大学高等数学重点绝密通用复习资料,绝对有用

合集下载

大学高等数学复习要点总结

大学高等数学复习要点总结

大学高等数学复习要点总结第一章1)洛必达法则求极限,最常用,要熟练;2)无穷小代换求极限,在解题中非常有用,几个等价公式要倒背如流;3)求含参数的极限,关键是把握常量变量的关系,求解过程体现你极限计算的基本功;4)1的∞次方的极限是重点,多练几个题;5)函数连续计算中要会对点进行修改定义、补充定义,看看书上怎么写的,给你说句话你体会一下,“连续的概念是逐点概念”,所以问题就是围绕特殊点展开的,这是数学思想了;6)闭区间连续函数性质四定理非常重要,把它们背下来,然后结合例题搞定;7)记住趋向不同,结果就大不一样的极限;8)两个重要极限、两个基本极限把它们的推倒过程多写写,记住;关键还是刚才的要点,一个是用e的抬头法,一个是注意“趋向不同,结果就大不一样的极限”,还有注意ln某的定义域>0;9)要注意存在与任意的关系,存在就是说只要有一个符合就成立,任意是说只要有一个不符合就不成立,你体会体会。

例题:无穷大无穷小有界变量无界变量;10)注意夹逼定理的条件很强,不要漏掉要点;11)“见根号差,用有理化”!!这是思维定势,很管用;第二章1)导数的概念非常重要!!一定会在解答题(主观题)中让你展现出你对它的理解是透彻的,所以这里不要用什么特殊化思想,就是严格按照定义来演算推理;2)导数公式倒背如流的要求不算过分吧呵呵;3)连续可导的要求一个弱一个强,只要改变条件的强弱就会有截然不同的做法,你做题的时候一定要总结一下,回顾一下,看看条件的强弱问题,然后在每个题上标记出来,便于以后再复习;4)由于有些函数求导会出现某在分母上出现,所以要知道:即使不是分段函数,有时也要用定义去求导,而且乘积中一些因子在特定点不可导,但乘积在该点也可能可导;5)中值定理的难点在于构造辅助函数,构造函数是根据题目的要求来的,除了陈文灯等人写的方法外,关键是多看例题,熟练了,自然就会了(我上次给同学们说的是“微分方程法”和“凑”法,这两个掌握了就足够了);6)函数性态部分是基本功,一定要耐心的按照函数作某某某的几大步骤认真做几个题,这样就可以把函数的各种性态串起来了,方法:抄例题,然后背下来,自己默一遍;9)这部分的经济应用题不难,关键是仔细一些,对弹性等概念理解好,你经济学的好的多了,我就不说了:);第三章1)一元函数积分是高等数学中最重要的部分之一,一元函数的积分不学扎实,后面的多元函数的积分就是空中楼阁,要熟练掌握各种积分方法和几种常见的积分类型,如有理函数,三角函数的有理式和简单无理函数的积分;2)一个经验:如果在一个函数或者积分等中的函数,当它是同一个某的函数时,比如f(某)g(某)的形式,可以对其中的任何一个进行放大缩小或者变形,而另一个可以不动,这样的处理往往是需要的,很有用,当你作不下去时,想想我说的这个。

高数大一必考知识点归纳

高数大一必考知识点归纳

高数大一必考知识点归纳高数是大一必考的一门重要课程,全面掌握其中的知识点对于大家的学习和未来的学习生涯都至关重要。

为了帮助大家更好地备考高数,本文将对大一必考的高数知识点进行归纳总结,希望能对大家的学习有所帮助。

1. 函数与极限1.1 函数的概念与性质:函数的定义、函数的图像、函数的奇偶性、函数的周期性等。

1.2 极限的概念与性质:函数极限的定义、左极限和右极限、极限的四则运算性质等。

1.3 无穷大与无穷小:无穷小的定义、无穷小的性质、无穷大的定义、无穷大的性质等。

2. 导数与微分2.1 导数的概念与计算方法:导数的定义、导数的基本公式、常见函数的导数、高阶导数等。

2.2 微分的概念与计算方法:微分的定义、微分的运算法则、微分中值定理等。

2.3 高阶导数与泰勒展开:高阶导数的概念、泰勒展开式的定义与应用等。

3. 不定积分与定积分3.1 不定积分的概念与计算方法:不定积分的定义、基本积分法、换元积分法等。

3.2 定积分的概念与计算方法:定积分的定义、定积分的性质、定积分的计算方法等。

3.3 微积分基本定理:微积分基本定理的概念、反导数与不定积分、定积分与面积计算等。

4. 微分方程4.1 微分方程的基本概念:微分方程的定义、微分方程的阶、常微分方程与偏微分方程等。

4.2 一阶微分方程:可分离变量的微分方程、一阶线性微分方程等。

4.3 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程等。

5. 多元函数与偏导数5.1 多元函数的概念与性质:多元函数的定义、多元函数的图像、多元函数的极限、多元函数的连续性等。

5.2 偏导数的概念与计算方法:偏导数的定义、偏导数的几何意义、偏导数的运算法则等。

5.3 高阶偏导数与全微分:高阶偏导数的概念、全微分的定义与计算方法等。

综上所述,以上列举的知识点是大一必考的高数知识点的主要内容。

大家在备考过程中可以根据这些知识点进行系统性的学习和复习,理解每个知识点的概念、性质和计算方法,并通过大量的练习题加深对知识点的理解和掌握。

高数期末必考知识点总结大一

高数期末必考知识点总结大一

高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。

期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。

本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。

一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。

2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。

3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。

二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。

3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。

4. 微分的定义与性质:微分的几何意义、微分中值定理等。

三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。

2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。

3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。

4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。

四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。

2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。

3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。

4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。

五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。

2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。

3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。

综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。

在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。

大学高等数学最全复习内容汇总

大学高等数学最全复习内容汇总

例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型

0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数

大一高数必背知识点总结

大一高数必背知识点总结

大一高数必背知识点总结在大学高等数学(高数)学习中,有一些重要的知识点是学生们必须要掌握和熟练运用的。

这些知识点将为日后的学习和实际运用提供坚实的基础。

下面将对大一高数必背的知识点进行总结。

1. 极限与连续1.1 极限的定义:对于函数f(x),当自变量x无限接近于某个值a时,函数f(x)的极限L存在,记作lim(x→a)f(x)=L。

1.2 极限的运算法则:极限具有代数性质,包括四则运算、乘法法则、除法法则等。

1.3 连续的定义:函数f(x)在点a处连续,意味着函数在点a处的极限等于函数在点a处的值,即lim(x→a)f(x)=f(a)。

1.4 连续函数的性质:连续函数具有函数值与极限的运算关系,连续函数在闭区间上有最大值和最小值。

2. 导数与微分2.1 导数的定义:对于函数y=f(x),在某一点x处的导数f'(x)表示函数曲线在该点处的切线斜率,定义为f'(x)=lim(h→0)(f(x+h)−f(x))/h。

2.2 常见函数的导数:常函数、幂函数、指数函数、对数函数、三角函数的导数公式。

2.3 高阶导数:n阶导数表示对函数进行多次求导的结果,常用的高阶导数有二阶导数、三阶导数等。

2.4 微分的概念:微分表示函数在某一点附近的近似线性变化,微分常用于函数的局部线性化近似与最值求解等应用中。

3. 不定积分与定积分3.1 不定积分的定义:不定积分是反导数的概念,表示求函数的原函数(不带上确切的积分上限和下限)。

3.2 常见函数的不定积分:常函数的积分、幂函数的积分、指数函数的积分、三角函数的积分。

3.3 定积分的定义:定积分是区间上函数的平均值(面积)的概念,表示对函数在给定区间上的积分。

3.4 定积分的计算方法:分段函数的定积分、换元法、分部积分法等。

4. 级数与收敛性4.1 数列的极限:数列的极限表示数列中的元素随着项数的增加而趋向的值,包括极限存在性与收敛性的判断。

4.2 级数的定义:级数是数列求和的结果,表示数列无穷项和的极限值。

大学数学必考知识点大全

大学数学必考知识点大全

大学数学必考知识点大全数学作为一门基础学科,在大学中占据着重要地位。

对于大多数学生来说,数学课程可能是他们最为挑战和困惑的一门学科。

然而,在备考大学数学考试时,了解并掌握一些必考的知识点将有助于提高成绩。

本文将介绍大学数学必考的知识点,以帮助同学们更好地备考。

一、微积分微积分是大学数学中的一大重点,包括导数、积分和微分方程等。

以下是一些必考的微积分知识点:1. 导数与微分:了解导数的定义、常用函数的导数公式,能够应用链式法则、隐函数法则和高阶导数求解问题;理解微分的概念和意义。

2. 积分与不定积分:熟悉不定积分的概念与性质,能够应用基本积分公式、分部积分法、换元法等求解不定积分;了解定积分的概念和性质,能够应用定积分求解曲线下的面积、长度、质量等问题。

3. 微分方程:了解常微分方程的基本概念与分类,能够应用一阶线性微分方程、二阶常系数线性微分方程等求解物理、生物等实际问题。

二、线性代数线性代数是应用广泛的数学分支,常涉及矩阵、向量、线性方程组等内容。

以下是一些必考的线性代数知识点:1. 矩阵与行列式:掌握行列式的定义、性质和计算方法,了解矩阵的基本运算,能够进行矩阵的相加、相乘、转置等操作。

2. 向量空间与线性变换:了解向量空间的基本概念与性质,能够判断子空间与线性相关性;了解线性变换的基本概念与性质,了解线性变换的矩阵表示。

3. 特征值与特征向量:理解特征值与特征向量的概念与性质,能够求解特征值和特征向量,应用于对称矩阵的对角化等问题。

三、概率论与数理统计概率论与数理统计是研究随机事件及其规律性的数学分支。

以下是一些必考的概率论与数理统计知识点:1. 概率与随机变量:了解概率的基本概念与性质,掌握常用概率分布(如二项分布、正态分布)的概率密度函数、累积分布函数和特征函数等;掌握随机变量的数学期望、方差以及常见离散型和连续型分布的计算方法。

2. 统计推断与假设检验:了解统计推断的基本概念与步骤,熟悉参数估计和假设检验的原理与方法,能够应用置信区间和假设检验解决实际问题。

关于大学高等数学重点绝密通用复习资料归纳绝对有用

关于大学高等数学重点绝密通用复习资料归纳绝对有用

高等数学(通用复习)师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意第一章 函数与极限函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)第一节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第二节 函数的极限 ○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第三节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小;(()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第四节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<(特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x xx x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim 23--→x x x【求解示例】3x →=== 第五节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim 0=→xx x(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim (一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】第六节 无穷小量的阶(无穷小的比较)○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +-2.U U cos 1~212- (乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】第七节 函数的连续性○函数连续的定义(★)○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=xa e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 00∴e a =第八节 闭区间上连续函数的性质○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=bax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=|2.切线方程:()()()y f a f a x a '-=-法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦'○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】第四节 高阶导数○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ……第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】()()t t dx dy ϕγ''=.()22dy d y dx dx t ϕ'⎛⎫⎪⎝⎭='第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★)第三章 中值定理与导数的应用第一节 中值定理○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】 1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+; 2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,x e e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫- ⎪⎝⎭【求解示例】()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】○运用罗比达法则进行极限运算的基本思路(★★) ⑴通分获得分式(通常伴有等价无穷小的替换) ⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==f x ),1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+【证明示例】 1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】 1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点 【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩13y x x =+-(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞; ⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()(12,12,318f f f -=-==-∴()()()()max min 12,318f x f f x f ====-第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求) 第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续)⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量) ○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★) 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用) 【题型示例】求221dx a x+⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a a a x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈)::令t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >): asin x a t =(22t ππ-<<),于是arcsin x t a=,则原式可化为cos a t ; bsec x a t =(02t π<<),于是arccos at x=,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤:⑴遵照分部积分法函数排序次序对被积函数排序;⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】【题型示例】求sin x e xdx ⋅⎰【求解示例】 ∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分○有理函数(★)设:()()()()101101m m m n n n P x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式 ○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()k x a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅ 一般地:n mx n m x m ⎛⎫+=+⎪⎝⎭,则参数n a m=- 则参数,b c p q a a ==⑵则设有理函数()()P x Q x 的分拆和式为: 其中参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解 【题型示例】求21x dx x +⎰(构造法)【求解示例】第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质○定积分的定义(★)(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b b a a f x dx f u du =⎰⎰⑵()0a a f x dx =⎰⑶()()b b a a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)⑸(积分区间的可加性)⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b a f x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b b a a f x dx g x dx ≤⎰⎰;(推论二)()()bba a f x dx f x dx ≤⎰⎰ ○积分中值定理(不作要求)第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则○变限积分的导数公式(★★★)(上上导―下下导) 【题型示例】求21cos 20lim t x x e dt x -→⎰【求解示例】第三节 定积分的换元法及分部积分法○定积分的换元法(★★★)⑴(第一换元法) 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法) 设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续则:()()()b a f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰ 【题型示例】求40dx ⎰ 【求解示例】⑶(分部积分法)○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立:⑴若()()f x f x -=,则()()02a a a f x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0a a f x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求)第五节 定积分在物理上的应用(暂时不作要求)第六节 反常积分(不作要求) 如:不定积分公式21arctan 1dx x C x =++⎰的证明。

大一高数期中必背知识点

大一高数期中必背知识点

大一高数期中必背知识点1. 数列与数学归纳法数列是一系列按照一定规律排列的数的集合。

常见的数列有等差数列和等比数列。

等差数列:通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

等比数列:通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。

数学归纳法是一种证明方法,通过证明当n=k时命题成立,再证明当n=k+1时命题也成立,从而推导出对任意正整数n命题成立的结论。

2. 函数与极限函数是一种特殊关系,将一个自变量的取值和一个因变量的取值相对应。

函数的定义域、值域和图像是研究函数的重要方面。

极限是函数在自变量趋于某个值时,因变量的稳定值。

常见的极限有左极限、右极限以及无穷大极限。

左极限:当自变量趋于a时,函数值从左侧逼近a的极限值。

右极限:当自变量趋于a时,函数值从右侧逼近a的极限值。

无穷大极限:当自变量趋于正无穷或负无穷时,函数值的极限。

3. 导数与微分导数是函数在某一点上的变化率,用来描述函数曲线的陡峭程度。

导数的定义为f'(a) = lim(h→0) [(f(a+h) - f(a))/h]。

微分是导数的一个应用,用来计算函数在某一点上的增量。

微分的定义为df = f'(a) * dx。

4. 不定积分与定积分不定积分是求解函数的原函数问题。

不定积分的结果表示原函数族的表达式,记作∫f(x)dx。

定积分是求解函数在某一区间上的平均值或总值。

定积分的结果表示函数在给定区间上的面积或导数与自变量之间的关系,记作∫[a,b]f(x)dx。

5. 多元函数的偏导数与全微分多元函数是含有多个自变量的函数,其偏导数表示函数在某一自变量方向上的变化率。

偏导数的计算方法与单变量函数类似。

全微分是多元函数的微分表示,用来计算在某一点上的函数增量。

全微分的计算公式为df = ∂f/∂x * dx + ∂f/∂y * dy。

以上是大一高数期中必背的知识点,掌握了这些基础概念和公式,能够为接下来的学习打下坚实的基础。

高数复习重点

高数复习重点

高数复习重点高等数学(简称高数)是大多数理、工、经、管类专业的重要基础课程之一。

通过对高数的学习,可以培养学生的逻辑思维能力和抽象思维能力,为后续学习和工作打下坚实的基础。

在复习高数的过程中,掌握重点知识点是非常重要的。

本文将介绍高数复习的重点内容,帮助您更好地备战考试。

1. 极限和连续性在高数中,极限和连续性是最基础也是最重要的知识点之一。

掌握极限和连续性的概念、性质及相关运算法则是解题的关键。

在复习时,要重点掌握函数极限、无穷小与无穷大、导数和微分的定义与计算方法等内容。

2. 导数与微分导数与微分是高数中的核心内容,它们是研究函数变化率和函数在某点的切线斜率的重要工具。

在复习导数与微分时,要熟悉导数的基本定义和基本性质,掌握各种基本函数的导数公式,如幂函数、指数函数、对数函数以及三角函数等。

3. 微分中值定理与导数应用微分中值定理是高数中的一个重要定理,它是计算函数在某个区间上的平均变化率与瞬时变化率之间的关系的重要工具。

在复习微分中值定理时,要理解和掌握罗尔定理、拉格朗日中值定理和柯西中值定理等内容,同时要能灵活运用导数的应用,如解决最值问题、曲线的凸凹性和渐近线等。

4. 不定积分和定积分不定积分和定积分是高数中的重要概念,它们是求解函数的原函数和计算曲线下面积的重要工具。

在复习不定积分和定积分时,要掌握基本的求积分方法和常见函数的积分公式,如换元积分法、分部积分法、定积分的定义和性质等。

5. 微分方程微分方程是高数的一个重要章节,它可以描述自然界中的各种变化过程。

在复习微分方程时,要掌握常微分方程的基本概念和基本解法,如一阶和二阶常微分方程的求解方法、特殊微分方程的解法和初值问题的求解等。

6.级数和幂级数级数和幂级数是高数中的重要内容,也是进一步学习数学分析和物理等学科的基础。

在复习级数和幂级数时,要了解级数和幂级数的定义和性质,如收敛性、发散性以及级数的求和等方法。

以上是高数复习的重点内容,希望本文能够帮助您有针对性地复习高数。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

高数笔记大一必备知识点

高数笔记大一必备知识点

高数笔记大一必备知识点1. 函数与极限- 函数定义和性质- 极限的定义和性质- 常见函数的极限求解方法2. 微分学- 导数的定义和性质- 常见函数的导数求解方法- 高阶导数与导数的应用- 极值与最值的求解方法3. 积分学- 不定积分的定义和性质- 常见函数的积分求解方法- 定积分的定义和性质- 微积分基本定理的应用4. 函数的应用- 曲线图像的分析- 函数模型的建立与应用5. 常微分方程- 常微分方程的基本概念与分类- 一阶常微分方程的解法- 高阶常微分方程的解法6. 级数- 级数的定义和性质- 常见级数的求和方法- 级数收敛与发散的判别方法7. 二重积分- 二重积分的定义和性质- 坐标变换与极坐标法的应用8. 三重积分- 三重积分的定义和性质- 坐标变换与球坐标法的应用9. 偏导数与多元函数微分学- 偏导数的定义和性质- 多元函数的全微分与求导10. 曲线积分与曲面积分- 曲线积分的定义和性质- 曲面积分的定义和性质- 根据题目使用参数化与换元法解决具体问题以上是大一学习高等数学所必备的知识点,对于每个知识点,你需要深入理解其定义、性质和基本求解方法。

在学习过程中,可以结合教材和习题集进行实际练习,掌握每个知识点的应用技巧。

尽管高等数学是一门理论与实践相结合的学科,但通过积极参与课堂讨论、与同学组队解题、与教师进行交流等实践方式,你将能更好地理解与应用这些知识点。

最后,要善于总结和整理自己的思路,形成自己的高数笔记。

这将有助于加深对知识点的理解,并为以后的学习打下坚实基础。

祝愿你在大学的高数学习中取得好成绩!。

高数复习重点梳理

高数复习重点梳理

高数复习重点梳理
第一章:导数与微分
在高数复习中,导数与微分是非常重要的概念,它们是微积分的基础。

导数表
示函数在某一点上的变化率,微分则表示函数在该点附近的近似线性变化。

在学习导数与微分时,需要掌握的重点包括:
1.导数的定义与性质
2.基本导数的求法
3.高阶导数
4.微分的定义与性质
5.隐函数与参数方程的导数与微分
6.微分中值定理
第二章:不定积分与定积分
不定积分与定积分是微积分的另一个重要内容,它们是对函数积分的不同形式。

在学习不定积分与定积分时,需要注意以下内容:
1.不定积分的基本性质
2.基本的不定积分表
3.定积分的定义与性质
4.定积分的应用:计算面积、求解定积分方程等
5.变限积分与定积分的运算法则
6.定积分的几何应用
第三章:微分方程
微分方程是数学中一个重要的研究对象,它描述了函数的导数与自身之间的关系。

在学习微分方程时,需要了解以下内容:
1.微分方程的分类与基本概念
2.一阶微分方程的求解方法
3.高阶微分方程的求解方法
4.微分方程的初值问题
5.线性微分方程
6.微分方程的物理应用
第四章:级数
级数是数学分析中的一个重要概念,它描述了无穷序列之和的性质。

在学习级数时,需要牢记以下要点:
1.级数收敛与发散的判别法
2.正项级数收敛的性质
3.常用级数的收敛性质
4.级数的运算:加法、乘法、除法
5.幂级数及其收敛半径
6.泰勒级数与麦克劳林级数的应用
以上是高等数学复习中的重点内容梳理,希望对你的复习有所帮助。

祝你取得优异的成绩!。

高数复习资料推荐

高数复习资料推荐

高数复习资料推荐在大学学习中,高等数学是一门非常重要的学科。

它不仅是培养学生解决实际问题的能力的基础,还是进一步深入学习其他数理科学的基础。

然而,由于高等数学的抽象性和难度较大,相当一部分学生在学习过程中可能会遇到困难。

为了帮助学生更好地复习高等数学,本文将介绍一些值得推荐的高数复习资料。

一、教材复习资料1. 《高等数学》教材《高等数学》是大多数高校普遍使用的教材,由于其权威性和系统性,在复习高等数学时是必不可少的参考资料。

教材中包含了高等数学各个章节的知识点和例题,并配有详细的解题过程。

在复习时,学生可以根据教材内容进行系统性的整理和总结,加深对知识点的理解。

2. 《高等数学》习题集除了教材外,高等数学习题集也是复习的重要资料之一。

习题集包含了大量的习题和答案,学生可以通过反复做题来巩固知识点和提高解题能力。

此外,习题集中还会附有一些习题的详细解析,可以帮助学生理解解题思路和方法。

二、网络资源1. 在线教育平台当前,网络技术的快速发展使得在线教育平台成为学习的主要途径之一。

通过在线教育平台,学生可以随时随地获取高等数学的教学视频、习题讲解和复习资料等。

一些知名的在线教育平台如Coursera、EdX和MOOC等提供了丰富的高等数学资源,学生可以根据自己的学习进度和需求来选择合适的课程和资源。

2. 数学学习网站除了在线教育平台,互联网上还有许多专门为数学学习提供资源的网站。

这些网站提供了丰富的数学教学资料、视频讲解、习题和解答等,可以帮助学生在复习高等数学时找到更多的学习资源。

一些著名的数学学习网站如数学网、数学好网站等,都是学生们值得关注和利用的资源。

三、备考资料1. 高数复习大纲备考高等数学时,了解高数复习的重点和难点是非常重要的。

高数复习大纲将会清晰地列出各个章节的考点和重点,帮助学生明确学习的重点和方向。

学生可以根据高数复习大纲来有针对性地安排学习计划,并将注意力更集中地放在需要重点复习的知识点上。

大一高数必背知识点

大一高数必背知识点

大一高数必背知识点一、函数与极限1. 函数的定义与性质函数是一种特殊的关系。

对于每一个自变量x的取值,函数对应一个唯一确定的因变量y的值。

函数的定义域为自变量的取值范围。

2. 极限与连续性极限表示自变量逼近某个值时,函数对应的因变量的趋势。

如果函数的极限存在且与函数在该点的值相等,则函数在该点连续。

3. 基本极限公式- lim(x→a) k = k,其中k为常数。

- lim(x→a) x = a- lim(x→a) x^n = a^n,其中n为自然数。

- lim(x→a) (a^x - 1)/x = ln(a),其中a为大于0且不等于1的常数。

- lim(x→∞) (1 + 1/x)^x = e,其中e为自然对数的底数。

二、导数与微分1. 导数的定义与性质导数表示函数在某一点的变化率。

对于函数y=f(x),它在点x=a处的导数记作f'(a)或dy/dx|_(x=a)。

导数具有以下性质:- 导数存在的充分条件是函数在该点可导。

- 如果函数在某一点可导,则它在该点连续。

- 导数可以用于判断函数的增减性和凸凹性。

2. 基本导数公式- (k)' = 0,其中k为常数。

- (x^n)' = nx^(n-1),其中n为自然数。

- (e^x)' = e^x- (a^x)' = a^x·ln(a),其中a为大于0且不等于1的常数。

- (log_a x)' = 1/(x·ln(a)),其中a为大于0且不等于1的常数。

3. 高阶导数如果函数f(x)的导数f'(x)存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x)或d^2y/dx^2。

类似地,如果f(x)的n阶导数存在,则f(x)的n阶导数记作f^(n)(x)或d^n y/dx^n。

三、积分与微积分基本定理1. 不定积分的定义与性质不定积分是求解导数的逆运算。

大一高数考试必背知识点

大一高数考试必背知识点

大一高数考试必背知识点
在大一高数考试中,准备充分且掌握重要的知识点非常重要。

下面是一些大一高数考试必背的知识点,希望对你有所帮助。

一、函数与极限
1. 函数的定义和性质
2. 极限的定义和性质
3. 极限运算法则
4. 无穷小与无穷大
5. 函数的连续性和间断点
6. 函数的导数和微分
二、导数与微分
1. 导数的定义和性质
2. 导数的四则运算与求导法则
3. 高阶导数和隐函数求导
4. 微分的定义和性质
5. 微分中值定理和罗尔定理
三、积分
1. 不定积分和定积分的概念
2. 基本积分表和常用积分公式
3. 定积分的性质和基本定理
4. 反常积分的概念和判定
5. 曲线的面积与弧长
四、微分方程
1. 微分方程的概念和基本形式
2. 一阶微分方程的解法
3. 高阶线性微分方程及其特解
4. 变量分离法和齐次方程
5. 常系数线性齐次方程
五、多元函数与偏导数
1. 多元函数的定义和性质
2. 偏导数的定义和计算
3. 隐函数的偏导数
4. 方向导数和梯度
5. 极值和最大值最小值
六、空间解析几何
1. 点、直线和平面的方程
2. 空间曲线的参数方程
3. 空间曲面的方程和性质
4. 直线与曲面的位置关系
5. 空间向量的运算和坐标表示
以上是大一高数考试必背的知识点,通过充分理解这些知识点并进行适当的练习和应用,相信你将能够在考试中取得好成绩。

祝你顺利通过考试!。

《高等数学》复习要点资料整理总结及练习题

《高等数学》复习要点资料整理总结及练习题

《高等数学》复习要点资料整理总结及练习题二、主要知识点第一章函数、极限、连续考试内容:函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数的概念。

数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则(单调有界准则和两边夹定理),两个重要极限。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求:1.理解函数的概念,掌握函数的有界性、单调性、周期性和奇偶性。

2.掌握数列极限和函数极限(包括左极限与右极限)的概念。

3.掌握极限存在的两边夹定理,极限的四则运算法则,利用两个重要极限求极限的方法。

4.理解无穷小量的概念和基本性质,无穷小量的比较方法,无穷大量的概念及其与无穷小量的关系。

5.掌握函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

6.理解初等函数的连续性,掌握闭区间上连续函数的性质(有界性、最大值和最小值定理、零点定理,介值定理),并会应用这些性质。

第二章导数与微分考试内容:导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、隐函数和参数方程确定的函数的导数,高阶导数,一阶微分形式的不变性。

考试要求:1.掌握导数的概念,理解可导性与连续性之间的关系,了解导数的几何意义会求平面曲线的切线方程和法线方程。

2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求参数方程确定的函数与隐函数的导数。

3.了解高阶导数的概念,会求简单函数的高阶导数。

4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。

第三章微分中值定理与导数应用考试内容:微分中值定理,洛必达法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点,渐近线,函数图形的描绘,函数的最大值与最小值。

(完整版)大学全册高等数学知识点(全)

(完整版)大学全册高等数学知识点(全)

(完整版)大学全册高等数学知识点(全)高等数学是一门非常重要的学科,它是数学中最具有挑战性和深度的一门课程。

它的内容包括微积分、线性代数、微分方程和复变函数等专题,这些都是现代科学和技术的核心。

在本文中,我们将会详细介绍高等数学的知识点,以供学习和参考。

微积分微积分被称为数学的两个支柱之一,它是数学的一门核心课程。

微积分最早是由牛顿和莱布尼茨创立的,作为数学中求导和积分的基本工具,微积分与其他领域如物理、工程学和经济学等紧密相关。

微分学和积分学是微积分中最重要的两个分支。

微分学涉及单变量函数的导数和导数的应用,具体包括切线和曲线的斜率、极值和曲线的凹凸性等概念。

积分学则涉及单变量函数的定积分和不定积分,并且与微分学有紧密的联系,例如牛顿-莱布尼茨公式。

多元微积分也是微积分中的一个重要分支。

它包括了多元函数的求导和偏导数,以及多重积分的概念和应用。

多元积分常用于描述物理量在空间中的分布和相互作用关系,如在物理力学、统计学、流体力学和电磁学等领域中。

线性代数线性代数是一种数学分支,涉及线性方程组的解法,向量、矩阵和线性变换的概念及其应用。

线性代数在现代科学和技术中十分普遍,如应用在数学、物理、计算机科学、统计学、工程学等领域。

线性方程组求解是线性代数中的基础概念之一。

矩阵和行列式则是线性方程组求解的核心工具,它们用于表达系数、求解和判断方程组的解。

向量和矩阵在应用中常被用于表示和处理各种数据,如图像、音频、文本等。

除了矩阵和行列式,还有很重要的概念是对称矩阵、特征值和特征向量。

它们与线性变换及其特征相关联,在应用中常被用于描述各种对象的特征或性质。

微分方程微分方程是数学的一个重要分支,它涉及多元函数的微分和积分,具体解释为量的变化随时间或空间的变化规律。

微分方程在物理、生物、经济、工程学等领域中有广泛的应用。

微分方程可分为常微分方程和偏微分方程。

常微分方程只涉及单一自变量的函数和导数,可以分为一阶和二阶微分方程等不同的类型。

(完整版)高等数学基本知识点大全大一复习,考研必备

(完整版)高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin limxx f x x xf x x x +=+>->-,求解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 22=?>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-?x xt x edte x (洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.??=+-==52arctan )(2te ty y t x x y y 由决定,求dxdy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=13.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

大学高数常用知识点汇总

大学高数常用知识点汇总

大学高数常用知识点汇总上了大学,一提到高数,那可真是让不少同学“抓耳挠腮”。

不过别怕,今天咱就来好好捋一捋大学高数里那些常用的知识点,保证让你有种“恍然大悟”的感觉。

先来说说函数与极限吧。

这就好比是高数世界的“敲门砖”。

函数,简单来说,就是把一个数变成另一个数的“魔法盒子”。

比如说,你输入一个 x,经过某种规则 f,就会输出一个对应的 y。

这规则 f 就是函数啦。

而极限呢,想象一下你朝着一个目标一直靠近,但就是永远到不了,那种感觉就是极限。

就像你在操场上跑步,一直朝着终点冲,但永远差那么一点点才到,这一点点的距离可以无限小,小到几乎可以忽略不计,这就是极限的概念。

再讲讲导数。

导数这玩意儿,就像是函数的“速度表”。

比如说,一辆汽车在行驶,它的路程和时间有个关系,那导数就能告诉你在某个时刻,车开得有多快。

要是函数图像是一条曲线,那导数就是这条曲线在某一点的切线斜率。

这切线斜率可重要了,它能告诉你函数在这一点的变化趋势,是上升还是下降,变化得快还是慢。

积分可就更有意思啦!如果说导数是看瞬间的变化,那积分就是把这些瞬间的变化累积起来。

举个例子,你知道速度和时间的函数,积分一下就能算出这段时间里车跑了多远。

或者说,你家的水龙头一直在滴水,水流速度不均匀,通过积分就能算出在一段时间内一共滴了多少水。

然后是无穷级数。

这就像是一个无限长的“数字队伍”。

有时候一个数很难直接表示出来,但是把它拆分成无数个数的和,就能慢慢算出来啦。

比如说,把一个复杂的函数表示成一个无穷级数的形式,就能更方便地研究它的性质。

还有多元函数,这就像是进入了一个“多维世界”。

不再只有一个自变量 x 啦,可能有 x、y 甚至更多。

比如说,在一个平面上找一个点的温度,这温度就和这个点的横纵坐标都有关系,这就是多元函数。

研究多元函数的时候,就得考虑偏导数、全微分这些概念。

在学习高数的过程中,我印象特别深的一次是做一道积分的题目。

那道题看起来挺简单,就是一个曲线围成的区域,让求面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(通用复习)师兄的忠告:记住我们只复习重点,不需要学得太多,这些是每年必须的重点,希望注意第一章 函数与极限函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(,U a 1.由n x ∴N =2.即对∀∴x ∞→lim ○x →1.由(f ∴δ=2.即对∀∴x x →0lim ○→x 1.由(f ∴X =2.即对∀∴x ∞→lim 第三节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.→x 即函数x g 是(→x 3(x 0lim x x →3x →【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()00233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x∵22121lim21221lim lim 2lim 121x x x x x x →∞+→∞+→∞++→∞=⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第六节 无穷小量的阶(无穷小的比较)○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】lim 0=→x12123.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=bax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==arcsi e e =⎛⎫⎪ =⎝⎭=⎛ ⎝第四节 高阶导数○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, (y ⎡'''=⎣……()(ny =-即y '=∴y ='dy 【题型示例】现假设函数f x 在0,π上连续,在0,π 上可导,试证明:0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.x )x 上可导,并且f '2又∵e ξ化简得x e 1.()0,π上2化简得∴(f ξ'第二节 1.☆2A B .☆⑴0⋅∞()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解:(一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()00sin 1cos 1cos sin L x x x x x x'→''---=0x →=000ln lim L x x '→→=对⑸()tan 002000211,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan xx x x L x x y y x x x y x y x x x xx x x x→→∞∞'→→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭解:令两边取对数得对求时的极限,【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x (,0)-∞ 0 (0,1) 1 (1,2) 2 (2,)+∞ y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数2313y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞; ⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ; 令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ; 令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令(f '解得:3.4.又∵f ∴()max f x 第六节 第七节 第八节 第四章 第一节 )或()dF x 即表示为:()f x ⎰(⎰(1k f ⎡⎣⎰第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求221dx a x+⎰【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)=⎝⎭第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C2x 22x x x e x e x e ⋅=-=-⎰解:cos cos cos x x x x e e e e ⋅=-=-=-⎰解:x e ⋅⎰即:∴xe ⋅⎰()Q x ()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<); 即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+⎪⎝⎭,则参数na m =- 22bc ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b c p q a a== ⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中[],a b ⑴aaf x dx f u du =⎰⎰⑵()0a af x dx =⎰ ⑶()()bba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212bb baa a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰baf ⎰d dx⎰x 001212x L x x x →'→→=====⋅⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰ 【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续129==⎰如:不定积分公式21arctan 1dx x C x =++⎰的证明。

相关文档
最新文档