第六章金属材料及热处理复习进程
第六章 热处理简答题
第六章钢的热处理1、什么是钢的热处理?钢的热处理的特点和目的是什么?答:钢的热处理是将固态金属或合金采用适当的方式进行加热、保温和冷却,以获得所需的组织结构和性能的工艺。
钢的热处理的特点是在固态下,通过加热、保温和冷却,来改变零件或毛坯的内部组织,而不改变其形状和尺寸的热加工工艺.钢的热处理的目的是改善零件或毛坯的使用性能及工艺性能.2、从相图上看,怎样的合金才能通过热处理强化?答:通过热处理能强化的材料必须是加热和冷却过程中组织结构能够发生变化的材料,通常是指:(1)有固态相变的材料;(2)经受冷加工使组织结构处于热力学不稳定状态的材料;(3)表面能被活性介质的原子渗入.从而改变表面化学成分的材料.3、什么是退火?其目的是什么?答:退火是将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其目的可概括为“四化”,即软化(降低硬度适应切削加工和冷冲压要求);均匀化(消除偏析使成分和组织均匀化);稳定化(消除内应力、稳定组织保证零件的形状和尺寸);细化(细化晶粒、提高力学性能)。
4、亚共析钢热处理时,快速加热可显著提高屈服强度和冲击韧性,为什么?答:快速加热可获得较大的过热度,使奥氏体形核率增加,得到细小的奥氏体晶粒,冷却后的组织晶粒也细小。
细晶粒组织可显著提高钢的屈服强度和韧性。
5、热轧空冷的45钢在正常加热超过临界点A c3后再冷却下来,组织为什么能细化?答:热轧空冷的45钢室温组织为F+P,碳化物弥散度较大,重新加热超过临界点A c3后,奥氏体形核率大,起始晶粒细小,冷却后的组织可获得细化。
7、确定下列钢件的退火方法,并指出退火的目的及退火后的组织。
(1)经冷轧后的15钢钢板,要求降低硬度;(2)ZG35的铸造齿轮;(3)改善T12钢的切削加工性能; (4)锻造过热的60钢坯.答:(1)再结晶退火,消除加工硬化及内应力,退火组织为P+F.(2)去应力退火,消除铸造内应力,组织为P+F。
工程材料及热处理复习资料
一.名词解释题间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。
再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。
淬透性:钢淬火时获得马氏体的能力。
枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。
时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。
同素异构性:同一金属在不同温度下具有不同晶格类型的现象。
临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。
热硬性:指金属材料在高温下保持高硬度的能力。
二次硬化:淬火钢在回火时硬度提高的现象。
共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。
比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。
置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。
变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。
晶体的各向异性:晶体在不同方向具有不同性能的现象。
固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。
形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。
残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。
调质处理:指淬火及高温回火的热处理工艺。
淬硬性:钢淬火时的硬化能力。
过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。
本质晶粒度:指奥氏体晶粒的长大倾向。
C曲线:过冷奥氏体的等温冷却转变曲线。
CCT曲线:过冷奥氏体的连续冷却转变曲线。
马氏体:含碳过饱和的α固溶体。
热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。
热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。
回火稳定性:钢在回火时抵抗硬度下降的能力。
可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。
过冷度:金属的理论结晶温度与实际结晶温度之差。
]金属学与热处理-第六章-热处理原理
—下临界冷却速度
冷却速度对转变产物类型的影响:
可用VC、VC′判断。
当 V > VC 时, A过冷→M ;
当V<VC′时,
A过冷→P ;
当 VC′< V <VC 时, A过冷→P +M
**
实际中由于CCT曲线测量难,可 用TTT曲线代替CCT曲线作定性分析, 判断获得M的难易程度。
**
连续冷却的VC值是等温冷却C曲 线中与鼻点相切的VC的1.5倍,故可用 等温冷却C曲线中VC代替或估算.
2 奥氏体组织: 愈细,成分及组织愈不均匀, 未溶第二相愈多——左移。 T↑、t↑,晶粒粗大,成分、组 织均匀,A 稳定性↑ ——右移。
其它: 应力和塑性变形 1) 拉应力 压应力 奥氏体体积变化 2) 塑性变形
三 过冷奥氏体连续冷却转变曲线 ( Continous Cooling Transformation ---CCT )
第八章 钢的热处理原理
本章目的: 1 阐明钢的热处理的基本原理; 2 揭示钢在热处理过程中工艺-组织- 性能的变化规律;
本章重点:
(1)C曲线的实质、分析和应用; (2)过冷奥氏体冷却转变及回火转变的 各种组织的本质、形态和性能特点; (3) 马氏体高强度高硬度的本质
§ 8-1 热处理概述
一 热处理的定义及作用
2 中温转变产物
——Fe不扩散,C部分扩散
α(C过饱和的)+Fe3C的机械混合物
┗ 贝氏体类型( B)
化学成分的变化靠扩散实现
晶格类型的转变非扩散性
——半扩散性
3 低温转变产物 Fe、C均不扩散——非扩散型
得 C 在α-Fe 中的过饱和固溶体
┗ 马氏体
《金属材料与热处理》第六章至第七章
第六章 铸铁(P108)
第一节 铸铁的组织与分类
三、铸铁的分类: 铸铁的分类: 2、按石墨形态不同分: 、按石墨形态不同分: (1)普通灰铸铁:石墨呈曲片状 )普通灰铸铁: (2)可锻铸铁:石墨呈团絮状 )可锻铸铁: (3)球墨铸铁:石墨呈球状 )球墨铸铁: (4)蠕墨铸铁:石墨呈蠕虫状 )蠕墨铸铁:
<0.1%
2、性能:强度和塑性超过灰铸铁和可锻铸铁,接近铸钢,而 、性能:强度和塑性超过灰铸铁和可锻铸铁,接近铸钢, 铸造性能和切削性能比铸钢要好。 铸造性能和切削性能比铸钢要好。 3、牌号及用途: 、牌号及用途: 球铁”二字的汉语拼音字母字头“ 由“球铁”二字的汉语拼音字母字头“QT”,后面的一组表 , 示最小抗拉强度和断后伸长率数值的数字组成。 示最小抗拉强度和断后伸长率数值的数字组成。 用途见P114 表6-3 用途见
第六章 铸铁(P108)
第二节 常用铸铁简介
一、灰铸铁: 灰铸铁: 1、成分与组织:2.77-3.6%C、1.0-2.2%Si、S<0.15%、P<0.3% 、成分与组织: 、 、 < 、 < 2、性能和孕育处理(变质处理):就是在浇注前往铁水中投 ):就是在浇注前往铁水中投 、性能和孕育处理(变质处理): 入少量硅铁、硅钙合金等作为孕育剂, 入少量硅铁、硅钙合金等作为孕育剂,使 铁水内产生大量 均匀分布的晶核,使石墨片及基体组织得到细化。 均匀分布的晶核,使石墨片及基体组织得到细化。 3、牌号及用途: 、牌号及用途: 灰铁”二字的汉语拼音字母字头“ 由“灰铁”二字的汉语拼音字母字头“HT”及后面的一组表 及后面的一组表 示最小抗拉强度数值的数字组成。 示最小抗拉强度数值的数字组成。 用途见P111 表6-1 用途见
第六章 铸铁(P108)
第二节 常用铸铁简介
金属学与热处理课后习题答案第六章
第六章金属及合金的塑性变形和断裂2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。
答:1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。
当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。
2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。
cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。
当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。
6-2 画出铜晶体的一个晶胞,在晶胞上指出:1)发生滑移的一个滑移面2)在这一晶面上发生滑移的一个方向3)滑移面上的原子密度与{001}等其他晶面相比有何差别4)沿滑移方向的原子间距与其他方向有何差别。
答:解答此题首先要知道铜在室温时的晶体结构是面心立方。
1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。
在面心立方晶格中的密排面是{111}晶面。
2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。
3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a24)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。
6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。
金属学及热处理课后习题答案解析第六章
第六章金属及合金的塑性变形和断裂2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。
答:1)需临界临界分切应力的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截面积需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。
当载荷与法线夹角φ为钝角时,则按φ的补角做余弦计算。
2)c osφcosλ称作取向因子,由表中σs和cosφcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。
cosφcosλ的最大值是φ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。
当外力与滑移面平行(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。
6-2 画出铜晶体的一个晶胞,在晶胞上指出:1)发生滑移的一个滑移面2)在这一晶面上发生滑移的一个方向3)滑移面上的原子密度与{001}等其他晶面相比有何差别4)沿滑移方向的原子间距与其他方向有何差别。
答:解答此题首先要知道铜在室温时的晶体结构是面心立方。
1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。
在面心立方晶格中的密排面是{111}晶面。
2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。
3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a24)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。
6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向施加应力,使该晶体在所有可能的滑移面上滑移,并在上述晶面上产生相应的滑移线,试预计在表面上可能看到的滑移线形貌。
《金属材料与热处理》教案-图文
《金属材料与热处理》教案-图文以下是为大家整理的《金属材料与热处理》教案-图文的相关范文,本文关键词为金属材料与热处理,教案,图文,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
理论课教案章节课题课型新授课绪论§1-1金属的力学性能(一)课时2教具学具电教设施挂图教学目标教学重点难点知识金属力学性能的强度和塑性教学点能力通过学习使学生们了解力学性能的作用和试验原理培养点德育培养学生的职业道德观及互相协作的精神渗透点重点各性能的符号、表示方法难点试验原理学法引导1、讲授法2、自主探究法教学内容更新、补充、删节参考资料补充《金属材料与热处理》相关内容《金属学与热处理》课后体会教与学互动设计教师活动内容(一)组织教学点名考勤,稳定学生情绪,准备上课(二)复习提问1、谈谈对于金属材料及热处理这门课的认识?2、什么是力学性能?(三)讲授新课绪论一.讲述金属的发展过程1.古代2.近代3.现在4.未来二.学习《金属材料与热处理》的方法1.认真做好课堂笔记2.理论联系实际3.按时完成作业,有不懂的问题及时问老师。
三.《金属材料与热处理》的内容及重点和难点1.学习材料的两种性能(力学和工艺)2.金属的结构与结晶(微观角度看材料的性能)3.铁碳合金相图的纵向和横向分析4.碳素钢和铸铁的分类和用途5.几种有色金属的性能和用途、几种非金属的介绍第一章金属的性能由于中学的时候我们已经学习了金属的物理和化学性能,所以现在我们主要是介绍金属的另外两种性能------力学性能和工艺性能。
第一节金属的力学性能(一)载荷1、概念:金属材料在加工及使用过程中所受的外力。
2、分类:根据载荷作用性质分,载荷分三种:?、静载荷:大小不变或变化过程缓慢的载荷。
——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。
?、冲击载荷:突然增加的载荷。
——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。
金属材料热处理工艺(详细工序及操作手法)
金属材料热处理工艺(详细工序及操作手法)一、热处理的定义热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结构,从而获得所需性能的一种工艺过程。
热处理的三大要素:①加热( Heating)目的是获得均匀细小的奥氏体组织。
②保温(Holding)目的是保证工件烧透,并防止脱碳和氧化等。
③冷却(Cooling)目的是使奥氏体转变为不同的组织。
热处理后的组织加热、保温后的奥氏体在随后的冷却过程中,根据冷却速度的不同将转变成不同的组织。
不同的组织具有不同的性能。
二、热处理工艺1.退火操作方法:将钢件加热到Ac3+30-50度或Ac1+30-50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。
2.正火操作方法:将钢件加热到Ac3或Acm 以上30-50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。
对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。
金属材料及热处理实验报告
金属材料及热处理实验报告金属材料及热处理实验报告引言:金属材料的研究与应用在现代工业中起着重要的作用。
为了改善金属材料的性能,热处理技术被广泛应用。
本实验旨在通过热处理不同金属材料,探究其对材料性能的影响,以及热处理的原理和方法。
一、实验目的本实验的目的是通过对不同金属材料的热处理,了解热处理对材料性能的影响,并探究不同热处理方法的原理。
二、实验材料和方法本实验选取了两种常见的金属材料:铁和铝。
首先,将这两种金属材料分别切割成相同尺寸的试样。
然后,将试样分成两组,一组进行退火处理,另一组进行淬火处理。
接下来,将试样放入炉中进行加热,退火处理时温度为800°C,保持一段时间后缓慢冷却;淬火处理时温度为1000°C,迅速冷却。
最后,对经过热处理的试样进行性能测试。
三、实验结果与分析经过退火处理的铁材料试样在显微镜下观察到晶粒尺寸变大,晶粒边界变得清晰。
这是因为退火处理使得晶界的原子重新排列,减少了晶界的能量,从而提高了材料的塑性。
而经过淬火处理的铁材料试样在显微镜下观察到晶粒尺寸变小,晶粒边界模糊。
这是因为淬火处理迅速冷却导致晶界的原子无法重新排列,从而使材料变硬而脆。
对于铝材料试样,经过退火处理后,试样的硬度明显降低,表面变得光滑。
这是因为退火处理使得晶粒尺寸增大,晶界的能量减少,从而提高了材料的塑性。
而经过淬火处理后,铝材料试样的硬度增加,表面变得粗糙。
这是因为淬火处理迅速冷却导致晶界的原子无法重新排列,从而使材料变硬而脆。
四、实验结论通过本实验,我们得出了以下结论:1. 热处理对金属材料的性能有明显影响,不同的热处理方法会导致材料的不同性能。
2. 退火处理可以使金属材料的硬度降低,提高其塑性。
3. 淬火处理可以使金属材料的硬度增加,但会降低其塑性。
五、实验心得通过本次实验,我对金属材料的热处理有了更深入的了解。
热处理是一种重要的工艺,可以通过改变材料的结构和性能来满足不同的工程需求。
《金属材料及热处理》课程教学大纲
《金属材料及热处理》课程教学大纲课程编号:081095211课程名称:金属材料及热处理英文名称:Metal Materials and heat treatment课程类型:学科基础课程要求:必修学时/学分:48/3(讲课学时:44 实验学时:4 )适用专业:材料成型及控制工程一、课程性质与任务金属材料及热处理是材料成形及控制工程专业的一门重要必修课,也是理论性和实践性较强的专业课。
通过本课程的学习,使学生掌握钢的退火、正火、淬火和回火等热处理工艺的基本理论,基本知识和实验技能,并能应用于实践,了解工程用钢、铸铁和有色金属的分类和特性。
本课程在教学内容方面着重基本知识、基本理论和基本工艺方法的讲解;在培养实践能力方面着重培养学生不同材质的工件在不同应用场合的选择,不同材料性能的热处理工艺的选择。
培养学生的工程观念和规范意识,要善于观察、思考,勤于实践,培养学生应用理论联系实际的方法去解决工程实际问题,具有合理地选择材料并确定热处理工艺的能力。
二、课程与其他课程的联系学生应在先学完《大学物理》、《材料科学基础》、《物理化学》等课程,并经过金属工艺的生产实训,对材料及热处理方面有一定的感性认识后,再学习本课程,通过本课程的学习,为《材料的力学性能》、《铸造合金熔炼》等专业课奠定基础,也为学生从事铸造、焊接、锻造、热处理专业方面工作打下坚实的基础。
三、课程教学目标1.掌握固态相变的基本理论,了解钢在加热与冷却时组织的转变规律,理解材料成分-组织-性能之间的关系;(支撑毕业能力要求1.2,1.3)2.掌握钢的退火、正火、淬火与回火的应用及工艺参数的制定,从而对材料及其热处理具有一定的分析和研究能力,对于实际工件能够给出较合理的热处理工艺;(支撑毕业能力要求2.1,2.3)3.对于已有热处理工艺造成的工程问题,能够分析存在问题的原因,优化热处理工艺;(支撑毕业能力要求4.2)4.了解特殊热处理工艺特征和应用;(支撑毕业能力要求1.2)5.了解常用金属材料(工程用钢、铸铁和有色合金)的特性,能够根据使用环境和性能要求选择合适的金属材料。
金属材料与热处理第六章答案
1 滑移与孪生的区别及它们在塑性变形过程中的作用。
答:滑移与孪生的区别:(1)滑移是晶体两部分发生相对滑动,不改变晶体位向,孪生是晶体一部分相对另一部分发生均匀切变,发生位向的改变,孪生面两侧原子呈镜面对称。
(2)滑移面上的原子移动的距离是原子间距的整数倍,而孪生方向移动的原子不是原子间距的整数倍。
(3)滑移是个缓慢的过程,孪生产生速度极快。
(4)滑移是在晶体内各晶粒内部产生不均匀,而孪生在整个孪生区内部都是均匀的切变。
作用:晶体产生塑性变形过程主要依靠滑移机制来完成的;孪生所需的临界应力要高很多,对塑性变形的贡献比滑移小得多,但孪生改变了部分晶体的空间取向,使原来处于不利取向的滑移系转变为新的有利取向,激发晶体滑移。
2面心立方、体心立方、密排六方金属的主要塑性变形方式是什么?温度、变形速度对其有何影响?铝、铁、鎂中哪种金属的塑性最好?哪种最差?答:面心立方、体心立方有较多的滑移系,塑性变形以滑移为主,而密排六方金属对称性低,滑移系少,塑性变形方式主要是孪生。
变形温度越高,滑移越容易,孪生产生的几率越小,反之变形温度越高,滑移越困难,产生孪晶的几率越大。
变形速度越大,滑移常来不及产生足够大的变形,因此导致切应力增大,产生孪晶的几率也增大。
铝为面心立方结构、铁为体心立方结构、镁为密排六方结构,因此铝的塑性最好,镁的塑性最差。
3绘图说明常见fcc、bcc结构金属的滑移系有哪些?这两种晶体结构的密排面、密排方向是哪些?与滑移系之间有何关系?答:FCC晶格:滑移面就是最密排面:{111}包括(111), (111), (111), (111);滑移方向就是最密排方向:〈110〉每个滑移面上有三个,如图中箭头所示。
一个滑移面与滑移面上的一个滑移方向构成一个滑移系,因此滑移系数: 4×3=12BCC晶格:滑移面:{110}(110), (011), (101), (110), (011), (101)共6个滑移方向:〈111〉,每个滑移面上两个,如图箭头所示。
金属材料与热处理(全)精选全文
2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。
机械工程基础课件单元六金属材料及热处理
(2) 表示方法 (3) 适用范围及优缺点
单元六 金属材料及热处理
试验用压头为 一淬火钢球 过硬材料会使钢 球变形甚至破坏 它的使用范围不 能超过HB450
对金属来讲,只适用于测定退火、正火、调质钢、铸铁及 有色金属的硬度 测量误差小,数据稳定 优 点:
单元六 金属材料及热处理
拉伸试验
单元六 金属材料及热处理
拉伸试验中可测得的强度指标主要有屈服点和抗拉 强度。 6.1.1. 强度
(1) 屈服点 用符号σ S表示,计算公式如下:
σs
Fs A0
对于无明显屈服现象的金属材料,按国标GB/T228—1987规定 可用规定残余伸长应力表示: F σ 0 .2 0.2 A0 (2) 抗拉强度 用符号σ b表示。计算公式如下:
A
单元六 金属材料及热处理
定义: 材料在冲击载荷作用下,抵抗冲击力的作用而不被 破坏的能力
表示方法: αk是在一次试验中,单位截面积上所消耗的冲 击功,单位J/cm2
摆锤式冲击试验
单元六 金属材料及热处理
2.小能量多次冲击试验
实践表明,承受冲击载荷的机械零件,很少因一次 大能量冲击而遭破坏,绝大多数是在一次冲击不足以 使零件破坏的小能量多次冲击作用下而破坏的,如冲 模的冲头等。这类零件破坏是由于多次冲击损伤的积 累,导致裂纹的产生与扩展的结果,根本不同于一次 冲击的破坏过程。对于这样的零件,用冲击韧度来作 为设计依据显然是不符合实际的,需要采用小能量多 次冲击试验来检验这类金属材料的抗冲击性能,即检 验其多冲抗力。
单元六 金属材料及热处理
特 点:
αk值愈大,材料韧性愈好
第六章 低合金钢与合金钢-《金属材料与热处理》中职通用第七版
二、合金模具钢
1. 冷作模具钢 冷作模具钢用于制造使金属在冷状态下变形的模具,
如冲裁模、拉丝模、弯曲模、拉深模等。
冲裁模
2. 热作模具钢 热作模具钢用于制造使金属在高温下成形的模具,如
热锻模、压铸模、热挤压模)等。
热锻模、压铸模和热挤压模
3.塑料模具钢 从儿童玩具到我们每天使用的生活用品,塑料制品在生
的低合金高强度结构钢、低合金耐候钢、低合金钢筋钢、 铁道用低合金钢、矿用低合金钢和其他低合金钢。
三、合金钢的分类(GB/T13304.2—2008)
1.按质量等级分类 (1)优质合金钢 (2)特殊质量合金钢 2.按主要性能及使用特性分类 (1)工程结构用合金钢 (2)机械结构用合金钢 (3)不锈、耐腐蚀和耐热钢 (4)工具钢 (5)轴承钢 (6)特殊物理性能钢 (7)其他 如焊接用合金钢等。
三、细化晶粒
几乎所有的合金元素都有抑制钢在加热时奥氏体晶
粒长大的作用,达到细化晶粒的目的。强碳化物形成元 素铌、钒、钛等形成的碳化物,以及铝(Al)在钢中形成 的AlN 和Al2O3,均能强烈地阻碍奥氏体晶粒的长大,使 合金钢在热处理后获得比碳素钢更细的晶粒。
四、提高钢的淬透性
除钴外,所有的合金元素溶解于奥氏体后,均可增加 过冷奥氏体的稳定性,推迟其向珠光体的转变,使C形曲 线右移,从而减小钢的淬火临界冷却速度,提高钢的淬透 性。
四、低合金钢与合金钢的牌号
五、钢铁及合金牌号统一数字代号体系
(GB/T17616—2013)
钢铁及合金牌号统一数字代号体系,简称“ISC”,它 规定了钢铁及合金产品统一数字代号的编制原则、结构、分 类、管理及体系表等内容。
§6-3 低合金钢
低合金钢是在碳素结构钢的基础上加入了少量(一般总合 金元素的质量分数不超过3%)的合金元素而得到的。由于合金 元素的强化作用,低合金钢比碳素结构钢(含碳量相同)的强度 要高得多,并且具有良好的塑性、韧性、耐腐蚀性和焊接性 能。 低合金钢广泛用于制造工程构件。
金属学及热处理课后习题答案解析第六章
⾦属学及热处理课后习题答案解析第六章第六章⾦属及合⾦的塑性变形和断裂2)求出屈服载荷下的取向因⼦,作出取向因⼦和屈服应⼒的关系曲线,说明取向因⼦对屈服应⼒的影响。
答:1)需临界临界分切应⼒的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截⾯积需要注意的是:在拉伸试验时,滑移⾯受⼤⼩相等,⽅向相反的⼀对轴向⼒的作⽤。
当载荷与法线夹⾓φ为钝⾓时,则按φ的补⾓做余弦计算。
2)c osφcosλ称作取向因⼦,由表中σs和cosφcosλ的数值可以看出,随着取向因⼦的增⼤,屈服应⼒逐渐减⼩。
cosφcosλ的最⼤值是φ、λ均为45度时,数值为0.5,此时σs为最⼩值,⾦属最易发⽣滑移,这种取向称为软取向。
当外⼒与滑移⾯平⾏(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则⽆论τk数值如何,σs均为⽆穷⼤,表⽰晶体在此情况下根本⽆法滑移,这种取向称为硬取向。
6-2 画出铜晶体的⼀个晶胞,在晶胞上指出:1)发⽣滑移的⼀个滑移⾯2)在这⼀晶⾯上发⽣滑移的⼀个⽅向3)滑移⾯上的原⼦密度与{001}等其他晶⾯相⽐有何差别4)沿滑移⽅向的原⼦间距与其他⽅向有何差别。
答:解答此题⾸先要知道铜在室温时的晶体结构是⾯⼼⽴⽅。
1)发⽣滑移的滑移⾯通常是晶体的密排⾯,也就是原⼦密度最⼤的晶⾯。
在⾯⼼⽴⽅晶格中的密排⾯是{111}晶⾯。
2)发⽣滑移的滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度最⼤的晶向,在{111}晶⾯中的密排⽅向<110>晶向。
3){111}晶⾯的原⼦密度为原⼦密度最⼤的晶⾯,其值为2.3/a2,{001}晶⾯的原⼦密度为1.5/a24)滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度⾼于其他晶向,原⼦排列紧密,原⼦间距⼩于其他晶向,其值为1.414/a。
6-3 假定有⼀铜单晶体,其表⾯恰好平⾏于晶体的(001)晶⾯,若在[001]晶向施加应⼒,使该晶体在所有可能的滑移⾯上滑移,并在上述晶⾯上产⽣相应的滑移线,试预计在表⾯上可能看到的滑移线形貌。
《金属材料与热处理》教材习题答案:第六章 铸铁
《金属材料与热处理》教材习题答案第六章铸铁1.什么是铸铁?与钢相比,它在成分、组织和性能这几个方面有什么不同?答:铸铁是含碳量大于2.11%的铁碳合金而钢的含碳量通常在1.4%以下,常用的铸铁,含碳量一般在2.5%~4.0%的范围内,此外还含有较高的硅(Si)、锰(Mn)、硫(S)、磷(P)等元素。
铸铁的组织可看成在钢的基体上分布着不同形态、大小、数量的石墨。
由于石墨的力学性能很差,其强度和塑性几乎为零,这样我们就可以把分布在钢的基体上的石墨看作不同形态和数量的微小裂纹或孔洞,这些“孔洞”一方面割裂了钢的基体,破坏了基体的连续性,而另一方面又使铸铁获得了良好的铸造性能、切削加工性能及消音、减震、耐压、耐磨、缺口敏感性低等诸多优良的性能。
2.什么是铸铁的石墨化?影响铸铁石墨化的因素有哪些?答:铸铁中的碳以石墨的形式析出的过程称为石墨化。
影响铸铁石墨化的因素主要是铸铁的成份和冷却速度。
铸铁中的各种合金元素根据对石墨化的作用不同可以分为两大类,一类是非促进石墨化的元素,有碳、硅、铝、镍、铜和钴等,其中碳和硅对促进石墨化作用最为显著。
所以铸铁中碳、硅越高,往往其内部析出的石墨量就越多,石墨片也越大。
另一类是阻碍石墨化的元素,有铬、钨、钼、钒、锰硫等。
冷却速度对石墨化的影响也很大,当铸铁结晶时,冷却速度越缓慢,就越有利于扩散,使石墨析出的越大、越充分;在快速冷却时碳原子无法扩散,则阻碍石墨化,促进白口化。
3.铸铁中石墨有哪几种形态?石墨的形态、数量和分布状态对铸铁的性能会产生什么影响?答:铸铁中石墨有曲片状、团絮状、球状和蠕虫状等形态。
在相同基体的情况下,不同形态和数量的石墨对基体的割裂作用是不同的,呈片状时表面积最大,割裂最严重,蠕虫状次之,球状表面积最小、应力最分散,割裂作用的影响就最小;石墨的数量越多、越集中,对基体的割裂也就越严重,则铸铁的抗拉强度也就越低,塑性就越差。
4.根据石墨的形态不同,铸铁可分为哪几种?答:根据铸铁中石墨形态的不同,可将铸铁分为:石墨呈曲片状存在的普通灰口铸铁,简称灰铸铁或灰铁。
金属材料及热处理 第3版教学课件完整版
三、韧性
(一)一次冲击试验 ●韧性是金属材料在断裂前吸收变形能量的能力。 ●夏比摆锤冲击试样有V型缺口试样和U型缺口试样两种。
(二)多次冲击试验
●金属材料在多次冲击下的破坏过程是由裂纹产生、裂纹扩张和瞬时断 裂三个阶段组成。其破坏是每次冲击损伤累积发展的结果,不同于一次 冲击的破坏过程。 ●研究结果表明:在小能量多次冲击条件下,金属材料的多次冲击抗力 大小,主要取决于金属材料强度的高低;在大能量多次冲击条件下,金 属材料的多次冲击抗力大小,主要取决于金属材料塑性的高低。
二、金属的化学性能 ●金属的化学性能是指金属在室温或高温时抵抗各种化学介质作用 所表现出来的性能,它包括耐腐蚀性、抗氧化性和化学稳定性等。
三、金属的工艺性能 ●工艺性能是指金属材料在制造机械零件和工具的过程中,适应各 种冷加工和热加工的性能。它包括铸造性能、锻造性能、焊接性能、 热处理性能及切削加工性能等。
四、疲劳
(一)疲劳现象 ●循环应力和应变是指应力或应变的大小、方向,都随时间发生周期性 变化的一类应力和应变。 ●零件在循环应力作用下,经过一定时间的工作后会发生突然断裂,这 种现象称为金属的疲劳。 ●金属在疲劳断裂时不产生明显的塑性变形,断裂是突然发生的。 ●金属疲劳断裂的断口一般由微裂源、扩展区和瞬断区组成。
(二)疲劳强度
●金属在循环应力作用下能经受无限多次循环,
而不断裂的最大应力值称为金属的疲劳强度。即 金属在循环应力作用的循环次数值N无穷大时所 对应的最大应力值,称为疲劳强度。对于对称循 环应力,其疲劳强度用符号σ-1表示。
第二节 金属的物理性能、化学性能和工艺性能
一、金属的物理性能 ●金属物理性能是指金属在重力、电磁场、热力(温度)等物理因 素作用下,其所表现出的性能或固有的属性。它包括密度、熔点、 导热性、导电性、热膨胀性和磁性等。
《 金属材料与热处理》(4学时和12学时)总复习题
基础课程《金属材料与热处理》应掌握知识重庆市机械高级技工学校培训中心备注:1、未标注“▲”符号的内容是培训4学时的班级必须掌握。
2、已标注“▲”符号的内容是培训12学时的班级在完成4学时培训的基础上增加的必须掌握内容,也就是说,培训12学时的班级对给出的内容应全部掌握。
复习要求第二章金属材料的性能一、了解金属的性能概述二、理解金属的力学性能定义及其应用▲三、理解金属的工艺性能定义及其应用第三章铁碳合金▲一、了解金属的实际晶体结构二、了解合金的基本组织▲三、熟悉铁碳合金的基本组织四、二元Fe3C相图的运用1、了解二元Fe3C相图的运用▲2、理解二元Fe3C相图,并会运用相图分析钢铁热处理组织转变过程4、基本会用二元Fe3C相图铸造、锻造、热处理工艺制定依据五、掌握碳素钢的分类、牌号表示方法及性能第四章钢的热处理一、理解钢的热处理原理,并掌握热处理分类方法二、基本熟悉常见钢的整体热处理工艺方法▲三、基本熟悉钢表面热处理工艺方法▲四、了解钢在加热和冷却时的组织转变五、基本能对典型零件的热处理后给予质量评价和分析第五章合金钢▲一、了解合金元素在钢中的作用二、掌握合金钢分类和牌号表示方法▲三、基本熟悉合金结构钢和合金工具钢常用牌号、性能和用途第六章铸铁▲一、了解铸铁的基本组织,熟知铸铁的分类二、常用铸铁(灰铸铁、可锻铸铁、球墨铸铁)的牌价、性能、用途第七章有色金属及硬质合金▲一、了解纯铝的牌号、性能和用途二、基本熟悉铝合金分类、牌号、性能和用途附基本复习题于后第二章金属材料的性能—.填空题(将正确答案填写在横线上)2. 强度的常用衡量指标有.屈服强度、和抗拉强度,分别用符号ReL、和Rm表示。
二.判断题(正确的打“√”,错误的打“×”)▲3. 做布氏硬度试验时,在相同实验条件下,压痕直径越小说明材料的硬度越低。
(×)7. 一般用洛氏硬度机而不用布氏硬度机来检测淬火钢成品工件的硬度。
(√)▲9. 一般来说,硬度高的材料其强度也较高。
《金属材料及热处理》课程标准
金属材料及热处理课程标准
课程名称:金属材料及热处理
课程性质:职业能力必修课
学分:4
计划学时:64(理论56,实践8)
1.
2.
3.
、
1.
2.
(1)知识目标
1)了解金属学的基本知识;
2)掌握常用金属材料的牌号、性能及用途;
3)了解金属材料的组织结构与性能之间的关系;
4)了解热处理的一般原理及其工艺;
5)了解热处理工艺在实际生产中的应用;
(2)能力目标
1)初步具有选用工程材料的能力;
2)初步具有在实际生产中应用热处理工艺的能力;
(3)素质目标
1)培养学生具有创新精神和实践能力;
2
3.
(三)课程内容与要求绪论
第五章铁碳合金
第六章钢的热处理
第七章合金钢
第九章工具钢
[2]刘世荣.金属学与热处理.北京:机械工业出版社,1985.
[3]戴枝荣.工程材料及机械制造基础-工程材料.北京:高等教育出版社,1992.
[4]陈培里.工程材料及热加工.北京:高等教育出版社,2007.
2.教学建议
(1)本课程采用实物、教具、多媒体、仿真软件等形式辅助教学,突出感性认知,帮助学生理解。
(2)根据课程的教学目标,应注重实践教学,在教学过程中,多联系实际生产需求,多去实训中心,加强对学生动手能力的培养。
在实践教学中注重学生安全意识的培养,加强其职业素质的培养,提高学生的综合素质。
3.
70%,
4.
(
(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章金属材料及热处理第六章答案1.用 45 钢制造机床齿轮,其工艺路线为:锻造—正火—粗加工一调质一精加工—高频感应加热表面淬火一低温回火—磨加工。
说明各热处理工序的目的及使用状态下的组织。
答:锻造后的 45 钢硬度较高,不利于切削加工,正火后将其硬度控制在 160-230HBS 范围内,提高切削加工性能。
组织状态是索氏体。
粗加工后,调质处理整个提高了 45 钢强度、硬度、塑性和韧性,组织状态是回火索氏体。
高频感应加热表面淬火是要提高 45 钢表面硬度的同时,保持心部良好的塑性和韧性。
低温回火的组织状态是回火马氏体,回火马氏体既保持了45 钢的高硬度、高强度和良好的耐磨性,又适当提高了韧性。
2.常用的合金元素有哪些?其中非碳化物形成元素有一一一:碳化物形成元素有一一一;扩大 A 区元素有——;缩小 A 区元素在一一。
答:常用的合金元素有:锰、铬、钼、钨、钒、铌、锆、钛、镍、硅、铝、钴、镍、氮等。
其中非碳化物形成元素有:镍、硅、铝、钴等;化物形成元素有:锰、铬、钼、钨、钒、铌、锆、钛等;扩大 A 区元素有:镍、锰、碳、氮等;小 A 区元素有:铬、铝、硅、钨等。
3.用 W18Cr4V 钢制作盘形铣刀,试安排其加工工艺路线,说明各热加工工序的目的,使用状态下的显微组织是什么?为什么淬火温度高达1280℃?淬火后为什么要经过三次 560℃回火?能否用一次长时间回火代替?答:工艺路线:锻造十球化退火→切削加工→淬火+多次 560℃回火→喷砂→磨削加工→成品热处理工艺:球化退火:高速钢在锻后进行球化退火,以降低硬度,消除锻造应力,便于切削加工,并为淬火做好组织准备。
球化退火后的组织为球状珠光体。
淬火和回火:高速钢的优越性能需要经正确的淬火回火处理后才能获得。
淬火温度高(1220-1280℃)的原因是:合金元素只有溶入钢中才能有效提高红硬性,高速钢中大量的 W、MO、Cr、V 的是难熔碳化物,它们只有在 1200℃以上才能大量地溶于奥氏体中,使奥氏体中固溶碳和合金元素含量高,淬透性才会非常好;淬火后的马氏体才会强度高,且较稳定,所以淬火加热温度一般为 1220-1280℃。
由于高速钢合金元素多,使其导热性差,传热速率低,淬火温度要高(1220-1280℃),所以淬火加热时,必须进行一次预热(800-850℃)或两冷预热(500-600℃、800-850℃),而冷却多用分级淬火,高温淬火或油淬。
正常淬火组织为马氏体+粒状碳化物+(20-30%)残余奥氏体。
为了减少残余奥氏体,稳定组织,消除应力,提高红硬性,高速钢要进行多次回火。
第一次回火后约剩 15%~18%残余奥氏体,第二次回火降到 3%-5%残余奥氏体,经过第三次回火后残余奥氏体才基本转变完成。
高速钢回火后组织为:极细的回火马氏体+较多粒状碳化物及少量残余奥氏体(<1%-2%)。
4.试比较 20CrMnTi 与 T12 钢的淬透性与淬硬性。
答:20CrMnTi 是一种中淬透性合金渗碳钢,其中有提高淬透性的元素Mn、Cr、Ni 等,因此淬透性较好。
又因这种材料的含碳量较低,淬火后获得的马氏体少,所以,淬硬性差一些。
而 T12 钢是一种工具钢,含碳量高淬硬性好,淬透性差一些。
5.如何提高钢的耐腐蚀性?不锈钢的成分有何特点?Crl2MoV 是否为不锈钢?要想提高不锈钢的强度,应采取什么措施?答:提高钢的耐腐蚀性的方法有:①金属镀层、②阴极保护、③磷化、④发蓝、⑤阳极化、⑥涂漆层等。
⑦涂防蚀油膏。
金属材料在高温下的腐蚀是化学腐蚀,在常温下的腐蚀是电化学腐蚀。
因此在常温下要金属材料的耐腐蚀性,一方面要尽量使合金呈单一均匀组织;另一方面更重要的是提高合金本身的电极电位。
所以不锈钢的成分特点是:组织中加入了较多的 Cr、Ni、钼、钛、铌等合金元素。
Crl2MoV 不是不锈钢。
提高不锈钢的强度常用除应力处理,即加热至 250-425℃进行回火,在 300-350℃保温 1-2 小时,然后空冷。
6.常用的耐热钢有哪些类型?它们在使用状态下的显微组织是什么?答:耐热钢类型有:抗氧化钢和热强钢。
抗氧化钢在使用状态下的显微组织有:铁素体、奥氏体。
热强钢在使用状态下的显微组织有:珠光体、马氏体、奥氏体。
7.判断下列钢号的钢种、成分、常用的热处理方法及使用状态下的显微组织:T8:答:碳素工具钢。
常用的热处理方法有:预备热处理:①球化退火、②正火、③除应力处理。
最后热处理:①淬火、②回火。
使用状态下的金相组织是:20Cr:合金渗碳钢(低淬透性钢)。
常用的热处理方法有:为了改善切削加工性,渗碳钢的预先热处理一般采用正火工艺,渗碳后热处理一般是淬火加低温回火,或是渗碳后直接淬火。
热处理后表面渗碳层的组织是针状回火马氏体十合金碳化物十残余奥氏体,满足耐磨的要求:全部淬透时心部组织为低碳回火马氏体,末淬透时为索氏体十铁素体十低碳回火马氏体。
16Mn(新标准是Q345):低合金结构钢。
常用的热处理方法有:低合金结构钢一般在热轧或正火状态下使用,一般不需要进行专门的热处理。
其使用状态下的显微组织一般为铁素体+索氏体。
有特殊需要时,如果为了改善焊接区性能,可进行一次正火处理。
Mnl3(新标准是 ZGMn13):耐磨钢。
常用的热处理方法有:水韧处理(加热到 1000~11000C,保温一定时间,在水中快速冷却。
使用状态下的金相组织是:单相的奥氏体40Cr:调质钢(低淬透性钢)。
常用的热处理方法有:调质钢零件的热处理主要是毛坯料的预备热处理(退火或正火)以及粗加工件的调质处理。
调质后组织为回火索氏体。
20CrMnTi:合金渗碳钢(中淬透性渗碳钢)。
常用的热处理方法有:为了改善切削加工性,渗碳钢的预先热处理一般采用正火工艺,渗碳后热处理一般是淬火加低温回火,或是渗碳后直接淬火。
热处理后表面渗碳层的组织是针状回火马氏体十合金碳化物十残余奥氏体,满足耐磨的要求:全部淬透时心部组织为低碳回火马氏体,末淬透时为索氏体十铁素体十低碳回火马氏体。
4Crl3:马氏体型不锈钢。
常用的热处理方法有:①淬火+低温回火。
使用状态下的金相组织是:回火马氏体。
GCrl5:常用着轴承钢和量具钢。
常用的热处理方法有:预备热处理:①正火+球化退火。
最后热处理:①淬火、②低温回火。
使用状态下的金相组织是:回火马氏体+粒状碳化物+少量的残余奥氏体。
60Si2Mn:弹簧钢。
常用的热处理方法有:淬火+中温回火。
使用状态下的金相组织是:回火托氏体。
3Cr2W8V:常用着压铸模钢,属于过共析钢。
常用的热处理方法有:淬火和回火。
38CrMoAl::调质钢(中淬透性钢)。
常用的热处理方法有:调质钢零件的热处理主要是毛坯料的预备热处理(退火或正火)以及粗加工件的调质处理。
调质后组织为回火索氏体。
9CrSi:合金刃具钢。
常用的热处理方法有:低合金工具钢的预备热处理通常是锻造后进行球化退火,目的是改善锻造组织和切削加工性能。
最终热处理为淬火+低温回火,其组织为回火马氏体+末溶碳化物+少量残余奥体。
5CrNiMo:热模具钢。
常用的热处理方法有:对热作热模钢,要反复锻造,其目的是使碳化物均匀分布。
锻造后的预备热处理一般是完全退火,其目的是消除锻造应力、降低硬度(HRS197~HRS241),以便于切削加工。
其最终热处理为淬火+高温(中温)回火,以获得回火索氏体或回火托氏体组织。
Wl8Cr4V:高速钢。
常用的热处理方法有:在锻后进行球化退火,以降低硬度,消除锻造应力,便于切削加工,并为淬火做好组织准备。
球化退火后的组织为球状珠光体。
经过三次回火后基本转变完成。
高速钢回火后组织为:极细的回火马氏体+较多粒状碳化物及少量残余奥氏体。
Crl2MoV、CrWMn:合金刃具纲。
常用的热处理方法有预备热处理是球化退火。
退火组织为球状珠光体+均匀分布的碳化物。
最终热处理一般是淬火+低温回火,经淬火、低温回火后的组织为回火马氏体+弥散粒状碳化物+少量残余奥氏体。
1Crl8Ni9Ti:奥氏体型不锈钢。
常用的热处理方法有:①除应力处理、②敏化处理、③稳定化处理、④消除σ相处理。
Crl2、冷模具钢。
属于莱氏体钢。
常用的热处理方法有:预备热处理是球化退火。
退火组织为球状珠光体+均匀分布的碳化物。
最终热处理一般是淬火+低温回火,经淬火、低温回火后的组织为回火马氏体+弥散粒状碳化物+少量残余奥氏体。
8.说明下列钢号中 Cr、Mn 的作用:15MnTi、20CrMnTi 、GCrl5、、5CrMo、ZGMnl3.0Crl3、40MnB、9Mn2V、CrWMn。
答:15MnTi:是低合金高强度钢。
Mn 的作用是提高淬透性。
Cr 能促进Mn 对第二类回火脆性的敏感性;Mn 还有促使晶粒长大倾向。
20CrMnTi:Cr 是强碳化物形成元素,它能强化铁素体和增大淬透性。
Mn Mn 提高淬透性。
GCrl5:Cr 能提高淬透性和减少热敏感性,与它碳形成的合金渗碳体(Fe·Cr)3C 在退火时集聚的倾向不无 Cr 的渗碳体小,所以 Cr 能使渗碳体细化。
Mn 提高淬透性。
ZGMnl3: Mn 的作用是:保证热处理后得到单相的奥氏体。
0Crl3:铬是使不锈钢获得耐腐蚀性的最基本元素。
在氧化性介质中,铬能使钢表面很快生成-层氧化膜,防止金属基体继续破坏。
含铬钢在氧化性介质中的耐腐蚀性能随铬量的增加而提高,当含铬最达 13%左右时(1/8原子比),大大提高了钢的电极电位,使耐腐蚀性发生一个跳跃式突变,所以不锈钢中含铬量一般均在 13%以上40MnB: Cr 是强碳化物形成元素,它能强化铁素体和增大淬透性。
MnMn 提高淬透性。
9Mn2V:高碳低合金冷变形模具钢。
Mn 溶入铁素体后起强化作用;溶入渗碳体中形成(Fe·Mn)3C 渗碳体类型的碳化物.CrWMn:Cr、Mn 能提高淬透性。
Cr 是碳化物形成元素,能使钢中有较多的碳化物,因此 Cr 提高了此钢的硬度和耐磨性。
9.材料库中存有: 42CrMo、GCr15、T13、60S12Mn。
现要制作锉刀、齿轮、连杆螺栓,试选用材料,并说明应采用何种热处理方法及使用状态下的显微组织。
答:锉刀:T13。
热处理方法有:预备热处理:①球化退火、②正火、③除应力处理。
最后热处理:①淬火、②回火。
齿轮:42CrMo。
热处理方法:淬火+低温回火。
10.40 钢及 T12 钢小试样经 950℃水冷、950℃空冷、760℃水冷,720℃水冷处理后的组织各是怎样的组织?解:钢号 950℃水冷 950℃空冷 760℃水冷 720℃水冷40 钢 M+A’S+T M+A’+F M+A’+FT12 M+A’S+T M+A’+Fe3CⅡM+A’+Fe3CⅡ11.对一批 45 钢零件进行热处理,不慎将退火件与正火件弄混,如何用最简便的方法将它们区分开?为什么?答:退火的目的:降低硬度、细化晶粒、提高素塑性、消除偏析、消除内应力。