最新部编人教版初中八年级下册数学专项训练
部编数学八年级下册二次根式专项提升训练(重难点培优)【拔尖特训】2023年培优【人教版】含答案
![部编数学八年级下册二次根式专项提升训练(重难点培优)【拔尖特训】2023年培优【人教版】含答案](https://img.taocdn.com/s3/m/8e1625c6dbef5ef7ba0d4a7302768e9950e76e6b.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.1专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•南湖区校级期中)要使二次根式有意义,x的值可以是( )A.4B.2C.1D.0【分析】根据二次根式有意义的条件可得x﹣3≥0,再解即可.【解答】解:要使二次根式有意义,则x﹣3≥0,解得:x≥3,故x的值可以是4.故选:A.2.(2022秋•北碚区校级期中)要使式子有意义,则a的取值范围是( )A.a≠0B.a≥﹣2C.a>﹣2且a≠0D.a≥﹣2且a≠0【分析】根据分子的被开方数不能为负数,分母不能为零,可得答案.【解答】解:由题意得,a+2≥0且a≠0,即a≥﹣2且a≠0,故选:D.3.(2022秋•惠山区期中)下列各式中,一定是二次根式的是( )A.B.C.D.【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.根指数是3,不是二次根式,故此选项不合题意;C.a﹣1的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.4.(2022秋•奉贤区期中)使二次根式有意义的x的取值范围是( )A.B.C.D.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:2x﹣1>0,解得:x>,故选:B.5.(2022秋•南湖区校级期中)已知y=++4,y x的平方根是( )A.16B.8C.±4D.±2【分析】根据二次根式有意义的条件可得,据此可得x的值,进而得出y的值,再代入所求式子计算即可.【解答】解:∵y=++4,∴,解得x=2,∴y=4,∴y x=42=16.∴y x的平方根是±4.故选:C.6.(2022秋•通州区期中)已知n是一个正整数,且是整数,那么n的最小值是( )A.6B.36C.3D.2【分析】先把=2,从而判断出6n是完全平方数,所以得出答案正整数n的最小值是6.【解答】解:=2,则6n是完全平方数,∴正整数n的最小值是6,故选:A.7.(2022秋•新蔡县校级月考)已知x、y为实数,且y=+1,则x+y的值是( )A.2022B.2023C.2024D.2025【分析】根据二次根式有意义的条件:被开方数是非负数求出x的值,代入求得y的值,代入代数式求【解答】解:∵x﹣2023≥0,2023﹣x≥0,∴x﹣2023=0,∴x=2023,∴y=1,∴x+y=2023+1=2024,故选:C.8.(2022春•东平县期中)已知a满足|2018﹣a|+=a,则a﹣20182=( )A.0B.1C.2018D.2019【分析】根据二次根式的被开方数是非负数求出a的取值范围,化简绝对值即可得出答案.【解答】解:根据题意得:a﹣2019≥0,∴a≥2019,∴原式可变形为:a﹣2018+=a,∴=2018,∴a﹣2019=20182,∴a﹣20182=2019.故选:D.9.已知a为实数,若在实数范围内有意义,那么等于( )A.a B.﹣a C.﹣1D.0【分析】根据非负数的性质与被开方数大于等于0列式计算即可得解.【解答】解:根据非负数的性质a2≥0,所以,﹣a2≤0,又∵﹣a2≥0,∴﹣a2=0,∴=0.故选:D.10.(2022春•荣昌区校级期末)若二次根式有意义,且关于分式方程﹣3=有正整数解,则符合条件的整数m的和是( )A.5B.3C.﹣2D.0【分析】根据二次根式有意义,可得m≤4,解出关于x的分式方程﹣3=的解为x=,解为正整数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.【解答】解:去分母得,2﹣3(x﹣1)=﹣m,解得x=,∵关于x的分式方程﹣3=有正整数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣2∴m≠﹣2,∵有意义,∴4﹣m≥0,∴m≤4,因此﹣5<m≤4且m≠﹣2,∵m为整数且关于x的分式方程﹣3=有正整数解,∴m可以为1,4,其和为5.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•南安市期中)若二次根式在实数范围内有意义,则x的取值范围是 x≤4 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:12﹣3x≥0,解得x≤4,故答案为:x≤4.12.(2022秋•罗湖区校级期中)若在实数范围内有意义,则x的取值范围是 x<4 .【分析】根据二次根式有意义的条件和分母不为0,即可求出x的取值范围.【解答】解:根据题意得:4﹣x>0,故答案为:x<4.13.(2022秋•海曙区校级期中)若,则x y= .【分析】直接利用二次根式有意义的条件得出x,y的值,进而代入得出答案.【解答】解:∵,∴2x﹣3≥0且3﹣2x≥0,解得:x=,则y=2,则x y=()2=.故答案为:.14.(2022秋•卧龙区校级月考)若y=+﹣3,则点P(x,y)在第 四 象限.【分析】根据二次根式的被开方数是非负数,求出x的值,进而得到y的值,再根据点的坐标特征解答即可.【解答】解:根据题意,得x﹣4≥0且4﹣x≥0,.所以x=4.所以y=﹣3.所以P(4,﹣3),位于第四象限.故答案为:四.15.(2022春•东莞市校级期中)若是整数,则满足条件的最小正整数n的值为 6 .【分析】24=22×6,所以要想能开平方,必须再乘一个6.【解答】解:=2,∵是整数,∴满足条件的最小正整数n=6.故答案为:6.16.(2022春•东平县期中)已知y=++2022,则x2+y﹣3的值为 2023 .【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.17.(2022•沙坪坝区校级开学)已知a,b分别为等腰三角形的两条边长,且a,b满足,则该三角形的周长为 10 .【分析】根据题意求出a、b的值,根据等腰三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,a﹣2≥0,2﹣a≥0,解得a≥2,a≤2,∴a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴该三角形的三边分别为2、4、4,∴此三角形的周长为2+4+4=10.18.(2021春•南通期中)实数a、b在数轴上对应点的位置如图所示,,b为整数,则a+b= ﹣2 .【分析】通过识图可得a<b<,从而利用二次根式的性质进行化简.【解答】解:∵a<b<,∵|b﹣2|=b﹣2,∵a+4≥0,b﹣2≥0,∴b≥2,∵b<,∴2≤b<,b为整数,∴b=2,将b=2代入|b﹣2|=b﹣2,∴a+b=﹣4+2=﹣2,故答案为:﹣2.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•新泰市期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【分析】(1)根据平方根的定义求出a、b的值,然后代入a+2b即可求出答案.(2)根据二次根式有意义的条件可求出x与y的值,然后代入原式即可求出答案.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(2019秋•松北区期末)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4++3,求此三角形的周长.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.21.(2022秋•济南期中)已知实数a,b,c满足:.(1)a= ﹣3 ;b= 5 ;c= 2 ;(2)求﹣b﹣3a+2c的平方根.【分析】(1)根据二次根式有意义的条件求得b=5,再根据绝对值以及算术平方根的非负性求得a与c.(2)将(1)中a、b与c的值代入,再求得﹣b﹣3a+2c的平方根.【解答】解:(1)由题意得,b﹣5≥0,5﹣b≥0.∴b=5.∴|a+3|+=0.∵|a+3|≥0,,∴a+3=0,c﹣2=0.∴a=﹣3,c=2.故答案为:﹣3;5;2.(2)由(1)得,a=﹣3,b=5,c=2.∴﹣b﹣3a+2c=﹣5+9+4=8.∴﹣b﹣3a+2c的平方根是±=.22.(2022秋•锦江区校级月考)(1)若m﹣2=+,求n m的值;(2)已知有理数a,b,c在数轴上对应位置如图所示:①用“<”或“>”填空:a+c < 0,b﹣c > 0;②化简:|a+c|﹣+.【分析】(1)利用二次根式有意义的条件得到n﹣3≥0且3﹣n≥0,则n=3,所以m﹣2=0,则m=2,然后利用乘方的意义计算n m;(2)①利用数轴表示数的方法进行判断;②根据二次根式的性质和立方根的定义得到原式|=|a+c|﹣|b﹣c|+b+c,再利用①中的结论去绝对值,然后取括号合并即可.【解答】解:(1)根据题意得n﹣3≥0且3﹣n≥0,解得n=3,∴m﹣2=0,解得m=2,∴n m=32=9;(2)①a+c<0,b﹣c>0;故答案为:<,>;②|a+c|﹣+=|a+c|﹣|b﹣c|+b+c=﹣(a+c)﹣(b﹣c)+b+c=﹣a﹣c﹣b+c+b+c=﹣a+c.23.(2022春•定远县期末)在学习了算术平方根和二次根式等内容后,我们知道以下的结论:结论①:若实数a≥0时,=a;结论②:对于任意实数a,=|a|.请根据上面的结论,对下列问题进行探索:(1)若m<2,化简:+|m﹣3|.(2)若=4,|b|=8,且ab>0,求a+b的值.(3)若A=+|1﹣m|有意义,化简A.【分析】(1)先根据二次根式的性质和绝对值进行计算,再算加减即可;(2)先根据二次根式的性质和绝对值求出a、b的值,再求出a+b的值即可;(3)根据二次根式的性质得出m﹣2≥0,求出m≥2,再进行化简即可.【解答】解:(1)分为两种情况:①当m≤﹣3时,+|m﹣3|.=|m+3|+|m﹣3|=﹣m﹣3﹣m+3=﹣2m,②当﹣3<m<2时,+|m﹣3|=|m+3|+|m﹣3|=m+3+3﹣m=6;(2)∵,∴|a|=4,∴a=±4,∵|b|=8,∴b=±8,∵ab>0,∴a=4,b=8或a=﹣4,b=﹣8,当a=4,b=8时,则a+b=4+8=12,当a=﹣4,b=﹣8时,则a+b=﹣4﹣8=﹣12,∴a+b=±12;(3)∵有意义,∴m﹣2≥0,∴m≥2,∴1﹣m<0,∴A=m﹣2+m﹣1=2m﹣3.24.(2022春•天门校级月考)二次根式的双重非负性是指被开方数a≥0,其化简的结果≥0,利用的双重非负性解决以下问题:(1)已知=0,则a+b的值为 ﹣2 ;(2)若x,y为实数,且x2=+9,求x+y的值;(3)已知实数m,n(n≠0)满足|2m﹣4|+|n+2|++4=2m,求m+n的值.【分析】(1)利用非负数的性质,可求a,b的值,从而求得a+b的值为﹣2;(2)利用二次根式有意义的条件,可得y值,进而求x值,最终得x+y的值;(3)是上两个题目的综合运用,利用(1)(2)可出得m+n的值.【解答】解:(1)∵,且,∴a﹣1=0,且3+b=0,∴a=1,b=﹣3,∴a+b=﹣2.(2)∵,∴y﹣5≥0且5﹣y≥0,∴y≥5且y≤5,∴y=5,∴x2=9,∴x=±3,当x=3时,x+y=3+5=8;当x=﹣3时,x+y=﹣3+5=2.(3)∵|2m﹣4|+|n+2|++4=2m,∴(m﹣3)n2≥0,∴m≥3,∴2m﹣4>0,∴|2m﹣4|+|n+2|++4=2m2m﹣4+|n+2|++4=2m∴|n+2|+=0,∵|n+2|≥0,≥0,∴n+2=0,(m﹣3)n2=0,∴n=﹣2,m=3,∴m+n=3﹣2=1.。
新人教版初中数学八年级下册同步练习试题及答案_第18章 平行四行形(40页)
![新人教版初中数学八年级下册同步练习试题及答案_第18章 平行四行形(40页)](https://img.taocdn.com/s3/m/4233c72aba1aa8114531d908.png)
第十八章平行四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2 (B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n (D)6n (n +1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD中,CE⊥AB于E,CF⊥AD于F,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O为□ABCD的对角线AC的串点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
人教版八年级数学下册专题训练(含参考答案与解析)
![人教版八年级数学下册专题训练(含参考答案与解析)](https://img.taocdn.com/s3/m/dfeede5ec5da50e2524d7ffc.png)
人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。
部编数学八年级下册函数专项提升训练(重难点培优)【拔尖特训】2023年培优(解析版)【人教版】含答案
![部编数学八年级下册函数专项提升训练(重难点培优)【拔尖特训】2023年培优(解析版)【人教版】含答案](https://img.taocdn.com/s3/m/efbab48732d4b14e852458fb770bf78a65293ad6.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题19.1函数专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•定远县校级月考)球的体积是V,球的半径为R,则V=πR3,其中变量和常量分别是( )A.变量是V,R;常量是,πB.变量是R,π;常量是C.变量是V,R,π;常量是D.变量是V,R3;常量是π【分析】根据常量和变量的概念解答即可.【解答】解:球的体积是V,球的半径为R,则V=πR3,其中变量是V,R;常量是,π故选:A.2.(2022春•沙坪坝区校级月考)在函数中,自变量x的取值范围是( )A.x>2B.x≥2C.x<2D.x≠2【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2>0,解得:x>2,故选:A.3.(2022春•封丘县月考)一本数学错题笔记本的售价为6元,若小青买x本共付y元,则x和6分别是( )A.常量,变量B.变量,常量C.常量,常量D.变量,变量【分析】根据变量、常量的定义,结合具体的问题情况进行判断即可.【解答】解:小青购买错题本的本数x是变化的,因此x是变量,而单价为每本6元,是不变的量,因此6是常量,故选:B.4.(2022秋•蜀山区校级月考)下列各图象中,y不是x的函数有( )A .B .C .D .【分析】根据函数的定义解决此题.【解答】解:A .选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故A 不符合题意.B .该选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故B 不符合题意.C .该选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故C 不符合题意.D .该选项中的图象,在定义域内,存在x 值,存在两个y 值与之对应,那么y 不是x 的函数,故D 符合题意.故选:D .5.(2021秋•建邺区期末)如果某函数的图象如图所示,那么y 随着x 的增大而( )A .增大B .减小C .先减小后增大D .先增大后减小【分析】根据函数图象可以得到y 随x 的增大如何变化,本题得以解决.【解答】解:由函数图象可得,y 随x 的增大而增大,故选:A .6.(2022春•观山湖区期中)骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,如图所示,下列说法错误的是( )A.一天中,8时到24时骆驼的体温的变化范围是37℃到40℃B.点A表示的是12时骆驼的温度是39℃C.0时到16时骆驼体温一直上升D.骆驼第一天12时体温与次日12时和20时的温度相同【分析】结合图象逐一判断即可.【解答】解:A.一天中,8时到24时骆驼的体温的变化范围是37℃到40℃,说法正确,故本选项不合题意;B.点A表示的是12时骆驼的温度是39℃,说法正确,故本选项不合题意;C.0时到16时骆驼体温一直上升,说法错误,0时到4时,骆驼体温在下降,故本选项符合题意;D.骆驼第一天12时体温与次日12时和20时的温度相同,说法正确,故本选项不合题意.故选:C.7.(2022秋•东营月考)近几年来,随着打工大潮的涌动,某校从2011年到2017年留守儿童的人数y(人)与时间t(年)有如下关系:时间/年2011201220132014201520162017人数/人5080100150200270350则下列说法不正确的是( )A.如表反映了留守儿童的人数与时间之间的关系B.y(人)随时间t(年)的推移逐渐增大C.自变量是时间t(年),因变量是留守儿童的人数y(人)D.自变量是留守儿童的人数y(人),因变量是时间t(年)【分析】根据函数相关概念依次判断即可.【解答】解:A.如表反映了留守儿童的人数与时间之间的关系,正确,不合题意;B.y(人)随时间t(年)的推移逐渐增大,正确,不合题意;C .自变量是时间t (年),因变量是留守儿童的人数y (人),正确,不合题意;D .自变量是时间t (年),因变量是留守儿童的人数y (人),原题说法不正确,符合题意;故选:D .8.(2022•南岗区校级模拟)某油库有一储油量为40吨的储油罐,在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示,现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是( )分钟.A .20B .24C .26D .28【分析】首先由已知函数关系计算出每分钟进油量,再由函数图象计算出既开进油管,又开出油管的每分钟进油量,那么能求出每分钟的出油量,从而求出放完全部油所需的时间.【解答】解:由已知函数图象得:每分钟的进油量为:24÷8=3(吨),每分钟的出油量为:3﹣(40﹣24)÷(24﹣8)=2(吨),所以放完全部油所需的时间为:40÷2=20(分钟).故选:A .9.(2022春•胶州市期中)某商店销售一批玩具时,其收入y (元)与销售数量x (个)之间有如下关系:销售数量x (个)1234…收入y (元)8+0.316+0.624+0.932+1.2…则收入y 与销售数量x 之间的关系式可表示为( )A .y =8.3xB .y =8x +0.3C .y =8+0.3xD .y =8.3+x【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x =1时是成倍增长的,由此可得出方程.故选:A.10.(2022•嵩县模拟)如图1,矩形ABCD中,点E是边AD的中点,点F在边AB上,且BF=2AF,动点P从点F出发,以每秒1cm的速度沿F→B→C→D的方向运动,到达点D时停止.设点P运动x(秒)时,△AEP的面积为y(cm2),如图2是y关于x的函数图象,则图2中a,b的值分别是( )A.16,2B.15,C.13,D.13,3【分析】根据动点P的运动情况分三段分别分析即可得出答案.【解答】解:由图可知,当点P从点F到点B时,∵用了4秒,∴FB=4,∵BF=2AF,∴AF=2,∴AB=CD=6,当点P从点B到点C时,∵用了3秒,∴BC=AD=3,∴a=4+3+6=13,∵点E是AD的中点,∴b=×AE×AF=×2=,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•文登区期中)函数y=+的自变量x的取值范围是 x>﹣3且x≠1 .【分析】根据二次根式被开方数≥0,分式分母不等于0,求公共解集.解得x>﹣3,x≠1,∴自变量x的取值范围是x>﹣3且x≠1,故答案为:x>﹣3且x≠1.12.(2022秋•武清区校级月考)已知一个直角三角形的两条直角边的和为10cm,若设此直角三角形的面积为Scm2,其中一条直角边为x,则S与x的函数关系式为 S=﹣x²+5x ,自变量的取值范围是 0<x<10 .【分析】根据题意可得,直角三角形的另一条边是10﹣x,根直角三角形的面积计算方法进行计算即可得出答案,根据直角三角形的边0<x<10,即可得出答案.【解答】解:根据题意可得,S=x(10﹣x)=﹣x²+5x,自变量的取值范围是0<x<10.故答案为:S=﹣x²+5x,0<x<10.13.(2022秋•临洮县校级月考)篮球联赛中,每两个球队之间进行两场比赛,设有x个球队参赛计划共打y场比赛,则y与x之间的函数关系为 y=x2﹣x .【分析】根据题意找到比赛场数与球队数量的关系即可.【解答】解:每只球队可以和剩下的(x﹣1)只球队比赛,排除重复的,实际比赛场数为:.∴y==x2﹣x.故答案为:y=x2﹣x.14.(2022春•封丘县月考)如图所示的是我省某市某天的气温随时间变化的情况,则这天的最高气温为 8℃ .【分析】根据观察函数图象的纵坐标,可得最高气温.【解答】解:由纵坐标看出这天的最高气温为8℃,故答案为:8℃.15.(2022春•青山区期中)若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时(t为整数),电话费y(元)与通话时间t(分)之间的关系式为 y=0.5t+0.3(t≥3) .【分析】根据题干分析可得,3分钟以内都收1.8元,当t≥3时,除了收1.8元还需要收(t﹣3)×0.5,进行计算即可.【解答】解:当通话时间t≥3分钟时(t为整数),y=1.8+(t﹣3)×0.5,∴y=0.5t+0.3.故答案为:y=0.5t+0.3(t≥3).16.(2022秋•定远县校级月考)如图,根据流程图中的程序,当输入数值x为10时,输出数值y为 9 .【分析】根据题意可得,因为10≥1,所以把x=10代入y=x+3中,计算即可得出答案.【解答】解:根据题意可得,∵10≥1,∴把x=10代入y=x+3中,得y=+3=9.故答案为:9.17.(2022•沙坪坝区校级开学)在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克12345678弹簧的长度/cm12.51313.51414.51515.516则不挂物体时,弹簧的长度是 12 cm.【分析】根据表格数据可得y与x成一次函数关系,设y=kx+b,取两点代入可得出y与x的关系式,当所挂物体质量为0时,即是弹簧不挂物体时的长度.【解答】解:由表格可得:y随x的增大而增大;设y=kx+b,将点(1,12.5),(2,13)代入可得:,解得:.故y=0.5x+12.当x=0时,y=12.即不挂物体时,弹簧的长度是12cm.故答案为:12.18.(2022秋•利川市校级月考)如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x 表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则边BC的长是 .【分析】由图象可知,BP⊥AC时,AP=1,由勾股定理求出BP,再求PC求BC即可.【解答】解:由图象可知,AB=3,AC=6如图,当x =1时,BP ⊥AC Rt △ABP 中,BP =,∵PC =6﹣1=5,∴Rt △CBP 中,BC =,故答案为:.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•泾阳县期中)我们知道:“距离地面越高,气温就越低.”下表表示的是某地某时气温t (℃)随高度h (km )变化而变化的情况:距离地面高度(km )012345温度(℃)201482﹣4﹣10(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请说明温度是怎样随距离地面高度的增加而变化的;(3)已知某山顶的气温为﹣22℃,求此山顶距离地面的高度.【分析】(1)根据表中数量关系判断.(2)根据表中数据变化情况判断.(3)找到变化规律后求解.【解答】解:(1)上表反映了温度和高度两个变量之间的关系.高度是自变量,温度是因变量.(2)由表格可知温度随着距离地面高度的增加而降低.(3)由表格可知当高度每上升1km 时,温度下降6℃,所以当高度为6km 时,温度为﹣16℃,当高度为7km 时,温度为﹣22℃,所以此山顶距离地面的高度是7km.20.(2022春•泾阳县期中)如图是某地区一天的气温随时间变化的图象:(1)气温在哪段时间是下降的?(2)最高气温和最低气温分别是多少摄氏度?【分析】(1)直接根据图象信息回答即可;(2)直接根据图象信息回答即可.【解答】解:(1)由图象可知,气温在0到4时和14到22时是下降的;(2)由图象可知,最高气温是8℃,最低气温是﹣2℃.21.(2022春•晋州市校级期末)已知一个圆柱的底面半径是3cm,当圆柱的高h(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出圆柱的体积V与高h的关系式(结果保留π);(2)当圆柱的高由3cm变化到6cm时,圆柱的体积V增大多少(结果保留π)?【分析】(1)利用圆柱的体积公式求解;(2)分别计算出h=3和6对应的函数值可得到V的变化情况.【解答】解:(1)V=π•32•h=9πh;(2)当h=3cm时,V=27πcm3;当h=6cm时,V=54πcm3;54π﹣27π=27π(cm3),所以圆柱的体积V增大27πcm3.22.(2022春•招远市期末)背景资料:“低碳生活”是指人们生活中尽量减少所耗能量,从而降低(特别是二氧化碳的)排放量的一种生活方式.低碳生活的理念也已逐步被人们所接受.相关资料统计了一系列排根据图中信息,解决问题:(1)若x表示耗油量,开私家车的二氧化碳排放量为y,则开私家车的二氧化碳排放量与耗油量的关系式为 y=2.7x .(2)在上述关系中,耗油量每增加1L,二氧化碳排放量就增加 2.7 kg;当耗油量从3L增加到8L时,二氧化碳排放量就从 8.1 6g增加到 21.6 kg.(3)小明家本月家居用电约100kw•h,天然气10m3,自来水6t,开私家车耗油80L,请你计算一下小明家这几项二氧化碳排放量的总和.【分析】(1)根据题意可以直接写出开私家车的二氧化碳排放量y与耗油量x之间的关系式;(2)根据(1)的结论解答即可;(3)根据题意可以列式计算出小明家本月这几项的二氧化碳排放总量;【解答】解:(1)由题意可得y=2.7x;故答案为:y=2.7x.(2)由y=2.7x可知,耗油量每增加1L,二氧化碳排放量增加2.7kg.当耗油量从3L增加到8L时,二氧化碳排放量从8.1kg增加到21.6kg;故答案为:2.7,8.1,21.6.(3)100×0.785+80×2.7+10×0.19+6×0.91=301.86(kg),小明家本月这几项的二氧化碳排放总量为301.86kg.23.(2022春•泰和县期末)泰和工农兵大道安装的护栏平面示意图如图所示,假如每根立柱宽为0.2米,立柱间距为3米.(1)根据如图,将表格补充完整.立柱根数12345…护栏总长度(米)0.2 3.4 6.6 9.8 13 …(2)在这个变化过程中,自变量、因变量各是什么?(3)设有x根立柱,护栏总长度为y米,则y与x之间的关系式是什么?(4)求护栏总长度为61米时立柱的根数?【分析】(1)根据题意计算即可;(2)根据护栏总长度随立柱根数的变化而变化可以得出答案;(3)根据等量关系:护栏总长度=(每根立柱宽+立柱间距)×立柱根数﹣1个立柱间距,就可以求出解析式;(4)根据关系式就可以计算.【解答】解:(1)根据题意可以计算:当立柱根数为3时,护栏总长度为3.2×3﹣3=6.6(米),当立柱根数为5时,护栏总长度为3.2×5﹣3=13(米),故答案为:6.6,13.(2)在这个变化过程中,护栏总长度随立柱根数的变化而变化,∴自变量是立柱根数,因变量是护栏总长度,(3)由题意得y与x之间的关系式为y=(0.2+3)x﹣3=3.2x﹣3.故答案为:y=3.2x﹣3.(4)当y=61时,3.2x﹣3=61,解得x=20,答:护栏总长度为61米时立柱的根数为20.24.(2022春•开江县期末)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张A4大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成.制版费与印数无关,价格为:彩色页200元/张,黑白页50元/张;印刷费与印数的关系见下表印数a(单位:册)1≤a<50005000≤a<10000彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.60.5(1)直接写出印制这批纪念册的制版费为多少元;(2)若印制6000册,那么共需多少费用?(3)若印制x(1≤x<10000)册,所需费用为y元,请写出y与x之间的关系式.【分析】(1)根据制版费=彩页制版费+黑白制版费,代入数据即可求出数值;(2)根据总费用=制版费+印刷费,代入数据即可求出数值;(3)分1≤x<5和5≤x<10两种情况找出y关于x的函数关系式,合并在一起即可得出结论.【解答】解:(1)200×4+50×6=1100(元),(2)6000(2×4+0.5×6)+1100=67100(元),∴共需费用67100元.(2)当1≤x<5000时,y=1100+2.2×4x+0.6×6x=12.4x+1100,当5000≤x<10000时,y=1100+2×4x+0.5×6x=11x+1100,。
部编数学八年级下册勾股定理专项提升训练(重难点培优)【拔尖特训】2023年培优含答案
![部编数学八年级下册勾股定理专项提升训练(重难点培优)【拔尖特训】2023年培优含答案](https://img.taocdn.com/s3/m/6deb2764b80d6c85ec3a87c24028915f814d8401.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题17.1勾股定理专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•忻城县期中)在Rt△ABC中,∠C=90°,且AB=10,BC=6,则AC等于( )A.12B.8C.4D.2【分析】由勾股定理可直接得出结果.【解答】解:由勾股定理得:AC==8,故选:B.2.(2022春•黔西南州期末)如图,在△ABC中,∠B=90°,AC=,则AB2+BC2的值是( )A.2B.3C.2D.4【分析】由勾股定理可直接得出结果.【解答】解:由勾股定理得:AB2+BC2=AC2,即AB,故选:A.3.(2022秋•溧水区期中)在△ABC中,∠C=90°,∠A,∠B,∠C的对应边分别是a,b,c,则下列式子成立的是( )A.a2+b2=c2B.a2+c2=b2C.a2﹣b2=c2D.b2+c2=a2【分析】根据勾股定理进行解答即可.【解答】解:∵∠C=90°,∠A,∠B、∠C的对应边分别是a、b、c,∴a2+b2=c2.故选:A.4.(2022秋•西安月考)如图,三个正方形围成一个直角三角形,图中的数据是它们的面积,则正方形A的面积为( )A.72B.64C.60D.54【分析】根据勾股定理和正方形面积的公式直接可得答案.【解答】解:由勾股定理得,图形A的面积为100﹣36=64,故选:B.5.(2022春•合川区校级期中)平面直角坐标系内,点P(1,)到原点的距离是( )A.B.2C.+1D.4【分析】直接利用两点间的距离公式可得答案.【解答】解:由两点间距离公式得,OP=,故选:B.6.(2022春•中宁县期末)如图,在△ABC中,AB=AC=4,∠B=15°,CD是腰AB上的高,则CD的长( )A.4B.2C.1D.【分析】根据三角形外角的性质得∠DAC=30°,再利用含30°角的直角三角形的性质可得CD的长.【解答】解:∵AB=AC,∠B=15°,∴∠ACB=∠B=15°,∴∠DAC=30°,∵CD是腰AB上的高,∴CD⊥AB,∴CD=AC=2,故选:B.7.(2022春•普陀区校级期末)如图所示,以数轴上的单位长度线段为边作一个正方形,以表示数1的点为圆心、正方形的对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A.﹣B.1﹣C.﹣1+D.﹣1﹣【分析】利用勾股定理求出正方形的对角线长,从而得出答案.【解答】解:∵正方形的边长为1,∴对角线长为=,∴点A表示的数是1﹣,故选:B.8.(2022春•兰山区期末)如图,边长为1的正方形网格图中,点A,B都在格点上,若,则BC 的长为( )A.B.C.D.【分析】根据勾股定理求得AB的长度,然后根据线段的和差即可得到结论.【解答】解:∵AB==2,,∴BC=AB=AC=2﹣=,故选:C.9.(2022秋•高新区校级月考)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD平分∠CAB,交BC于D,DE⊥AB于E,则CD等于( )A.2cm B.3cm C.4cm D.5cm【分析】首先利用勾股定理求出AB,然后利用角平分线的性质得到CD=DE,在Rt△DEB中,利用勾股定理建立方程求解即可.【解答】解:∵AD是∠CAB的平分线,DE⊥AB,∠C=90°,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6cm,∵AC=6cm,BC=8cm,∴AB==10cm,∴BE=AB﹣AE=10﹣6=4(cm),设DE=xcm,则CD=xcm,BD=(8﹣x)cm,在Rt△DEB中,BD2=DE2+BE2,∴(8﹣x)2=x2+42,∴x=DE=3.故选:B.10.(2022秋•海曙区期中)勾股定理是人类最伟大的科学发现之一,在我国算术《周髀算经》中早有记载.如图以直角三角形纸片的各边分别向外作正三角形纸片,再把较小的两张正三角形纸片按如图的方式放置在最大正三角形纸片内.若已知图中阴影部分的面积,则可知( )A.直角三角形纸片的面积B.最大正三角形纸片的面积C.最大正三角形与直角三角形的纸片面积和D.较小两个正三角形纸片重叠部分的面积【分析】设三个正三角形面积分别为S1,S2,S3,(不妨设S1>S2>S3),由勾股定理和三角形面积可得S1=S2+S3,再由面积和差关系即可求解.【解答】解:如图,设三个正三角形面积分别为S1,S2,S3,(不妨设S1>S2>S3),两个小正三角形的重叠部分的面积为S4,∵△ABC是直角三角形,∠ACB=90°,∴AB2=AC2+BC2,∵S1=AB2,S2=AC2,S3=BC2,∴S2+S3=AC2+BC2=(AC2+BC2)=AB2,∴S1=S2+S3,∴S=S1﹣(S2+S3﹣S4)=S1﹣S2﹣S3+S4=S4,阴影故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•溧阳市期中)若直角三角形两直角边长分别为9和40,则斜边长为 41 .【分析】利用勾股定理直接计算即可.【解答】解:由勾股定理得,斜边==41.故答案为:41.12.(2022秋•天桥区校级月考)在如图所示的方格纸中,建立直角坐标系,点A表示(3,4),则OA= 5 .【分析】根据勾股定理直接计算即可.【解答】解:由勾股定理得,OA==5,故答案为:5.13.(2022秋•临沭县校级月考)在△ABC中,BC=6,BC边上的高AD=4,且BD=2,则△ACD的面积为 8或16 .【分析】根据题意得出CD的长度,再利用三角形面积公式求出△ACD的面积即可.【解答】解:根据题意,分以下两种情况:①如图:∵BC=6,AD=4,BD=2,∴CD=BC﹣BD=6﹣2=4,=CD•AD==8,∴S△ACD②如图:∵BC=6,AD=4,BD=2,∴CD=BD+BC=8,=CD•AD=8×4=16,∴S△ACD故答案为:8或16.14.(2022春•中山市期末)平面直角坐标系中有两点A(m,﹣1),B(3,4),当m取任意实数时,线段AB长度的最小值为 5 .【分析】根据垂线段最短即可解决问题.【解答】解:∵A(m,﹣1),∴点A在直线y=﹣1上,要使AB最小,根据“垂线段最短”,可知:过B作直线y=﹣1的垂线,垂足为即为A,∴AB最小为5.故答案为:5.15.(2022秋•建邺区校级期中)如图,△ABC中,∠C=90°,AC=4,BC=3,若CH是△ABC的高线,则CH= .【分析】先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论.【解答】解:∵Rt△ABC中,AC=4,BC=3,∴AB===5.∵CH是△ABC的高线,∴AB•CH=AC•BC,即5CH=4×3,解得CH=.故答案为:.16.(2022秋•秦淮区期中)如图,在Rt△ABC中,∠ACB=90°,AB=4cm,分别以AC,BC为边作正方形,面积分别记为S1,S2,则S1+S2= 16 cm2.【分析】在直角三角形ABC中,利用勾股定理求出AC2+BC2的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=4cm,由勾股定理得:AC2+BC2=AB2=16,则S1+S2=AC2+BC2=16(cm2),故答案为:16.17.(2022秋•云岩区月考)如图,在Rt△ABC中,∠ABC=90°,AC=5,BC=,分别以△ABC的三边为直径画半圆,则两个月形图案(阴影部分)的面积之和是 5 .【分析】由勾股定理得AB2+BC2=AC2,AB=2,设以AB、BC、AC为直径的半圆分别为①、②、③,则S①+S②=S③,而S阴影=S①+S②+S△ABC﹣S③=S△ABC,即可解决问题.【解答】解:∵∠ABC=90°,∴AB2+BC2=AC2,AB===2,设以AB、BC、AC为直径的半圆分别为①、②、③,∴S①=π×()2=AB2,同理:S②=BC2,S③=AC2,∴S①+S②=(AB2+BC2)=AC2=S③,=S①+S②+S△ABC﹣S③=S△ABC=AB•BC=×2×=5,∴S阴影即两个月形图案(阴影部分)的面积之和是5,故答案为:5.18.(2022秋•仁寿县校级月考)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.过点D作DE⊥AP于点E.在点P的运动过程中,当t为 5或11 时,能使DE=CD?【分析】根据动点运动的不同位置利用勾股定理即可求解.【解答】解:①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11.综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•温州期中)如图,在△ABC中,AB=AC,AD平分∠BAC,已知BC=10,AD=12,求AC 的长.【分析】根据等腰三角形的性质和勾股定理即可得到结论.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=BC=5,∵AD=12,∴AC===13,故AC的长为13.20.(2022秋•玉林期中)如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,求线段CD的长.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再利用“30°角所对的直角边等于斜边的一半”即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故线段CD的长为3.21.(2022秋•碑林区校级期中)在△ABC中,AB=13,BC=14,AC=15,AD为BC边上的高,求AD的长.【分析】由题意知,BD+DC=14,设BD=x,则CD=14﹣x,在直角△ABD中,AB是斜边,根据勾股定理AB2=AD2+BD2,在直角△ACD中,根据勾股定理AC2=AD2+CD2,列出方程组即可计算x的值,即可求得AD的长度.【解答】解:∵BC=14,且BC=BD+DC,设BD=x,则DC=14﹣x,则在直角△ABD中,AB2=AD2+BD2,即132=AD2+x2,在直角△ACD中,AC2=AD2+CD2,即152=AD2+(14﹣x)2,整理计算得x=5,即AD=12.22.(2022秋•苏州期中)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成如图2所示的“赵爽弦图”,得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长;(2)已知图2中小正方形面积为36,求大正方形的面积?【分析】(1)观察图形,用直角三角形较长的直角边减去较短的直角边即可;(2)根据正方形的面积=边长的平方列出代数式,把a=3代入求值即可.【解答】解:(1)∵直角三角形较短的直角边=×2a=a,较长的直角边=2a+3,∴小正方形的边长=2a+3﹣a=a+3;(2)小正方形的面积=(a+3)2=36,∴a=3(负值舍去),∴大正方形的面积=92+32=90.23.(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC=b,∴正方形ACDE的面积为b2,∵CD=DE=AC=b,BC=a,EF=BC=a,∴BD=CD﹣BC=b﹣a,DF=DE+EF=a+b,∵∠CAE=90°,∴∠BAC+∠BAE=90°,∵∠BAC=∠EAF,∴∠EAF+∠BAE=90°,∴△BAE为等腰直角三角形,∴四边形ABDF的面积为:c2+(b﹣a)(a+b)=c2+(b2﹣a2),∵正方形ACDE的面积与四边形ABDF的面积相等,∴b2=c2+(b2﹣a2),∴b2=c2+b2﹣a2,∴a2+b2=c2,∴a2+b2=c2.24.(2022秋•大丰区期中)如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC:BC=3:4,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【分析】(1)利用勾股定理求解BC的长即可;(2)分3种情况讨论:当AP=BP时,当AB=BP时,当AB=AP时,分别计算可求解.【解答】解:(1)∵AC:BC=3:4,∴设AC=3xcm,BC=4xcm,在Rt△ABC中,∠ACB=90°,∴AB==5x=10cm,∴x=2,∴BC=8cm;(2)由(1)知,BC=8cm,AC=6cm,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.。
2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)
![2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)](https://img.taocdn.com/s3/m/fab195916037ee06eff9aef8941ea76e59fa4a44.png)
2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 2^3B. 3^2C. (3^2)^2D. 2^(3^2)2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 梯形C. 正三角形D. 菱形3. 已知x²=25,那么x的值为()A. 5B. 5C. ±5D. 5或54. 下列函数中,奇函数是()A. y=x²B. y=2xC. y=x³D. y=|x|5. 若a²+b²=25,则下列选项中正确的是()A. a+b=5B. ab=0C. ab=5D. a²+b²=625二、判断题5道(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 平方根和立方根都只有一个解。
()3. 任何数都有倒数。
()4. 两个奇数相加的结果是偶数。
()5. 任何数乘以1都等于它本身。
()三、填空题5道(每题1分,共5分)1. 3的平方根是______。
2. 若a=3,b=3,则a+b=______。
3. 5的立方是______。
4. 若x²=9,则x的值为______。
5. 任何数乘以0都等于______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述偶函数的定义。
3. 请简述一元二次方程的解法。
4. 请简述平行四边形的性质。
5. 请简述菱形的性质。
五、应用题:5道(每题2分,共10分)1. 已知a=2,b=3,求a²+b²的值。
2. 已知x²6x+9=0,求x的值。
3. 计算下列表达式的值:3²+4²。
4. 已知一个正方形的边长为a,求该正方形的面积。
5. 计算下列表达式的值:√(64)+√(49)。
六、分析题:2道(每题5分,共10分)1. 已知a²+b²=25,求a和b的值。
2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)
![2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)](https://img.taocdn.com/s3/m/6422e919777f5acfa1c7aa00b52acfc789eb9fdd.png)
2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)一、选择题:每题1分,共5分1. 下列数中,既是有理数也是无理数的是( )A. 0B. 3/2C. √2D. 52. 已知函数f(x)=x²3x+2,那么f(1)= ( )A. 0B. 2C. 3D. 23. 在三角形ABC中,AB=AC,那么角B等于角C的( )A. 1/2B. 1C. 2D. 无法确定4. 下列哪个数是最大的( )A. √3B. √2C. √5D. √45. 已知函数f(x)=2x+3,那么f(2)= ( )A. 1B. 1C. 2D. 2二、判断题:每题1分,共5分1. 0是整数,也是有理数。
( )2. 任何一个正整数都能被表示为两个质数的和。
( )3. 两条平行线的斜率相等。
( )4. 任何两个奇数之和都是偶数。
( )5. √3是整数。
( )三、填空题:每题1分,共5分1. 2³=_______2. 已知函数f(x)=3x2,那么f(2)=_______3. 在三角形ABC中,AB=AC,那么角B等于_______4. 1/2的倒数是_______5. 2的平方根是_______四、简答题:每题2分,共10分1. 请简述有理数的定义。
2. 请简述平行线的性质。
3. 请简述一次函数的性质。
4. 请简述勾股定理。
5. 请简述概率的定义。
五、应用题:每题2分,共10分1. 已知函数f(x)=x²2x+1,求f(3)的值。
2. 在三角形ABC中,AB=3,AC=4,BC=5,求三角形ABC的面积。
3. 一个袋子里有3个红球,2个绿球,求摸出一个红球的概率。
4. 解方程:2x+3=7。
5. 已知函数f(x)=2x+1,求f(3)的值。
六、分析题:每题5分,共10分1. 已知函数f(x)=x²4x+3,求f(x)的最小值。
2. 在三角形ABC中,AB=AC,BC=6,求三角形ABC的面积。
最新人教版八年级数学下册单元测试题及答案全套
![最新人教版八年级数学下册单元测试题及答案全套](https://img.taocdn.com/s3/m/17c4a37b647d27284b7351a4.png)
最新人教版八年级数学下册单元测试题及答案全套含期中期末试题单元测试(一) 二次根式1.使式子x -2有意义的x 的取值范围是()A .x ≤2B .x ≤-2C .x ≠2D .x ≥2 2.下列二次根式中是最简二次根式的是()A .12B .13C .a 2+1D .3a 2 3.化简(-5)2的结果是()A .5B .-5C .±5D .254.下面选项中,与3是同类二次根式的是()A .12B .8C .22D 5.下列计算正确的是()A .8-3= 5B .32+2=4 2C .18÷3=6D .6×(-3)=326.若实数x ,y 满足2x -1+||y -1=0,则x +y 的值是()A .1B .32C .2D .527.实数a ,b 在数轴上的对应点的位置如图所示,且|a|>|b|,则化简a 2-(a +b )2的结果为()A .2a +bB .-2a +bC .bD .-2a -b8.若8n 是整数,则正整数n 的最小值是()A .4B .3C .2D .09.已知x 1=3+2,x 2=3-2,则x 21+x 22等于()A .8B .9C .10D .1110.将1,2,3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2 018,2 018)表示的两个数的积是()1 第1排3 2 第2排3 2 1 第3排1 32 1 第4排……第4列第3列第2列第1列A. 2B. 3C. 6 D.3二、填空题(本大题共6小题,每小题4分,共24分)11.化简(315)2的结果是____________.12.计算:15×5=____________.13.若a=3-1,则a2+2a+2的值是____________.14.已知最简二次根式2m-1与n则m=____________,n=____________.15.如果ab>0,a+b<0,;②ab·ba=1;③ab÷ab=-b,其中正确的是____________.16.观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________________________.三、解答题(本大题共5小题,共46分)17.(12分)计算:(1)(827-53)×6;(2)8+23-(27-2);(3)(72+12-18)×2;(4)(25-52)(-25-52)-(5-2)2.18.(8分)先化简,再求值:a 2-b 2a +b ÷a -ba 2b 2,其中a =2,b = 3.19.(8分)已知y =x -2+2-x +5,求x +2y 2的值.20.(8分)在一块边长为(1015+55)m 的正方形土地中,修建了一个边长为(1015-55)m 的正方形养鱼池,问:剩余部分的面积是多少?21.(10分)在进行二次根式的化简时,我们有时会碰到如53,23,23+1这样的式子,其实我们还可以将其进一步化简:53=5×33×3=533;(一) 23=2×33×3=63;(二) 23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1.(三) 以上这种化简的步骤叫做分母有理化. 23+1还可以用以下方法化简: 23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.(四) (1)请用不同的方法化简25+3 .①参照(三)式得25+3=________________________________________________________________________;②参照(四)式得25+3=________________________________________________________________________;(2)化简:13+1+15+3+17+5+…+.参考答案单元测试(一) 二次根式1.D 2.C 3.A 4.A 5.B 6.B 7.C 8.C 9.C 10.D 11.16512.53 13.4 14.7 3 15.②③ 16.n +1n +2=(n +1)1n +2(n ≥1) 17.(1)43-15 2.(2)32- 3.(3)7.(4)23+210.18.原式=a 2b 2.当a =2,b =3时,原式=6.19.由题意,得x =2,此时y =5.∴x +2y 2=2+2×52=52=213.20.(1015+55)2-(1015-55)2=(1015+55+1015-55)(1015+55-1015+55)=2015×105=20015×5=1 0003(m 2).答:剩余部分的面积是1 000 3 m 2. 21.(1)①2×(5-3)(5+3)(5-3)=2(5-3)5-3=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+…+2n +1-2n -12=3-1+5-3+7-5+…+2n +1-2n -12=2n +1-12.单元测试(二) 勾股定理 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A .3,4,5B .6,8,10C .3,2, 5D .5,12,13 2.已知命题:等边三角形是等腰三角形,则下列说法正确的是()A .该命题为假命题B .该命题为真命题C .该命题的逆命题为真命题D .该命题没有逆命题3.如图,点P 是平面直角坐标系中的一点,则点P 到原点的距离是()A .3B . 2C .7D .53第3题图 第5题图 第8题图4.直角三角形的一直角边长是7 cm ,另一直角边与斜边长的和是49 cm ,则斜边的长为()A .18 cmB .20 cmC .24 cmD .25 cm5.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为()A .4B .8C .16D .64 6.适合下列条件的△ABC 中,直角三角形的个数为()①a =13,b =14,c =15;②a ∶b ∶c =1∶2∶3;③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =3.A .2B .3C .4D .57.已知一个三角形的三个内角的比是1∶2∶1,则这三个内角对应的三条边的比是()A.1∶1∶ 2 B.1∶2∶1 C.1∶1∶2 D.1∶4∶18.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里9.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,M,N在AB上且AM=AC,BN=BC,则MN的长为()A.6 B.7 C.8 D.910.一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米.如果梯子的顶端下滑0.4米,那么梯足将向外移()A.0.6米B.0.7米C.0.8米D.0.9米二、填空题(本大题共6小题,每小题4分,共24分)11.如图,等腰△ABC的底边BC长为16,底边上的高AD长为6,则腰AB的长为____________.第11题图第12题图第13题图12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200 m,结果他在水中实际游了520 m,则该河流的宽度为____________ m.13.如图,三个正方形的面积分别为S1=3,S2=2,S3=1,则分别以它们的一边为边围成的三角形中,∠1+∠2=____________度.14.一个直角三角形的两边长分别为5 cm,12 cm,则这个直角三角形的第三边长为____________.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为____________.第15题图第16题图16.如图,一个三级台阶,它的每一级的长、宽和高分别为20,3,2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是____________.三、解答题(本大题共5小题,共46分)17.(8分)如图,在△ABC中,AD⊥BC于D,AB=3,BD=2,DC=1,求AC的长度.18.(9分)已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13.(1)求BC的长度;(2)线段BC与线段BD的位置关系是什么?说明理由.19.(9分)如图,在边长为1的正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;(2)试判断△ABC的形状.20.(10分)在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺(如图).突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲离开原处的水平距离为6尺,请问水深多少?21.(10分)如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD ′与BC 交于点E ,若AD =4,DC =3,求BE 的长.单元测试(二) 勾股定理1.C 2.B 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C 11.10 12.480 13.90 14.13 cm 或119 cm 15.9216.25 17. 6. 18.(1)5.(2)BC ⊥BD ,理由如下:∵BC =5,BD =12,CD =13,∴BC 2+BD 2=25+144=169=132=CD 2.∴∠CBD =90°.∴BC ⊥BD.19.(1)5+3 5.(2)△ABC 是直角三角形.20.4.5尺.21.∵四边形ABCD 是长方形,∴AB =CD ,∠B =∠D =90°.由折叠可知,∠D =∠D′,CD =CD′.∴∠B =∠D′,AB =CD′.又∵∠AEB =∠CED′,∴△ABE ≌△CD ′E(AAS ).∴AE =CE.设BE =x ,则AE =CE =4-x ,在Rt △ABC 中,由勾股定理得,AB 2+BE 2=AE 2,即32+x 2=(4-x)2.解得x =78.∴BE 的长为78.单元测试(三) 平行四边形 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知▱ABCD 中,∠B =∠A +∠C ,则∠C =()A .18°B .36°C .60°D .144°2.在平行四边形、矩形、菱形、正方形中,是轴对称图形的有()A .1个B .2个C .3个D .4个 3.如图,在▱ABCD 中,下列说法一定正确的是()A .AB =CD B .AB =BC C .AC =BD D .AC ⊥BD 4.下列命题中正确的是()A .有一组邻边相等的四边形是菱形B .有一个角是直角的平行四边形是矩形C .对角线垂直的平行四边形是正方形D .一组对边平行的四边形是平行四边形5.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点,且OE =a ,则菱形ABCD 的周长为()A .16aB .12aC .8aD .4a第5题图 第6题图 第7题图6.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,此正方形的面积()A.16 B.8 C.4 D.27.如图,将矩形ABCD沿AE对折,使点D落在点F处.若∠CEF=60°,则∠EAF等于() A.60° B.50° C.40° D.30°8.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线EF交对角线AC于点F,E为垂足,连接DF,则∠CDF等于()A.80°B.70°C.65°D.60°第8题图第9题图第10题图9.如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12 B.13 C.14 D.1510.如图,△ACE是以▱ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(5,-23),则D点的坐标是()A.(3,0) B.(4,0) C.(5,0) D.(23,0)二、填空题(本大题共6小题,每小题4分,共24分)11.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是____________.(横线上只需填一个你认为合适的条件即可)12.平行四边形的周长为24 cm,相邻两边长的比为3∶1,那么这个平行四边形较短的边长为____________cm.13.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是____________.14.菱形的边长为5,一条对角线长为8,另一条对角线长为____________.15.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D′重合.若BC=8,CD=6,则CF=____________.第15题图第16题图16.如图,正方形ABCD中,点E,F分别在边BC,CD上,且AE=EF=FA.有下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF.其中正确的是____________(只填写序号).三、解答题(本大题共5小题,共46分)17.(6分)如图,在▱ABCD中,已知M和N分别是边AB,DC的中点,求证:四边形BMDN是平行四边形.18.(8分)如图,矩形ABCD中,AC与BD交于点O,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.19.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,点E在AO上,且OE =OC.(1)求证:∠1=∠2;(2)连接BE,DE,判断四边形BCDE的形状,并说明理由.20.(10分)如图,将▱ABCD 的边BA 延长到点E ,使AE =AB ,连接EC ,交AD 于点F ,连接AC ,ED.(1)求证:四边形ACDE 是平行四边形;(2)若∠AFC =2∠B ,求证:四边形ACDE 是矩形.21.(12分)如图,BD 是正方形ABCD 的对角线,BC =2,边BC 在其所在的直线上平移,经通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形? (2)请判断OA ,OP 之间的数量关系和位置关系,并加以证明.单元测试(三) 平行四边形1.C 2.C 3.A 4.B 5.C 6.B 7.D 8.D 9.C 10.B11.AD =BC(或AB ∥CD) 12.3 13.7.5 14.6 15.5316.①②③⑤17.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =DC.∵M 和N 分别是AB ,DC 的中点,∴BM =12AB ,DN =12DC.∴BM =DN.∴四边形BMDN 是平行四边形.18.证明:∵四边形ABCD 为矩形,∴OB =OC.∵BE ⊥AC 于E ,CF ⊥BD 于F ,∴∠BEO =∠CFO =90°.又∵∠BOE =∠COF ,∴△BOE ≌△COF(AAS ).∴BE =CF.19.(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC(SSS ).∴∠1=∠2.(2)四边形BCDE是菱形.理由如下:∵BC =DC ,∠1=∠2,OC =OC ,∴△ODC ≌△OBC(SAS ).∴OD =OB ,OC ⊥BD.∵OE =OC ,∴四边形BCDE 是平行四边形.∵OC ⊥BD ,∴四边形BCDE 是菱形.20.(1)∵▱ABCD 中,AB =CD 且AB ∥CD ,又∵AE =AB ,∴AE =CD ,AE ∥CD.∴四边形ACDE 是平行四边形.(2)∵▱ABCD 中,AD ∥BC ,∴∠EAF =∠B.又∵∠AFC =∠EAF +∠AEF ,∠AFC =2∠B ,∴∠EAF =∠AEF.∴AF =EF.又∵▱ACDE 中,AD =2AF ,EC =2EF ,∴AD =EC.∴四边形ACDE 是矩形. 21.(1)四边形APQD 是平行四边形.(2)OA ⊥OP ,OA =OP.∵四边形ABCD 为正方形,∴∠ABO =∠OBC =45°.∵OQ ⊥BD ,∴∠BOQ =90°.∴∠OQB =45°.∴∠OQB =∠ABO =∠OBQ =45°.∴OB =OQ.在△ABO 和△PQO 中,⎩⎨⎧AB =PQ ,∠ABO =∠OQB ,OB =OQ ,∴△ABO ≌△PQO(SAS ).∴OA =OP ,∠AOB =∠POQ.∵∠BOQ =∠BOP +∠POQ =90°,∴∠BOP +∠AOB =∠AOP =90°.∴OA ⊥OP.单元测试() 一次函数 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数:①y =x ;②y =2x -1;③y =1x;④y =x 2-1中,是一次函数的有()A .4个B .3个C .2个D .1个2.把直线y =3x 向下平移2个单位长度,得到的直线是()A .y =3x -2B .y =3(x -2)C .y =3x +2D .y =3(x +2) 3.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是()A .正方形面积S 随边长a 的变化而变化B .用10米长的绳子围一个矩形,则所围成的矩形的长y(米)随宽x(米)的变化而变化C .一场电影票价(元/张)一定时,则该场电影票房收入m(元)随出售票数n(张)的变化而变化D .菱形的面积一定时,则一条对角线长度y 随另一条对角线长度x 的变化而变化4.下列曲线中,不能表示y是x的函数的是()5.如图,直线y=2x必过的点是()A.(2,1) B.(2,2) C.(-1,-1) D.(0,0)6.已知一次函数y=kx+b,y随x的增大而减小,且kb<0,则在平面直角坐标系内它的大致图象是()7.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑完余下路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离家的路程s,则s与t之间函数的图象大致是()8.对于函数y=-2x+1,下列结论正确的是()A.它的图象必经过点(-1,2) B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大9.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是() A.x>0 B.x<0 C.x>1 D.x<1第9题图第10题图10.某通讯公司提供了两种移动电话收费方式:方式1,收月基本费20元,再以每分钟0.1元的价格按通话时间计费;方式2,收月基本费20元,送80分钟通话时间,超过80分钟的部分,以每分钟0.15元的价格计费.下列结论:①如图描述的是方式1的收费方法;②若月通话时间少于240分钟,选择方式2省钱;③若月通讯费为50元,则方式1比方式2的通话时间多;④若方式1比方式2的通讯费多10元,则方式1比方式2的通话时间多100分钟.其中正确的是()A.只有①②B.只有③④C.只有①②③D.①②③④二、填空题(本大题共6小题,每小题4分,共24分)11.直线y=2x+1经过点(0,a),则a=____________.12.函数y=x+1+1x-1中自变量x的取值范围是____________.13.同一温度的华氏度数y()与摄氏度数x(℃)之间的函数关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.14.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“联盟数”.若“联盟数”为[1,m-5]的一次函数是正比例函数,则m的值为____________.15.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图所示.当0≤x≤1时,y关于x的函数解析式为y=60x,那么当1≤x≤2时,y关于x的函数解析式为____________.第15题图第16题图16.如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴.将△ABC以y轴为对称轴对称变换,得到△A′B′C′(A和A′,B和B′,C和C′分别是对应顶点).直线y=x +b经过点A,C′,则点C′的坐标是____________.三、解答题(共46分)17.(6分)希望中学学生从2016年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.18.(8分)根据下列条件分别确定函数y =kx +b 的解析式:(1)y 与x 成正比例,当x =2时,y =3; (2)直线y =kx +b 经过点(2,4)与点(13,-13).19.(10分)如图,正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A(m ,2),一次函数的图象经过点B(-2,-1),与y 轴交点为C ,与x 轴交点为D.(1)求一次函数的解析式; (2)求△AOD 的面积.20.(10分)我州某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?21.(12分)如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(8,0),点A 的坐标为(6,0),点P(x ,y)是第一象限内直线上的一个动点(点P 不与点E ,F 重合).(1)求k 的值;(2)在点P 运动的过程中,求出△OPA 的面积S 与x 的函数关系式; (3)若△OPA 的面积为278,求此时点P 的坐标.单元测试() 一次函数1.C 2.A 3.C 4.D 5.D 6.A 7.A 8.C 9.B 10.C 11.1 12.x ≥-1且x ≠1 13.77 14.5 15.y =100x -40 16.(1,3) 17.y =2x ;常量:2;变量:x ,y ;自变量:x ;y 是x 的函数:y =2x. 18.(1)y =32x.(2)y =135x -65. 19.(1)y =x +1.(2)S △AOD =1.20.设有x 名教师到外地学习,则甲宾馆的收费情况是:y 1=⎩⎪⎨⎪⎧120x (x ≤35),108x +420(x>35);乙宾馆的收费情况是:y 2=⎩⎪⎨⎪⎧120x (x ≤45),96x +1 080(x>45).(1)当x ≤35时,选择两个宾馆是一样的.(2)当35<x ≤45时,选择甲宾馆比较便宜.(3)当x >45时,①若y 1=y 2,即108x +420=96x +1 080,解得x =55;②若y 1>y 2,即108x +420>96x +1 080,解得x >55;③若y 1<y 2,即108x +420<96x +1 080,解得x <55.综上可得,当x ≤35或x =55时,选择两个宾馆是一样的;当35<x <55时,选择甲宾馆更实惠些;当x >55时,选择乙宾馆更实惠些.21.(1)由题意,得8k +6=0,解得k =-34.∴y =-34x +6.(2)过点P 作PD ⊥OA 于点D.∵点P(x ,y)是第一象限内直线上的一个动点,∴PD =-34x +6(0<x <8).∵点A 的坐标为(6,0),∴S =12×6×(-34x +6)=-94x +18(0<x <8).(3)∵△OPA 的面积为278,∴-94x +18=278,解得x =132.将x =132代入y =-34x +6,得y =98,∴P(132,98).单元测试(五) 数据的分析 (时间:40分钟 满分:100分)一、选择题(本大题共10小题,每小题3分,共30分)1.某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105,则这七天空气质量指数的平均数是()A .71.8B .77C .82D .95.72.在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A .方差B .平均数C .中位数D .众数3.已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是()A .1B .43C .0D .24.学校组织领导、教师、学生、家长对教师的教学质量进行综合评分,满分为100分,张老师得分的情况如下:领导平均给分80分,教师平均给分76分,学生平均给分90分,家长平均给分84分.如果按照1∶2∶4∶1的权进行计算,那么张老师的综合评分为()A .83.5分B .84.5分C .85.5分D .86.35分5.甲、乙、丙、丁四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差s 2如下表所示:如果选出一名成绩较好且状态稳定的运动员去参赛,那么应选()A.甲B.乙C.丙D.丁6.2016年欧洲杯足球赛中,某国家足球队首发上场的11名队员身高如表:则这11名队员身高的众数和中位数分别是(单位:cm)()A.180,180 B.180,182 C.182,182 D.3,27.A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C三人的平均成绩是78分,下列说法一定正确的是()A.D,E两人的成绩比其他三人都好B.D,E两人的平均成绩是83分C.五人的成绩的中位数一定是80分D.五人的成绩的众数一定是80分8.小丽根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,那么表中数据一定不会发生变化的是()A.平均数B.众数C.方差D.中位数9.若一组数据1,2,3,4,x的平均数与中位数相同,则x的值不可能是()A.0 B.2.5 C.3 D.510.从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)11.红树林中学共有学生1 600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有____________人.12.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为____________分.13.金华火腿闻名遐迩.某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500克的火腿片.现从它们分装的火腿片中各随机抽取10盒,经称量并计算得到质量的方差如下表所示,你认为包装质量最稳定的切割包装机是____________.14.有5个从小到大排列的正整数,如果中位数是3,唯一的众数是7,那么这5个数的平均数是____________.15.若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为____________(请用“>”连接).16.若一组数据x1,x2,…,x n的平均数是a,方差是b,则4x1-3,4x2-3,…,4x n-3的平均数是____________,方差是____________.三、解答题(本大题共5小题,共46分)17.(6分)老师计算学生的学期总评成绩时按照如下的标准:平时作业占10%,单元测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示:请你通过计算,比较谁的学期总评成绩高?18.(8分)经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A,B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20个,记录它们的质量如下(单位:kg):A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.25.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.95.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:(2)请分别从优等品数量、平均数与方差三方面对A,B两种技术作出评价.从市场销售的角度看,你认为推广哪种种植技术较好?19.(10分)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现.老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是____________;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.20.(10分)在某旅游景区上山的一条山路上,有一些断断续续的台阶,如图是其中的甲、乙两段台阶路高度的示意图.(单位:cm)(1)两段台阶路有哪些相同点与不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为了方便游客行走,需要重新整修上山的小路,对于这两条台阶路,在台阶数不变的情况下,请你提出合理的整修建议.21.(12分)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如下表:然后做上记号再放回鱼塘中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点);(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg).单元测试(五)数据的分析1.C 2.D 3.A 4.B 5.B 6.A7.B8.D9.C10.C 11.68012.8813.甲14.415.b>a>c 16.4a-316b17.小丽的成绩是80×10%+75×30%+71×25%+88×35%=79.05(分),小明的成绩是76×10%+80×30%+70×25%+90×35%=80.6(分),80.6>79.05,所以小明的学期总评成绩高.18.(1)1610(2)从优等品数量的角度看,因为A技术种植的西瓜优等品数量较多,所以A技术较好;从平均数的角度看,因为A 技术种植的西瓜质量的平均数更接近5 kg ,所以A 技术较好;从方差的角度看,因为B 技术种植的西瓜质量的方差更小,所以B 技术种植的西瓜质量更为稳定;从市场销售角度看,因为优等品更畅销,A 技术种植的西瓜优等品数量更多,且平均质量更接近5 kg ,所以更适合推广A 种技术. 19.(1)C 组 (2)图略.(3)小明的判断符合实际.理由:这次活动中做家务的时间的中位数所在的范围是1.5≤x<2,小明这一周做家务2小时,所在的范围是2≤x <2.5,所以小明的判断符合实际.20.(1)因为x 甲=15,x 乙=15,所以,相同点是两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差均不相同.(2)甲路段走起来更舒服些,因为它的台阶高度的方差小些.(3)使每个台阶高度均为15 cm ,使得台阶路高度的方差为0.21.(1)补图略.(2)其质量落在0.5~0.8 kg 这一组内的可能性最大.(3)质量落在0.8~1.1 kg 这一组内.(4)平均数x =0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×250=0.904(kg ).50÷2100×0.904=2260(kg ).∴水库中成品鱼的总质量约为2 260 kg .(答案不唯一,合理即可)期中测试(时间:100 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.若2x -1在实数范围内有意义,则x 的取值范围是()A .x ≥12B .x ≥-12C .x >12D .x ≠122.一直角三角形的两直角边长分别为12和16,则斜边长为()A .12B .16C .18D .203.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架()A .3 cm ,4 cm ,5 cmB .7 cm ,12 cm ,15 cmC .7 cm ,12 cm ,13 cmD .8 cm ,15 cm ,16 cm 4.下列计算错误的是()A.14×7=7 2 B.32-2=3 C.9a+25a=8 a D.60÷5=235.如图,在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对第5题图第6题图6.如图,在▱ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=() A.30°B.50°C.70°D.110°7.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.估计8×0.5+7的运算结果在()A.3到4之间B.4到5之间C.5到6之间D.6到7之间9.如图,菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是() A.16 3 B.16 C.8 3 D.8第9题图第10题图10.如图是由四个边长为1的正方形构成的田字格,只用没有刻度的直尺在田字格中最多可以作长为5的线段共()A.4条B.6条C.7条D.8条二、填空题(本大题共6小题,每小题4分,共24分)11.化简:15=__________.12.下面四组数:①4,5,6;②6,8,10;③8,15,17;④9,40,41,其中有一组与其他三组规律不同的是____________.13.如图,在平面直角坐标系中,四边形AOBC是菱形.若点A的坐标是(3,4),则菱形的周长为____________,点B的坐标是____________.第13题图第14题图第15题图第16题图14.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2=____________.15.如图所示,矩形ABCD的两条对角线相交于点O,AD=8,AB=6,将△ABO向右平移得到△DCE,则△ABO向右平移过程中扫过的面积是____________.16.如图,分别以Rt△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=其中结论正确的是____________.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(1)(46-62)÷22;(2)27-(3-2)0+3 3 .18.(6分)如图,点P是▱ABCD的对角线AC的中点,经过点P的直线EF交AB于点E,交DC于点F.求证:AE=CF.19.(6分)已知x,y是实数,且y=4x-1+1-4x+3,求3xy的值.四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)已知,如图,在△ABC中,∠B=30°,∠C=45°,AC=2 2.求:(1)AB的长;(2)△ABC的面积.21.(7分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.22.(7分)如图,∠O=90°,OA=90 cm,OB=30 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,在▱ABCD中,∠DAB=60°,AB=2AD,点E,F分别是AB,CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.24.(9分)如图,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.(1)求证:AD⊥BF;(2)若BF=BC,求∠ADC的度数.25.(9分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时.①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是____________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是____________,请证明你的猜想;(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.期中测试1.A 2.D 3.A 4.B 5.A 6.C 7.D 8.B 9.C 10.D 11.5512.① 13.20 (5,0) 14.2π 15.48 16.①③④ 17.(1)23-3.(2)43-1.18.证明:在▱ABCD 中,AB ∥CD ,∴∠CAE =∠ACF ,∠FEA =∠EFC.又∵点P 是AC 的中点,∴AP =CP.∴△AEP ≌△CFP(AAS ).∴AE =CF. 19.32. 20.(1)4.(2)2+2 3. 21.6. 22.机器人行走的路程BC 为50 cm .23.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD ,AD ∥BC 且AD =BC.∵E ,F 分别为AB ,CD 的中点,∴BE =12AB ,DF =12CD.∴BE =DF.∴四边形DEBF 是平行四边形.在△ABD 中,E是AB 的中点,AB =2AD ,∴AE =BE =12AB =AD.又∵∠DAB =60°,∴△AED 是等边三角形.∴DE =AE =AD.∴DE =BE.∴四边形DEBF 是菱形.(2)四边形AGBD 是矩形.证明:∵AD ∥BC 且AG ∥DB ,∴四边形AGBD 是平行四边形.由(1)知AD =DE =AE =BE ,∴∠ADE =∠DEA =60°.∴∠EDB =∠DBE =30°.∴∠ADB =90°.∴四边形AGBD 是矩形.24.(1)证明:连接DB ,DF.∵四边形ABCD ,ADEF 都是菱形,∴AB =BC =CD =DA =DE =EF =FA.在△BAD 和△FAD 中,⎩⎨⎧AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△BAD ≌△FAD(SAS ).∴DB =DF.∴D 在线段BF 的垂直平分线上.∵AB =AF ,∴A 在线段BF 的垂直平分线上.∴AD 是线段BF 的垂直平分线.∴AD ⊥BF.(2)150°. 25.(1)①DE =EF ②NE =BF.证明:∵四边形ABCD 为正方形,∴AD =AB ,∠DAB =∠ABC =90°.∵N ,E 分别为AD ,AB 中点,∴AN =DN =12AD ,AE =EB =12AB.∴DN =BE ,AN =AE.∵∠DEF =90°,∴∠AED +∠FEB =90°.又∵∠ADE +∠AED =90°,∴∠FEB =∠ADE.∵AN =AE ,∴∠ANE =∠AEN.又∵∠A =90°,∴∠ANE =45°.∴∠DNE =180°-∠ANE =135°.∵∠CBM =90°,BF 平分∠CBM ,∴∠CBF =45°.∴∠EBF =135°.∴∠DNE =∠EBF.∴△DNE ≌△EBF(ASA ).∴NE =BF.(2)DE =EF.证明:在DA 边上截取DN =EB ,连接NE ,∵四边形ABCD 是正方形,DN =EB ,∴AN =AE.∴△AEN 为等腰直角三角形.∴∠ANE =45°.∴∠DNE =180°-45°=135°.∵BF 平分∠CBM ,∴∠EBF =90°+45°=135°.∴∠DNE =∠EBF.∵∠NDE +∠DEA =90°,∠BEF +∠DEA =90°,∴∠NDE =∠BEF.∴△DNE ≌△EBF(ASA ).∴DE =EF.。
人教版初二数学8年级下册 第18章(平行四边形)单元复习训练(含答案解析)
![人教版初二数学8年级下册 第18章(平行四边形)单元复习训练(含答案解析)](https://img.taocdn.com/s3/m/ad6b68b8f80f76c66137ee06eff9aef8951e4858.png)
人教版初二数学8年级下册第18章(平行四边形)单元复习训练一、选择题1.(2021宜宾)下列说法正确的是( )A.平行四边形是轴对称图形B.平行四边形的邻边相等C.平行四边形的对角线互相垂直D.平行四边形的对角线互相平分2.(2021株洲)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上.若∠DCE=132°,则∠A的度数为( )A.38°B.48°C.58°D.66°3.(2021恩施州)如图,在▱ABCD中,AB=13,AD=5,AC⊥BC,则▱ABCD的面积为( )A.30B.60C.65D.6524.(2021安顺)如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD于点F.若AB=3,AD=4,则EF的长是( )A.1B.2C.2.5D.35.(2021常德)如图,已知F,E分别是正方形ABCD的边AB与BC的中点,AE与DF相交于点P,连接PC,则下列结论成立的是( )AE B.PC=PDA.BE=12C.∠EAF+∠AFD=90°D.PE=EC6.(2021河北)如图①,在▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图②中的甲、乙、丙三种方案,则正确的方案( )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是二、填空题7.(2021盐城)如图,在Rt△ABC中,CD为斜边AB上的中线.若CD=2,则AB= .8.(2021青海)如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点.若△DEF的周长为10,则△ABC的周长为 .9.(2021山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为 .三、解答题10.(2021怀化)已知:如图,四边形ABCD为平行四边形,点E,A,C,F在同一直线上,AE=CF.求证:(1)△ADE≌△CBF;(2)ED∥BF.11.(2021长沙)如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.12.(2021恩施州)如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD,连接OE.求证:OE⊥AD.13.(2021邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,且AE=CF,连接DE,DF,BE,BF.(1)求证:△ADE≌△CBF;(2)若AB=42,AE=2,求四边形BEDF的周长.答案1.D2.B3.B4.B ∵四边形ABCD是平行四边形,∴AD∥CB,AB=CD=3,AD=BC=4,∴∠DFC=∠FCB.∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=3.同理可得AE=AB=3.∵AD=4,∴AF=4-3=1,DE=4-3=1,∴EF=4-1-1=2.5.C ∵F,E分别是正方形ABCD的边AB与BC的中点,∴AF=BE.又∵∠DAF=∠ABE=90°,AD=BA,∴△AFD≌△BEA(SAS),∴∠FDA=∠EAB.又∵∠FDA+∠AFD=90°,∴∠EAB+∠AFD=90°,即∠EAF+∠AFD=90°.其他选项不能得到.6.A 方案甲中,连接AC,如图所示.∵四边形ABCD 是平行四边形,O 为BD 的中点,则点O 在AC 上,∴OB=OD ,OA=OC.∵BN=NO ,OM=MD ,∴NO=OM ,∴四边形ANCM 为平行四边形.故方案甲正确;方案乙中:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠ABN=∠CDM.∵AN ⊥BD 于点N ,CM ⊥BD 于点M ,∴AN ∥CM ,∠ANB=∠CMD=90°,∴△ABN ≌△CDM (AAS),∴AN=CM.又∵AN ∥CM ,∴四边形ANCM 为平行四边形.故方案乙正确;方案丙中:∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD ,AB=CD ,AB ∥CD ,∴∠ABN=∠CDM.∵AN 平分∠BAD ,CM 平分∠BCD ,∴∠BAN=12∠BAD ,∠DCM=12∠BCD ,∴∠BAN=∠DCM ,∴△ABN ≌△CDM (ASA),∴AN=CM ,∠ANB=∠CMD ,∴∠ANM=∠CMN ,∴AN ∥CM ,∴四边形ANCM 为平行四边形.故方案丙正确.7.48.20 ∵D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,∴EF ,DE ,DF 为△ABC 的中位线,∴EF=12AB ,DF=12BC ,DE=12AC ,∴AB=2EF ,BC=2DF ,AC=2DE.∵△DEF 的周长为10,∴EF+DF+DE=10,∴2EF+2DF+2DE=20,∴AB+BC+AC=20,∴△ABC 的周长为20.9.52 ∵在菱形ABCD 中,对角线AC ,BD 相交于点O ,∴OA=OC=12AC=3,OB=12BD=4,AC ⊥BD.∵OE ∥AB ,OA=OC ,∴OE 为△ABC 的中位线,∴OE=12AB.在Rt △ABO 中,由勾股定理,得AB=OA 2+OB 2=32+42=5,∴OE=52.10.证明:(1)∵四边形ABCD 为平行四边形,∴DA=BC ,DA ∥BC ,∴∠DAC=∠BCA.∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB.又∵AE=CF ,∴△ADE ≌△CBF (SAS).(2)由(1)知,△ADE ≌△CBF ,∴∠E=∠F ,∴ED ∥BF.11.解:(1)证明:∵△OAB 为等边三角形,∴∠ABO=60°,OA=OB.∵四边形ABCD 是平行四边形,∴OB=OD=12BD ,OA=OC=12AC ,∴BD=AC ,∴▱ABCD 是矩形.(2)∵▱ABCD 是矩形,∴∠BAD=90°.∵∠ABO=60°,∴∠ADB=30°,∴BD=2AB=8,∴AD=BD2-AB2=43.12.证明:∵四边形ABCD为矩形,∴AC与BD相等且互相平分,∴OA=OD.∵DE∥AC,AE∥BD,∴四边形AODE为平行四边形.又∵OA=OD,∴平行四边形AODE为菱形,∴OE⊥AD.13.解:(1)证明:∵四边形ABCD是正方形,∴∠DAE=∠BCF=45°,AD=CB.又∵AE=CF,∴△ADE≌△CBF(SAS).(2)∵AB=42,AB=AD,∠BAD=90°,∴BD=AB2+AD2=8.由正方形对角线相等且互相垂直平分可得: AC⊥BD,AC=BD=8,OD=OB=4,OA=OC=4.又AE=CF=2,∴OA-AE=OC-CF,即OE=OF=4-2=2,故四边形BEDF为菱形.∵∠DOE=90°,∴DE=OD2+OE2=25,故四边形BEDF的周长为4DE=4×25=85.。
部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案
![部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案](https://img.taocdn.com/s3/m/49ac019b0408763231126edb6f1aff00bed57021.png)
2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.3考前必做30题之平行四边形小题培优提升(压轴篇,八下人教)本套试题主要针对期中期末考试的选择填空压轴题,所选题目典型性和代表性强,均为中等偏上和较难的题目,具有一定的综合性,适合学生的培优拔高训练.试题共30题,选择20道,每题3分,填空10道,每题4分,总分100分.涉及的考点主要有以下方面:1.平行四边形的性质:平行四边形的边与角的计算、平行四边形的对角线问题平行四边形的判定:平行四边形的判定方法的认识、判断能否构成平行四边2.形、添加条件成为平行四边形、已知三点构成平行四边形、平行四边形的性质与判定综合3.三角形的中位线:三角形中位线有关线段计算、三角形的中位线与面积一、单选题1.(2023春·江苏·八年级专题练习)如图所示,在四边形ABCD中,已知∠1=∠2,添加下列一个条件,不能判断四边形ABCD成为平行四边形的是( )A.∠D=∠B B.AB∥CD C.AD=BC D.AB=DC2.(2023春·全国·八年级专题练习)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE//AB交AD于点E.若OA=2,ΔAOE的周长为10,则平行四边形ABCD的周长为()A.16B.32C.36D.403.(2023秋·山东烟台·八年级统考期末)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE4.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,P为▱ABCD内一点,且△PAB和△PAD的面积分别为5和2,则△PAC的面积为()A.3B.4C.5D.65.(2023春·江苏·八年级专题练习)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为( )A.4B.5C.6D.76.(2023春·江苏·八年级专题练习)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.2.3C.4D.77.(2023春·江苏·八年级专题练习)如图,△ABC周长20,D,E在边BC上,BN和CM分别是∠ABC和∠ACB 的平分线,BN⊥AE,CM⊥AD,若BC=8,则MN的长为()A.1B.2C.3D.8.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)已知,在▱ABCD中,点M、N分别是AB、CD的中点,AN、CM交DB于P、Q两点,下列结论:①DP=PQ=QB;②AP=CQ③CQ=2MQ;④S△ADP=1S▱ABCD.其中正确的结论的个数是()4A.4个B.3个C.2个D.1个9.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,E为平行四边形ABCD内一点,且EA=EB=EC,若∠D=50°,则∠AEC的度数是()A.90°B.95°C.100°D.110°10.(2023春·江苏·八年级专题练习)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延BC.连接DM、DN、MN.若AB=6,则DN的长为()长BC至点D,使CD=12A.1B.2C.3D.411.(2022春·黑龙江哈尔滨·八年级校考阶段练习)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是( )A.1B.2C.3D.412.(2023秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC 的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG13.(2023春·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AC、AE,AE交CD于点H,∠DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的长为( )A.9B C.10D.14.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③交AB于点E,∠BCD=60°,AD=12AO=DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个15.(2023春·八年级课时练习)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2;使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2021,最少经过()次操作.A.2B.3C.4D.516.(2023春·全国·八年级专题练习)如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=M 是AD边的中点,点N是AB边上的一个动点.将△AMN沿MN所在的直线翻折到△A′MN,连接A′C.则线段A′C长度的最小值为()A.5B.7C.D.17.(2023春·八年级单元测试)如图所示,在△ABC中,已知点D,E,F,G分别为边BC,AD,CE,BE的中点,且S△ABC=8cm2,则S阴影=()A.2cm2B.1cm2C.0.5cm2D.0.25cm218.(2023春·八年级课时练习)如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将,则B′F的值为()四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=52DA.3B.C.−1219.(2023春·八年级课时练习)如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4,E,F分别是BD,AC的中点,则EF的长为( )A.1B.1.5C.2D.2.520.(2022春·江西赣州·八年级校考阶段练习)如图,Rt△ABC中,BC=∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接B E1交C D1于D2;过D2作D2E2⊥AC于E2,连接B E2交C D1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BC E1、△BC E2、△BC E3、…、△BC E2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A B C D.4671二、填空题21.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,▱ABCD,∠C 的平分线交AB于点E,交DA延长线于点F,且AE=3cm,EB=5cm,则▱ABCD的周长为______ .22.(2022春·浙江杭州·八年级校考期中)在▱ABCD中,BE,CF分别平分∠ABC,∠BCD,交AD于点E,F,若AD=6,EF=2,则AB的长为______.23.(2022秋·山东济宁·八年级济宁学院附属中学校考期末)如图,在四边形ABCD中,AD∥BC,AD=12 cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ在四边形ABCD内部截出一个平行四边形时.点P运动了_____秒.24.(2022秋·山东泰安·八年级统考期末)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2、B2、C2分别是边B1C1、A1C1、A1B1的中点;点A3、B3、C3分别是边B2C2、A2C2、A2B2的中点;…;以此类推,则第2022个三角形的周长是________.25.(2023春·八年级单元测试)如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC 相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是______.26.(2022春·江苏宿迁·八年级校考阶段练习)如图,矩形ABCD的边AB=4,BC=8,E是AD上一点,DE=2,F是BC上一动点,P、Q分别是EF、AE的中点,则PE+PQ的最小值为_____.27.(2022春·山西晋城·八年级统考期末)如图,点A,B,C的坐标分别是0,2,2,2,0,−1,在平面直角坐标系内有一点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是________.28.(2021春·浙江宁波·八年级校考期中)如图,△ABC边长分别为AB=14,BC=16,AC=26.P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是__________.29.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,平行四边形ABCD中,∠ABC=60°,AB=2,BC=6,P为边AD上的一动点,则PC的最小值等于______.30.(2022·全国·八年级专题练习)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______________.。
(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练
![(部编本人教版)最新八年级数学下册 第十九章19.2.2 一次函数 第2课时 一次函数的图象与性质练习【经典练](https://img.taocdn.com/s3/m/79971f327fd5360cba1adb7f.png)
第2课时 一次函数的图象与性质知识点 1 一次函数的图象1.[2018·抚顺]一次函数y =-x -2的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.[2018·湘西州]一次函数y =x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)3.若点(3,1)在一次函数y =kx -2的图象上,则k 的值是( )A .5B .4C .3D .14.分别在同一平面直角坐标系中画出下列各函数的图象,并指出各函数图象的共同之处.(1)y =12x +2;(2)y =-x +2;(3)y =2x +2.知识点 2 一次函数图象的平移5.[2018·南充]直线y =2x 向下平移2个单位长度得到的直线的解析式是( )A .y =2(x +2)B .y =2(x -2)C .y =2x -2D .y =2x +26.[2018·娄底]将直线y =2x -3向右平移2个单位长度,再向上平移3个单位长度后,所得的直线的解析式为( )A .y =2x -4B .y =2x +4C .y =2x +2D .y =2x -27.若直线y =kx +2是由直线y =-2x -1平移得到的,则k =________,即直线y =-2x -1沿y 轴向________平移了________个单位长度.知识点 3 一次函数的性质8.对于函数y =2x -1,下列说法正确的是( )A .它的图象过点(1,0)B .y 随x 的增大而减小C .它的图象经过第二象限D .当x >1时,y >09.已知一次函数y =(m +2)x +1,若y 随x 的增大而增大,则m 的取值范围是________.10.[2018·济宁]在平面直角坐标系中,已知一次函数y =-2x +1的图象经过P 1(x 1,y1),P2(x2,y2)两点,若x1<x2,则y1________y2(填“>”“<”或“=”).11.[2018·眉山]已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且该直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________(用“>”连接).12.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.13.[2018·上海]如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x值的增大而________(填“增大”或“减小”).14.已知关于x的函数y=(m-1)x+1-3m为一次函数,试根据下列各条件确定m的值或取值范围.(1)该函数图象经过原点;(2)该函数图象与y轴相交于点(0,2);(3)y随x的增大而减小.15.[2018·湘潭]若b>0,则一次函数y=-x+b的图象大致是( )图19-2-816.[2018·贵阳]一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可能为( )A.(-5,3) B.(1,-3)C.(2,2) D.(5,-1)17.两条直线y=ax+b与y=bx+a在同一平面直角坐标系中的位置可能是( )图19-2-918.写出一个图象过点(0,3),且函数值y随自变量x的增大而减小的一次函数解析式:________(填一个答案即可).19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y 随x的增大而减小,则k所有可能取得的整数值为________.20.若函数y=2x+3与y=4x-b的图象交x轴于同一点,则b的值为________.21.如图19-2-10,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A (1,-2),则k =________,b =________.图19-2-1022.已知直线y =-12x -6与x 轴交于点A ,与y 轴交于点B ,求这条直线与坐标轴围成的三角形的面积.23.已知直线y =(1-3k )x +2k -1.(1)当k 为何值时,该直线经过第二、三、四象限?(2)当k 为何值时,该直线与直线y =-3x -5平行?拓广探究创新练 冲刺满分24.如图19-2-11,已知直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点P 在坐标轴上,且PO =2AO .求△ABP 的面积.图19-2-11教师详解详析1.D [解析] 由一次函数图象的特点可知,当k >0时,图象必过第一、三象限;当k <0时,图象必过第二、四象限;当b >0时,图象必过第一、二象限;当b <0时,图象必过第三、四象限.∵-1<0,-2<0,∴一次函数y =-x -2的图象经过第二、三、四象限.故选D.2.A 3.D4.解:图象略.共同点:函数图象都是一条直线,且均与y 轴交于点(0,2).5.C [解析] 直线y =2x 向下平移2个单位长度得到直线的解析式是y =2x -2,故选C.6.A [解析] 根据图象平移时“左加右减,上加下减”的规律,向右平移2个单位长度后为y =2(x -2)-3=2x -7,再向上平移3个单位长度后为y =2x -7+3=2x -4.故选A.7.-2 上 38.D [解析] A .把x =1代入解析式得到y =1,即函数图象经过点(1,1),不经过点(1,0),故本选项错误;B.函数y =2x -1中,k =2>0,则y 随x 的增大而增大,故本选项错误;C.函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故本选项错误;D.当x >1时,2x -1>1,则y >1,故y >0正确,故本选项正确.故选D.9.m >-210.> [解析] 因为y =-2x +1中的k =-2<0,所以y 随x 的增大而减小,所以当x 1<x 2时,y 1>y 2.11.y 1>y 2 [解析] 由于一次函数的图象经过第一、二、四象限,∴k <0,∴y 随x 的增大而减小,∴当x 1<x 2时,y 1>y 2.12.四 [解析] ∵在一次函数y =kx +2中,y 随x 的增大而增大,∴k >0.∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.13.减小 [解析] 因为一次函数图象经过点(1,0),故将其代入y =kx +3,得0=k +3,解得k =-3<0,所以y 的值随x 值的增大而减小.14.解:(1)由1-3m =0且m -1≠0,得m =13. (2)把点(0,2)代入,得1-3m =2,解得m =-13. (3)由m -1<0,得m <1.15.C [解析] ∵k =-1<0,∴图象从左到右是下降的.∵b >0,∴图象与y 轴的正半轴相交.故选C.16.C [解析] ∵一次函数y =kx -1中,y 的值随x 值的增大而增大,∴k >0.A .把(-5,3)代入y =kx -1,得k =-45<0,不符合题意; B .把(1,-3)代入y =kx -1,得k =-2<0,不符合题意;C .把(2,2)代入y =kx -1,得k =32>0,符合题意; D .把(5,-1)代入y =kx -1,得k =0,不符合题意.故选C.17.A [解析] 分四种情况:①当a >0,b >0时,直线y =ax +b 和y =bx +a 均经过第一、二、三象限,选项中不存在此情况;②当a >0,b <0时,直线y =ax +b 经过第一、三、四象限,直线y =bx +a 经过第一、二、四象限,选项A 符合此条件;③当a <0,b >0时,直线y =ax +b 经过第一、二、四象限,直线y =bx +a 经过第一、三、四象限,选项A 符合此条件;④当a <0,b <0时,直线y =ax +b 经过第二、三、四象限,直线y =bx +a 经过第二、三、四象限,选项中不存在此情况.故选A.18.答案不唯一,如y =-x +319.-1 [解析] 由题意得⎩⎪⎨⎪⎧2k +3>0,k <0,解得-32<k <0.∵k 为整数,∴k =-1. 20.-6 [解析] 函数y =2x +3的图象与x 轴的交点坐标是(-32,0),函数y =4x -b 的图象与x 轴的交点坐标是(b 4,0),所以-32=b 4,解得b =-6. 21.2 -4 [解析] ∵一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行, ∴k =2,∴y =2x +b ,把A (1,-2)代入y =2x +b ,得2+b =-2,解得b =-4.22.解:当x =0时,y =-6.当y =0时,即-12x -6=0,解得x =-12, 所以点A ,B 的坐标分别为(-12,0),(0,-6),所以OA =||-12=12,OB =||-6=6,所以这条直线与坐标轴围成的三角形的面积为12OA ·OB =12×12×6=36. 23.解:(1)当⎩⎪⎨⎪⎧1-3k <0,2k -1<0,即13<k <12时,该直线经过第二、三、四象限. (2)当⎩⎪⎨⎪⎧1-3k =-3,2k -1≠-5,即k =43时,该直线与直线y =-3x -5平行. 24.解:令y =0,则由0=2x +4得x =-2,∴A (-2,0),∴AO =2.令x =0,则y =2×0+4=4,∴B (0,4),∴BO =4.∵PO =2AO =4,点P 在坐标轴上,∴点P 有以下四种情况:(1)当点P 在x 轴的负半轴上时,AP =2,∴S △ABP =12AP ·BO =12×2×4=4; (2)当点P 在x 轴的正半轴上时,AP =6,∴S △ABP =12AP ·BO =12×6×4=12; (3)当点P 在y 轴的负半轴上时,PB =PO +BO =4+4=8,∴S △ABP =12PB ·AO =12×8×2=8; (4)当点P 在y 轴的正半轴上时,PO =4,点P ,B 重合,△ABP 不存在.。
部编数学八年级下册二次根式材料阅读题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案
![部编数学八年级下册二次根式材料阅读题大题提升训练(重难点培优30题)【拔尖特训】2023年培优含答案](https://img.taocdn.com/s3/m/7db1c742876fb84ae45c3b3567ec102de3bddf48.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.7二次根式材料阅读题大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共30小题)1.(2022秋•驻马店期中)阅读材料:(一)如果我们能找到两个正整数x ,y 使x +y =a 且xy =b ,这样“和谐二次根式”,则上述过程就称之为化简“和谐二次根式”.=1+(二)在进行二次根式的化简与运算时,我们有时还会碰上如2样的式子,其实我们还可以将其进一=−121.那么我们称这个过程为分式的分母有理化.根据阅读材料解决下列问题:(1)化简“和谐二次根式”:+2 ;= 2−(2)已知m =n ,求m−nm n 的值.【分析】(1)根据阅读材料(一)化简“和谐二次根式”即可;(2)先根据阅读材料(一)化简m 与n 的分母,再根据阅读材料(二)进行分母有理化即可.【解答】(1)解:=2;=2+2;2(2)解:∵m =11n =11=∴m ﹣nm +n =+∴m−n m n ==2.(2022秋•长安区期中)求代数式a +其中a =﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 小亮 的解法是错误的;(2)求代数式a a=4【分析】(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.【解答】解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=43=10,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=46﹣(42+3.(2022秋•仪征市期中)阅读下面材料,回答下列问题:构造法是依据问题的条件和结论给出的信息,把问题做适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而疏通解题思路的方法.构造方程是常用的一种构造方法,它能使得问题被简化,得以迅速解决.材料:已知x=,求代数式x2x−1−(1+1x2−x)的值;分析:这道题如果将代数式化简,再直接将x 代入求值比较困难,观察x 的值,发现x =x =−b 2a ,不难发现x 是方程x 2﹣5x +1=0的根,所以x 2=5x ﹣1,x 2+1=5x ,所以原式=5x−1x−1−5x−1x−1−4x x(x−1)=5x−1x−1−4x−1=5(x−1)x−1=5.(1)以2,﹣3为根的方程可以是 2(x ﹣2)(x +3)=0 ;(2)已知x =−x 32(3)求代数式32+的值.【分析】(1)写出一个满足条件的方程即可;(2)x 是方程x 2++1=0的根,可得x 2+=−1,把所求式子变形再整体代入即可;(3)设x =x 是方程x 2﹣x +a =0的根,可得x 2﹣x =﹣a ,再代入可得答案.【解答】解:(1)以2,﹣3为根的方程可以是2(x ﹣2)(x +3)=0,故答案为:2(x ﹣2)(x +3)=0,(2)∵x =∴x =∴x 是方程x 2++1=0的根,∴x 2+=−1,∴−x 32=−x(x 2=−x ⋅=(3)设x =∴32+=x 3−x 2+ax−2,∵x =∴x 是方程x 2﹣x +a =0的根,∴x 2﹣x =﹣a ,∴x 3﹣x 2+ax ﹣2=x (x 2﹣x )+ax ﹣2=﹣ax +ax ﹣2=﹣2.4.(2022秋•永安市期中)在解决问题“已知a =2a 2﹣8a +1的值”时,小明是这样分析与解答的:∵a =1∴a ﹣2=a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1,∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:3;(2)若a2a 2+4a ﹣1的值.【分析】(1,然后利用平方差公式计算;(2)先分母有理化得到a =1,再移项平方得到a 2+2a =1,接着把2a 2+4a ﹣1变形为2(a 2+2a )﹣1,然后利用整体代入的方法计算.【解答】解:(1+(2)∵a =1==1,∴a +1=∴(a +1)2=2,即a 2+2a +1=2,∴a 2+2a =1,∴2a 2+4a ﹣1=2(a 2+2a )﹣1=2×1﹣1=1.5.(2022秋•昌平区期中)我们已经学习了整式、分式和二次根式,当被除数是一个二次根式,除数是一个式.(1)下列式子中①aa 21,, ③ 是根分式(填写序号即可);(2x 的取值范围 x ≥1且x ≠2 ;(3)已知两个根分式M N ①若M 2﹣N 2=1,求x 的值;②若M 2+N 2是一个整数,且x 为整数,请直接写出x 的值: 1 .【分析】(1)根据根分式的定义进行判断即可;(2)根据二次根式的定义,分式有意义的条件进行分析即可;(3)①对式子进行化简,再进行求解即可;②对式子进行化简,结合分式有意义的条件及二次根式的定义进行求解即可.【解答】解:(1)①aa 21不是根分式,故答案为:③;(2)由题意得:x ﹣1≥0,x ﹣2≠0,解得:x ≥1,x ≠2,故x 的取值范围是:x ≥1且x ≠2;故答案为:x ≥1且x ≠2;(3)当M N =①M 2﹣N 2=1,22=1,(x−2)−2x−1(x−2)2=1,x 2−8x 8(x−2)2=1,解得:x =1,经检验,x =1是原方程的解;②M 2+N 22+2=x 2−6x 7(x−2)2+2x−1(x−2)2 =x 2−4x 6(x−2)2(x−2)=1+2(x−2)2,∵M 2+N 2是一个整数,且x 为整数,∴2(x−2)2是一个整数,∴x ﹣2=±1,解得:x =3或1,经检验,x =1符合题意,故答案为:1.6.(2022秋•市中区期中)观察下列一组等式,解答后面的问题:1)1)=1,1,1,=1,(1)根据上面的规律:(2)计算:(1+11⋯1)×1).(3)若a =1,则求a 3﹣4a 2﹣2a +1的值.【分析】(1)①根据平方差公式得出答案即可;②先分母有理化,再求出答案即可;(2)根据得出的规律进行计算,再根据二次根式的加减法法则进行计算,最后根据二次根式的乘法法则和平方差公式进行计算即可;(3)求出a 的值,再求出a 2的值,再代入多项式a 3﹣4a 2﹣2a +1,最后根据二次根式的运算法则进行计算即可.【解答】解:(1)=5﹣故答案为:5﹣(2)(111+⋯+1)×+1)1++•+×+1)1)×+1)2﹣12=2022﹣1=2021;(3)∵a1,∴a 21)2=2﹣1=3﹣∴a 3﹣4a 2﹣2a +1=(3﹣×1)﹣4×(3﹣2×1)+1=3﹣+2+1=16.7.(2022秋•隆昌市校级月考)【阅读材料】阅读下列材料,然后回答问题:①在进行二次根式的化简与运算时,我们有时会碰上如2一样的式子,其实我们还可以将其进一步−1,以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a +b =2,ab =﹣3,求a 2+b 2.我们可以把a +b 和ab 看成是一个整体,令x =a +b ,y =ab ,则a 2+b 2=(a +b )2﹣2ab =x 2﹣2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1⋯(2)m 是正整数,a =b =2a 2+1823ab +2b 2=2019,求m ;(31【分析】(1)先把每一个二次根式进行分母有理化,然后再进行计算即可解答;(2)先利用分母有理化化简a ,b ,从而求出a +b =4m +2,ab =1,然后根据已知可得a 2+b 2=98,再利用完全平方公式进行计算即可解答;(3)利用完全平方公式,进行计算即可解答.【解答】解:(1)11+1+⋯+1++...+=12×1++...+(2)∵a b∴a2,b=2,∴a +b 2++2=2(2m +1)=4m +2,ab22=[]2=(m +1﹣m )2=1,∵2a 2+1823ab +2b 2=2019,∴2a 2+1823+2b 2=2019,∴2a 2+2b 2=196,∴a 2+b 2=98,∴(a +b )2﹣2ab =98,∴(4m +2)2﹣2=98,∴(4m +2)2=100,∴4m +2=±10,∴4m +2=10或4m +2=﹣10,∴m 1=2,m 2=﹣3(不合题意,舍去),∴m 的值为2;(3=1,2=1,∴15+x 2﹣+26﹣x 2=1,=20,22=12+4×20=1+80=81,≥0≥0,+9.8.(2022秋•南海区期中)在数学课外学习活动中,小明和他的同学遇到一道题:已知a =2a 2﹣8a +1的值.他是这样解答的:∵a =12a ﹣2=∴(a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1,∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)1−1 ;(2)化简1+1+1+⋯+1;(3)若aa 4﹣10a 3+a 2﹣20a +5的值.【分析】(1)根据小明的解答过程即可进行计算;(2)结合(1)进行分母有理化,再合并即可得结果;(3)根据平方差公式,可分母有理化,根据整体代入,可得答案.【解答】解:(1)1,1;(2++...+= =12﹣1=11;(3)∵a =1=+5,∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a +25=26.∴a 2﹣10a =1,∴a 4﹣10a 3+a 2﹣20a +5=a 2(a 2﹣10a +1)﹣20a +5=a 2×(1+1)﹣20a +5=2(a 2﹣10a )+5=2+5=7.答:a 4﹣10a 3+a 2﹣20a +5的值为7.9.(2022秋•杏花岭区校级月考)小明在解决问题:已知a =1.求2a 2﹣8a +1的值,他是这样分析与解的:∵a2a ﹣2=∴(a ﹣2)2=3,a 2﹣4a +4=3∴a 2﹣4a =﹣1∴2a 2﹣8a +1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1⋯+1;(2(填“>”或“<”)(3)A 题:若a =+1,则a 2﹣2a +3= 4 .B 题:若a4a 2﹣+7= 5 .【分析】(1)根据分母有理化的方法化简即可;(2(3)A 题:由a =+1,可得a ﹣1=(a ﹣1)2=2,从而可得a 2﹣2a =1,进一步求解即可;B 题:由a =1,可得a 2a 1,两边同时作平方,可得4a 2=−2,进一步求解即可.【解答】解:(1⋯=+⋯==;(2=1故答案为:>;(3)A 题:∵a =1,∴a ﹣1=∴(a ﹣1)2=2,即a 2﹣2a +1=2,∴a 2﹣2a =1,∴a 2﹣2a +3=4,故答案为:4;B 题:∵a∴a∴2a 1,∴2=1,即4a 2+3=1,∴4a 2=−2,∴4a 2﹣+7=5,故答案为:5.10.(2022秋•高新区校级月考)阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(2(21,3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的=母有理化.解决问题:(1)4 4+ .(2)计算:①111+⋯1.②已知:x =y 求x 2+y 2的值.【分析】(1)根据有理化因式的定义确定4(2)①先分母有理化,然后合并即可;②先利用分母有理化得到x =2y =2+x +y =4,xy =1,然后利用完全平方公式得到x 2+y 2=(x +y )2﹣2xy ,最后利用整体代入的方法计算.【解答】解:(1)44+=故答案为:4(2)①原式1+•=1=1;②∵x=2y 2+∴x +y =4,xy =1,x 2+y 2=(x +y )2﹣2xy =42﹣2×1=14.11.(2022秋•揭阳期中)阅读理解题:已知a =小明同学是这样解答的:a =1请你参考小明的化简方法,解决如下问题:(1(2)计算:1+11⋯⋯+1;(3)若a =1,求2a 2+8a +1的值.【分析】(1)直接分母有理化即可;(2)把分式变形,然后裂项相消即可;(3)先对a 进行分母有理化,然后化简2a 2+8a +1,代入求值即可.【解答】解:(1)1=;(2⋯⋯+=+++……+=﹣1+(3)a =−(2+,2a 2+8a +1=2(a 2+4a +4)﹣7=2(a +2)2﹣7,将a =﹣(22×2−7=3.12.(2022秋•南召县月考)阅读下面的材料,解答后面提出的问题:在二次根式计算中我们常常遇到这样的情况:(2+×=1,×=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:1=7+像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决问题:(1)4+ 4−(2)已知x =y ,则1x +1y = 10 .(3+++⋯++【分析】(1)根据有理化因式的概念解答;(2)利用二次根式的乘法法则计算;(3)根据分母有理化、二次根式的加法法则计算.【解答】解:(1)∵(4+(416﹣7=9,∴44故答案为:4(2)∵x =∴1x2=5﹣同理,1y =∴1x+1y =5﹣=10,故答案为:10;(3)原式=1++⋯+=10﹣1=9.13.(2022秋•新城区校级月考)爱动脑筋的小明在做二次根式的化简时,发现一些二次根式的被开方数是二次三项式,而且这些二次三项式正好是完全平方式的结构,于是就可以利用二次根式的性质:a 2=|a|=a(a ≥0),−a(a <0)来进一步化简.=|x +1|,∴当x +1≥0即x ≥﹣1时,原式=x +1;当x +1<0即x <﹣1时,原式=﹣x ﹣1.(1(2)判断甲、乙两人在解决问题:“若a =9,求a +”时谁的答案正确,并说明理由.甲的答案:原式=a =a +(1−a)=1;乙的答案:原式=a =a +(a−1)=2a−1=2×9−1=17.(3)化简并求值:|x−1|x =【分析】(1)仿照上面的例子,分类讨论即可化简;(2)根据a =9,得1﹣a <0,即可判断出答案;(3)根据x =x ﹣1>0,2﹣x <0,即可化简求值.【解答】解:(1==|m −12|,∴当m −12≥0即m ≥12时,原式=m −12,当m −12<0即m <12时,原式=﹣m +12.(2)∵a =9,∴1﹣a <0,∴原式=a =a +(a−1)=2a−1=2×9−1=17.∴乙的答案正确.(3)∵x =∴x ﹣1>0,2﹣x <0,∴|x−1|=x ﹣1+=x ﹣1+x ﹣2=2x ﹣3=3.14.(2022秋•清水县校级月考)阅读下列材料,然后回答问题.①化简:21,以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a +b =2,ab =−3,求a 2+b 2.我们可以把a +b 和ab 看成是一个整体,令x =a +b ,y =ab ,则a 2+b 2=(a +b )2−2ab =x 2−2y =4+6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1)计算:1+11⋯⋯+1;(2)m 是正整数,a =b 2a 2+1823ab +2b 2=2019.求m .(31【分析】(1)根据阅读材料的方法先进行分母有理化,再提取公因数12,继而两两相消,进一步计算即可;(2)先求出a +b =2(2m +1),ab =1,再将所求代数式化简为(a +b )2﹣2ab =98,然后代入计算即可;(3)=20,那么2212+4×20=81,进而求解即可.【解答】解:(1)原式=+⋯⋯+=12(1+⋯⋯+=12(1)(2)∵a 2,b =2,∴a +b 2++2=2(2m +1),ab =1.∵2a 2+1823ab +2b 2=2019,∴2(a 2+b 2)+1823=2019,∴a 2+b 2=98,∴(a +b )2﹣2ab =98,∴4(2m +1)2﹣2=98,∴m =2或﹣3,∵m 是正整数,∴m =2;(3=1,2=1,∴15+x 2﹣+26﹣x 2=1,20,22=12+4×20=81,≥0≥0,+9.15.(2022春•东莞市期中)阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去里面的一层根号.=1解决问题:(1=⑤,①: 9 ,②: 5 ,③ 3 ,④⑤: 3+(2【分析】(1)根据阅读材料将根式内的数配成完全平方的形式去一层根号即可;(2)根据阅读材料将根式内的数配成完全平方的形式去一层根号即可.【解答】解:(1====3故答案为:①:9,②:5,③:3,④⑤:3(2)原式====516.(2022春•交城县期中)阅读下面的材料,并解决问题.1=1;1=…(1(2)观察上述规律并猜想:当n 是正整数时1n 的式子表示);(3)请利用(2)的结论计算:(11+⋯+1)×+1).【分析】(1)仿照阅读材料,分母有理化即可;(2)仿照阅读材料,分母有理化即可;(3)先将各二次根式分母有理化,算出括号内的,再用平方差公式计算即可.【解答】解:(1)1(2(31++...+×1)1)×1)=361﹣1=360.17.(2022春•赤坎区校级期末)阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因11.这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘(1)请你写出3+的有理化因式: 3−(2)请仿照上面的方法化简1−b(b ≥0且b ≠1);(3)已知ab =【分析】(1)根据有理化因式的定义即可解答;(2)根据一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法进行化简;(3)通过分母有理化可化简a 、b ,从而求出a +b 、ab =a +b ,ab 的值代入即可求解.【解答】解:(1)∵(3+(39﹣11=﹣2,∴33故答案为:3(2)1−b=1(3)∵a2,b 2∴a +b =﹣ab =﹣1,====4.18.(2022春•呼和浩特期末)(1+0;(2)已知x =(7+x 2+(2++(3)先化简,再求值:(3−2x 1)÷x =.【分析】(1)根据二次根式的加减法法则、零指数幂的性质计算;(2)先根据完全平方公式求出x 2,再根据二次根式的乘法法则计算即可;(2)根据分式的混合运算法则把原式化简,把x 的值代入计算即可.【解答】解:(1)原式=1+1(2)∵x=2∴x2=(22=4﹣3=7﹣则原式=((7﹣+(2(2+=49﹣48+4﹣3+=2(3)原式=(3x3x1−2x1)•x1x(3x1)=3x1x1•x1x(3x1)=1 x ,当x+1时,原式=1=19.(2022春•临汾期末)(1)计算:6+1)1).(2)下面是夏红同学对题目的计算过程,请认真阅读并完成相应的任务.题目:已知x x+1−x2x−1的值.原式=(x1)(x−1)−x2x−1⋯第一步=x2−1−x2x−1⋯第二步=−1x−1.…第三步把x原式=−1⋯第四步第五步=﹣1…第六步任务一:填空:①在化简步骤中,第 一 步是进行分式的通分.②第 五 步开始出错,这一错误的原因是+1) .任务二:请直接写出该题计算后的正确结果.【分析】(1)根据平方差公式将题目中的式子展开,然后合并同类项即可;(2)任务一:①根据题目中的解答过程可以解答本题;②根据题目中的解答过程可以发现哪一步出错了,并写出错因即可;任务二:根据分式的计算方法和二次根式分母有理化的方法可以解答本题.【解答】解:(1)6++1)1)=6+5﹣1=10;(2)任务一:填空:①在化简步骤中,第一步是进行分式的通分.故答案为:一;②+1),+1);任务二:﹣1计算过程为:原式=(x 1)(x−1)−x 2x−1=x 2−1−x 2x−1=−1x−1.当x =−1==−120.(2022春•章贡区期末)阅读并完成下面问题:==1;②1试求:(1)下列各数中,与2 A .A .2+B .2CD .2(2+(3)若x =x 2﹣2x 的值.【分析】(1)观察已知等式确定出2(2(3)原式利用完全平方公式化简后,把x 分母有理化代入计算即可求出值.【解答】解:(1)与22+故选:A ;(2+的倒数为1=(3)∵x =1,∴原式=(x ﹣1)2﹣11﹣1)2﹣1=2﹣1=1.21.(2021秋•赫山区期末)“分母有理化”是我们常见的一种化简的方法.除此之外,我们也可以平方之后再开方的方式来化简一些有特点的无理数.解:设x =x >0.由于x 22=2+2=2.解得x =3【解答】解:设x =x <0,由于x 22=3+3+=2,所以x =所以原式(3=17﹣=17﹣22.(2018秋•天河区校级期中)小马在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(1+2,善于思考的小明进行了如下探索:设a+=(m+2,(其中a、b、m、n均为正整数)则有a+=m2+2+2n2.∴a=m2+2n2,b=2mn.这样,小马找到了把部分a+请你仿照小明的方法探索并解决问题:(1)当a,b,m,n均为正整数时,若a+(m+2,用含m,n的式子分别表示a,b得,a= m2+3n2 ,b= 2mn .(2)利用所探索的结论,找一组正整数a,b,m,n填空: 13 +=( 1 +2.(3)设x=x(要写出必要过程)【分析】(1)已知等式右边利用完全平方公式展开,表示出a与b即可;(2)令m=1,n=2,确定出a与b的值即可;(3)先把已知条件变形得到x x2﹣+2=3,然后用x【解答】解:(1)∵(m+2=m2+2+3n2,而a+=(m+2,∴a=m2+3n2,b=2mn;故答案为m2+3n2,2mn;(2)令m=1,n=2,则a=m2+3n2=1+3×4=13,b=2mn=4,∴(2;故答案为13,4,1,2;(3)∵x=∴x=∴(x2=3,∴x2﹣+2=3,=x2−1 2.23.先阅读下面的材料.再解答下面的问题.a﹣b,∴a﹣b特别地.×1,∴1当然也可以利用12﹣11=1得1=12﹣11,故1+这种变形也是将分母有理化.利用上述的思路方法解答下列问题:(1)计算:1−11−11;(2)计算:5−【分析】(1)先把每一部分分母有理化,化简后合并同类二次根式即可;(2)先把每一部分分母有理化,化简后合并同类二次根式即可.【解答】解:(1)原式==3+2=3﹣2=1;(2)原式=43)=43+=1.24.(2020春•安庆期中)阅读材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”,即分母和分子都乘以分子的有理化因式,从而消掉分子中的根式.=1.分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较+再例如,求y解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =4.当x =2+2.所以y 的最大值是2.利用上面的方法,完成下述两题:(1(2)求y =+3的最大值.【分析】(1)先将两数变形为1、1,再由得出答案;(2)根据二次根式有意义的条件得出x ≥1+y ==2+3的最大值.【解答】解:(11,++(2)∵x +1≥0,x ﹣1≥0,∴x ≥1,∵y +3=2+3,当x =1+∴y3.25.(2020秋•吴江区期中)⋅2;=2;=3⋯两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式.爱动脑筋的小明同学在进行二次根式计算时,利用有理化因式化去分母中的根号.(1)1=(2=3+勤奋好学的小明发现:可以用平方之后再开方的方式来化简一些有特点的无理数.(3解:设x=x>0.由:x2=3+2.解得x请你解决下列问题:(1)(2(3【分析】(1)找出原式的有理化因式即可;(2)原式各式分母有理化,计算即可求出值;(3)设x=x小于0,将左右两边平方求出x的值即可.【解答】解:(1)+故答案为:+(2)原式=1+2=+3;(3)设x=x<0,由题意得:x2=6﹣=12﹣6=6,解得:x=则原式=26.(2019秋•郫都区期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如(1+2,善于思考的小明进行了以下探索:设a=(m+)2(其中a、b、m、n均为正整数),则有a+=m2+2n2,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+=(m+)2,用含m、n的式子分别表示a、b,得:a= m2+6n2 ,b= 2mn ;(2)若a=(m)2,且a、m、n均为正整数,求a的值;(3【分析】(1)利用完全平方公式展开得到(m)2=m2+6n2,从而可用m、n表示a、b;(2)直接利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)∵(m+)2=m2+6n2,a=(m+)2,∴a=m2+6n2,b=2mn.故答案为m2+6n2,2mn;(2)∵(m+)2=m2+3n2,a=(m)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3+1,====1.27.(2021春•长兴县月考)阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要用到与分式、不等式相结合的一些运算.如:①a﹣2≥0,解得:a≥2;②则需计算1+1n2+1(n1)2,而1+1n2+1(n1)2=n2(n1)2(n1)2n2n2(n1)2=n2(n1)2n22n1n2n2(n1)2=n2(n1)22n22n1n2(n1)2=n2(n1)22n(n1)1n2(n1)2=[n(n1)1]2n2(n1)2,=n(n 1)1n(n 1)=1+1n(n 1)=1+1n −1n 1.(1a 的取值范围;(2)利用①中的提示,请解答:如果b =+1,求a +b 的值;(3)利用②中的结论,⋯【分析】(1)根据二次根式成立的条件求解即可;(2)根据二次根式成立的条件求出a ,b 的值,进而求解即可;(3)利用②中的结论求解即可.【解答】解:(1)由题意得,a +2≥03−a >,∴﹣2≤a <3;(2)由题意得,a−2≥02−a ≥0,∴a =2,∴b 1=0+0+1=1,∴a +b =2+1=3;(3)原式=(1+11−12)+(1+12−13)+⋯+(1+12020−12021)=1×2020+1−12021=202020202021.28.(2020秋•梁平区期末)阅读下述材料:我们在学习二次根式时,熟悉了分母有理化及其应用.其实,有一个类似的方法叫做“分子有理化”:分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比大小.可以先将它们分子有理化.如下1,+再例如:求y解:由x +2≥0,x ﹣2≥0可知x ≥2,而y =当x =2+2,所以y 的最大值是2.解决下述问题:(1)比较4和(2)求y =【分析】(1)利用分母有理化得到4=2,2,利用+4>+可判断4<(2)根据二次根式有意义的条件得到由1+x ≥0,x ≥0,则x ≥0,利用分母有理化得到y由于x =01,从而得到y 的最大值.【解答】解:(1)∵4==2,==2,而4∴+4>∴4<(2)由1+x ≥0,x ≥0得x ≥0,而y∵x =01,∴y 的最大值为1.29.(2021春•朝阳区校级期中)数学教育家波利亚曾说:“对一个数学问题,改变它的形式,变换它的结构,直到发现有价值的东西,这是数学解题的一个重要原则”.材料一:平方运算和开方运算是互逆运算.如a 2±2ab +b 2=(a ±b )2,那=|a ±b|5±2±2=±2=材料二:在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ')给出如下定义:若y ′=y(x ≥0)−y(x <0),则称点Q 为点P 的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).请选择合适的材料解决下面的问题:(1)点的“横负纵变点”点−2)的“横负纵变点”(2(3)已知a 为常数(1≤a ≤2),点M (m )且m,点M '是点M的“横负纵变点”,则点M '的坐标是 (−【分析】(1)根据“横负纵变点”的定义解答;(2)根据材料一,模仿解答;(3)先化简m 得到点M 的坐标,再根据点M '是点M 的“横负纵变点”,求出点M ′的坐标.【解答】解:(1≥0,∴点的“横负纵变点”;∵﹣0,∴点−2)的“横负纵变点”为(﹣2);故答案为:;(﹣2).(2====(3)∵1≤a ≤2,∴0≤a ﹣1≤1,∴01,1≤0.∴m =1(+=1(|)+=1×2=∴M(,∵0,∴M′(.故答案为:(.30.(2021秋•高州市期末)一些含根号的式子可以写成另一个式子的平方,如=(1+2.设a+=(m+2(其中a、b、m、n均为正整数),则有a+m2+2n2+2a=m2+2n2,b=2mn.这样可以把部分a+请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+(m+2,用含m、n的式子分别表示a、b,得:a = m2+3n2 ,b= 2mn .(2)利用所探索的结论,找一组正整数a、b、m、n填空: 21 +=( 1 +2;(3)化简1−1【分析】(1)将(m+2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+=(m+2,则(m+2=m2+25n2,比较完全平方式右边的值与a+可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵a+=(m+2,(m+2=m2+23n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+=(m+2则(m+2=m2+25n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3=1−1=32+23=13 6。
(精品)最新人教版八年级数学下册单元测试题全套及答案
![(精品)最新人教版八年级数学下册单元测试题全套及答案](https://img.taocdn.com/s3/m/df552e87aef8941ea76e05d4.png)
最新人教版八年级数学下册单元测试题全套及答案(含期中,期末试题,带答案)第十六章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分) 1.二次根式2-x 有意义,则x 的取值范围是(D) A .x >2 B .x <2 C .x ≥2 D .x ≤22.(2016·自贡)下列根式中,不是最简二次根式的是(B)A.10B.8C. 6D. 2 3.下列计算结果正确的是(D)A.3+4=7 B .35-5=3 C.2×5=10 D.18÷2=3 4.如果a +a 2-6a +9=3成立,那么实数ɑ的取值范围是(B)A .a ≤0B .a ≤3C .a ≥-3D .a ≥3 5.估计32×12+20的运算结果应在(C)A .6到7之间B .7到8之间C .8到9之间D .9到10之间6.12x 4x +6xx9-4x x 的值一定是(B ) A .正数B .非正数C .非负数D .负数7.化简9x 2-6x +1-(3x -5)2,结果是(D )A .6x -6B .-6x +6C .-4D .4 8.若k ,m ,n 都是整数,且135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是(D )A .k <m =nB .m =n >kC .m <n <kD .m <k <n9.下列选项错误的是(C)A.3-2的倒数是3+ 2B.x 2-x 一定是非负数C .若x <2,则(x -1)2=1-xD .当x <0时,-2x 在实数范围内有意义10.如图,数轴上A ,B 两点对应的实数分别是1和3,若A 点关于B 点的对称点为点C ,则点C 所对应的实数为(A )A .23-1B .1+ 3C .2+ 3D .23+1 二、填空题(每小题3分,共24分) 11.如果两个最简二次根式3a -1与2a +3能合并,那么a =__4__.12.计算:(1)(2016·潍坊)3(3+27)=__12__;(2)(2016·天津)(5+3)(5-3)=__2__.13.若x ,y 为实数,且满足|x -3|+y +3=0,则(x y)2018的值是__1__.14.已知实数a ,b 在数轴上对应的位置如图所示,则a 2+2ab +b 2-b 2=__-a __.,第17题图)15.已知50n 是整数,则正整数n 的最小值为__2__.16.在实数范围内分解因式:(1)x 3-5x =__x (x +5)(x -5)__;(2)m 2-23m +3=__(m-3)2__.17.有一个密码系统,其原理如图所示,输出的值为3时,则输入的x=__22__.18.若xy>0,则化简二次根式x-yx2的结果为__--y__.三、解答题(共66分) 19.(12分)计算:(1)48÷3-12×12+24;(2)(318+1672-418)÷42;解:(1)4+ 6 (2)9 4(3)(2-3)98(2+3)99-2|-32|-(2)0.解:120.(5分)解方程:(3+1)(3-1)x=72-18.解:x=32 221.(10分)(1)已知x=5-12,y=5+12,求yx+xy的值;解:∵x+y=252=5,xy=5-14=1,∴yx+xy=y2+x2xy=(x+y)2-2xyxy=(5)2-2×11=3(2)已知x,y是实数,且y<x-2+2-x+14,化简:y2-4y+4-(x-2+2)2.解:由已知得x-2≥0,2-x≥0,∴x=2,∴y<x-2+2-x+14=14,即y<14<2,则y-2<0,∴y2-4y+4-(x-2+2)2=(y-2)2-(2-2+2)2=|y-2|-(2)2=2-y-2=-y22.(10分)先化简,再求值:(1)[x+2x(x-1)-1x-1]·xx-1,其中x=2+1;解:原式=2(x-1)2,将x=2+1代入得,原式=1(2)a2-1a-1-a2+2a+1a2+a-1a,其中a=-1- 3.解:∵a+1=-3<0,∴原式=a+1+a+1a(a+1)-1a=a+1=-323.(7分)先化简,再求值:2a-a2-4a+4,其中a= 3.小刚的解法如下:2a-a2-4a+4=2a-(a-2)2=2a-(a-2)=2a-a+2=a+2,当a=3时,2a-a2-4a+4=3+2.小刚的解法对吗?若不对,请改正.解:不对.2a-a2-4a+4=2a-(a-2)2=2a-|a-2|.当a=3时,a-2=3-2<0,∴原式=2a+a-2=3a-2=33-224.(10分)已知长方形的长a=1232,宽b=1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)2(a+b)=2×(1232+1318)=62,∴长方形周长为62(2)4×ab=4×1 232×1318=4×22×2=8,∵62>8,∴长方形周长大25.(12分)观察下列各式及其验证过程:223=2+23,验证:223=233=23-2+222-1=2(22-1)+222-1=2+23;338=3+38,验证:338=338=33-3+332-1=3(32-1)+332-1=3+38.(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n为任意自然数,且n≥2)表示的等式,并给出证明.解:(1)猜想:4415=4+415,验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+415(2)nnn2-1=n+nn2-1,证明:nnn2-1=n3n2-1=n3-n+n n2-1=n(n2-1)+nn2-1=n+nn2-1第十七章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知Rt△ABC的三边长分别为a,b,c,且∠C=90°,c=37,a=12,则b的值为(B)A.50 B.35 C.34 D.262.由下列线段a,b,c不能组成直角三角形的是(D)A.a=1,b=2,c= 3 B.a=1,b=2,c= 5C.a=3,b=4,c=5 D.a=2,b=23,c=33.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(A)A.365B.1225C.94D.3344.已知三角形三边长为a,b,c,如果a-6+|b-8|+(c-10)2=0,则△ABC是(C) A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形5.(2016·株洲)如图,以直角三角形a,b,c为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有(D)A.1 B.2 C.3 D.46.设a,b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为 2.5,则ab 的值是(D)A.1.5 B.2 C.2.5 D.37.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是(A)A.2 3 B.2 C.4 3 D.4,第7题图),第9题图),第10题图)8.一木工师傅测量一个等腰三角形的腰、底边和底边上的高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来,应该是(C)A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,49.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面 2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 m C.16 m D.17 m10.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(12,0),点P为斜边OB上的一个动点,则PA+PC的最小值为(B)A.132B.312C.3+192D.27二、填空题(每小题3分,共24分)11.把命题“对顶角相等”的逆命题改写成“如果…那么…”的形式:__如果两个角相等,那么它们是对顶角__.12.平面直角坐标系中,已知点A(-1,-3)和点B(1,-2),则线段AB的长为__5__.13.三角形的三边a,b,c满足(a-b)2=c2-2ab,则这个三角形是__直角三角形__.14.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0),(0,8).以点A为圆心,以AB为半径画弧交x轴正半轴于点C,则点C的坐标为__(4,0)__.,第14题图),第15题图),第17题图)15.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为__64__.16.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔 6.5米种一棵树(两端各种一棵树),则从上到下共种__21__棵树.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=2;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=__2018__.18.在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为__13或5__.三、解答题(共66分)19.(8分)如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.解:(1)可求得AB=20,AC=13,所以△ABC的周长为20+13+21=54(2)∵AB2+AC2=202+132=569,BC2=212=441,∴AB2+AC2≠BC2,∴△ABC不是直角三角形20.(10分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段MN,使MN=17;(2)在图②中画一个三边长均为无理数,且各边都不相等的直角△DEF.解:如图:21.(8分)如图,已知CD=6,AB=4,∠ABC=∠D=90°,BD=DC,求AC的长.解:在Rt△BDC,Rt△ABC中,BC2=BD2+DC2,AC2=AB2+BC2,则AC2=AB2+BD2+DC2,又因为BD=DC,则AC2=AB2+2CD2=42+2×62=88,∴AC=222,即AC的长为22222.(8分)如图,在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于点D,交AB 于点E.求证:BE2-EA2=AC2.解:连接CE,∵ED垂直平分BC,∴EB=EC,又∵∠A=90°,∴EA2+AC2=EC2,∴BE2-EA2=AC223.(10分)如图,已知某学校A与直线公路BD相距3000米,且与该公路上的一个车站D相距5000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?解:设超市C与车站D的距离是x米,则AC=CD=x米,BC=(BD-x)米,在Rt△ABD中,BD=AD2-AB2=4000米,所以BC=(4000-x)米,在Rt△ABC中,AC2=AB2+BC2,即x2=30002+(4000-x)2,解得x=3125,因此该超市与车站D的距离是3125米24.(10分)一块长方体木块的各棱长如图所示,一只蜘蛛在木块的一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于捉住苍蝇,沿着长方体的表面向上爬.(1)如果D是棱的中点,蜘蛛沿“AD→DB”路线爬行,它从A点爬到B点所走的路程为多少?(2)你认为“AD→DB”是最短路线吗?如果你认为不是,请计算出最短的路程.解:(1)从点A爬到点B所走的路程为AD+BD=42+32+22+32=(5+13)cm(2)不是,分三种情况讨论:①将下面和右面展到一个平面内,AB=(4+6)2+22=104=226(cm);②将前面与右面展到一个平面内,AB=(4+2)2+62=72=62(cm);③将前面与上面展到一个平面内,AB=(6+2)2+42=80=45(cm),∵62<45<226,∴蜘蛛从A点爬到B点所走的最短路程为6 2 cm25.(12分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴的负半轴和y 轴的正半轴上,M是BC的中点,P(0,m)是线段OC上一动点(C点除外),直线PM交AB 的延长线于点 D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是以AP为腰的等腰三角形时,求m的值;解:(1)先证△DBM≌△PCM,从中可得BD=PC=2-m,则AD=2-m+2=4-m,∴点D的坐标为(-2,4-m)(2)分两种情况:①当AP=AD时,AP2=AD2,∴22+m2=(4-m)2,解得m=32;②当AP=PD时,过点P作PH⊥AD于点H,∴AH=12AD,∵AH=OP,∴OP=12AD,∴m=12(4-m),∴m=43,综上可得,m的值为32或43第十八章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是(B)A.30°B.45°C.60°D.75°2.(2016·株洲)如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是(D)A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE,第2题图),第3题图),第6题图)3.如图,矩形ABCD的对角线AC=8 cm,∠AOD=120°,则AB的长为(D)A. 3 cm B.2 cm C.2 3 cm D.4 cm4.已知四边形ABCD是平行四边形,下列结论中不正确的是(D)A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是(C)A.矩形B.一组对边相等,另一组对边平行的四边形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,已知点E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE 的度数为(C)A.20°B.25°C.30°D.35°7.(2016·菏泽)在?ABCD中,AB=3,BC=4,当?ABCD的面积最大时,下结论正确的有(B)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④8.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE =6,∠EFB′=60°,则矩形ABCD的面积是(D)A.12 B.24 C.12 3 D.16 3,第8题图),第9题图),第10题图)9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为(C)A.1 B. 2 C.4-2 2 D.32-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上点M处,延长BC,EF交于点N,有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF,其中正确的结论是(B)A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共24分)11.如图,在?ABCD中,AB=5,AC=6,当BD=__8__时,四边形ABCD是菱形.,第11题图),第12题图),第14题图)12.(2016·江西)如图,在?ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__50°__.13.在四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;②AB=CD;③∠A=∠C;④∠B=∠C.能使四边形ABCD为平行四边形的条件的序号是__①或③__.14.如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=14CD,过点B作BF∥DE交AE的延长线于点F,若BF=10,则AB的长为__8__.15.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是__22.5__度.,第15题图),第16题图),第17题图),第18题图)16.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为点O ,E ,F ,G ,H 分别为边AD ,AB ,BC ,CD 的中点,若AC =8,BD =6,则四边形EFGH 的面积为__12__.17.已知菱形ABCD 的两条对角线长分别为6和8,M ,N 分别是边BC ,CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值是__5__.18.(2016·天津)如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS 正方形AEFG的值等于__89__.三、解答题(共66分) 19.(8分)如图,点E ,F 分别是锐角∠A 两边上的点,AE =AF ,分别以点E ,F 为圆心,以AE 的长为半径画弧,两弧相交于点D ,连接DE ,DF.(1)请你判断所画四边形的形状,并说明理由;(2)连接EF ,若AE =8 cm ,∠A =60°,求线段EF 的长.解:(1)菱形,理由:根据题意得AE =AF =ED =DF ,∴四边形AEDF 是菱形(2)∵AE =AF ,∠A =60°,∴△EAF 是等边三角形,∴EF =AE =8 cm20.(8分)(2016·宿迁)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC.求证:BE =CF.解:∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF ,∵BD 平分∠ABC ,∴∠EBD =∠DBC ,∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF21.(9分)(2016·南通)如图,将?ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,∴△BEF≌△CDF(ASA)(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形22.(9分)如图,在?ABCD中,E,F两点在对角线BD上,BE=DF.(1)求证:AE=CF;(2)当四边形AECF为矩形时,请求出BD-ACBE的值.解:(1)由SAS证△ABE≌△CDF即可(2)连接CE,AF,AC.∵四边形AECF是矩形,∴AC=EF,∴BD-ACBE=BD-EFBE=BE+DFBE=2BEBE=223.(10分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF是正方形,并说明理由.解:(1)由SAS可证(2)理由:∵AB∶AD=1∶2,∴AB=12AD,∵AM=12AD,∴AB11。
最新人教版八年级数学下册单元测试题及答案全册
![最新人教版八年级数学下册单元测试题及答案全册](https://img.taocdn.com/s3/m/33b9f7fe25c52cc58ad6be59.png)
最新人教版八年级数学下册单元测试题及答案全册含期末试题第十六章达标检测卷一、选择题(每题3分,共30分)1.要使二次根式x -3有意义,x 必须满足( ) A .x ≤3 B .x ≥3 C .x >3 D .x <3 2.下列二次根式中,不能与2合并的是( ) A .12B .8C .12D .18 3.下列二次根式中,最简二次根式是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.下列计算正确的是( )A .53-23=2B .22×32=6 2C .3+23=3D .33÷3=3 5.下列各式中,一定成立的是( )A .(-2.5)2=( 2.5)2 C .x 2-2x +1=x -1 D 6.若k ,m ,n ,180=6n ,则下列关于k ,m ,n 的大小关系,正确的是( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n 7.计算912÷5412×36的结果为( ) A .312 B .36 C .33 D .3348.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c|=0,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形9.已知x ,y 为实数,且3x +4+y 2-6y +9=0.若axy -3x =y ,则实数a 的值为( ) A .14 B .-14 C .74 D .-7410.已知实数x ,y 满足:y =x 2-16+16-x 2+24x -4,则xy +13的值为( )A .0B .37C .13D .5二、填空题(每题3分,共30分) 11.计算:24-323=________.12.若最简二次根式3a -1与2a +3可以合并,则a 的值为________. 13.已知x -1x =6,则x 2+1x2=________.14.当x =5-1时,代数式x 2+2x +3的值是________.15.有一个密码系统,其原理如图所示,当输出的值为3时,则输入的x =________.输入x →x +26→ 输出 (第15题)16.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.17.实数a 在数轴上的位置如图,化简|a -1|+(a -2)2=________.(第17题)18.若实数m 满足(m -2)2=m +1,且0<m <3,则m 的值为________. 19.若xy >0,则二次根式x-yx2化简的结果为________. 20.若x +y =5+3,xy =15-3,则x +y =________.三、解答题(21题12分,26,27题每题10分,其余每题7分,共60分) 21.计算:(1)312-248+8; (2)⎝⎛⎭⎫13+27×3;(3)48÷3-215×30+(22+3)2;(4)(2-3)2 017(2+3)2 018-|-3|-(-2)0.22.先化简,再求值:a 2-b 2a ÷⎝⎛⎭⎫a -2ab -b 2a ,其中a =5+2,b =5-2.23.已知a ,b ,c 是△ABC 的三边长,化简:(a +b +c )2-(b +c -a )2+(c -b -a )2.24.已知a +b =-2,ab =12,求ba+ab的值.25.已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.26.观察下列各式: ①2-25=85=225;②3-310=2710=3310;③4-417=6417=4417. (1)根据你发现的规律填空:5-526=________=________; (2)猜想n -nn 2+1(n ≥2,n 为自然数)等于什么?并通过计算证实你的猜想.27.(1)已知|2 017-x|+x -2 018=x ,求x -2 0182的值;(2)已知a >0,b >0且a(a +b)=3b(a +5b),求2a +3b +aba -b +ab 的值.答案一、1.B 2.C 3.B 4.D 5.A 6.D7.B点拨:原式=912×1254×36=36×6=36.8.B点拨:原等式可化为|a-b|+|b-c|=0,∴a-b=0且b-c=0,∴a=b=c,即△ABC是等边三角形.9.A10.D二、11.612.4 点拨:∵最简二次根式3a -1与2a +3可以合并,∴它们的被开方数相同,即3a -1=2a +3,解得a =4.13.8 点拨:x 2+1x 2=x 2+1x2-2+2=⎝⎛⎭⎫x -1x 2+2=(6)2+2=6+2=8.14.7 15.22 16.23 17.1 18.1219.--y 点拨:由题意知x <0,y <0,所以x -yx2=--y.解此类题要注意二次根式的隐含条件:被开方数是非负数.20.8+23三、21.解:(1)原式=-23+2 2. (2)原式=10. (3)原式=15+2 6. (4)原式=1.22.解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a(a -b )2=a +b a -b ,当a =5+2,b =5-2时,原式=5+2+5-25+2-5+2=254=52.23.解:∵a ,b ,c 是△ABC 的三边长,∴a +b +c >0,b +c -a >0,c -b -a <0-(b +c -a)+(a +b -c)=3a +b -c. 24.解:由题意,知a <0,b <0=ab a 2+ab b 2=ab -a +ab-b=-(a +b )ab ab =-(-2)×1212=2 2.点拨:此题易出现以下错误:原式=b a +a b =a +b ab=-212=-2 2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由a +b =-2,ab =12,可知a <0,b <0,所以将b a+a b 变形成b a +ab是不成立的. 25.解:(1)2(a +b)=2×⎝⎛⎭⎫1232+1318=2×(22+2)=6 2.故长方形的周长为6 2. (2)4ab =41232×1318=422×2=4×2=8.因为62>8,所以长方形的周长大. 26.解:(1)12526;5526(2)猜想:n -nn 2+1=n nn 2+1.验证如下:当n ≥2,n 为自然数时,n -n n 2+1=n 3+n n 2+1-nn 2+1=n 3n 2+1=n n n 2+1.27.解:(1)∵x -2 018≥0,∴x ≥2 018, ∴原等式可化为x -2 017+x -2 018=x , ∴x -2 018=2 017. ∴x -2 018=2 0172. ∴x =2 0172+2 018.∴x -2 0182=2 0172-2 0182+2 018=(2 017-2 018)×(2 017+2 018)+2 018=-(2 017+2 018)+2 018=-2 017.(2)∵a(a +b)=3b(a +5b), ∴a +ab =3ab +15b , ∴a -2ab -15b =0, ∴(a -5b)(a +3b)=0. ∵a >0,b >0, ∴a +3b >0, ∴a -5b =0, ∴a =25b.∴原式=2×25b +3b +25b 225b -b +25b 2=58b29b =2.第十七章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列长度的三条线段能组成直角三角形的是( ) A .2,3,4 B .3,2,7 C .6,22,10 D .3,5,8 2.在平面直角坐标系中,点P(3,4)到原点的距离是( ) A .3 B .4 C .5 D .±5(第3题)3.如图所示,数轴上点A 所表示的数为a ,则a 的值是( ) A .5+1 B .-5+1 C .5-1 D .54.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有() A.1个B.2个C.3个D.4个5.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.12 B.7+7 C.12或7+7 D.以上都不对6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于D,E是垂足,连接CD,若BD =1,则AC的长是()A.2 3 B.2 C.4 3 D.4(第6题)(第7题)(第8题)(第9题)(第10题)7.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4 B.16 C.22 D.558.如图是台阶的示意图,已知每个台阶的宽度都是30 cm,每个台阶的高度都是15 cm,则A,B两点之间的距离等于()A.195 cm B.200 cm C.205 cm D.210 cm9.如图是一个圆柱形的饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C 的坐标为⎝⎛⎭⎫12,0,点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312 C .3+192D .27二、填空题(每题3分,共30分)11.已知一个直角三角形的木板三边的平方和为1 800 cm 2,则斜边长为________. 12.命题“角平分线上的点到角两边的距离相等”的逆命题是______________________. 13.若一个三角形的三边之比为345,且周长为24 cm ,则它的面积为________cm 2.14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩正上方4 000 m 处,过了10 s ,飞机距离这个男孩头顶5 000 m ,则飞机平均每小时飞行__________km .15.已知a ,b ,c 是△ABC 的三边长,且满足关系c 2-a 2-b 2+|a -b|=0,则△ABC 的形状为____________.16.如图,在平面直角坐标系中,将长方形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为________.(第16题)(第17题)(第18题)(第19题)(第20题)17.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.18.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是________.19.如图,圆柱形无盖容器高18 cm,底面周长为24 cm,在容器内壁离容器底4 cm的点B处有一滴蜂蜜,此时蚂蚁正好在容器外壁,离容器上沿2 cm与蜂蜜相对的A处,则蚂蚁从外壁A处到达内壁B处的最短距离为________cm.20.如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300 m是盆景园B,从盆景园B向左转90°后直走400 m 到达梅花阁C,则点C的坐标是________.三、解答题(26,27题每题10分,其余每题8分,共60分)21.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(第21题)(1)求△ABC的周长;(2)判断△ABC是否是直角三角形.22.如图,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向行了100 3 km到达B点,然后再沿北偏西30°方向行了100 km到达目的地C点,求出A,C两点之间的距离.(第22题)23.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状.24.我们把满足方程x2+y2=z2的正整数解(x,y,z)叫做勾股数,如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(________,________,________),(________,________,________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么以x,y,z为三边长的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.25.如图,∠ABC=90°,AB=6 cm,AD=24 cm,BC+CD=34 cm,C是直线l上一动点,请你探索当点C离点B多远时,△ACD是一个以CD为斜边的直角三角形.(第25题)26.如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C 落在点E处,BF是折痕,且BF=CF=8.求AB的长.(第26题)27.“为了安全,请勿超速”.如图,一条公路建成通车,在某直线路段MN上限速60千米/时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由(参考数据:2≈1.41,3≈1.73).(第27题)答案一、1.B 2.C 3.C 4.C 5.C 6.A 7.B 8.A 9.A 10.B 二、11.30 cm12.到角两边距离相等的点在角的平分线上 13.24 14.1 08015.等腰直角三角形 点拨:由题意知:⎩⎪⎨⎪⎧c 2-a 2-b 2=0,a -b =0,∴⎩⎪⎨⎪⎧a 2+b 2=c 2,a =b. ∴△ABC 为等腰直角三角形. 16.(10,3) 17.(2)n -118.322 点拨:在网格中求三角形的高,应借助三角形的面积求解.以AC ,AB ,BC 为斜边的三个直角三角形的面积分别为1,1,12,因此△ABC 的面积为2×2-1-1-12=32;用勾股定理计算出BC 的长为2,因此BC 边上的高为322.19.2020.(400,800) 点拨:如图,连接AC.由题意可得OA =500 m ,AB =300 m ,BC =400 m .在△AOD 和△ACB 中,AD =AB ,∠ODA =∠ABC =90°,OD =CB ,∴△AOD ≌△ACB(SAS ),∴AC =AO =500 m ,∠CAB =∠OAD.∵点B ,A ,O 在一条直线上,∴点C ,A ,D 也在一条直线上,∴CD =AC +AD =800 m ,∴点C 的坐标为(400,800).(第20题)三、21.解:(1)∵AD ⊥BC ,∴△ABD 和△ACD 均为直角三角形. ∴AB 2=AD 2+BD 2,AC 2=AD 2+CD 2. 又∵AD =12,BD =16,CD =5,∴AB =20,AC =13.∴△ABC 的周长为20+13+16+5=54.(2)由(1)知AB =20,AC =13,BC =21,∵AB 2+AC 2=202+132=569,BC 2=212=441,∴AB 2+AC 2≠BC 2.∴△ABC 不是直角三角形.22.解:∵AD ∥BE , ∴∠ABE =∠DAB =60°. 又∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =100 3 km ,BC =100 km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km ), ∴A ,C 两点之间的距离为200 km . 23.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0, ∴a =3,b =4,c =5. ∵32+42=52,即a 2+b 2=c 2,∴根据勾股定理的逆定理可判定△ABC 是直角三角形.点拨:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理进行判断. 24.(1)(答案不唯一)6;8;10;9;12;15(2)证明:x 2+y 2=(2n)2+(n 2-1)2=4n 2+n 4-2n 2+1=n 4+2n 2+1=(n 2+1)2=z 2, 即以x ,y ,z 为三边长的三角形为直角三角形.25.解:设当BC =x cm 时,△ACD 是一个以CD 为斜边的直角三角形. ∵BC +CD =34 cm , ∴CD =(34-x)cm .∵∠ABC =90°,AB =6 cm ,∴在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=36+x 2.在Rt △ACD 中,AD =24 cm ,由勾股定理得AC 2=CD 2-AD 2=(34-x)2-576, ∴36+x 2=(34-x)2-576,解得x =8.∴当点C 离点B 8 cm 时,△ACD 是一个以CD 为斜边的直角三角形. 26.解:∵BF =CF =8,∠C =30°,∴∠FBC =∠C =30°,∴∠DFB =60°.由题易知BE 与BC 关于直线BF 对称, ∴∠DBF =∠FBC =30°, ∴∠BDC =90°.∴DF =12BF =4,∴BD =BF 2-DF 2=64-16=4 3. ∵∠A =90°,AD ∥BC ,∴∠ABC =90°, ∴∠ABD =30°,∴AD =12BD =23,∴AB =BD 2-AD 2=48-12=6.27.解:此车没有超速.理由如下:如图,过点C 作CH ⊥MN 于H ,∵∠CBH =60°,∴∠BCH =30°,又BC =200米,∴BH =12BC =100米,∴CH =BC 2-BH 2=1003米.∵∠CAH =45°,∠CHA =90°, ∴AH =CH =1003米. ∴AB =1003-100≈73(米). ∴73÷5=735(米/秒).又∵60千米/时=503米/秒,735<503,∴此车没有超速.第十八章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.已知四边形ABCD 是平行四边形,下列结论中,错误的是( ) A .AB =CD B .AC =BDC .当AC ⊥BD 时,它是菱形 D .当∠ABC =90°时,它是矩形2.已知在▱ABCD 中,BC -AB =2 cm ,BC =4 cm ,则▱ABCD 的周长是( ) A .6 cm B .12 cm C .8 cm D .10 cm3.如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,OD =50 cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为( )A .25 cmB .50 cmC .75 cmD .100 cm(第3题)(第6题)(第8题)(第9题)(第10题)4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是() A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,将边长为2 cm的菱形ABCD沿边AB所在的直线l翻折得到四边形ABEF.若∠DAB=30°,则四边形CDFE的面积为()A.2 cm2B.3 cm2C.4 cm2D.6 cm210.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()A.2个B.3个C.4个D.5个二、填空题(每题3分,共30分)11.如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为________.(第11题)(第12题)(第13题)(第14题)12.如图,在菱形ABCD 中,对角线AC =6,BD =10,则菱形ABCD 的面积为________. 13.如图,∠ACB =90°,D 为AB 的中点,连接DC 并延长到E ,使CE =13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F.若AB =6,则BF 的长为________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于O ,DE ⊥AC 于点E ,∠EDC ∶∠EDA =1∶2,且AC =10,则EC 的长度是________.15.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH 为菱形,那么四边形ABCD 是对角线__________的四边形.(第15题)(第16题)(第18题)(第19题)(第20题)16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.18.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→……的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 016秒时,点P的坐标为________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.如图,Rt△ABC中,∠ACB=90°,以斜边AB为边向外作正方形ABDE,且正方形的对角线交于点O,连接OC.已知AC=5,OC=62,则另一直角边BC的长为________.三、解答题(21题8分,26题12分,其余每题分,共60分)21.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F.求证:DE=DF.(第21题)22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证:△ADE≌△ABF;(2)求△AEF的面积.(第22题)23.如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=213,当四边形BEDF为矩形时,求线段AE的长.(第23题)24.如图,在矩形ABCD中,点E,F分别在边BC,AD上,连接EF,交AC于点O,连接AE,CF.若沿EF折叠矩形ABCD,则点A与点C重合.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的边长;(3)在(2)的条件下求EF的长.(第24题)25.如图,已知在Rt △ABC 中,∠ACB =90°,现按如下步骤作图: ①分别以A ,C 为圆心,a 为半径(a >12AC)作弧,两弧分别交于M ,N 两点;②过M ,N 两点作直线MN 交AB 于点D ,交AC 于点E ; ③将△ADE 绕点E 顺时针旋转180°,设点D 的对应点为点F. (1)请在图中直接标出点F 并连接CF ; (2)求证:四边形BCFD 是平行四边形; (3)当∠B 为多少度时,四边形BCFD 是菱形?(第25题)26.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.(第26题)答案一、1.B 2.B 3.D 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.C10.C 点拨:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°. ∵△AEF 是等边三角形, ∴AE =EF =AF ,∠EAF =60°. ∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,⎩⎪⎨⎪⎧AE =AF ,AB =AD ,∴Rt △ABE ≌Rt △ADF(HL ), ∴BE =DF(故①正确). ∠BAE =∠DAF.∴∠DAF +∠DAF =30°,即∠DAF =15°(故②正确). ∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF , 又∵AE =AF ,∴AC 垂直平分EF(故③正确).设EC =x ,由勾股定理,得EF =AE =2x ,∴EG =CG =22x ,∴AG =62x , ∴AC =6x +2x2, ∴AB =BC =3x +x2, ∴BE =3x +x 2-x =3x -x2,∴BE +DF =3x -x ≠2x(故④错误), ∵S △CEF =x 22,S △ABE =3x -x 2·3x +x22=x 24,∴2S △ABE =x 22=S △CEF (故⑤正确).综上所述,正确的有4个.二、11.110° 12.30 13.8 14.2.5 15.相等16.75° 点拨:如图,连接BD ,由菱形的性质及∠A =60°,得到三角形ABD 为等边三角形.由P 为AB 的中点,利用等腰三角形三线合一的性质得到∠ADP =30°.由题意易得∠ADC =120°,∠C =60°,进而求出∠PDC =90°,由折叠的性质得到∠CDE =∠PDE =45°,利用三角形的内角和定理即可求出∠DEC =75°.(第16题)17.25或52或65218.(1,0)19.16 点拨:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°.又∵BD ⊥DE ,点F 是BE 的中点,DF =4,∴BF =DF =EF =4,∴CF =4-BC =4-y.在Rt △DCF 中,DC 2+CF 2=DF 2,即x 2+(4-y)2=42=16.∴x 2+(y -4)2=16.20.7 点拨:如图所示,过点O 作OM ⊥CA ,交CA 的延长线于点M ;过点O 作ON ⊥BC 于点N ,易证△OMA ≌△ONB ,CN =OM ,∴OM =ON ,MA =NB. ∴O 点在∠ACB 的平分线上. ∴△OCM 为等腰直角三角形. ∵OC =62,∴CM =OM =6. ∴MA =CM -AC =6-5=1.∴BC =CN +NB =OM +MA =6+1=7. 故答案为7.(第20题)三、21.证明:连接DB.∵四边形ABCD 是菱形,∴BD 平分∠ABC. 又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF.22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC ,∴DE =BF.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF(SAS ).(2)解:由题知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:如图,连接BD ,设BD 交AC 于点O. ∵四边形ABCD 是平行四边形, ∴OB =OD.由BE ∥DF ,得∠BEO =∠DFO.而∠EOB =∠FOD , ∴△BEO ≌△DFO. ∴BE =DF.又BE ∥DF , ∴四边形BEDF 是平行四边形.(第23题)(2)解:∵AB ⊥AC ,AB =4,BC =213,∴AC =6,AO =3. ∴在Rt △BAO 中,BO =AB 2+AO 2=42+32=5. 又∵四边形BEDF 是矩形, ∴OE =OB =5.∴点E 在OA 的延长线上,且AE =2.24.(1)证明:由题意可知,OA =OC ,EF ⊥AC.∵AD ∥BC , ∴∠FAC =∠ECA.在△AOF 和△COE 中,⎩⎪⎨⎪⎧∠FAO =∠ECO ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE.∴OF =OE. ∵OA =OC ,EF ⊥AC , ∴四边形AECF 为菱形.(2)解:设菱形AECF 的边长为x ,则AE =x ,BE =BC -CE =8-x.在Rt △ABE 中,BE 2+AB 2=AE 2, ∴(8-x)2+42=x 2,解得x =5.即菱形AECF 的边长为5. (3)解:在Rt △ABC 中,AC =AB 2+BC 2=42+82=45,∴OA =12AC =2 5.在Rt △AOE 中,OE =AE 2-AO 2=52-(25)2=5, ∴EF =2OE =2 5. 25.(1)解:如图所示.(第25题)(2)证明:连接AF ,DC.∵△CFE 是由△ADE 顺时针旋转180°后得到的,A 与C 是对应点,D 与F 是对应点, ∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形. ∴AD ∥CF.由作图可知MN 垂直平分AC ,又∠ACB =90°,∴MN ∥BC. ∴四边形BCFD 是平行四边形.(3)解:当∠B =60°时,四边形BCFD 是菱形.理由如下: ∵∠B =60°,∠ACB =90°, ∴∠BAC =30°.∴BC =12AB.又易知BD =12AB ,∴DB =CB.∵四边形BCFD 是平行四边形,∴四边形BCFD 是菱形. 26.解:(1)如图①所示.(2)如图②,连接AE ,∵点E 是点B 关于直线AP 的对称点, ∴∠PAE =∠PAB =20°,AE =AB. ∵四边形ABCD 是正方形, ∴AE =AB =AD ,∠BAD =90°,∴∠AED =∠ADE ,∠EAD =∠DAB +∠BAP +∠PAE =130°, ∴∠ADF =180°-130°2=25°. (3)如图③,连接AE ,BF ,BD ,由轴对称和正方形的性质可得,EF =BF ,AE =AB =AD ,易得∠ABF =∠AEF =∠ADF ,又∵∠BAD =90°.∴∠ABF +∠FBD +∠ADB =90°, ∴∠ADF +∠ADB +∠FBD =90°,∴∠BFD =90°.在Rt △BFD 中,由勾股定理得BF 2+FD 2=BD 2.在Rt △ABD 中,由勾股定理得BD 2=AB 2+AD 2=2AB 2, ∴EF 2+FD 2=2AB 2.(第26题)第十九章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列各选项中表示y 是x 的函数的是( )2.在函数y =x +4x中,自变量x 的取值范围是( ) A .x >0 B .x ≥-4 C .x ≥-4且x ≠0 D .x >0且x ≠-4 3.一次函数y =-2x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若一次函数y =(1-2m)x +m 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1<y 2,且与y 轴相交于正半轴,则m 的取值范围是( )A .m >0B .m <12C .0<m <12D .m >125.一艘轮船在长江航线上往返于甲、乙两地,若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用的时间为t(h ),航行的路程为s(km ),则s 与t 的函数图象大致是( )6.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx -1的解集在数轴上表示正确的是()(第6题)7.已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是()8.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<49.已知一次函数y=32x+m和y=-12x+n的图象都经过点A(-2,0),且与y轴分别交于点B,C,那么△ABC的面积是()A.2 B.3 C.4 D.6(第10题)10.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(m)与小文出发时间t(min)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二、填空题(每题3分,共30分)11.函数y=(m-2)x+m2-4是正比例函数,则m=________.12.一次函数y=2x-6的图象与x轴的交点坐标为________.13.如果直线y =12x +n 与直线y =mx -1的交点坐标为(1,-2),那么m =________,n =________.14.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =2.其中说法正确的有________(把你认为说法正确的序号都填上).(第14题)(第16题)(第17题)(第18题)(第19题)15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是__________. 16.如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A(-6,0),B(0,3)两点,点C ,D 在直线AB 上,C 的纵坐标为4,点D 在第三象限,且△OBC 与△OAD 的面积相等,则点D 的坐标为__________.17.如图,直线l 1,l 2交于点A ,观察图象,点A 的坐标可以看作方程组__________的解. 18.如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O′A′B′,点A 的对应点A′落在直线y =-34x 上,则点B 与其对应点B′间的距离为________.(第20题)19.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上,已知OA2=1,则OA2 015的长为________.20.一次越野赛跑中,当小明跑了1 600 m时,小刚跑了1 400 m,小明、小刚在此后所跑的路程y(m)与时间t(s)之间的函数关系如图,则这次越野赛跑的全程为________m.三、解答题(21题6分,26题10分,27题12分,其余每题8分,共60分)21.已知关于x的一次函数y=(6+3m)x+(n-4).(1)当m,n为何值时,y随x的增大而减小?(2)当m,n为何值时,函数图象与y轴的交点在x轴的下方?(3)当m,n为何值时,函数图象经过原点?22.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),求此一次函数的解析式.23.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,试求:(1)y2=ax+b的函数解析式;(2)使y1,y2的值都大于零的x的取值范围.(第23题)24.已知一次函数y =ax +2与y =kx +b 的图象如图,且方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,点B 的坐标为(0,-1),请你确定这两个一次函数的解析式.(第24题)25.如图所示,已知直线y =x +3与x 轴、y 轴分别交于A ,B 两点,直线l 经过原点,与线段AB 交于点C ,把△AOB 的面积分为21的两部分,求直线l 对应的函数解析式.(第25题)26.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地,40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/小时,结果与甲车同时到达B地.甲、乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.请结合图象信息解答下列问题:(1)直接写出a的值,并求甲车的速度;(2)求图中线段EF所表示的y与x之间的函数关系式,并直接写出自变量x的取值范围;(3)乙车出发多少小时与甲车相距15千米?(第27题)答案一、1.D点拨:根据函数的定义可知,对于自变量x的任何值,y都有唯一确定的值与之对应,只有D才满足这一条件.故选D.2.C 3.C 4.C 5.B 6.A7.B 点拨:∵y 随x 的增大而减小, ∴k<0.又∵kb>0,∴b<0,故选B . 8.C 9.C10.B 点拨:由图象得出小文步行720 m ,需要9 min , 所以小文的速度为720÷9=80(m /min ),当第15 min 时,小亮骑了15-9=6(min ),骑的路程为15×80=1 200(m ), ∴小亮的速度为1 200÷6=200(m /min ), ∴200÷80=2.5,故②正确;当第19 min 以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达青少年宫,故①正确; 此时小亮骑了19-9=10(min ),骑的总路程为10×200=2 000(m ),∴小文的步行时间为2 000÷80=25(min ), 故a 的值为25,故③错误;∵小文19 min 步行的路程为19×80=1 520(m ),∴b =2 000-1 520=480,故④正确.∴正确的有①②④.故选B .二、11.-2 点拨:∵函数是正比例函数,∴⎩⎪⎨⎪⎧m 2-4=0,m -2≠0.∴m =-2.12.(3,0) 13.-1;-5214.①②③15.m <12 点拨:根据题意可知:⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解不等式组即可.16.(-8,-1)17.⎩⎪⎨⎪⎧y =-x +2,y =2x -1 18.8 点拨:由题意可知,点A 移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,-34x =6,解得x =-8,∴△OAB 沿x 轴向左平移了8个单位长度到△O′A′B′位置,∴点B 与其对应点B′间的距离为8.19.22 013 点拨:因为OA 2=1,所以OA 1=12,进而得出OA 3=2,OA 4=4,OA 5=8,由此得出OA n=2n -2,所以OA 2 015=22 013.20.2 200 点拨:设小明的速度为a m /s ,小刚的速度为b m /s ,由题意,得⎩⎪⎨⎪⎧1 600+100a =1 400+100b ,1 600+300a =1 400+200b ,解得⎩⎪⎨⎪⎧a =2,b =4.故这次越野赛跑的全程为1 600+300×2=2 200(m ).三、21.解:(1)由题意知,6+3m<0,解得m<-2,所以当m <-2且n 为任意实数时,y 随x 的增大而减小;(2)由题意知,6+3m ≠0,且n -4<0,故当m ≠-2且n <4时,函数图象与y 轴的交点在x 轴的下方; (3)由题意知,6+3m ≠0,且n -4=0,故当m ≠-2且n =4时,函数图象经过原点. 22.解:设一次函数的解析式为y =kx +b ,∵一次函数的图象与直线y =-x +1平行,∴k =-1, ∴一次函数的解析式为y =-x +b , ∵图象经过点(8,2), ∴2=-8+b ,解得b =10, ∴一次函数的解析式为y =-x +10.23.解:(1)对于函数y 1=x +1,当x =0时,y =1.∴将点(0,1),点(2,0)的坐标分别代入y 2=ax +b 中,得⎩⎪⎨⎪⎧b =1,2a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =1,∴y 2=-12x +1;(2)由y 1>0,即x +1>0,得x>-1, 由y 2>0,即-12x +1>0,得x<2.故使y 1>0,y 2>0的x 的取值范围为-1<x <2.24.解:因为方程组⎩⎪⎨⎪⎧y =ax +2,y =kx +b 的解为⎩⎪⎨⎪⎧x =2,y =1,所以交点A 的坐标为(2,1),所以2a +2=1,解得a =-12.又因为函数y =kx +b 的图象过交点A(2,1)和点B(0,-1),所以⎩⎪⎨⎪⎧2k +b =1,b =-1,解得⎩⎪⎨⎪⎧k =1,b =-1.所以这两个一次函数的解析式分别为y =-12x +2,y =x -1.点拨:此类问题的解题规律是明确方程组的解就是两条直线的交点坐标,再利用待定系数法求解.本题中确定这两个函数的解析式的关键..是确定a ,k ,b 的值. 25.解:∵直线y =x +3与x ,y 轴分别交于A ,B 两点, ∴A 点坐标为(-3,0),B 点坐标为(0,3),∴OA =3,OB =3, ∴S △AOB =12OA·OB =12×3×3=92,设直线l 对应的函数解析式为y =kx(k ≠0),∵直线l 把△AOB 的面积分为21的两部分,直线l 与线段AB 交于点C ,∴分两种情况来讨论:①当S △AOCS △BOC =21时,设C 点坐标为(x 1,y 1),又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×23=3,即S △AOC =12·OA·|y 1|=12×3×|y 1|=3,∴y 1=±2,由图可知取y 1=2. 又∵点C 在直线AB 上, ∴2=x 1+3.∴x 1=-1.∴C 点坐标为(-1,2).把C 点坐标(-1,2)代入y =kx 中,得2=-1×k , ∴k =-2.∴直线l 对应的函数解析式为y =-2x. ②当S △AOCS △BOC =12时,设C 点坐标为(x 2,y 2).又∵S △AOB =S △AOC +S △BOC =92,∴S △AOC =92×13=32,即S △AOC =12·OA·|y 2|=12×3×|y 2|=32.∴y 2=±1,由图可知取y 2=1.又∵点C 在直线AB 上,∴1=x 2+3,∴x 2=-2,∴C 点坐标为(-2,1).把C 点坐标(-2,1)代入y =kx 中,得1=-2k ,∴k =-12,∴直线l 对应的函数解析式为y =-12x ,综上所述,直线l 对应的函数解析式为y =-2x 或y =-12x.26.解:(1)经销商能盈利5×11+5×17+5×9+5×13=250(元);(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果10-(10-x)=x(箱).∵9(10-x)+13x ≥100,∴x ≥2.5.设经销商盈利为w 元,则w =11x +17(10-x)+9(10-x)+13x =-2x +260.∵-2<0,∴w 随x 的增大而减小,∴当x =3时,w 值最大,最大值为-2×3+260=254(元). 答:使水果经销商盈利最大的配货方案为甲店配A 种水果3箱,B 种水果7箱,乙店配A 种水果7箱,B 种水果3箱.最大盈利为254元.27.解:(1)a =4.5,甲车的速度为46023+7=60(千米/小时);(2)设乙开始的速度为v 千米/小时,则4v +(7-4.5)×(v -50)=460,解得v =90,4v =360,则D(4,360),E(4.5,360),设直线EF 对应的函数关系式为y =kx +b ,把点E(4.5,360),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧4.5k +b =360,7k +b =460,解得⎩⎪⎨⎪⎧k =40,b =180.所以线段EF 所表示的y 与x 之间的函数关系式为y =40x +180(4.5≤x ≤7);(3)60×23=40(千米),则C(0,40),设直线CF 对应的函数解析式为y =mx +n.把点C(0,40),点F(7,460)的坐标分别代入,得⎩⎪⎨⎪⎧n =40,7m +n =460,解得⎩⎪⎨⎪⎧m =60,n =40,所以直线CF 对应的函数解析式为y =60x +40,易得线段OD 对应的函数解析式为y =90x(0≤x ≤4),当60x +40-90x =15,解得x =56;当90x -(60x +40)=15,解得x =116;当40x +180-(60x +40)=15,解得x =254.所以乙车出发56小时或116小时或254小时,乙车与甲车相距15千米.第二十章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是( ) A .3 B .4 C .5 D .62.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为( )A .89分B .90分C .92分D .93分3.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下:并求出鞋号的中位数是25.5 cm ,众数是26 cm ,平均数约是25.5 cm ,下列说法正确的是( ) A .因为需要鞋号为27 cm 的人数太少,所以鞋号为27 cm 的鞋可以不生产 B .因为平均数约是25.5 cm ,所以这批男鞋可以一律按25.5 cm 的鞋生产 C .因为中位数是25.5 cm ,所以25.5 cm 的鞋的生产量应占首位 D .因为众数是26 cm ,所以26 cm 的鞋的生产量应占首位4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( ) A .4,4 B .3,4 C .4,3 D .3,35.济南某中学足球队的18名队员的年龄如下表所示:。
部编数学八年级下册矩形的性质专项提升训练(重难点培优)【拔尖特训】2023年培优含答案
![部编数学八年级下册矩形的性质专项提升训练(重难点培优)【拔尖特训】2023年培优含答案](https://img.taocdn.com/s3/m/4d38237d905f804d2b160b4e767f5acfa0c78301.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题18.5矩形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•阜平县期末)如图,AC,BD是矩形ABCD的对角线,∠AOB=40°,则∠ACD的度数为( )A.50°B.55°C.65°D.70°【分析】根据矩形的性质可知,AC=BD,AO=CO,BO=DO,所以OC=OD,根据对顶角相等得到∠AOB=∠COD=40°,再利用等腰三角形的性质求得∠ACD的度数即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∴OC=OD,∴∠OCD=∠ODC,∵∠AOB=40°,∴∠COD=40°,∴∠OCD=∠ODC=70°.故选:D.2.(2022春•喀什地区期末)如图,在矩形ABCD中,∠BOC=120°,AC=2,则AB的长为( )A.1B.2C.D.【分析】由矩形的性质得出OA=OB=1,再证明△AOB是等边三角形,得出AB=OA即可.【解答】解:∵四边形ABCD是矩形,AC=2,∴OA=AC=1,OB=BD,AC=BD,∴OA=OB=1,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=1;故选:A.3.(2022春•覃塘区期末)在矩形ABCD中,若相邻的两边长分别是4和,则对角线所夹的锐角度数是( )A.30°B.40°C.45°D.60°【分析】根据矩形的性质得出∠ABC=90°,根据AB和BC的长求出AC,得出等边三角形AOB,即可求出对角线所夹的锐角度数.【解答】解:如图,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,AC=2AO,BD=2BO,∵AB=4,BC=4,∴在Rt△ABC中,由勾股定理得:AC===8,∴AO=BO=×8=4,∵AB=4,∴△AOB是等边三角形,∴∠AOB=60°,即对角线所夹的锐角度数是60°.故选:D.4.(2022春•平泉市期末)求证:矩形的两条对角线相等.已知:如图,四边形ABCD为矩形.求证:AC=BD.以下是排乱的证明过程:①∵BC=CB②∴AB=CD,∠ABC=∠DCB③∵四边形ABCD是矩形④∴AC=DB⑤∴△ABC≌△DCB证明步骤正确的顺序是( )A.①②③⑤④B.③①②⑤④C.①⑤②③④D.③②①⑤④【分析】写出证明过程,由证明过程可以判断顺序.【解答】解:∵四边形ABCD是矩形∴AB=CD,∠ABC=∠DCB,又∵BC=BC,∴△ABC≌△DCB,∴AC=BD,故顺序为③②①⑤④.故选:D.5.(2022春•海口期末)如图,在矩形ABCD中,DE∥AC,CE∥BD.AC=4,则四边形OCED的周长为( )A.6B.8C.10D.12【分析】首先利用平行四边形的判定证明四边形ODEC为平行四边形,然后利用矩形的性质得到OD=OC=2即可求出四边形OCED的周长.【解答】解:∵DE∥AC,CE∥BD,∴四边形ODEC为平行四边形,∴DE=OC,CE=OD,∵四边形ABCD为矩形,∴AC=BD,OD=OC=OA=OB,∴OD=OC=2,∴DE=CE=2,∴四边形OCED的周长为8.故选:B.6.(2022春•长乐区期中)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AD于E,若AB=4,BC=8,则AE的长为( )A.3B.4C.5D.2【分析】连接CE,根据矩形的对边相等可得AD=BC=8,CD=AB=4,根据矩形的对角线互相平分可得OA=OC,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AE=CE,设AE=CE=x,表示出DE,然后在Rt△CDE中,利用勾股定理列出方程求解即可.【解答】解:如图,连接CE,在矩形ABCD中,∵AB=4,BC=8,∴AD=BC=8,CD=AB=4,OA=OC,∵OE⊥AC,∴OE垂直平分AC,∴AE=CE,设AE=CE=x,则DE=8﹣x,在Rt△CDE中,CD2+DE2=CE2,即42+(8﹣x )2=x 2,解得x =5,即AE 的长为5.故选:C .7.(2022春•静海区校级期中)如图,在矩形ABCD 中,O 为AC 的中点,EF 过O 点且EF ⊥AC 分别交DC 于E 交AB 于E ,点G 是AE 的中点,且∠AOG =30°,OE =1,则下列结论:(1)DC =3OG ;(2)OG =BC ;(3)四边形AECF 为菱形;(4)S △AOE =S 四边形ABCD .其中正确的个数为( )A .①②③B .①③④C .②③④D .①②④【分析】根据条件,OG 是直角△AOE 斜边上的中线,且△FOC ≌△EOA ,然后利用三角函数求得BC 、AB 以及OA 、OC 之间的关系即可作出判断.【解答】解:∵EF ⊥AC ,G 是AF 的中点,∴AG =OG =GF ,∴∠OAF =∠AOG =30°,在直角△ABC 中,∠CAB =30°,∴BC =AC =OC ,设BC =a ,AC =2a ,AO =OC =a .AE =a ,AB =a ,OG =a ,∴CD =AB =3OG ,故①正确;OG =a ≠a =BC ,故②错误;∵∠FCO =∠EAO ,∠CFO =∠AEO ,OA =OC ,∴△FOC ≌△EOA (AAS ),∴OE =OF ,又∵AO =OC ,EF ⊥AC ,∴四边形AFCE 是菱形,故③正确;∵S △AOE =a •a =a 2,S 矩形ABCD =a •a =a 2,∴S △AOE =S 矩形ABCD ,故④正确.故选:B .8.(2022•荣昌区自主招生)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠DAC =60°,点F 在线段AO 上,连接DF ,以DF 为边作等边三角形DFE ,点E 和点A 分别位于DF 两侧,下列结论:①DO =DA ;②DF =EC ;③∠ADF =∠ECF ;④∠BDE =∠EFC 中正确结论的序号为( )A .①④B .①②③C .②③④D .①②③④【分析】①根据∠DAC =60°,OD =OA ,得出△OAD 为等边三角形,即可得出结论①正确;②如图,连接OE ,利用SAS 证明△DAF ≌△DOE ,再证明△ODE ≌△OCE ,即可得出结论②正确;③通过等量代换即可得出结论③正确;④根据△DAO ,△DEF 是等边三角形可以证明∠EFC =∠ADF ,然后根据②∠ADF =∠BDE ,等量代换即可得到∠BDE =∠EFC .【解答】解:①在矩形ABCD 中,对角线AC ,BD 相交于点O ,∵∠DAC =60°,OD =OA ,∴△OAD 为等边三角形,∴∠DOA =∠DAO =∠ODA =60°,AD =OD ,故①正确,②连接OE .∵△DFE 为等边三角形,∴∠EDF =∠EFD =∠DEF =60°,DF =DE ,∵∠BDE +∠FDO =∠ADF +∠FDO =60°,∴∠BDE =∠ADF ,∵∠ADF +∠AFD +∠DAF =180°,∴∠ADF +∠AFD =180°﹣∠DAF =120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠ADF=∠EFC,∴∠BDE=∠EFC,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC=DF,故②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④∵△DAO,△DEF是等边三角形,∴∠DAO=∠DFE=60°,∴∠EFC+∠AFD=∠ADF+∠AFD=120°,∴∠EFC=∠ADF,根据②知∠ADF=∠BDE,∴∠BDE=∠EFC.故④正确.故选:D.9.(2022秋•章丘区期中)如图,在矩形ABCD中,AB=24,BC=12,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形.则AE的长是( )A.15B.20C.D.【分析】连接EF交AC于点O,连接CE,根据菱形的性质可得CF=CE,证明△CFO≌△AEO,可得CF=AE,再根据勾股定理可得CE的长,进而可得结论.【解答】解:如图,连接EF交AC于点O,连接CE,∵四边形EGFH是菱形,∴EF⊥GH,OE=OF,∴CF=CE,在△CFO和△AEO中,,∴△CFO≌△AEO(AAS),∴CF=AE,∴CE=AE,∴BE=AB﹣AE=24﹣CE,在Rt△CEB中,根据勾股定理,得CE2=BE2+BC2,∴CE2=(24﹣CE)2+122,解得CE=15.∴AE=15.故选:A.10.(2022秋•姜堰区期中)如图,在矩形ABCD中,AB=3cm,BC=cm,点P从A点出发沿AB以cm/s的速度向点B运动,当PA=PC时,点P运动的时间为( )A.s B.2s C.10s D.10s或2s【分析】设点P运动的时间为ts,根据题意得:AP=tcm,PC==tcm,PB=AB﹣AP=(3﹣t)cm,然后根据勾股定理列方程求解即可.【解答】解:设点P运动的时间为ts,根据题意得:AP=tcm,∴PC==tcm,∵PB=AB﹣AP=(3﹣t)cm,∴PC2=BC2+PB2,∴t2=2+(3﹣t)2,解得t=2或t=10(舍去),∴点P运动的时间为2s,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•费县期末)如图所示.在矩形ABCD中,AB=2.BD=4,则∠AOD= 120 度.【分析】根据矩形的性质可知OA=OB,OB=BD,证得OB=OA=AB=2,所以△AOB是等边三角形,得出∠AOB=60°,则∠AOD=120°.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=AC,OB=BD,∴OA=OB,∵BD=4,AB=2,∴OB=OA=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=120°.故答案为:120.12.(2022春•仙居县期末)如图,矩形ABCD中,AC与BD交于点O,若∠COB=120°,AB=6,则对角线BD= 12 .【分析】根据矩形性质求出BD=2OB,OA=OB,求出∠AOB=60°,得出等边△AOB,求出OB=AB,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴BD=2OB,AC=2OA,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=6,∴BD=2OB=12,故答案为:12.13.(2022春•二道区期末)如图,矩形ABCD中,对角线AC与BD相交于点O,AE垂直平分线度OB,垂足为点E,若BD=15,则AB= 7.5 .【分析】首先利用矩形的性质得到OA的长度,然后利用线段的垂直平分线的性质得到AB=OB=OA即可求解.【解答】解:∵矩形ABCD中,对角线AC与BD相交于点O,∴AO=OB=OC=OD,而BD=15,∴OB=OA=BD=7.5,∵AE垂直平分线段OB,∴AB=OA,∴AB=OB=OA,∴AB=7.5.故答案为:7.5.14.(2022春•洛江区期末)如图,在矩形ABCD中,AE平分∠BAD交BC于点E,AD=8cm,CE=3cm,则AB= 5 cm.【分析】首先利用矩形的性质得到可以证明∠DAE=∠BEA,然后利用角平分线的性质证明∠BAE=∠BEA,接着利用等腰三角形的判定得到AB=BE即可求解.【解答】解:∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,∵AD=8cm,CE=3cm,∴BC=8,∴AB=BE=BC﹣CE=8﹣3=5cm.故答案为:5.15.(2022春•盐都区期中)如图,在矩形ABCD中,AB=3,对角线AC的长为5,作AC的垂直平分线交BC于点M,连接AM,则△ABM的周长为 7 .【分析】由勾股定理可求BC的长,由线段垂直平分线的性质可得AM=CM,可求解.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∴BC===4,∵AC的垂直平分线交BC于点M,∴AM=CM,∴△ABM的周长=AB+BM+AM=AB+BC=7,故答案为:7.16.(2022•南京模拟)如图,矩形ABCD的对角线AC,BD相交于点O,OF⊥AB,垂足为点F,BE⊥AC,垂足为点E,且E是OC的中点.若OF=2,则BD的长为 8 .【分析】根据矩形的性质可以得到OC=OB,再根据BE⊥AC及E点为CO的中点,根据线段垂直平分线的性质证得△CBO是等边三角形,从而得到∠DBA=30°,然后根据30°直角三角形的性质求得BO 长,BD=2BO,即可得出答案.【解答】解:∵BE⊥AC,E点为CO的中点,∴BE垂直平分OC,∴BC=OB,∵四边形ABCD是矩形,∴AC=BD,OC=OA,OD=OB,∠CBA=90°,∴OC=OB,∴CB=BO=CO,∴△OBC是等边三角形,∴∠CBD=60°,∴∠DBA=30°,∵OF⊥AB,OF=2,∴BO=2OF=4,∵O点为BD中点,∴BD=2BO=8.故答案为:8.17.(2022春•上犹县期末)如图,矩形ABCD中,已知:AB=3,AD=5,点P是BC上一点,且△PAD 是等腰三角形,则BP= 1或4或2.5 .【分析】根据矩形的性质可知DC=AB=3,AD=BC=5,再根据△PAD是等腰三角形的性质可得DP=AD=5,勾股定理可得CP的长度,则BP=BC﹣CP,即可求得BP的长度.【解答】解:①当DP=AD时,∵矩形ABCD,∴DC=AB=3,AD=BC=5,∵△PAD是等腰三角形,∴DP=AD=5,在Rt△PCD中,PC==4,∴BP=BC﹣CP=5﹣4=1.②当AD=AP时,∴AP=AD=5,在Rt△ABP中,由勾股定理得,BP==4,③当AP=DP时,过P作PE⊥AD于点E,∴AE=AD=2.5,∵∠B=∠BAE=∠AEP=90°,∴四边形ABPE是矩形,∴BP=AE=2.5.综上所述,BP=1或4或2.5.故答案为:1或4或2.5.18.(2022春•邗江区校级月考)点P在矩形ABCD内部,当点P到矩形的一条边的两个端点距离相等时,称点P为该边的“和谐点”.如图,点P在矩形ABCD内部,且AB=10,BC=6.若P是边AD的“和谐点”,连接PA,PB,PD,则tan∠PAB•tan∠PBA的最小值为 .【分析】过点P作PN⊥AB于N,tan∠PAB•tan∠PBA=•=,设AN=x,则BN=10﹣x,求出AN•BN有最大值25,即可求得tan∠PAB•tan∠PBA的最小值是.【解答】解:过点P作PN⊥AB于N,如图:∵点P是边AD的“和谐点”,∴PA=PD,∴PN=BC=3,∴tan∠PAB=,tan∠PBA=,∴tan∠PAB•tan∠PBA=•=,设AN=x,则BN=10﹣x,∴AN•BN=x(10﹣x)=﹣(x﹣5)2+25,当x=5时,AN•BN有最大值25,∴有最小值,∴tan∠PAB•tan∠PBA的最小值是.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•前郭县期末)如图,矩形ABCD的对角线AC、BD相交于点O,AE⊥BD,垂足为E,∠AOB =56°,求∠EAB的度数.【分析】根据矩形的性质可知OA=OB,根据∠AOB的度数求出∠ABO的度数,然后根据直角三角形的锐角互余求解即可.【解答】解:∵四边形ABCD是矩形,∴,∴AO=OB,又∵∠AOB=56°,∴∠OBA=∠OAB=62°,∵AE⊥BD,∴∠BAE=90°﹣∠ABE=28°.20.(2022春•玉州区期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在BD上,OE=OF.(1)求证:AE=CF.(2)若AB=2,∠AOD=120°,求矩形ABCD的面积.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS 证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=3,AC=2OA=6,在Rt△ABC中,由勾股定理求出BC,即可得出矩形ABCD的面积.【解答】解:(1)证明:∵四边形ABCD是矩形∴OA=OC,在△AOE和△COF∵,∴△AOE≌△COF(SAS),∴AE=CF.(2)∵四边形ABCD是矩形∴AC=BD∵,∴AO=DO∴∴在Rt△ADB中,BD=2AB=4,∴∴矩形ABCD的面积=.21.(2022春•铜官区期末)如图1,矩形ABCD中,AB=2,BC=3,过对角线AC中点O的直线分别交边BC、AD于点E、F(1)求证:四边形AECF是平行四边形;(2)如图2,当EF⊥AC时,求EF的长度.【分析】(1)证明△AOF≌△COE全等,可得AF=EC,∵AF∥EC,∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,且EF⊥AC,∴四边形AECF为菱形,假设BE=a,根据勾股定理求出a,从而得知EF的长度;【解答】解:∵矩形ABCD,∴AF∥EC,AO=CO∴∠FAO=∠ECO∴在△AOF和△COE中,,∴△AOF≌△COE(ASA)∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形;(2)由(1)知四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF为菱形,设BE=a,则AE=EC=3﹣a∴a2+22=(3﹣a)2∴a=则AE=EC=,∵AB=2,BC=3,∴AC==∴AO=OC=,∴OE===,∴EF=2OF=.22.(2021春•柳南区校级期末)如图,矩形ABCD的对角线AC、BD相交于点O,点E、F在AC上,AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AD=2,∠AOB=120°,求AB的长.【分析】(1)根据平行四边形的判定即可求出答案.(2)根据矩形的性质以及含30度角的直角三角形的性质即可求出答案.【解答】解:(1)在矩形ABCD中,∴OA=OB=OC=OD,∵AE=CF,∴OE=OF,∴四边形BEDF是平行四边形.(2)由(1)可知:OA=OB,∵∠AOB=120°,∴∠DBA=30°,∵AD=2,∴AB=AD=6.23.(2022秋•莲湖区校级月考)已知,在长方形ABCD中,AB=8,BC=6,点E,F分别是边AB,BC上的点,连接DE,DF,BP.(1)如图1,当CF=2BE=2时,试说明△DEF是直角三角形;(2)如图2,若点E是边AB的中点,DE平分∠ADF,求BF的长.【分析】(1)在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+BF2=12+42=17,得出DF2+EF2=DE2,即可得出结论;(2)作EH⊥DF于H,则∠A=∠DHE=90°,证明△AED≌△HED(AAS),得出DA=DH=6,EA=EH=4,得出EH=EB=4,证明Rt△EHF≌Rt△EBF(HL),得出BF=HF.设BF=x,则HF=x,CF=6﹣x,得出DF=DH+HF=6+x,在Rt△CDF中,由勾股定理得出方程,解方程即可.【解答】(1)证明;∵CF=2BE=2,∴BE=1,∴AE=AB﹣BE=7.∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,CD=AB=8,AD=BC=6,在Rt△ADE中,DE2=AE2+AD2=62+72=85,在Rt△DCF中,DF2=DC2+CF2=82+22=68,在Rt△BEF中,EF2=BE2+BF2=12+42=17,∴DF2+EF2=DE2,∴△DEF是直角三角形,且∠DFE=90°;(2)解:作EH⊥DF于H,则∠A=∠DHE=90°.∵DE平分∠ADF,∴∠ADE=∠HDE,在△AED和△HED中,,∴△AED≌△HED(AAS),∴DA=DH=6,EA=EH=4,∴EH=EB=4,在Rt△EHF和Rt△EBF中,,∴Rt△EHF≌Rt△EBF(HL),∴BF=HF.设BF=x,则HF=x,CF=6﹣x,∴DF=DH+HF=6+x,在Rt△CDF中,DC2+CF2=DF2,∴82+(6﹣x)2=(6+x)2,∴x=,即BF=.24.(2022春•嘉祥县期末)如图①,在矩形ABCD中,点E、F分别在AD、BC上,且AE=CF.直线EF 分别交BA、DC的延长线于点G、H.(1)求证:四边形BHDG是平行四边形;(2)如图②,若四边形BHDG是菱形,且AB=4,BC=8,求CH的长.【分析】(1)由“AAS”证△AGE≌△CHF,得AG=CH,即可解决问题;(2)由菱形的性质得BH=DH=4+CH,再由勾股定理得BH2=BC2+CH2,即(4+CH)2=82+CH2,求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∠BAD=∠BCD=90°,∴∠AGE=∠CHF,∠GAE=∠HCF=90°,在△AGE和△CHF中,,∴△AGE≌△CHF(AAS),∴AG=CH,∴AB+AG=CD+CH,即BG=DH,∵AB∥CD∴四边形BHDG是平行四边形;(2)解:∵四边形ABCD是矩形,∴CD=AB=4,∵四边形BHDG是菱形,∴BH=DH=4+CH,在Rt△BCH中,由勾股定理得:BH2=BC2+CH2,即(4+CH)2=82+CH2,解得:CH=6,即CH的长为6.。
部编数学八年级下册专题二次根式的乘除专项提升训练【拔尖特训】2023年培优(解析版)【人教版】含答案
![部编数学八年级下册专题二次根式的乘除专项提升训练【拔尖特训】2023年培优(解析版)【人教版】含答案](https://img.taocdn.com/s3/m/abb5cbc06aec0975f46527d3240c844768eaa01c.png)
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.2二次根式的乘除专项提升训练班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•平阴县期中)下列二次根式中是最简二次根式的是( )A.1B C D.1【分析】根据最简二次根式的定义:被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,分母不能带根号,逐一判断即可解答.【解答】解:A、1不是二次根式,故A不符合题意;B B符合题意;C C不符合题意;DD不符合题意;故选:B.2.(2022秋•北碚区校级期中)下列计算中,正确的是( )A.2=−2B=−2C D×4【分析】根据二次根式的乘除法则进行计算即可.【解答】解:(2=2≠﹣2,故A错误;=2≠﹣2,故B错误;C错误;=4,故D正确.故选D.3.(2022秋•辉县市校级月考)计算:3÷1的值为( )A B.3C D.9【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:3÷=×1故选:A .4.(2022秋•渝中区校级月考)下列计算正确的是( )A =−3B =2C 213D .2=10【分析】直接利用二次根式的乘除运算法则分别计算,进而判断得出答案.【解答】解:A =3,故此选项不合题意;B 2,故此选项符合题意;C ==D .(﹣2=20,故此选项不合题意;故选:B .5.(2022秋•小店区校级月考)下列各式的化简正确的是( )A ⋅=(﹣2)×(﹣7)=14B =C==D 【分析】根据二次根式的乘除运算法则即可求出答案.【解答】解:A 、原式=×=2×7=14,故A 不符合题意.B 、原式==B 不符合题意.C 、原式C 符合题意.D 、原式D 不符合题意.故选:C.6.(2022•吴中区模拟)实数a,b|a+b|结果为( )A.2a﹣b B.﹣2a﹣b C.﹣b D.3b【分析】利用二次根式的性质,绝对值的意义化简即可.【解答】解:由题意:b<a<0,∴a<0,a+b<0.|a+b|=﹣a﹣a﹣b=﹣2a﹣b,故选:B.7.(2022春•遵义期中)当x=﹣3时,m等于( )A B C D【分析】把x=﹣3代入解答即可.【解答】解:当x=﹣3时,原式==∵∴m=故选:B.8.(2022春•x的取值范围是( )【分析】根据二次根式和分式有意义的条件进行解答即可.【解答】解:由题意得:x−2≥0x>0,解得:x≥2,故选:D.9.(2022春•云阳县期中)若2<a<3A.5﹣2a B.1﹣2a C.2a﹣5D.2a﹣1【分析】先根据2<a<3把二次根式开方,得到a﹣2﹣(3﹣a),再计算结果即可.【解答】解:∵2<a<3,=a﹣2﹣(3﹣a)=a﹣2﹣3+a=2a﹣5.故选:C.10.(2022春•长兴县月考)已知a=2020×2022﹣2020×2021,b=c=则a,b,c的大小关系是( )A.a<b<c B.b<a<c C.a<c<b D.b<c<a【分析】分别将a、b、c分别平方,再利用完全平方公式化简后对平方进行比较即可.【解答】解:∵a=2020×2022﹣2020×2021=2020×(2022﹣2021)=2020,∴a2=20202,∵b∴b2=20232﹣4×2022=(2022+1)2﹣4×2022=(2022﹣1)2=20212,∵c∴c2=20212﹣1,∵20202<20212﹣1<20212,即a2<c2<b2,∵a、b、c都是大于0的数,∴a<c<b.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•朝阳区期中)计算:2= 13 .【分析】直接利用二次根式的性质计算得出答案.【解答】解:2=13.故答案为:13.12.(2022秋• .【分析】根据二次根式的性质计算即可.13.(2022秋•3﹣x 成立,则x 满足的条件是 x ≤3 .3﹣x ,得到x ﹣3≤0,然后解不等式即可.3﹣x ,∴x ﹣3≤0,解得x ≤3.故答案为:x ≤3.14.(2022秋•嘉定区校级月考)计算: −【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式==−13×=故答案为:15.(2022秋•= 2a .【分析】根据二次根式的性质以及绝对值的性质即可求出答案.【解答】解:∵b <a <0<﹣a <2<﹣b ,∴a +2>0,b ﹣2<0,a ﹣b >0,∴原式=|a +2|﹣|b ﹣2|+|a ﹣b |=a +2+(b ﹣2)+a ﹣b=a +2+b ﹣2+a ﹣b=2a ,故答案为:2a .16.(2022•南京模拟)若a <b 可化简为 b ﹣a .−a(a<0)化简即可.【解答】解:∵a<b,∴a﹣b<0,=b﹣a,故答案为b﹣a.17.(2022春•x的取值范围为 −12≤x<1 .【分析】根据商的算术平方根的性质即可得到结果.∴2x+1≥0 1−x>0,解得:−12≤x<1,故答案为:−12≤x<1.18.(2022春•==…=a,b为正整数),则a+b= 73 .n≥1的正整数),令n=8求出a与b的值,即可确定出a+b的值.【解答】解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•清水县校级月考)把下列二次根式化成最简二次根式:(1(2(3(4【分析】依据二次根式的性质以及分母有理化进行化简,即可得到最简二次根式.【解答】解:(1(2=(3=(4)1.20.(2022春•宁武县期末)计算:(1×;(2×.【分析】(1)根据二次根式的乘法运算即可求出答案.(2)根据二次根式的乘除运算法则即可求出答案.【解答】解:(1)原式=23(﹣=23×2(﹣×(﹣=﹣(2)原式=×(=(×(=−23.21.(2022春•赵县月考)化简:(1(2(3(4【分析】(1)根据二次根式的乘法运算法则即可求出答案.(2)根据二次根式的性质即可求出答案.(3)根据二次根式的乘除运算法则即可求出答案.(4)根据二次根式的性质即可求出答案.【解答】解:(1)原式=12×2(2)原式==(3)原式(4)原式=22.(2022春•江阴市校级月考)计算或化简:(1)2(2)如图,实数a、b【分析】(1)根据二次根式的性质、二次根式的乘除法法则计算即可;(2)根据数轴求出a、b的范围,根据二次根式的性质、绝对值的性质计算即可.【解答】解:(1)原式=4=(2)由数轴可知:﹣1<a<0,0<b<1,则原式=﹣a﹣b﹣(b﹣a)=﹣a﹣b﹣b+a=﹣2b.23.(2022秋•新蔡县校级月考)发现①2= 2 ,2= 23 ;② 2 ;= 23 ;总结通过①②2(a≥0)与a a的数量关系规律,请用自己的语言表述出来;应用2的值.【分析】发现:①利用有理数的乘方的计算方法进行计算即可;②利用算术平方根的定义进行计算即可;总结:根据有理数的乘方的计算方法以及算术平方根的定义进行总结即可;应用:根据数m在数轴上的位置,确定m+2,m﹣1的符号,再根据上述结论进行解答即可.【解答】解:发现:①2=2,2=2 3,故答案为:2,2 3;|2|=2=|−23|=23,故答案为:2,2 3;总结:2=a(a≥0)=|a|=a(a≥0)−a(a<0);应用:由数m在数轴上的位可知,﹣2<m<﹣1,∴m+2>0,m﹣1<0,3﹣m>0,∴原式=2(m+2)+1﹣m+3﹣m=8,2=8.24.(2022秋•=x,y为正整数).材料二:观察、思考、解答:)2=2−2×1×12=+1=3﹣==)2.∴3﹣)2;1.(1(2a,b,m,n均为正整数),用含m、n的代数式分别表示a和b;(3)由上述m、n与a、b的关系,当a=4,b=3时,求m2+n2的值.【分析】(1)把6写成5+1,利用上面的材料可得结论;(2)观察上面的两个材料得结论;(3)根据(2)先得到m、n与a、b的关系,再利用完全平方公式的变形得结论.【解答】解:(1====1.(2a,b,m,n均为正整数),则m+n=a,mn=b.(3)由于m、n、a、b=a,b,m,n均为正整数),∴m+n=4,mn=3.∴m2+n2=(m+n)2﹣2mn=16﹣2×3=10.。
人教版八年级初二数学第二学期平行四边形单元达标质量专项训练试题
![人教版八年级初二数学第二学期平行四边形单元达标质量专项训练试题](https://img.taocdn.com/s3/m/28c51dc214791711cd7917ae.png)
人教版八年级初二数学第二学期平行四边形单元达标质量专项训练试题一、选择题1.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )A .①②③B .①②④C .②③④D .①③④2.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =622+,则正方形的面积为( )A .5B .4C .3D .23.如图,在四边形ABCD 中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,多少s 时直线将四边形ABCD 截出一个平行四边形( )A .1B .2C .3D .2或34.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为( )A .2B .233C .2或33D .2或335.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF CDF SS .=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤6.如图,边长为8的正方形ABCD 的对角线交于点O ,点,E F 分别在边,CD DA 上(CE DE <),且90,,EOF OE BC ︒∠=的延长线交于点 ,,G OF CD 的延长线交于点,H E 恰为OG 的中点.下列结论:①OCE ODF ∆∆≌;②OG OH =; ③210GH =.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个7.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PD =2,下列结论:①EB ⊥ED ;②∠AEB =135°;③S 正方形ABCD =5+22;④PB =2;其中正确结论的序号是( )A .①③④B .②③④C .①②④D .①②③8.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠CBF 为( )A .75°B .60°C .55°D .45°9.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C .3D .310.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 不可能为正方形,③DE 长度的最小值为4; ④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.13.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.14.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.15.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,AB =OB ,点E ,F 分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.16.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.17.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .18.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ;(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时;情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .23.如图, 平行四边形ABCD 中,3AB cm =,5BC cm =,60B ∠=, G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF .(1) 求证:四边形CEDF 是平行四边形;(2) ①当AE 的长为多少时, 四边形CEDF 是矩形;②当AE = cm 时, 四边形CEDF 是菱形, (直接写出答案, 不需要说明理由).24.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长.25.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.26.如图1,已知四边形ABCD 是正方形,E 是对角线BD 上的一点,连接AE ,CE .(1)求证:AE =CE ;(2)如图2,点P 是边CD 上的一点,且PE ⊥BD 于E ,连接BP ,O 为BP 的中点,连接EO .若∠PBC =30°,求∠POE 的度数;(3)在(2)的条件下,若OE =2,求CE 的长.27.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)28.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.29.如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.30.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题意可证△ABE≌△BDF,可判断①②③,由△DEF的周长=DE+DF+EF=AD+EF=4+EF,则当EF最小时△DEF的周长最小,根据垂线段最短,可得BE⊥AD时,BE最小,即EF最小,即可求此时△BDE周长最小值.【详解】解:∵AB=BC=CD=AD=4,∠A=∠C=60°∴△ABD,△BCD为等边三角形,∴∠A=∠BDC=60°,∵将△BCD绕点B旋转到△BC'D'位置,∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',∴△ABE≌△BFD,∴AE=DF,BE=BF,∠AEB=∠BFD,∴∠BED+∠BFD=180°,故①正确,③错误;∵∠ABD=60°,∠ABE=∠DBF,∴∠EBF=60°,故②正确∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,∴当EF最小时,∵△DEF的周长最小.∵∠EBF=60°,BE=BF,∴△BEF是等边三角形,∴EF=BE,∴当BE⊥AD时,BE长度最小,即EF长度最小,∵AB=4,∠A=60°,BE⊥AD,∴EB=∴△DEF的周长最小值为4+故④正确,综上所述:①②④说法正确,故选:B.【点睛】本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.2.B解析:B【解析】【分析】过点O 作OM ⊥CE 于M ,作ON ⊥DE 交ED 的延长线于N ,判断出四边形OMEN 是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON ,根据正方形的性质可得OC=OD ,然后利用“角角边”证明△COM 和△DON 全等,根据全等三角形对应边相等可得OM=ON ,然后判断出四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=12CD ,再利用勾股定理列式求出CE ,根据正方形的性质求出OC=OD=2a ,然后利用四边形OCED 的面积列出方程求出2a ,再根据正方形的面积公式列式计算即可得解.【详解】解:如图,过点O 作OM ⊥CE 于M ,作ON ⊥DE 交ED 的延长线于N ,∵∠CED=90°,∴四边形OMEN 是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM ,∴∠COM=∠DON ,∵四边形ABCD 是正方形,∴OC=OD ,在△COM 和△DON 中,==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△COM ≌△DON (AAS ),∴OM=ON ,∴四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,则222a a = ∵∠CED=90°,∠DCE=30°,∴DE=12CD=a , 由勾股定理得,2222(2)3CD DE a a a -=-= ,∴四边形OCED 的面积=21113(2)(2)222a a a a +=⨯, 解得21a =, 所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.故选B .【点睛】本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.3.D解析:D【解析】【分析】根据题意设t 秒时,直线将四边形ABCD 截出一个平行四边形,AP=t,DP=9-t,CQ=2t,BQ=6-2t.要使成平行四边形,则就有AP=BQ 或CQ=PD ,计算即可求出t 值.【详解】根据题意设t 秒时,直线将四边形ABCD 截出一个平行四边形则AP=t,DP=9-t,CQ=2t,BQ=6-2t要使构成平行四边形则:AP=BQ 或CQ=PD进而可得:62t t =- 或29t t =-解得2t = 或3t =故选D.【点睛】本题主要考查四边形中的动点移动问题,关键在于根据平行四边形的性质列出方程求解即可.4.C解析:C【解析】【分析】根据△A′DC 为等腰三角形,分三种情况进行讨论:①A'D=A'C ,②A'D=DC ,③CA'=CD ,分别求得AP 的长,并判断是否符合题意.【详解】①如图,当A′D=A′C 时,过A′作EF ⊥AD ,交DC 于E ,交AB 于F ,则EF 垂直平分CD ,EF 垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP ∴△ABA'是等边三角形∴∠ABP=30°∴AP=223333 AB==;②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,BD=22222425AB AD+=+=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为2332.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.5.B解析:B【解析】【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.6.C解析:C【分析】①直接利用角边角判定定理判断即可;②证明ODH OCG ∆≅∆即可;③在Rt CGH ∆中求解即可判断此答案错误.【详解】解:①∵四边形ABCD 是正方形,,AC BD 是对角线,∴OD OC =,45ODF OCE ∠=∠=︒,90DOC ∠=︒,∵90EOF ∠=︒,∴DOC DOE EOF DOE ∠-∠=∠-∠,即:EOC DOF ∠=∠,在ODF ∆和OCE ∆中,∵ODF OCE OD OC DOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODF OCE ∆≅∆,故①正确;②∵45ODF OCE ∠=∠=︒,∴90=90=135ODF OCE ∠+︒∠+︒︒,即:ODH OCG ∠=∠,在ODH ∆和OCG ∆中,∵GOC DOH OD OC ODH OCG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODH OCG ∆≅∆,∴OH OG =,故②正确;③过点O 作OM CD ⊥于点M ,∵OM CD ⊥,∴在等腰Rt OCD ∆中,118422OM CD ==⨯=, 在Rt ECG ∆和Rt EMO ∆中 ∵OME GCE OEM GEC OE GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴4CG OM ==,由②中知:ODH OCG ∆≅∆,∴DH CG =,∴=4DH CG =,∴8412CH CD DH =+=+=,∴在Rt CGH ∆中,由勾股定理得:GH =,故③错误;综上所述:只有两个正确,故选:C.【点睛】本题主要考查正方形的性质,全等三角形的判定与性质,解题的关键是掌握正方形的四条边都相等,正方形的每条对角线平分每组对角.7.D解析:D【分析】先证明△APD≌△AEB得出BE=PD,∠APD=∠AEB,由等腰直角三角形的性质得出∠APE =∠AEP=45︒,得出∠APD=∠AEB=135︒,②正确;得出∠PEB=∠AEB﹣∠AEP=90︒,EB⊥ED,①正确;作BF⊥AE交AE延长线于点F,证出EF=BF2,得出AF=AE+EF=12,由勾股定理得出AB22AF BF+522+S正方形ABCD=AB2=5+2,③正确;EP2AE2,由勾股定理得出BP22BE EP+6,④错误;即可得出结论.【详解】解:∵∠EAB+∠BAP=90︒,∠PAD+∠BAP=90︒,∴∠EAB=∠PAD,在△APD和△AEB中,AP AEPAD EAB AD AB=⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△AEB(SAS),∴BE=PD,∠APD=∠AEB,∵AE=AP,∠EAP=90︒,∴∠APE=∠AEP=45︒,∴∠APD=135︒,∴∠AEB=135︒,②正确;∴∠PEB=∠AEB﹣∠AEP=135︒﹣45︒=90︒,∴EB⊥ED,①正确;作BF⊥AE交AE延长线于点F,如图所示:∵∠AEB =135︒,∴∠EFB =45︒,∴EF =BF ,∵BE =PD =2,∴EF =BF =2, ∴AF =AE +EF =1+2,AB =22AF BF +=22(12)(2)++=522+,∴S 正方形ABCD =AB 2=(522+)2=5+22,③正确;EP =2AE =2,BP =22BE EP +=222(2)+=6,④错误;故选:D .【点睛】本题考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定与性质、等腰三角形的判定、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.8.A解析:A【分析】根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC ,进而得出∠CBF .【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,又∵△ADE 是等边三角形,∴AE=AD=DE ,∠DAE=60°,∴AB=AE ,∴∠ABE=∠AEB ,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.∴∠BFA=180°-60°=120°,∴∠CBF=180°-∠BCA-∠BFC=180°-45°-60=75°,【点睛】本题主要是考查正方形的性质和等边三角形的性质,解本题的关键是求出∠ABE=15°.9.B解析:B【分析】首先证明AB=AF=AD ,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG ≌△AFG ,得到BG=FG ,再利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可.【详解】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°,又∵AG=AG ,在Rt △ABG 和Rt △AFG 中,AG AG AB AF ⎧⎨⎩== ∴△ABG ≌△AFG (HL );∴BG=FG (全等三角形对应边相等),设BG=FG=x ,则GC=6-x ,∵E 为CD 的中点,∴CE=EF=DE=3,∴EG=3+x ,∴在Rt △CEG 中,32+(6-x )2=(3+x )2(勾股定理),解得x=2,∴BG=2,故选B .【点睛】此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.10.B解析:B【分析】①连接CF ,证明△ADF ≌△CEF ,得到△EDF 是等腰直角三角形;②根据中点的性质和直角三角形的性质得到四边形CDFE 是菱形,利用正方形的判定定理进行判断;③当DE 最小时,DF 也最小,利用垂线段的性质求出DF 的最小值,进行计算即可; ④根据△ADF ≌△CEF ,得到S 四边形CEFD =S △AFC ;⑤由③的结论进行计算即可.①连接CF,∵△ABC是等腰直角三角形,且F是AB边上的中点,∴∠FCB=∠A=∠B =45°,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠AFD=∠CFE,∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,①正确;②当D、E分别为AC、BC中点,即DF、EF分别为Rt△AFC和Rt△BFC斜边上的中线,∴CD=DF=12AC,FE=EC=12BC,∴CD=DF=FE=EC,四边形CDFE是菱形,又∠C=90°,∴四边形CDFE是正方形,②错误;③由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小,当DF⊥AC时,DE最小,此时EF=DF=12BC=4.∴22224442DF EF+=+=④∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC,∴四边形CDFE的面积保持不变,④正确;⑤由③可知当DE最小时,DF也最小,DF的最小值是4,则DE的最小值为42当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD-S△DEF=S△AFC-S△DEF=16-8=8,⑤正确;综上,正确的是:①④⑤,故选:B.【点睛】本题考查了正方形的判定、等腰直角三角形的性质、全等三角形的判定和性质,掌握正方形的判定定理、全等三角形的判定定理和性质定理、理解点到直线的距离的概念是解题的关键.二、填空题11.2【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE ,设CE=x ,则BE=8-x ,然后根据折叠的性质,可得EF=8-x ,根据勾股定理可得2224(8)x x +=-,解得x =3,则OF=6,所以OC=10,由此可得点E 的坐标为(-10,3). 故答案为:(-10,3)13.42 【分析】 作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.14.①③④【分析】由“AAS ”可证△AOE ≌△COF ,△AHO ≌△CGO ,可得OE =OF ,HO =GO ,可证四边形EGFH 是平行四边形,由EF ⊥GH ,可得四边形EGFH 是菱形,可判断①③正确,若四边形ABCD 是正方形,由“ASA ”可证△BOG ≌△COF ,可得OG =OF ,可证四边形EGFH 是正方形,可判断④正确,即可求解.【详解】解:如图,∵四边形ABCD 是菱形,∴AO =CO ,AD ∥BC ,AB ∥CD ,∴∠BAO=∠DCO,∠AEO=∠CFO,∴△AOE≌△COF(AAS),∴OE=OF,∵线段EF的垂直平分线分别交BC、AD边于点G、H,∴GH过点O,GH⊥EF,∵AD∥BC,∴∠DAO=∠BCO,∠AHO=∠CGO,∴△AHO≌△CGO(AAS),∴HO=GO,∴四边形EGFH是平行四边形,∵EF⊥GH,∴四边形EGFH是菱形,∵点E是AB上的一个动点,∴随着点E的移动可以得到无数个平行四边形EGFH,随着点E的移动可以得到无数个菱形EGFH,故①③正确;若四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°,∴∠BOG=∠COF;在△BOG和△COF中,∵BOG COF BO COGBO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;∴四边形EGFH是正方形,∵点E是AB上的一个动点,∴至少得到一个正方形EGFH,故④正确,故答案为:①③④.【点睛】本题考查了菱形的判定和性质,平行四边形的判定,正方形的判定,全等三角形的判定和性质等知识,灵活运用这些性质进行推理是关键.15.45【分析】设EF=x,根据三角形的中位线定理表示AD=2x,AD∥EF,可得∠CAD=∠CEF=45°,证明△EMC是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则EN=MN=12 x,BN=FN=5,最后利用勾股定理计算x的值,可得BC的长.【详解】解:设EF=x,∵点E、点F分别是OA、OD的中点,∴EF是△OAD的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ACB=∠CAD=45°,∵EM⊥BC,∴∠EMC=90°,∴△EMC是等腰直角三角形,∴∠CEM=45°,连接BE,∵AB=OB,AE=OE∴BE⊥AO∴∠BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =25,∴BC =2x =45.故答案为:45.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.16.37【分析】如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .证明BE=DT ,BD=DW ,把问题转化为求DT+DW 的最小值.【详解】解:如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .∵△ABC ,△DEF 都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE ∥TC ,∵DE=BT=1,∴四边形DEBT 是平行四边形,∴BE=DT ,∴BD+BE=BD+AD ,∵B ,W 关于直线AC 对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW ,∴∠WCK=60°,∵WK ⊥CK ,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,WK=3CK=332,∴TK=1+3+32=112,∴TW=2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭=37,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥37,∴BD+BE的最小值为37,故答案为37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.17.25【分析】作BE⊥AD于E,BF⊥CD于F,则四边形BEDF是矩形,证明△ABE≌△CBF(AAS),得出BE=BF,△ABE的面积=△CBF的面积,则四边形BEDF是正方形,四边形ABCD的面积=正方形BEDF的面积,求出BE=10,即可求得BD的长.【详解】解:作BE⊥AD交DA延长线于E,BF⊥CD于F,如图所示:则∠BEA=∠BFC=90°,∵∠ADC=90°,∴四边形BEDF是矩形,∴∠EBF=90°,∵∠ABC=90°,∴∠EBF=∠ABC=90°,∴∠ABE=∠CBF,在△ABE和△CBF中,BEA BFC ABE CBF AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CBF (AAS ),∴BE=BF ,△ABE 的面积=△CBF 的面积,∴四边形BEDF 是正方形,四边形ABCD 的面积=正方形BEDF 的面积,∴BE=DE ,BE 2=10 cm 2,∴(cm),∴.故答案为:【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、矩形的判定与性质等知识;熟练掌握正方形的判定与性质,证明三角形全等是解题的关键.18.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD 为矩形∴DF=FB∴EF 垂直平分DB∴ED=EB在△DEF 和△BEF 中DF=BF EF=EF ED=EB∴△DEF ≌△BEF∴△AEB ≌△FEB ≌△DEF ∴13666AEB FEB DEF ABCD S S S S ∆∆∆====⨯=矩形. 故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB ≌△FEB ≌△DEF 是解题的关键.19.8或3【分析】根据AE 和DF 是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF+EF =BC∴2AB+5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.20.2【分析】根据EM 是Rt ABE △斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半即可求出EM 的长;根据已知条件推导出DME 是等边三角形,且边长为2,进一步计算即可得解.【详解】解:∵AD BC ⊥,M 为AB 边的中点,4AB =∴在Rt ABD △中,114222DM AM AB ===⨯= 同理,在Rt ABE △中,114222EM AM AB ===⨯= ∴MDA MAD ∠=∠,MEA MAE ∠=∠∵2BME MEA MAE MAE ∠=∠+∠=∠,2BMD MDA MAD MAD ∠=∠+∠=∠ ∴DME BME BMD ∠=∠-∠22MAE MAD =∠-∠()2MAE MAD =∠-∠2DAC =∠60=︒∵=DM EM∴DME 是等边三角形,且边长为2∴122EDM S =⨯=故答案是:2【点睛】本题考查了直角三角形斜边上的中线的性质、三角形的外角定理、角的和差以及等边三角形的判定和性质,熟练掌握相关知识点是进行推理论证的前提.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。
新人教版八年级数学下册专项训练
![新人教版八年级数学下册专项训练](https://img.taocdn.com/s3/m/d2e55b40e518964bcf847c11.png)
§16 二次根式(专项训练)二次根式的定义:1.下列式子一定是二次根式的是( )A .2--xB .xC .22+x D .22-x最简二次根式的定义1.下列各式中属于最简二次根式的是( )A. 12+xB.222y x x +C. 12D.5.0 2.下列各式中是最简二次根式的是( ).A. BC. D3、下列二次根式中,属于最简二次根式是( ) A、4、在21、12 、x+2 、240x 、22y x +中,最简二次根式有( )个A 1 个B 2 个C 3 个D 4个5、下列二次根式中属于最简二次根式的是( ) A .44+a B .48 C .14 D .ba同类二次根式的定义1.若最简二次根式53-a 与3+a 是同类二次根式,则a= 。
2.下列二次根式化成最简二次根式后,能与2合并的是 ( ) A.23 B.12 C.32 D.32 3.最简二次根式13+a 与2是同类二次根式,则a 的取值为二次根式取值范围1.式子21+-x x 中x 的取值范围是。
A . x ≥1 且 X ≠-2 B.x>1且x ≠-2 C.x ≠-2 D. .x ≥12.要使1213-+-x x 有意义,则x 应满足( ).A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤33 当22-+a a 有意义a 的取值范围是 ( )A .a≥2 B.a >2 C .a≠2 D.a≠-2 4.若2-x 是二次根式,则x 的取值范围是 A . x >2B . x ≥2C 、 x <2D . x ≤25x 的取值范围为( )A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠362()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3 7x 的取值范围是( )A.x ≥﹣25B.x ≤25C. x ≥25D. x ≤- 25二次根式的性质1.若2<x<3,化简x x -+-3)2(2的正确结果是 _ 。
【人教版】2022-2023学年八年级下册数学期末专项提升试卷(含解析)
![【人教版】2022-2023学年八年级下册数学期末专项提升试卷(含解析)](https://img.taocdn.com/s3/m/13321866ce84b9d528ea81c758f5f61fb7362809.png)
【人教版】2022-2023学年八年级下册数学期末专项提升试卷一、选择题(本大题共10小题,每小题3分,共30分)1.有意义,则x 的取值范围是( )A. x ≥-1B. x ≤-1C. x ≠-1D. x >-12. 一次函数y =-x -2的图象不经过( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3. 如图1,在平面直角坐标系中,□ABCD 的顶点坐标分别为A (1,5),B (1,1),C (7,3),则点D 的坐标是( )A.(7,5) B.(7,6)C.(7,7)D.(6,7)图1图24. 某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )A. 89分B. 90分C. 91分D. 92分5. 如图2,把一张矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B ′处,AB ′交DC 于点E ,则下列结论正确的是 ( )A. AE =CEB. ∠ACD =∠B ′CDC. AD =DED. ∠DAB ′=∠CAB ′6. 下列运算中正确的是( )B.D.÷)=-17. 如图3,在△ABC 中,∠ACB=90°,∠B=30°,AD 平分∠BAC ,E 是AD 的中点,若BD=a ,则CE 的长为()A. B. 13a 12a C. D.23a34a图3图4图58. 一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差9. 甲无人机从地面起飞,乙无人机从距离地面20 m 高的楼顶起飞,两架无人机同时匀速上升10 s.甲、乙两架无人机所在的位置距离地面的高度y 与无人机上升的时间x 之间的关系如图4所示,下列说法正确的是( )A. 5 s 时,两架无人机都上升了40 m B. 乙无人机上升的速度为8 m/s C. 10 s 时,两架无人机的高度差为20 m D. 10 s 时,甲无人机距离地面的高度是60 m10. 如图5,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为()A. 8B. C. D. 10二、填空题(本大题共6小题,每小题4分,共24分)11. = .12. 若一组数据:7,3,5,x ,2的众数为7,则这组数据的中位数是.13. 如图6,数轴上点A 表示-2,过数轴上表示1的点B 作BC ⊥x 轴,若BC =2,以点A 为圆心,AC 为半径画弧交数轴于点P ,那么数轴上点P 所表示的数是.图614. 一次函数y =kx +b (k ≠0)中两个变量x ,y 的部分对应值如下表所示:x …-2-1012…y…852-1-4…那么关于x 的不等式kx +b ≥-1的解集是________.15. 如图7,点E ,F 在正方形ABCD 的对角线AC 上,AC =10,AE =CF =3,则四边形BFDE 的面积为.图7图816. 在平面直角坐标系中,对于任意一点M (x ,y ),我们把点N 称为点M 的“中分22y x ⎛⎫ ⎪⎝⎭,对称点”.如图8,矩形ABCD 的顶点A ,B 在x 轴上,点C 的坐标为(2,1),矩形ABCD 关于y 轴成轴对称.若点P 在y=-2x+2上运动,点Q 是点P 的“中分对称点”,且点Q 在矩形ABCD 的一边上,则点Q 的坐标为.三、解答题(本大题共8小题,共66分)17. (每小题4分,共8分)计算:(1;(2.212⎫⎪⎭18.(6分)已知a=的值.19.(6分)如图9,在菱形ABCD 中,E ,F 分别是边AB 和BC 上的点,且BE =BF .求证:∠DEF =∠DFE .图920.(6分)如图10,某学校矩形操场旁边有一块空地(阴影部分)需要绿化,连接AC ,测出AD=4,AC=5,BC=12,AB=13,求需要绿化部分的面积.图1021.(8分)某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图11所示.图11初、高中部决赛成绩统计表(1)计算表格中a ,b ,c 的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s 2初中,并判断哪一个代表队选手成绩较为稳定.22.(10分)某小区为了绿化环境,分两次购买A ,B 两种树苗,第一次购买A 种树苗10棵,平均分(分)中位数(分)众数(分)方差(分2)初中部a 85b s 2初中高中部85c100160B种树苗20棵,共花费600元;第二次购买A种树苗25棵,B种树苗10棵,共花费1100元.(两次购买的A,B两种树苗的单价均不变)(1)A,B两种树苗每棵的单价分别是多少元?(2)若购买A,B两种树苗共42棵,总费用为W元,购买A种树苗t棵,购买B种树苗的数量不超过A种树苗数量的2倍.①求W与t的函数解析式;②请设计出最省钱的购买方案,并求出此方案的总费用.23.(10分)一次函数y=kx+b(k≠0)的图象与x轴、y轴分别相交于点A(﹣8,0)和点B(0,6).点C在线段AO上.如图12,将△CBO沿BC折叠后,点O恰好落在AB边上点D 处.(1)求一次函数的解析式;(2)求AC的长;(3)点P为x轴上一点,且以A,B,P为顶点的三角形是等腰三角形,请直接写出点P的坐标.图1224.(12分)如图13,在□ABCD 中,对角线AC 与BD 相交于点O ,E ,F 分别为OB ,OD 的中点.(1)求证:△ABE ≌△CDF ;(2)延长AE 至点G ,使EG=AE ,连接CG ,延长CF ,交AD 于点P .①当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.②若AP=2DP=8,,CD=5,求四边形EGCF 的面积.图13答案详解16. (-1,1)或(1,0) 解析:因为矩形ABCD 中点C 的坐标为(2,1),所以D (-2,1),A (-2,0),B (2,0).因为点P 在y=-2x+2上运动,所以点P 的坐标为(x ,-2x+2).因为点Q 是点P 的“中分对称点”,所以点Q 的坐标为.-12x x ⎛⎫+ ⎪⎝⎭,当点Q 在CD 上时,=1.解得x=2.2x所以点Q 的坐标为(-1,1).当点Q 在AD 上时,-x+1=-2.解得x=3.不符合题意.当点Q 在AB 上时,=0.解得x=0.2x所以点Q 的坐标为(1,0).综上,点Q 的坐标为(-1,1)或(1,0).三、17. 解:(1)原式=;(2)原式=.14⎛⎫ ⎪⎝⎭9418. 解:因为a=<1=.()()11a a a ---a -当a===.(--19. 证明:因为四边形ABCD 是菱形,所以AB =BC =CD =AD ,∠A =∠C .因为BE =BF ,所以AB -BE =BC -BF ,即AE =CF .在△ADE 和△CDF 中,AD=CD ,∠A =∠C ,AE=CF ,所以△ADE ≌△CDF .所以DE =DF .所以∠DEF =∠DFE .20. 解:根据题意,得∠ADC=90°.在Rt △ACD 中,AD=4,AC=5,所以=3.在△ABC 中,因为AC 2+BC 2=25+144=169,AB 2=132=169,所以AC 2+BC 2=AB 2.所以△ABC 是直角三角形,且∠ACB=90°.所以S 需要绿化=S △ABC -S △ACD =×5×12-×3×4=24.1212答:需要绿化部分的面积为24.21. 解:(1)a ==85,b =85,c =80;75+80+85+85+1005(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,所以初中部决赛成绩较好;(3)s 2初中==70.()()()()()2222275-85+80-85+85-85+85-85+100-855因为s 2初中<s 2高中,所以初中代表队选手成绩比较稳定.22. 解:(1)设A 种树苗每棵的价格为x 元,B 种树苗每棵的价格为y 元.根据题意,得解得1020600,25101100.x y x y +=⎧⎨+=⎩40,10.x y =⎧⎨=⎩答:A 种树苗每棵的价格为40元,B 种树苗每棵的价格为10元.(2)购买A 种树苗t 棵,则购买B 种树苗(42-t )棵.根据题意,得42-t ≤2t .解得t ≥14.购买树苗总费用W =40t +10(42-t )=30t +420.因为k =30>0,所以W 随t 的增大而增大.当t =14时,W 最小值=30×14+420=840(元).答:购买A 种树苗14棵,B 种树苗28棵,费用最省,最省费用为840元.23. 解:(1)将点A (﹣8,0)和点B (0,6)代入y =kx +b (k ≠0),得-80,6.k b b +=⎧⎨=⎩解得3,46.k b ⎧=⎪⎨⎪=⎩所以一次函数的解析式为y =x +6.34(2)因为A (-8,0),B (0,6),所以OA =8,OB =6.所以=10.由折叠的性质可知CD =CO ,BD =OB =6,∠CDB =∠COB =90°.所以∠CDA =90°,AD =AB -BD =4.设AC =m ,则CD =OC =OA -AC =8-m .因为AC 2=CD 2+AD 2,所以m 2=(8-m )2+42.解得m=5.所以AC =5.(3)①当AP =AB =10时,因为A 点坐标为(-8,0),所以P 点坐标为(2,0)或(-18,0);②当AB =PB 时,如图1-①所示.因为BO ⊥AP ,所以AO =PO =8.所以点P 的坐标为(8,0);① ②图1③当AP =BP 时,如图1-②所示.设AP =BP =n ,则OP =AO -AP =8-n .因为BP 2=OP 2+OB 2,所以n 2=(8-n )2+62.解得n=.254所以OP=8-=.25474所以点P 的坐标为.7-04⎛⎫⎪⎝⎭,综上,当点P 的坐标为(2,0)或(-18,0)或(8,0)或时,以A ,B ,P 为顶点的7-04⎛⎫⎪⎝⎭,三角形是等腰三角形.24.(1)证明:因为四边形ABCD 是平行四边形,所以AB=CD ,AB ∥CD ,OB=OD.所以∠ABE=∠CDF.因为点E ,F 分别为OB ,OD 的中点,所以BE=OB ,DF=OD.1212所以BE=DF.在△ABE 和△CDF 中,AB =CD ,∠ABE =∠CDF ,BE =DF ,所以△ABE ≌△CDF.(2)解:①当AC=2AB 时,四边形EGCF 是矩形.理由如下:因为AC=2OA ,AC=2AB ,所以AB=OA.因为E 是OB 的中点,所以AG ⊥OB.所以∠FEG=90°.同理可得CF ⊥OD ,∠EFC=90°.所以AG ∥CF ,即EG ∥CF.因为EG=AE ,OA=OC ,所以OE 是△ACG 的中位线.所以OE ∥CG ,即EF ∥CG.所以四边形EGCF 是平行四边形,又∠OEG=90°,所以四边形EGCF 是矩形.②如图2,过点C 作CH ⊥AD 于点H ,连接CE.图2因为AP=2PD=8,所以PD=4.设DH=x ,则PH=4-x.因为CH 2=CD 2-DH 2=CP 2-PH 2,所以52-x 2=-(4-x )2.解得x=3.2所以DH=3,PH=1.所以因为四边形ABCD 是平行四边形,所以S △BCD =S ▱ABCD =×(8+4)×4=24.1212因为点E ,F 分别为OB ,OD 的中点,OB=OD ,所以EF=BD.12所以S △EFC =S △BCD =12.12由①知,四边形EGCF 是平行四边形,所以S 四边形EGCF =2S △EFC =24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16 二次根式(专项训练)二次根式的定义:1.下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x最简二次根式的定义1.下列各式中属于最简二次根式的是( )A. 12+xB.222y x x +C. 12D.5.0 2.下列各式中是最简二次根式的是( ).AB. CD3、下列二次根式中,属于最简二次根式是( ) AC4、在21、12 、x+2 、240x 、22y x +中,最简二次根式有( )个A 1 个B 2 个C 3 个D 4个 5、下列二次根式中属于最简二次根式的是( )A .44+aB .48C .14D .ba同类二次根式的定义1.若最简二次根式53-a 与3+a 是同类二次根式,则a= 。
2.下列二次根式化成最简二次根式后,能与2合并的是 ( )A.23 B.12 C.32D.32 3.最简二次根式13+a 与2是同类二次根式,则a 的取值为二次根式取值范围1.式子21+-x x 中x 的取值范围是。
A . x ≥1 且 X ≠-2 B.x>1且x ≠-2 C.x ≠-2 D. .x ≥12.要使1213-+-x x 有意义,则x 应满足( ).A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤33 当22-+a a 有意义a 的取值范围是 ( )A .a≥2 B.a >2 C .a≠2 D.a≠-24.若2-x 是二次根式,则x 的取值范围是 A . x >2 B . x ≥2 C 、 x <2 D . x ≤25x 的取值范围为( )A 、x ≥2B 、x ≠3C 、x ≥2或x ≠3D 、x ≥2且x ≠3 62()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3 7有意义,则x 的取值范围是( ) A.x ≥﹣25 B.x ≤25 C. x ≥25 D. x ≤- 25二次根式的性质1.若2<x<3,化简x x -+-3)2(2的正确结果是_ 。
2.若0<x <5,则5x -+=3、已知a 、b、c满足054)3(2=-+-+-c b a求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.4.下列计算正确的是().A.224=-B .2C=D.3=-5、下列等式成立的是()A.9494+=+ B.3327=C . 3333=+D .4)4(2-=- 6、下列计算:(16==; (26==;(31==;(4)1==,其中正确的有( )A 、1个B 、2个C 、3个D 、4个7、二次计算:-⨯= .8.化简:-=()()())21234a a==•==二次根式的加减1、计算:=+-3)23(22、计算:=-2)4( ;= 。
3.计算:= . 4、.计算21-32+29的结果是 5、-和- )A、--、-<-、-=-、不能比较 6、12=23=34=45=,,请你将猜想到的规律用含自然数n (n 1≥)的代数式表示出来是 7、.计算:101()(2π--+-+︱-6︱8、计算:9化简求值:已知:132-=x ,求12+-x x的值;10计算(+ 11、计算:(10分) (515+20—2154+45)⨯512、先化简,再求值5x 5 - 54 4x5 +x 45x,其中x=10(6分)13.(6分)求值:已知x=13+,y=13-求下列各式的值:(1)222y xy x ++ (2)22y x -14、(8分)计算:83211264+- 15、(9分)先化简,再求值:2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭,其中x =2 +3--16、(5)1151294832-+17、(5))54)(54()523(2-+-+18.(6分)计算:22(2+21)-31227-19、(222++abb a )÷b a b a --22, 其中 22,22-=+=b a20、计算: (1)322748+-(2)212)31()23)(23(0+---+ (3) 先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x .§17 勾股定理(专项训练)考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________.2.已知直角三角形的两边长为3、2,则另一条边长是________________. 3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ).A .4cmB .4cm 或cm 34C .cm 34D .不存在4.在数轴上作出表示10的点.5.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?考点二、利用列方程求线段的长1.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4C .5D .53.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?4.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、综合其它考点的应用1.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .2.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm第2题 第5题 第6题 3.小雨用竹杆扎了一个长80cm 、宽60cm 的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需________cm . 4.小杨从学校出发向南走150米,接着向东走了360米到九龙山商场,学校与九龙山商场的距离是 米.5.如图:带阴影部分的半圆的面积是多少?( 取3)6.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长; ②ΔABC 的面积.7.在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.68ECDBA8.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.9.已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高.求证:AB 2-AC 2=BC(BD-DC).10.已知直角三角形两直角边长分别为5和12, 求斜边上的高.11.小明想测量学校旗杆的高度,他采用如下的方法:先降旗杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,你能帮它计算一下旗杆的高度.12.有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.13. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm 。
求四边形ABCD 的面积.14.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?15.在加工如图的垫模时,请根据图中的尺寸,求垫模中AB间的尺寸.考点四、判别一个三角形是否是直角三角形1.若△ABC的三个外角的度数之比为3:4:5,最大边AB与最小边BC的关系是_________.2.若一个三角形的周长12c m,一边长为3c m,其他两边之差为c m,则这个三角形是_ 。
3.将直角三角形的三边扩大相同的倍数后,得到的三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形4.下列命题中是假命题的是( ).A.△ABC中,若∠B=∠C-∠A,则△ABC是直角三角形.B.△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形.C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5则△ABC是直角三角形.D.△ABC中,若a∶b∶c=5∶4∶3则△ABC是直角三角形.5.在△ABC中,2:1:1::=cba,那么△ABC是().A.等腰三角形B.钝角三角形C.直角三角形D.等腰直角三角形6.如图,四边形ABCD中,F为DC的中点,E为BC上一点,且BCCE41=.你能说明∠AFE是直角吗?考点五、开放型试题1.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_______.l 321S 4S 3S 2S 12.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、S 2、S 3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、S 2、S 3之间的关系?.3.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm ,则正方形1的边长为__________cm.§18 平行四边形(专项训练)1. 在四边形ABCD中,AB∥CD,∠A=∠C,求证:四边形ABCD是平行四边形.2. 在□ABCD中, ∠A+∠C=160°求∠A,∠C,∠B,∠D的度数3 .如图所示,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.4. 如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.5. 如图,在□ABCD中,对角线AC,BD相交于点O,MN是过O点的直线,交BC于M,交AD于N,BM=2,AN=2.8,求BC和AD的长.6.如图所示,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.7.如图所示,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?8.如图所示,已知D是等腰三角形ABC底边BC上的一点,点E,F分别在AC,AB 上,且DE∥AB,DF∥AC求证:DE+DF=AB第3题图第4题第5题图第7题图第8题图9题图9.如图,□ABCD O为D的对角线AC的中点,过点O作一条直线分别与AB、CD 交于点M、N,•点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.10.已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF 是平行四边形.11.如图所示,BD 是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形. 12. 如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC 上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.13. 如图,E F,是平行四边形ABCD的对角线AC上的点,CE AF.请你猜想:BE与DF有怎样的位置..关系和数量..关系?并对你的猜想加以证明:第10题图第11题图第12题图AB CDEF第13题图14. 如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线相交于点F(1)求证:△ABE≌△DFE;(2)试连结BD、AF,判断四边形ABDF的形状,并证明你的结论.15. 如图所示,某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,EF=FC,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路,路线是B→D→C→F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.16. 如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE .17.已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由。