AB BF =-=∵S △ABC =S △ABP +S △APC ,∴12×8×3=12×5PD+12×5PE,即12=12×5(PD+PE),则PD+PE=4.8.故选A.10.C【解析】利用等腰直角三角形的斜边与一直角边之间的数量关系可得到规律:从第二个正方形起每一个正方形的面积都是上一个正方形面积的12,即S 2=12S 1,S 3=12S 2=(12)2S 1,…,S n =(12)n-1S 1,∴S 2018=22×(12)20l8-1=(12)2015.故选C. 11.480【解析】设该三角形的三边长分别为5x,12x,13x,则5x+12x+13x=120,解得x=4,所以该三角形的三边长分别为20,48,52.因为202+482=522,所以该三角形是直角三角形,所以它的面积是12×20×48=480.【解析】如图,过点E 作EM ⊥AB 于点M,∵四边形ABCD 是正方形,∴AD=BC=CD = AB,∴EM=AD,BM=CE.∵△ABE 的面积为8,∴12×AB×EM=8,∴E M=4,即AD=DC=BC= AB=4,∵CE=3,∴由勾股定理得,BE 2=42+32=25,∴BE=5.13.6或1025816m n n -=--,258160,m n n -++=∴25(4)0,m n --=∴m=5,n=4.(1)当m 为直角三角形的斜边长时2254-3,∴三角形的面积为12×3×4=6;(2)当d 为直角三角形的斜边长时,三角形的面 积为12×5×4=10.故此三角形的面积为6或10.14.6cm 2【解析】在Rt△ABC 中,∠C=90°,BC=6cm,AC=8cm,由勾股定理得AB=22AC BC +由折叠的性质知,DC=DC ′,DC ′⊥AB,∵S △BCD =12BC ⋅CD,1·,::6:103:5,2ABD BCD ABD BCD ABD ABC S AB DC S S BC AB S S S '=∴===+==Q △△△△△△22218624(),9,15,2BDC BCD ABD ADC ABD BDC cm S S cm S cm S S S '''⨯⨯=∴===∴=-=△△△△△△15-9=6(cm 2).名师点睛:本题主要考查勾股定理的应用,先利用比例关系求出△BCD 与△ABD 的面积,再利用面积之差求△ADC′的面积. 15.cm 2【解析】由题图可知,阴影部分的面积2211()()2222ABC AC BC S S ππ=++△-222221()()20228ABC ABC AB AC BC AB S S cm ππ=+-+==△△.【解析】将圆柱形容器展开(过点A 竖直剖开)后侧面是一个长24cm 、宽18cm 的长方形,如图,作点A 关于MN 的对称点A ′,连接A ′B 交MN 于点P,连接AP,过点B 作BH ⊥MA 于点H.由轴对称的性质和三角形三边关系知A ′B 的长度为蚂蚁到达蜂蜜的最短距离.由题意知BH=12cm,A ′H=16cm.在Rt △A ′BH 中,由勾股定理得2220A B A H BH cm ''=+=.即蚂蚁从外壁A 处到达内壁B 处的最短距离为20cm.17.【解析】(1)如图,2222822AB =+==.(2)如图,221310.AC BC ==+=18.【解析】甲走的路程为DA+AB=6+6=12(km).在Rt△ABC 中,由勾股定理得BC 2=AB 2+AC 2=AB 2+(AD+DC)2=62+(6+2)2=100, 所以BC=10km,则乙走的路程为BC+CD=10+2=12(km), 故甲、乙两人所走的路程相等.又甲、乙两人速度相同,所以甲、乙两人同时到达B 处. 19.【解析】(1)∵D 为BC 的中点,∴BD=CD. 又∠ADB=∠EDC,AD=ED ,∴△ABD≌△ECD,∴CE=AB=6. ∵AE=2AD=8,AC=10,∴AC 2=AE 2+CE 2,∴∠E=90°, ∴△A EC 是直角三角形.(2)在Rt△C DE 中,由勾股定理得222264213,CD CE DE =+=+=∴BC=2CD=413.20.【解析】∵AC=4,BC=2,AB=25,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.分三种情况讨论:如图1,AB=BD,∠ABD=90°,过点D作DE⊥CB,交CB的延长线于点E,则∠ABC+∠DB E=90°,又∠ABC+∠BAC=90°,所以∠BAC=∠DBE,所以△ACB≌△BED,所以BE=AC=4,DE=BC=2,所以CE=6.在Rt△CD E中,由勾股定理得22210.CD CE DE=+=如图2,AB=AD,∠BAD=90°,过点D作DF⊥CA,交CA的延长线于点F,同理可证△ACB≌△DFA,同理可得CD=213.如图3,AD=BD,∠ADB=90°,过点D作DG⊥CB,交CB的延长线于点G,过点A作AH⊥GD,交GD的延长线于点H, 同理可证△AHD≌△DGB,∴AH=DG,DH=BG.设BG=x,则CG=2+x,AH=DG=4-x,易知CG=AH,∴2+x=4-x,解得x=1,∴CG=3,DG=3,在Rt△CGD中,由勾股定理,得2232CD CG DG=+=.因此,线段CD的长为210或213或32.名师点睛:解答此题的关键是通过作图,画出三种可能情况,再逐一进行讨论求解.21.【解析】(1)当S=150时,15025,66Sm===255, k m===3×5=15,4×5=20,5×5=25.所以这个直角三角形的三边长分别为15,20,25.(2)能.证明如下:设直角三角形的三边长分别为3k,4k,5k(k>0),则S=12⋅3k⋅4k=6k2,所以k2=6S,所以k=6S.22.【解析】特例感知①是②根据勾股定理,得CB2=CD2+4,CA2=CD2+1,∵△ABC为勾股高三角形,∴CD2=CB2-CA2=(CD2+4)-(CD2+1)=3,∴CD=3.深入探究AD=CB.证明如下:∵△ABC为勾股髙三角形,CA>CB,∴CA2-CB2=CD2,∴CA2-CD2=CB2.CA2-CD2=AD2,∴AD2=CB2,∴AD=CB.推广应用如图,过点A作AG⊥DE于点G,∵等腰三角形ABC为勾股高三角形,且AB=AC>BC, ∴AC2-BC2=CD2,由深人探究中的结论,可知AD=BC.∵ED//BC,∴∠ADE=∠B.又∠AGD=∠CDB=90°,∴△AGD≌△CDB,∴DG=BD.易知△ADE为等腰三角形,∴ED=2DG=2BD.又AB=AC,AD=AE,∴BD=EC=a,∴ED=2a.。
第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)
第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是()A.3、4、5B.5、12 、13C.7、24、25D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB 的长为().A.B.C.10D.【答案】A设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )A.B.5C.D.【答案】D把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c 三个正方形的面积之和为()A.11B.15C.10D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c 为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A.B.C.D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为( )A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC 中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A.B.C.D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD 即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A.B.C.D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD 交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6, 一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=12-2-x=10-x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=12-2-x=10-x,∴AE2+BC2=(10-x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10-x)2+62,解得x=【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b) 2=a2+(a+b) 2,化简得a2-2ab-3b2=0 ,所以(a+b)(a-3b)=0 ,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3 ;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b) 2+(a+2b) 2,化简得a2+6ab+5b2=0 ,即(a+b)(a+5b)=0 ,同上a+b>0,所以a=-5b,即=-5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=BC =10,又∵CF⊥AB,∴EF=BF,设EF=BF=x.∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=102-x2,∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm 和4cm,高为6cm.如果用一根细线从点A 开始经过4 个侧面缠绕n 圈到达点B,那么所用细线最短需要_______________cm.(结果用含n 的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GC-FC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GC-FC=3-2=1,设AD=AF=x,则AG=x-1,由勾股定理得32+(x-1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE= ,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BM M '和Rt△BAM '中表示,列出方程求解即可求得MM ',由此可求得和AM '即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM '⊥AC,AM=BM=250,AB=400,∴∠BM 'M=90°,设MM '=x,则AM '=x+250,在Rt△BM M ' 中,∠BM 'M=90°,,在Rt△BAM ' 中,∠BM 'M=90°,,∴,∴,∴,∴,∴供水点M ' 到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD-DE=240-30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界上第一次给出勾股数通解公式的是《九章算术》,其勾股数公式为,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数) 5.国外最先给出勾股数通解公式的是希腊的丢番图,其公式为,其中是互质且为一奇一偶的任意正整数.问题解答:通过观察柏拉图提出的勾股数公式特点,可知_;直接写出一组勾股数,且这组数不能由柏拉图提出的勾股数公式得出;通过阅读可知,一组勾股数中至少有一个数是偶数,请写出一组勾股数,使其中含有数字.【答案】(1)-2;(2)答案不唯一,例如;(3)答案不唯一,例如【解析】(1)直接令b-c即可求解;(2)根据题意即可写出勾股数;(3)根据题意即可写出勾股数.解:(1)∵∴b-c=故答案为:-2.答案不唯一,例如答案不唯一,例如.【点睛】本题考查的是勾股定理的逆定理,掌握完全平方公式、满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.31.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为___;位置关系为.拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE与BD 之间的关系是否仍然成立请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB 绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.【答案】(1),;(2)成立,理由见解析;(3).【解析】(1)问题发现,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠BDC=∠EAC,可证AE⊥BD;(2)拓展探究,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠AEC=∠DBC,可证AE⊥BD;(3)解决问题,由由“SAS”可证△ACE≌△DCB,可得AE=BD,由三角形的三边关系可求解.解:(1)问题发现如图①,延长BD交AE于H,∵CB=CE,∠ACD=∠BCD=90°,CA=CD,∴△ACE≌△DCB(SAS),∴AE=BD,∠BDC=∠EAC,∵∠CBD+∠CDB=90°,∴∠CBD+∠EAC=90°,∴∠AHB=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:(2)成立.理由:如图2,设与BD相交于点G.∵,∴.又∵,,∴,∴,.∵,,∴,∴,∴.拓展延伸:(3)AE的最大值为.如图3,连接BD.∵,∴,又∵,,∴,∴,∵,,∴,,∴,当点在线段DA的延长线时等号成立,故AE的最大值为.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,勾股定理,三角形的三边关系,证明△ACE≌△DCB是本题的关键.。
勾股定理是否在(台风、噪声、触礁等)影响范围问题的解决方法
勾股定理是否在(台风、噪声、触礁等)影响范围问题的解决方法新课程强调“人人学有价值的数学,人人学有用的数学。
”因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。
数学家华罗庚曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
”这是对数学与生活的精彩描述。
勾股定理作为一个重要知识点,是往年中考中必考的一个内容,而且这一知识点考查,也常结合在一些实际问题中出现。
例题1米,(1)教室(2学生思考:(1)“教室(2)要求“教室A 受污染的时间是多少”应该先求什么怎样求(通过问题,启发学生思维,培养学生文字语言、图形语言、符号语言的转译能力,提高数学思考、交流的能力,给后进生以深入学习的机会。
)解:(1)过点A 作AD 垂直于BC ,垂足为D160,300==∠AB ABC 米∴ 在ABD Rt ∆中能解得AD=80米<100米,所以受噪声影响,以点A 为圆心,100米为半径画圆弧分别交BC 与E ,F 两点 线段EF 即为受影响的路段。
处(2)在AED Rt ∆中,由勾股定理求出ED=60米,EF=2ED=120米,1201012÷=秒 答:教室受噪声影响的时间为12秒。
练习1、今年入夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在A 处测得航标C 在北偏东60°方向上,前进100米到达B 处,又测得航标C 在北偏东45°方向上,如图9,在以航标C 为圆心,120米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险解:过点C 作CD ⊥AB ,设垂足为D ,在Rt △ADC 中,在Rt △BDC 中,∴ ∴∵136.5米>120米,故没有危险。
答:若船继续前进没有被浅滩阻碍的危险。
点拨:熟记特殊三角函数值,注意所求结果符合实际情况,情景应用题。
例题2、 如图,一艘渔船正以30海里/小时的速度由西向东赶鱼群,在A处看小岛C 在船北偏东60度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》练习题一、选择题(12×3′=36′)
1.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()
A、25
B、14
C、7
D、7或25
2.下列各组数中,以a,b,c为边的三角形不是Rt△的是()
A、a=1.5,b=2,c=3
B、a=7,b=24,c=25
C、a=6,b=8,c=10
D、a=3,b=4,c=5 3.若线段a,b,c组成Rt△,则它们的比为()
A、2∶3∶4
B、3∶4∶6
C、5∶12∶13
D、4∶6∶7
4.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为()
A、121
B、120
C、132
D、不能确定
5.如果Rt△两直角边的比为5∶12,则斜边上的高与斜边的比为()
A、60∶13
B、5∶12
C、12∶13
D、60∶169 6.如果Rt△的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是()
A、2n
B、n+1
C、n2-1
D、n2+1
7.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()
A、24cm2
B、36cm2
C、48cm2
D、60cm2
8.等腰三角形底边上的高为8,周长为32,则三角形的面积为()
A、56
B、48
C、40
D、32 9.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( )
A. 等边三角形;
B. 钝角三角形;
C. 直角三角形;
D. 锐角三角
形. 10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要()
A、450a元
B、225a 元
C、150a元
D、300a元
11.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()
A、6cm2
B、8cm2
C、10cm2
D、12cm2
12
已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()
A、25
海里B、30海里C、35海里D、40海里
二、填空题(8×3′=24′)
13.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则
a=__________;④若a∶b=3∶4,c=10则S Rt△ABC=________。
14.在由小方格组成的网格中,用数格子的方法判断出给定的钝角三角形和锐角三角形的三边不满足两边平方和等于第三边的平方,由此可想到________________________________________________。
15.直角三角形两直角边长分别为5和12,则它斜边上的高为
__________。
16.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m。
17.已知两条线段的长为5cm和12cm,当第三条线段的长为
cm时,这三条线段能组成一个直角三角形.
18.已知:如图,△ABC中,∠C = 90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且BC = 8cm,CA = 6cm,则点O到三边AB,AC和BC的距离分别等于cm
19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。
150°20m 30m
第10题图北
南 A 东
第12题图C O A B
D E F 第18题图A B C D
第19题图7cm D B C A 第20题图A B E F D C 第11题图
20.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。
另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高
_________________________米。
三.解答题(共60分)
21.(7分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?
22.(7分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB 于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
23.(7
分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
24.(7分)已知,如图,四边形ABCD中,AB=3cm,AD=4cm,
BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。
25.(8分)已知,如图,在Rt△ABC中,∠C=90°,∠1=∠2,
CD=1.5,BD=2.5,求AC的长.
26.(8分)如图,在边长为c的正方形中,有四个斜边为c的全等直角三角形,已知其直角边长为a,b.利用这个图试说明勾股定理?
27.(8分)已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
28.(8分)如图,在△ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB2-AP2=PB×PC。
29.如图,在△ABC中,<ABC和<BCD 互余,AD=a,BC=b,求证:BD2+AC2=a2+b2
A B C D
第24题图A D E B C 第22题图
C
第26题图A B P C
第28题图
ABCD.。