第2章 药物代谢动力学

合集下载

第2章 药物代谢动力学

第2章  药物代谢动力学

药量---时间关系
血药浓度 A(给药量)可代替C

n=1:一级动力学

n=0:零级动力学
正值:表示吸收动力学 负值:表示消除动力学
一级消除动力学(first-order elimination kinetics
----体内药量以恒定的百分率进行消除(恒比消除() 掌握)
一级消除动力学特点
----线性动力学(掌握)
pH=7
pH=4
总量 A + H+HA
100001 105
1
HAH+ + A 总量
1
102 101
10pH-pKa =
[ A ] [HA]
= 107-2 = 105
10pH-pKa =
[ A ] [HA]
= 104-2 = 102
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿 内排出?
F、Vd、 T1/2、 CL
(掌握) 简单扩散
(掌握)
首关消除 药酶诱导/抑制 尿液PH对药物排泄影响
(掌握)
一级消除动力学 零级消除动力学
Css 、F、Vd、 T1/2、 CL
被动转运 药物跨膜转运方式
滤过 水溶性扩散
简单扩散 脂溶性扩散

易化扩散
体 扩
主动转运





1.滤过(Filtration) --水溶性扩散(了解)
3.易化扩散 (Facilitated diffusion; Carrier-mediated diffusion) (了解

▲有载体协助的顺差转运,有饱和、竟争现象。

第二章 药物代谢动力学

第二章 药物代谢动力学

4)D类(危险):临床有资料表明对胎儿有危害 ,但治疗孕妇疾病的疗效肯定,又无代替药物 ,权衡利弊后再应用。如抗惊厥药苯妥英钠,链 霉素等。 5)X类(高度危险):证实对胎儿有危害,禁用
第二章
选药原则: 有A不选B类,X绝对禁选;选AB不选CD, 无药替代才选CD.
三、代谢(生物转化)
定义: 药物 代谢产物
1.4-3.4
=
[ A- ]
[HA]
= 10 -2 =1/100
血浆中:10 7.4-3.4 =
[ A- ]
[HA]
= 10 4 = 10000/1
酸酸少易;酸碱多难
第二章
• 某弱酸性药物的pKa是3.4,该药物在血浆( 血浆pH=7.4)中的解离百分率约为( ) • A.1% • B.10% • C.90% • D.99% • E.99. 99%
二、影响药物通过细胞膜的因素
第二章
(二)药物的浓度差、膜通透性、面积厚度
(三)血流量——影响膜两侧药物浓度差 (四)细胞膜转运蛋白的量和功能
分子量小,脂溶性高,解离度小的药物易转运
第二节 药物的体内过程
一、吸收:
定义:给药部位 影响因素 血液循环
第二章
1. 给药途径 2. 理化性质
3. 吸收环境
dC/dt = - keC
恒量消除 零级消除动力学 (Zero order elimination kinetics) 非线性动力学消除 n=0 dC/dt = - ke
第二章
血 药 浓 度 半 对 数 血 药 浓 度
零级 一级
零级
一级
时间
时间
浓度越大,消除速度越快 浓度越小,消除速度越慢
一、一级消除动力学

药理学第二章

药理学第二章

第二章
1
药物分子的跨膜转运
2
药物的体内过程
3
房室模型
4
药物消除动力学
第二章
5 体内药物的药量时间关系 6 药物代谢动力学重要参数 7 药物剂量的设计与优化
第二章
❖ 掌握药物代谢动力学的基本规律 ❖ 药物的被动转运与主动转运 ❖ 首关消除 ❖ 药物与血浆蛋白结合之特点及意义 ❖ 体液的pH和药物的解离度 ❖ 酶的诱导或抑制 ❖ 药物排泄的途径、特点、影响因素。肝肠循环 ❖ 一级消除动力学 ❖ 药物代谢动力学重要参数:消除半衰期(t1/2)、
第二章
(2)直肠给药
经直肠给药仍避免不了首关消除。吸 收不如口服。唯一优点是防止药物对上消 化道的刺激性。
(3)舌下给药
由舌下静脉,不经肝脏而直接进入体 循环,适合经胃肠道吸收时易被破坏或有 明显首过消除的药物。如硝酸甘油、异丙 肾上腺素。
第二章
(4)注射给药
特点是吸收迅速、完全。适用于在胃肠 道易被破坏或不易吸收的药物(青霉素G、 庆大霉素);也适用于肝中首过消除明显 的药物(硝酸甘油 )。
吸收部位
主要在小肠。药物从胃肠道吸收后,都要经过门 静脉进入肝,再进入血液循环。舌下给药或直肠 给药,分别通过口腔、直肠和结肠的粘膜吸收
停留时间长,经绒毛吸收面积大 毛细血管壁孔道大,血流丰富 pH5-8,对药物解离影响小
Fick扩散定律 (Fick’s Law of Diffusi第on二)章
第二章
[CO2]i >[CO2]o
1.药物分子的跨膜转运 第二章
❖(二)简单扩散
非极性药物分子与其所具有的脂溶性溶解于细胞 膜的脂质层,顺浓度差通过细胞膜称简单扩散, 又称
被动扩散

2023年执业药师药物代谢动力学习题及答案

2023年执业药师药物代谢动力学习题及答案

第二章药物代谢动力学一、最佳选择题1、决定药物每天用药次数旳重要原因是A、吸取快慢B、作用强弱C、体内分布速度D、体内转化速度E、体内消除速度2、药时曲线下面积代表A、药物血浆半衰期B、药物旳分布容积C、药物吸取速度D、药物排泄量E、生物运用度3、需要维持药物有效血浓度时,对旳旳恒定给药间隔时间是A、每4h给药一次B、每6h给药一次C、每8h给药一次D、每12h给药一次E、每隔一种半衰期给药一次4、以近似血浆半衰期旳时间间隔给药,为迅速到达稳态血浓度,可以初次剂量A、增长半倍B、增长1倍C、增长2倍D、增长3倍E、增长4倍5、某药旳半衰期是7h,假如按每次0.3g,一天给药3次,到达稳态血药浓度所需时间是A、5~10hB、10~16hC、17~23hD、24~28hE、28~36h6、按一级动力学消除旳药物,按一定期间间隔持续予以一定剂量,到达稳态血药浓度时间长短决定于A、剂量大小B、给药次数C、吸取速率常数D、表观分布容积E、消除速率常数7、恒量恒速给药最终形成旳血药浓度为A、有效血浓度B、稳态血药浓度C、峰浓度D、阈浓度E、中毒浓度8、药物吸取抵达血浆稳态浓度时意味着A、药物作用最强B、药物吸取过程已完毕C、药物消除过程正开始D、药物旳吸取速度与消除速率到达平衡E、药物在体内分布到达平衡9、按一级动力学消除旳药物有关稳态血药浓度旳描述中错误旳是A、增长剂量能升高稳态血药浓度B、剂量大小可影响稳态血药浓度抵达时间C、初次剂量加倍,按原间隔给药可迅速达稳态血药浓度D、定期恒量给药必须经4~6个半衰期才可达稳态血药浓度E、定期恒量给药达稳态血药浓度旳时间与清除率有关10、按一级动力学消除旳药物,其消除半衰期A、与用药剂量有关B、与给药途径有关C、与血浆浓度有关D、与给药次数有关E、与上述原因均无关11、某药按一级动力学消除,其血浆半衰期与消除速率常数k旳关系为A、0.693/kB、k/0.693C、2.303/kD、k/2.303E、k/2血浆药物浓度12、对血浆半衰期(一级动力学)旳理解,不对旳旳是A、是血浆药物浓度下降二分之一旳时间B、能反应体内药量旳消除速度C、根据其可调整给药间隔时间D、其长短与原血浆浓度有关E、一次给药后经4~5个半衰期就基本消除13、静脉注射1g某药,其血药浓度为10mg/dl,其表观分布容积为A、0.05LB、2LC、5LD、10LE、20L14、在体内药量相等时,Vd小旳药物比Vd大旳药物A、血浆浓度较低B、血浆蛋白结合较少C、血浆浓度较高D、生物运用度较小E、能到达旳治疗效果较强15、下列论述中,哪一项与表观分布容积(Vd)旳概念不符A、Vd是指体内药物达动态平衡时,体内药量与血药浓度旳比值B、Vd旳单位为L或L/kgC、Vd大小反应分布程度和组织结合程度D、Vd与药物旳脂溶性无关E、Vd与药物旳血浆蛋白结合率有关16、下列有关房室概念旳描述错误旳是A、它反应药物在体内分却速率旳快慢B、在体内均匀分布称一室模型C、二室模型旳中央室包括血浆及血流充盈旳组织D、血流量少不能立即与中央室达平衡者为周围室E、分布平衡时转运速率相等旳组织可视为一室17、影响药物转运旳原因不包括A、药物旳脂溶性B、药物旳解离度C、体液旳pH值D、药酶旳活性E、药物与生物膜接触面旳大小18、药物消除旳零级动力学是指A、消除半衰期与给药剂量有关B、血浆浓度到达稳定水平C、单位时间消除恒定量旳药物D、单位时间消除恒定比值旳药物E、药物消除到零旳时间19、下列有关一级药动学旳描述,错误旳是A、血浆药物消除速率与血浆药物浓度成正比B、单位时间内机体内药物按恒比消除C、大多数药物在体内符合一级动力学消除D、单位时间机体内药物消除量恒定E、消除半衰期恒定20、有关一室模型旳论述中,错误旳是A、各组织器官旳药物浓度相等B、药物在各组织器官间旳转运速率相似C、血浆药物浓度与组织药物浓度迅速到达平衡D、血浆药物浓度高下可反应组织中药物浓度高下E、各组织间药物浓度不一定相等21、对药时曲线旳论述中,错误旳是A、可反应血药浓度随时间推移而发生旳变化B、横坐标为时间,纵坐标为血药浓度C、又称为时量曲线D、又称为时效曲线E、血药浓度变化可反应作用部位药物浓度变化22、药物在体内旳半衰期依赖于A、血药浓度B、分布容积C、消除速率D、给药途径E、给药剂量23、依他尼酸在肾小管旳排泄属于A、简朴扩散B、滤过扩散C、积极转运D、易化扩散E、膜泡运送24、药物排泄旳重要器官是A、肾脏B、胆管C、汗腺D、乳腺E、胃肠道25、有关药物排泄旳描述错误旳是A、极性大、水溶性大旳药物在肾小管重吸取少,易排泄B、酸性药在碱性尿中解离少,重吸取多,排泄慢C、脂溶性高旳药物在肾小管重吸取多,排泄慢D、解离度大旳药物重吸取少,易排泄E、药物自肾小管旳重吸取可影响药物在体内存留旳时间26、下列有关肝微粒体药物代谢酶旳论述错误旳是A、又称混合功能氧化酶系B、又称单加氧化酶C、又称细胞色素P450酶系D、肝药物代谢酶是药物代谢旳重要酶系E、肝药物代谢专司外源性药物代谢27、药物旳首过消除也许发生于A、舌下给药后B、吸入给药后C、口服给药后D、静脉注射后E、皮下给药后28、具有肝药酶活性克制作用旳药物是A、酮康唑B、苯巴比妥C、苯妥英钠D、灰黄霉素E、地塞米松29、下列有关肝药酶旳论述哪项是错误旳A、存在于肝及其他许多内脏器官B、其作用不限于使底物氧化C、对药物旳选择性不高D、肝药酶是肝脏微粒体混合功能酶系统旳简称E、个体差异大,且易受多种原因影响30、下列有关肝药酶诱导剂旳论述中错误旳是A、使肝药酶旳活性增长B、也许加速自身被肝药酶旳代谢C、可加速被肝药酶转化旳药物旳代谢D、可使被肝药酶转化旳药物血药浓度升高E、可使被肝药酶转化旳药物血药浓度减少31、增进药物生物转化旳重要酶系统是A、单胺氧化酶B、细胞色素P450酶系统C、辅酶ⅡD、葡萄糖醛酸转移酶E、胆碱酯酶32、下列有关药物体内转化旳论述中错误旳是A、药物旳消除方式是体内生物转化B、药物体内旳生物转化重要依托细胞色素P450C、肝药酶旳作用专一性很低D、有些药物可克制肝药酶活性E、有些药物能诱导肝药酶活性33、不符合药物代谢旳论述是A、代谢和排泄统称为消除B、所有药物在体内均经代谢后排出体外C、肝脏是代谢旳重要器官D、药物经代谢后极性增长E、P450酶系旳活性不固定34、药物在体内旳生物转化是指A、药物旳活化B、药物旳灭活C、药物化学构造旳变化D、药物旳消除E、药物旳吸取35、不影响药物分布旳原因有A、肝肠循环B、血浆蛋白结合率C、膜通透性D、体液pH值E、特殊生理屏障36、有关药物分布旳论述中,错误旳是A、分布是指药物从血液向组织、组织间液和细胞内转运旳过程B、分布多属于被动转运C、分布达平衡时,组织和血浆中药物浓度相等D、分布速率与药物理化性质有关E、分布速率与组织血流量有关37、影响药物体内分布旳原因不包括A、组织亲和力B、局部器官血流量C、给药途径D、生理屏障E、药物旳脂溶性38、药物通过血液进入组织器官旳过程称A、吸取B、分布C、贮存D、再分布E、排泄39、药物与血浆蛋白结合A、是不可逆旳B、加速药物在体内旳分布C、是可逆旳D、对药物积极转运有影响E、增进药物旳排泄40、药物肝肠循环影响药物在体内旳A、起效快慢B、代谢快慢C、分布程度D、作用持续时间E、血浆蛋白结合率41、下列有关药物吸取旳论述中错误旳是A、吸取是指药物从给药部位进入血液循环旳过程B、皮下或肌注给药通过毛细血管壁吸取C、口服给药通过首过消除而使吸取减少D、舌下或直肠给药可因首过消除而减少药效E、皮肤给药大多数药物都不易吸取42、丙磺舒可以增长青霉素旳疗效。

药理学第二章

药理学第二章
囊泡与胞内体的膜性结构相融合
简单扩散
滤过 载体转运
主动转运
易化扩散
问题
某人过量服用苯巴比妥(酸 性药)中毒,有何办法加速 脑内药物排至外周,并从尿内 排出?
2、药物的体内过程
药物的体内吸收过程
吸收
分布
代谢
排泄
2、药物的体内过程
2、药物的体内过程
一、吸收
定义: ❖ 药物自给药部位进入血液循环的过程。
(2) 苯巴比妥(弱酸性)pKa=7.4
根据10pH–pKa=[A–]/[HA],当尿液为碱性时, pH值大于pKa,[A-]增多,即[解离型]多,重 吸收减少,药物排泄加快,中毒时碱化尿液。
1.药物分子的跨膜转运
(3)药物分子跨膜转运还符合Fick定律:
面积*通透系数
通透量(单位时间分子数)=(C1-C2)*
1.药物分子的跨膜转运
❖(二)简单扩散
非极性药物分子与其所具有的脂溶性溶解于细胞 膜的脂质层,顺浓度差通过细胞膜称简单扩散, 又称
被动扩散
大多数药物属于被动转运
1.药物分子的跨膜转运
❖离子障
❖ 分子状态药物疏水而亲脂, 易通过细胞膜;离子状态 药物极性高,不易通过细 胞膜的脂质层。
1.药物分子的跨膜转运
另外还有血-眼屏障、血-关节囊屏障
❖ (三)、体液的pH和药物pKa
❖ 药物pKa和体液的pH决定药物分布重要因素, 一般弱碱性药物在细胞内浓度较高,弱酸性药物 在细胞外液浓度较高。利用这一原理对药物中毒 进行解毒。
❖ (四)、其他因素 ❖ (1)组织器官的血流量 ❖ 吸收的药物通过循环迅速向全身组织输送,
药物通过细胞膜的方式
滤过 简单扩散 载体转运

药物代谢动力学

药物代谢动力学

有些药物在肝脏与葡萄糖醛酸结合后、随胆汁 排到小肠后被水解,游离药物被重吸收;这种肝脏、 胆汁、小肠间的循环称为肝肠循环(hepatoenteral circulation)。
(三)其他途径的排泄
乳腺排泄:由于乳汁略呈酸性又富含脂质,所以 脂溶性高的药物和弱碱性药物如吗啡、阿托品等在 乳汁中浓度高。 其他:肺、胃肠、汗腺等。
第二章 药物代谢动力 学
Pharmacokinetics
学习目标
掌握:药物跨膜转运的特点;简单扩散的规律;药物 的体内过程;首关消除;肝肠循环;一级/零级消
除动力学及特点;主要药动学参数的定义与意义。
熟悉:药物在不同酸碱环境中解离度的计算;血浆蛋
白结合型药物的特点;药酶与药酶的诱导与抑制。
了解:房室模型;时量曲线;多次给药的时量曲线和
- lgKa= -lg
= - lg[H+] - lg
[A-] [HA]
pKa = pH - lg
pH-pKa = ]
[HA]

[解离型]
[非解离型]
[解离型] [非解离型]
当pH = pKa 时: [A- ] =[HA]
[BH+ ] = 弱碱性药物则相似 10 pKa: 是指弱酸或 [B]
肪、结缔组织等则较小。如硫喷妥钠的分布。
(三)组织细胞结合:某些药物与细胞成分具有特 殊亲和力。从而使药物在这些组织中的浓度高于 血浆浓度:碘--甲状腺、氯喹--肝脏、四环素-骨齿。 (四)体液的pH值和药物的解离度;
(五)体内屏障
1. 血-脑屏障
脑组织毛细血管内皮细胞间连接紧密, 外表面几乎全部为星形胶质细胞所包围。许 多分子量大、极性高的药物不能穿透,脂溶 性高或分子量小的药物可透过。

药理学第二章药物代谢动力学

药理学第二章药物代谢动力学
• ATP:Na+:K+=1:3:2
当细胞内[Na+]升高或细胞外[K+]升高时,钠泵被激活。 分解ATP供能,将Na+泵出细胞,同时将K+泵入细胞.
(2)继发性主动转运(secondary active transport):又称二次性主动转运。即不直 接利用分解ATP产生的能量,而是与原发性主 动转运中的转运离子相耦合,间接利用细胞内 代谢产生的能量来进行转运。这种转运使物质 跨膜转运的最普遍方式。
三、代谢(生物转化, metabolism, biotransformation)
指药物在体内发生的化学结构改变。转 化后的大多数药物药物活性降低或失去 药理活性,极性增加,易于排泄。
部位:主要在肝脏,
其它如胃肠、肺、皮肤、肾。
代谢主要由细胞色素P450单氧化酶系(简 称“肝药酶”)催化。
药物氧化代谢 (Oxidation) 细胞色素P450单氧化酶系(CYP)
需特异性载体。
如体内葡萄糖和一些离子(Na+、K+、 Ca2+等)的吸收。
顺浓度梯度,不耗能,不能逆浓度梯度 转运。
2、主动转运(active transport):
药物从低浓度一侧跨膜向高浓度一 侧的转运,又称逆流转运、上山运动。
主动转运的特点: (1)药物逆浓度差转运 (2)耗能 (3)需要载体 (4)有饱和现象及竞争性抑制
药物跨膜转运速度符合Fick定律
通透量(分子数/min) =(C1-C2)× 膜面积×通透系数
膜厚度
C1-C2 为药物浓度差,通透系数即 药物分子的脂溶度
(二)药物转运体
药物转运体(transporter)是跨膜转运蛋白,是 药物载体的一种。转运体可分为:

药理学 第2章 药物代谢动力学

药理学 第2章 药物代谢动力学
是少数药物消除形式
等量等间隔多次给药血中积累药物总药量
t1/2数
给药后的
经过半衰期药量
1
100% A0
50% A0
2
150% A0
75% A0
3
175% A0
87.5% A0
4
187.5% A0
93.8% A0
5
193.8% A0
96.9% A0
6
196.9% A0
98.4% A0
7
198.4% A0
99.2% A0
常用药动学参数
1.. 血浆半衰期:
Half-life (in Conc.-Time Curve)
是临床用药间隔的依据
Half-Life The amount of time required to rid the body of half of the initial concentration of the drug.
三、药物的分布:
影响药物分布的因素: 1.药物与血浆蛋白结合; 2.局部器官的血流量; 3.体液pH; 4.组织亲和力; 5.体内屏障,包括血脑屏障和胎盘屏障。
血浆蛋白结合(Plasma protein binding)
D+P
DPc
可逆性(Reversible equilibrium) 可饱和性(Saturable)
血脑屏障
(Blood-brain barrier, BBB)
由毛细血管 壁和N胶质细 胞构成
Blood Brain Barrier
四、生物转化 (transformation / metabolism)
又称为药物代谢,是药物在体内发生的 化学变化,药物经转化后成为极性高的 水溶性代谢物而利于排出体外。

5-2药动学

5-2药动学

iv tt) 无吸收过程 (iv.g iA im,sc,可全部吸收
影响因素:局部血循环 药物剂型
肌内注射和皮下注射
(Intramuscular and subcutaneous injection)
被动扩散+过滤
吸收快而全
3、呼吸道给药:肺泡吸收, 气体及挥发性药物
气雾剂—φ5 u m,肺泡吸收 喷雾剂—雾粒较大,局部
0.693 取对数后 t ½ = —— Ke
2、特点:
(1)恒比衰减 (2)时量关系:普通浓度(c)对时间描点为曲线 对数浓度(lgc)对时间描点为直线 (3) t1/2恒定 预计停药后、体内基本消除的时间 预计连续给药、达Css的时间 确定适宜给药间隔时间 (4)若需迅速达Css—首剂加倍负荷剂量 (5)多次用药、↑剂量并不能缩短达Css的时间
H+ HA A-
H+ B
BH+
HA H+
A-
B H+
BH+
离子障(ion trapping)离子型药物极性高,不易通过 C膜脂质层的现象。 而分子型药物相反:极性低,亲脂,可通过C膜
(2)药物解离度与体液pH和药物Pka关系
酸性药 : Ka=
Ka为解离常数
[H+][A]
[HA]
pKa=pH-log
a.肾小球滤过:经肾小管再吸收后,排出剩余 药物—被动转运 b.肾小管分泌:经近曲or远曲小管分泌到肾小 管排出——主动转运(载体有限-竞争抑制) c.肾小管重吸收:经小球滤过/小管分泌→肾小 管腔→极性低、脂溶性大的药物由小管 →血浆反向扩散的过程 ①药物or代谢物性质 ②尿pH ③尿量 ④肾小球滤过率
(二)零级消除动力学(二级速率): 恒量消除(zero- order elimination kinetics) 1、重要公式: -dc = KoC = Ko —— dt (∵ C 0 =1, K0零级消除速率常数) 积分:C t = C0 - K0 t

药理第2章:药动学

药理第2章:药动学
• 弱酸性药物易自细胞内向细胞外转运,细胞 外浓度高。
• 弱碱性药物则相反,在细胞内浓度较高。
40
巴比妥类药物中毒时为何 用碳酸氢钠解救?
• 碱化血液和尿液——脑中巴比妥向血液 和尿液转移——排出增加——缓解中毒。
41
5、体内屏障:
(1)血脑屏障 (2)胎盘屏障 (3)血眼屏障
42
(1)血脑屏障(BBB): Blood Brain Barrier
舌下给药
26
2、注射部位的吸收 :
•(1)静脉注射:包括iv和ivgtt 用于:急诊、休克病人;
(2)皮下注射或肌肉注射(sc或im): 用于:病情较严重者——PG、庆大;
•(3)动脉注射:直接将药物注入动脉分布的部位 用于:心肌梗塞——纤溶药直接将纤溶药注
入冠状动脉;
水溶液吸收迅速,油剂、混悬剂或植人片可在 局部滞留,吸收慢
经转化后脂溶性降低而水溶性增加,易于从肾 脏排出,代谢是药物在体内消除的重要途径。
49
(五)药物代谢酶系:
• 1存、在微于粒肝体脏酶内:质主网要上是—细—胞也色称素肝P4药50酶,; CYP2D6、CYP1A2等
• 2、非微粒体酶:存在于血浆和线粒体 中,如胆碱酯酶、单胺氧化酶、醇脱 氢酶等;
• 3、酶系统的特点:(1)专一性低; (2)活性有限;(3)个体差异大; (4)容易受到某些药物的诱导和抑制
通透量(单位时间分子数)=(C1-C2)×
面积×通透系数 厚度
①(C1-C2):膜两侧的浓度差。 ②膜的性质:面积、厚度。
③通透系数:药物分子的脂溶性。
④血流量、分子量的大小、药物极性高低。 8
(三)载体转运 (carrier-mediated transport)

第二章 药物代谢动力学

第二章 药物代谢动力学

肾脏排泄
肾小球滤过; 肾小管分泌(主动分泌通道, 竞争性抑制);
肾小管重吸收(被动扩散,尿液pH)、
消化道排泄 肝肠循环:胆汁排入肠腔的药物部分可再经小肠上皮细胞吸收经
肝脏进入血液循环,形成的肝—胆汁—小肠间的循环。
其他途径 汗液、泪液、唾液、乳汁、呼吸道、头发和皮肤。
第三节 药物的速率过程
一、一次给药的药—时曲线下面积
内转运的药物量随时间而下降;
t1/2恒定,与剂量或血药浓度无关, t1/2=0.693/ ke
消除 5单位/h
2.5单位/h
1.25单位/h
零级动力学消除
单位时间内消除恒定量的药物(超过机体的消除能力),
即血药浓度按恒定消除速度进行消除,也称恒量消除。
过量用药时出现;
单位时间消除恒量的药物;
消除速率与药量或浓度无关,与初始浓度无关;
特点 通过毛细血管壁吸收(简单扩散、滤过); 可避免胃肠液中酸碱及消化酶对药物的影响; 可避免首过消除现象; 给药剂量准确; 药物效应快速显著.
影响因素 药物在组织间液的溶解度; 注射部位血流量。
血管内给药
无吸收过程,可迅速起效; 静脉注射、静脉滴注; 静脉滴注适用于治疗指数小、药物容积大、不易吸收或刺激性
代第 谢二 动章 力药 学物
药物代谢动力学
研究机体对药物的处置过程,即药物在体内吸收、分布、生
物转化(代谢)及排泄的过程,以及血药浓度随时间变化而 变化的规律的科学。
第一节 药物的跨膜转运
药物分子的跨膜转运方式
被动转运(passive transport):滤过、简单扩散 载体转运(active transport):主动转运、易化扩散 膜动转运:胞吐、胞饮

第2章 药物代谢动力学

第2章 药物代谢动力学

(三)膜动转运(cytosis)
指大分子转运伴随膜 运动。 1 胞饮(pinocytosis): 又称吞饮或入胞,指 液态蛋白质或大分子 物质,可通过生物膜 内陷形成吞噬小胞, 进入细胞内。 胞饮:垂体后叶素粉 剂经鼻粘膜吸收
2 胞吐(exocytosis): 又称胞裂外排或出胞, 指液态大分子,可从细 胞内转运到细胞外。 胞吐:腺体分泌,递质 释放
硝酸甘油(95%)
3 吸收环境
(1)胃的排空、肠蠕动的快慢 推进性蠕动过快影响吸收。 适宜的蠕动有利于药物与肠壁接触,利于吸收。
(2)胃肠内容物的多少和性质 内容物过多,影响药物与肠壁接触不利吸收。 油及脂肪可促进脂溶性药物吸收。
三 药物的分布和影响因素
分布:指药物随血液循环到达全身各个部位的过程。 影响因素: 1 与血浆蛋白结合: 血浆蛋白结合率:与蛋白结合的药物占药物总量 的百分数(表示药物与血浆蛋白结合的程度) ①不能跨膜转运 + ②不能被代谢或排泄 ③暂时无生物活性 ④结合率高,消除慢,维持时间长
图:苯巴比妥加速双香豆素代谢
苯+双 双香豆素 凝 血 酶 原 时 间
36
血药浓度(mg/L)
28 20 12 4 30 60 90 120 150 180 210 服药时间 (日 )
(2)酶的抑制
酶的抑制:某些化学物质能抑制肝微粒体药物代谢酶 的活性,减慢其他药物的代谢速率,使药物效应增 强此现象称酶的抑制(enzyme inhibition)。 ①常见抑制剂:氯霉素、对氨水杨酸、异烟肼、保泰 松。 ②意义:可减慢自身代谢和其他药物代谢。 长期应用可产生积蓄中毒。 ③例如:肝药酶抑制剂氯霉素与苯妥英钠合用,则因 肝药酶活性降低,使苯妥英钠的代谢作用减弱,使 苯妥英钠疗效增强或出现毒性反应.

药理精品题库 第二章 药物代谢动力学

药理精品题库 第二章 药物代谢动力学

第二章药物代谢动力学一.教材要点(一)药物分子的跨膜转运药物分子的跨膜转运是指药物在体内通过各种生物膜的运动过程,多数药物经被动转运跨过细胞膜,其特点是药物依赖膜两侧的浓度差,从高浓度的一侧向低浓度的一侧转运,该转运方式不需要载体,不额外消耗能量,无饱和性,各药物之间无竞争性抑制现象.分子量小、脂溶性大、极性小的药物较易通过.药物的离子化程度因其pKa值及所在溶液的pH值而定,这是影响药物跨膜被动转运进而影响药物吸收分布排泄的一个可变因素.简单扩散的通透量与膜两侧药物浓度差、通透面积、药物分子通透系数成正比,与膜厚度成反比。

(二) 药物的体内过程吸收是指药物自用药部位转运进人血液循环的过程,多数药物通过被动转运吸收,少数药物经主动转运吸收。

1.口服给药:是最常用的给药途径。

有些药物首次通过肝脏,若肝脏对其代谢能力很强或由胆汁排泄的量较大,从而减少进人体循环的药量,称为首关消除。

舌下及直肠给药不经过肝门静脉,避免首关消除,吸收也较迅速。

2.舌下给药:可避免口服后被肝脏迅速代谢。

3.注射给药:静脉注射和静脉滴注可使药物迅速而准确地进人体循环,没有吸收过程。

肌内注射以简单扩散方式通过毛细血管上皮细胞膜的脂质层;或以滤过方式进入血上皮细胞间隙,故吸收快,皮下注射药物吸收较慢,有刺激性的药物可引起疼痛。

4.呼吸道吸人给药:由于肺泡表面积很大,肺血流量丰富,只要具有一定溶解度的气态药物即能经肺迅速吸收。

吸收的药物通过循环迅速向全身组织器官转运的过程称为分布。

影响分布的因素:血浆蛋白结合率、组织亲和力、体液pH值和药物解离度、器官血流量以及特殊的屏障作用.药物与血浆蛋白结合及其意义(略),结合型药物的特点:①暂时失去药理活性;②结合型药物为大分子化合物,不易透过血管壁、血脑屏障及肾小球,因而影响被动转运。

但不影响主动转运:③结合是可逆性的;④结合具有饱和性和竞争性.血脑屏障是脑组织内的特殊结构形成的血浆与脑脊液间的屏障,能阻碍许多大分子、水溶性及解离药物通过的屏障.胎盘屏障是胎盘绒毛与子宫血窦间的屏障,几乎所有的药物均可通过此屏障进入胚胎循环。

《药理学》要点归纳(第八版)

《药理学》要点归纳(第八版)

药理学第二章药物代谢动力学药物代谢动力学:研究药物的体内过程(吸收、分布、代谢和排泄),并运用数学原理和方法阐释药物在机体内的动态规律。

只有血浆蛋白结合率高、分布容积小、消除慢自己治疗指数低的药物在血浆蛋白结合部位上相互作用才有意义自身诱导:药物本身是其所诱导的药物代谢酶的底物,反复应用后自身代谢加快。

有苯巴比妥、苯妥英钠、格鲁米特、保泰松一级消除动力学:体内药物按恒定比例消除,单位时间内消除量与血浆药物浓度成正比,其药-时曲线在常规坐标图呈曲线,在半对数坐标图呈直线(线性动力学)。

大多药以一级动力学消除零级消除动力学:体内药物以恒定的速率消除,单位时间内消除的药物不变,其药-时曲线在常规坐标图上呈直线,在半对数坐标图上呈曲线(非线性动力学)混合消除动力学:低浓度或低剂量时,按一级动力学消除,达到一定高浓度或高剂量时,按零级动力学消除,如苯妥英钠,水杨酸、乙醇消除半衰期:血浆药物浓度下降一半所需要的时间,一级动力学时半衰期=0.693/K,按零级动力学半衰期=0.5×C/K;通常给药间隔为一个半衰期清除率:一级动力学不变,零级动力学可变第三章药物效应动力学药物效应动力学(药效学):是研究药物对机体的作用及作用机制的生物资源科学。

药物的不良反应:1、副反应:在治疗剂量时出现的与治疗无关的不适反应,可以预知但是难以避免。

2、毒性反应:药物剂量过大或蓄积过多时机体发生的危害性反应,比较严重,可以预知避免。

3、后遗效应:停药后机体血药浓度已降至阈值以下量残存的药理效应。

4、停药反应:突然停药后原有疾病的加剧现象,又称反跳反应。

5、变态反应:机体接受药物刺激后发生的不正常的免疫反应,又称过敏反应。

6、特异性反应:先天性遗传异常所致,反应程度与剂量成正比量反应的量-效曲线:以药物的剂量或浓度为横坐标,以效应强度为纵坐标作图可获得直方双曲线,将药物浓度改用对数值则呈典型对称S曲线,为量-效曲线1、最小有效量:刚能引起效应的最小药量或最小药物浓度2、最大效应:又称效能3、半最大效应浓度:指能引起50%最大效应的浓度4、效价强度:能引起等效反应的相对浓度或剂量,其值越小强度越大,曲线陡药效剧烈,曲线平坦药效温和5、治疗指数(TI):LD50/ED50或LD5/ED95,治疗指数大的药物相对较治疗指数小的药物安全药物与受体结合与亲和力和内在活性有关。

药学专业知识一_第二章 药物代谢动力学_2010年版

药学专业知识一_第二章 药物代谢动力学_2010年版

中大网校引领成功职业人生
中大网校 “十佳网络教育机构”、 “十佳职业培训机构” 网址: 1、弱酸性药物在碱性尿液中
A:解离多,再吸收多,排泄慢
B:解离多,再吸收少,排泄快
C:解离多,再吸收多,排泄快
D:解离少,再吸收少,排泄快
E:解离少,再吸收多,排泄慢
答案:B
解析:答案为B ,考察重点是尿液PH 值对药物排泄的影响。

弱酸性药物在碱性尿液中,解离度增大,扩散减少,肾小管重吸收减少,排泄增加。

2、药物与血浆蛋白结合的特点正确的是
A:是不可逆的
B:加速药物在体内的分布
C:是疏松可逆的
D:促进药物排泄
E:无饱和性和置换现象
答案:C
解析:答案为C ,考察重点是药物与血浆蛋白结合的特点。

药物与血浆蛋白结合是影响药物在体内分布的一种重要因素,这一结合是疏松可逆的,有饱和置换现象,结合后不能跨膜转运,储存于血液中。

3、大多数药物经代谢转化
A:极性增加
B:极性减小。

第2章 药动学

第2章 药动学

血液中 组织中 游离型
结合型
消除
37
(2)药物与血浆蛋白的结合的意义:
A、体内血浆蛋白降低的病理状态
药物剂量下调
B、当两种药物与血浆蛋白结合率都高
剂量下调
C、当药物与血浆蛋白结合达到饱和时
不能随便超剂量用药
38
如:甲糖灵+保泰松(96%)
保泰松——与血浆蛋白结合率高—— 甲糖灵浓度↑——血糖↓↓——低血
---是指细胞膜上的载体与药物结 合,并载运它到膜另一侧的过程。
《本草纲目
16
1、 易化扩散
• 通过细胞膜上的某些特异性蛋白质-通透酶帮 助而扩散,不需供应ATP。葡萄糖进入红细胞, 维生素B12经胃肠道吸收,甲氨蝶呤进入白细 胞。 • ●膜上存在多种离子通道蛋白,如Na+、K+、 Ca2+ • 电压依赖性通道(VDC)主要受膜两侧电位差 的影响 • 化学依赖性通道(CDC)主要受化学物质决定
• 脂溶性高易通过胎盘屏障,如全麻药、 巴比妥类、吗啡
48
三、药物的代谢(生物转化)
• (一)定义:药物在体内发生的一系列结构变化, 也称作转化
• (二)主要场所:肝脏
• (三)结果:使药物的活性发生改变
• 灭活:活性→无活性;
• 活化:无活性→有活性:环磷酰胺→醛磷酰胺 • 活性低→活性高:非那西丁→对乙酰氨基酚; • 无毒或毒性低→毒性大:异烟肼→乙酰异烟肼
在碱性环境中不易解离,容易通过生物膜 在酸性环境中易解离,不易通过生物膜
13
pKa是弱酸性或弱碱性药物在50%解
离时溶液的pH值。 每个药物都有固定 的pKa值。
pH值高,酸性药物解离多,碱性药物解 离少。反之…。 例如:弱酸性药物中毒(巴比妥类), 可碱化尿液来排泻药物。

药物代谢动力学吐血整理

药物代谢动力学吐血整理

药物代谢动力学完整版第二章药物体内转运一、药物跨膜转运的方式及特点1.被动扩散特点:①顺浓度梯度转运②无选择性③无饱和现象④无竞争性抑制作用⑤不需要能量2.孔道转运特点:①主要为水和电解质的转运②转运速率与所处组织的血流速率及膜的性质有关3.特殊转运包括:主动转运、载体转运、受体介导的转运特点:①逆浓度梯度转运②有选择性③有饱和现象④有竞争性抑制作用⑤常需要能量4.其他转运方式包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物二、胃肠道中影响药物吸收的因素有哪些①药物和剂型②胃肠排空作用③肠上皮的外排机制④首过效应⑤疾病⑥药物相互作用三、研究药物吸收的方法有哪些,各有何特点?1.整体动物实验法能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。

缺点:①不能从细胞或分子水平上研究药物的吸收机制;②生物样本中的药物分析方法干扰较多,较难建立;③由于试验个体间的差异,导致试验结果差异较大;④整体动物或人体研究所需药量较大,周期较长。

2.在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。

3.离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。

4.Caco-2细胞模型法Caco-2细胞来源于人体结肠上皮癌细胞。

优点:①作为研究体外药物吸收的快速筛选模型;②在细胞水平上研究药物在小肠黏膜中的吸收、转运和代谢;③研究药物对肠黏膜的毒性;④由于Caco-2细胞来源于人,不存在种属的差异性。

缺点:①酶和转运蛋白的表达不完整;②来源、培养代数、培养时间对结果有影响;四、药物血浆蛋白结合率常用测定方法的原理及注意事项。

1.平衡透析法原理:利用与血浆蛋白结合的药物不透过半透膜的特性进行测定的。

2.超过滤法原理:与平衡透析法不同的是在血浆蛋白室一侧加压力或离心力,使游离药物快速通过滤膜进入另一隔室。

脑微血管的特性:①低水溶性物质的扩散通透性;②低导水性;③高反射系数;④高电阻性;⑤酶屏障肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。

第二章 药动学

第二章 药动学

第五节
体内药物的药量-时间关系
一次给药的药时曲线
药时曲线
•Cmax •Tpeak •有效时间 •AUC
•起效快慢与吸收速率有关
•持续时间与消除速率有关
AUC意义:
1.表示吸收进入血循环药物的量 2.求参数,如CL、生物利用度 A B AUC0-∞= + α β
多次给药
多次给药时,随着次数增加,血药浓 度不断递增,但当给药量等于消除量 minimal toxic concentration 时,血药浓度不再增加,而是在稳态 水平上下波动,此浓度成为稳态血药 浓度,也称坪浓度。 minimal effect concentration
系统,系统内部按动力学特点将机体
划分为若干房室(compartment),
房室内药物转运速率相同。药物可进
出房室,为一开放系统。
房室模型
单室模型 药物进入体内后,能迅速、均 匀分布到全身各组织、器官和体液中,然后 消除。可以把整个机体看成药物转运动态平 衡的“均一单元”。
双室模型 药物进入体内后,能迅速进入机 体的某些部位,对另一些部位,需要一段时 间才能完成分布。
特点:
1.顺浓度梯度扩散,不耗能。
2.无选择性。 3.无饱和现象。 4.无竞争性抑制。
载体转运
特点:借助于载体、常耗能、
逆浓度转运、具有饱和性、具有选择性、 存在竞争。
载体:P-糖蛋白、转运体(阳、阴离子)
存在部位:肾小管、胆道、血脑屏障、胃
肠道
方式:主动转运、易化扩散。
影响药物跨膜的因素
• 药物解离度及体液PH值 • 药物浓度差及细胞膜通透性、面积和 厚度 • 血流量 • 细胞膜转运蛋白的量和功能
连续恒速给药
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弱碱性药物在碱性体液中易于扩散
弱酸性药物在酸性侧 (细胞内)浓度低于碱性侧
弱碱性药物在酸性侧浓度高于碱性侧
弱酸性药易在胃吸收,弱碱性药易在肠吸收
弱酸性药物中毒碱化体液 (碳酸氢钠),弱碱性 药物中毒酸化体液 (氯化铵)
3. 载体转运:选择性、饱和性、竞争性 1) 主动转运 消耗能量 可以逆浓度差 2) 易化扩散 通道蛋白 载体蛋白
甲苯磺丁脲与水杨酸类:低血糖
甲氨蝶呤与水杨酸类、磺胺药:骨髓抑制
2. 器官血流量
药物在各器官组织的分布速度取决于该组织器 官血流量和膜通透性 药物(硫 喷妥钠) 血流丰富器 官 (脑组织)
亲和力高的组织 (脂肪组织)
3. 组织细胞结合(特殊亲和力) 碘与甲状腺,硫喷妥钠与脂肪组织,四环素 与新形成骨内的钙结合
三、 表观分布容积 (Vd)
体内药物分布达到平衡后,根据血浆药物浓度
计算该药物分布所需体液容积
Vd不代表真正的容积空间
血浆蛋白结合率高、与组织亲和力低者Vd小 根据某药有效血药浓度及分布容积计算给药量
四、生物利用度 经任何途径给予一定剂量的药物后到达全身血 循环内药物的百分率,也指药物进入全身循环 的速度
多次给药后血药浓度达稳态的时间仅取决于药
物的t1/2 (成正比)(约4-6个)
提高给药频率或增加剂量不能提前达到Css
Css的波动与每次用量呈正比
首剂加倍可迅速达到Css
C
最小中毒浓度
Css
最小有效浓度
T(t1/2)
第六节 药动学重要参数
一、消除半衰期 (half life, t1/2) • 血浆药物浓度下降一半所需要的时间
被动转运,不耗能,顺浓度差
结膜、肾小球上皮细胞及毛细血管内皮细胞均
存在水性信道
脑内大部分毛细血管壁无孔隙,水溶性药物难
以通过滤过方式进入脑组织内
2. 简单扩散 (simple diffusion) 脂溶性药物溶解于细胞膜脂质层,顺浓度差通 过细胞膜
简单扩散特点
顺浓度差,不消耗能量
4. 体液pH和药物解离度 弱酸性药物:细胞外液浓度>细胞内液 弱碱性药物:细胞内液浓度>细胞内液 巴比妥类中毒解救:碱化血液和尿液 5. 体内屏障 血脑屏障(blood-brain barrier) 胎盘屏障(placental barrier) 血眼屏障(blood-eye barrier)
3. 代谢酶 专一性酶:胆碱酯酶、单胺氧化酶 非专一性酶:肝微粒体混合功能氧化酶(肝药酶)
• 酶诱导剂 (enzyme inducer):巴比妥类、乙醇等 • 酶抑制剂 (enzyme inhibitor):氯霉素、异烟肼等 * 酶诱导与酶抑制引起药物相互作用
药效降低, 延误治疗 酶诱导剂
吸收速度与药物起效快慢有关,吸收程度与药 物作用强度有关
1. 口服
最常用, 在胃肠道(小肠)以简单扩散方式吸收
易被胃酸或肠液破坏的药物不能口服,如青霉 素、胰岛素等 首过消除 (首关消除,首过效应)
• 部位: 肝脏、肠粘膜细胞
• 结果: 生物利用度降低
• 舌下和直肠给药首关消除减少:硝酸甘油
四、排泄 药物原形或代谢产物通过排泄器官或分泌器官 排出体外的过程
排泄途径
肾脏
消化道
肺脏
汗腺
乳汁
1. 肾脏排泄 肾小球滤过:游离药物、代谢产物 肾小管重吸收:远曲小管,被动扩散 (未解离 药物),受尿液pH影响 肾小管分泌:载体转运 (弱酸性、弱碱性通道)
2. 胆汁排泄
被动扩散
药物
吸收
中央室 (一室) 代谢、排泄
周边室 (二室)
drug
drug
第四节 药物消除动力学
研究体内药物浓度变化速率的规律
一级消除动力学 (first-order elimination kinetics) 零级消除动力学 (zero-order elimination kinetics)
10
pKa pH
HA
BH

B
药物解离规律 pH=pKa时:解离型=非解离型 pH>pKa时:弱酸性药物解离型>非解离型
弱碱性药物解离型<非解离型
pH<pKa时:弱酸性药物解离型< 非解离型
弱碱性药物解离型>非解离型
简单扩散规律及临床意义
弱酸性药物在酸性体液中易于扩散
dC V max · C dt Km C
第五节 体内药量-时间关系
一、单次给药的药时曲线下面积 (AUC)
血浆药物浓度 (mg/L)
静脉注射 口服
Tpeak
Cmax
AUC
时 间 (分)
二、多次给药的稳态血药浓度
药物从体内消除量与进入体内量相等时的血药
浓度(steady-state concentration,Css)
二、影响药物通透细胞膜的因素
膜两侧药物浓度差
药物分子通透系数(药物脂溶性)
细胞膜厚度
细胞膜面积
血流速度(扩血管药物吸收快) 通透量=(C1-C2)×膜面积×通透系数/膜厚度
第二节 药物体内过程
一、吸收 (absorption)
药物自给药部位进入血循环的过程
发挥局部作用的药物不必吸收(副作用)
1. 一级动力学消除t1/2的计算
ke lg Ct t lg C 0 2.303
C 0 2.303 t lg Ct ke
C0 0.693 t1 / 2 t1/2时,Ct ke 2 • 按一级动力学消除的药物, t1/2是一常数,不受 药物初始浓度和给药剂量的影响
2. 零级级动力学消除t1/2的计算
HA

弱碱性药物
BH+
H++A
H A Ka
A pKa pH-log

-
HA
H B Ka BH

B+H+
HA A pH pKa=log

pKa pH log
BH


B
B
10
pH pKa
A =
HA
BH pKa pH log
血脑屏障 脑内毛细血管内皮细胞紧密连接无间隙
内皮细胞外为一层连续不断的基底膜包围
基底膜外有星形胶质细胞包围 (炎症,青霉素)
胎盘屏障 胎盘绒毛与子宫血窦间的屏障(母体有害物质) 胎盘屏障对药物转运几无屏障作用(用药禁忌)
血眼屏障
血与房水、晶状体、玻璃体间屏障
多数药物全身给药难以在眼球内达到有效浓度
扩散速度与药物脂溶性和膜两侧浓度差成正比
药物脂溶性与其解离度有关:非解离型(分子
型)药物脂溶性高,易于通过细胞膜:解离型
(离子型) 药物脂溶性低,不易通过细胞膜
药物解离度与所在溶液的pH有关,常以pKa
表示:药物解离50%时其所在溶液的PH值
O
OH O O CH3
+ H+
乙酰水杨酸
弱酸性药物
二、分布 (distribution) 药物吸收后随血循环到达机体各部位、组织的 过程 (一) 影响药物分布的因素
1. 血浆蛋白结合率
与血浆蛋白结合(结合型) 药物
吸收
血液
动态平衡
游离药物(游离型)
特点:不能跨膜转运、不产生药效、不被代谢 和排泄;特异性低、可逆性、竞争性、饱和性
药物竞争血浆蛋白引起的相互作用 香豆素类与水杨酸类、保泰松:出血 磺胺药与胆红素:新生儿胆红素脑病
ket
t
2. 零级动力学消除
恒量消除,消除速率与血药浓度无关
体内药物浓度与时间呈直线关系
dC k 0 dt
Ct k 0 t C 0
药时曲线 (C-T曲线)
零级 零级 一级 一级
零级和一级动力学消除的C-T曲线 左图为常规坐标图,右图为半对数坐标图
3. 非线形消除 (混合动力学消除) 零级消除→一级消除 Michaelis-Menten 方程(米-曼方程)
消除 5单位/h 2.5单位/h 1.25单位/h
消除2.5单位/h
2.5单位/h 2.5单位/h
1. 一级动力学消除
恒比消除: 单位时间内消除的药物百分率不变
消除速率与血药浓度呈正比
体内药物浓度与时间呈指数关系 (药物浓度对 数值与时间呈直线关系)
dC keC dt
lgC
Ct C0 e
消除(93.75%~98.4375%)
固定剂量、固定间隔给药,约经4~6个t1/2基
本达到稳态血药浓度(93.75%~98.4375%) 。
二、清除率 机体消除器官单位时间内清除药物的血浆容积, 即单位时间内有多少毫升血浆所含药物被清除 CL=Vd · e K 肝肾药物清除率总和,反映肝肾清除功能 肝功能改变多影响脂溶性药物的清除率;肾功 能改变主要影响水溶性药物的清除率
第4章 药物代谢动力学
皖南医学院药理教研室
研究药物在体内吸收、分布、代谢、排泄的过 程及其规律
作用部位 结合 游离 组织结合 游离 结合
体循环
吸收
游离型 结合型 代谢物
排泄
生物转化
第一节 药物分子的跨膜转运
细胞膜脂质双层结构(li转运方式
1. 滤过
膜孔扩散,水溶性药物
体内药物总量 生物利用度 100 % 给药剂量
AUC血管外给药 绝对生物利用度 100 % AUC静脉给药
AUC受试制剂 相对生物利用度 100 % AUC标准制剂
相关文档
最新文档