(自动控制原理)4章 根轨迹分析法.
自动控制原理-第4章 根轨迹
又 ∵ 根轨迹方程
n
n
(spi) sn( pi)sn 1L
n
m
Kim 1
i 1 m
snm( pi zj)snm 1L
(szj) sm( zj)sm 1L
i 1
j 1
j 1
j 1
n
m
∴ sn-m-1项系数对应相等
(nm)(a) pi zj
n
m
i1
j1
(2k 1) ,
nm
pi zi
闭环零、极点与开环零、极点的关系
闭环传递函数 (s) G(s)
1G(s)H(s)
开环传递函数 Gk(s)G(s)H(s)
f
l
(s zi)
(s z j)
G (s) KG
i 1 q
H
(s)
K
H
j 1 h
(s pi)
(s p j)
i 1
j 1
f
l
(szi)(szj)
Gk(s)G(s)H(s)K
如何应用根轨迹方程在[s]平面上找到闭环极点。
解: G ( s ) K 0 .5 K K * s(2 s 1) s(s 0.5) s(s 0.5)
K * 0.5 K 开 环 极 点 p1 0, p2 0.5 无开环零点 根据相角方程
s2
p2 4 5 o -0.5 s1
135o
p1 0
m
(s z j)
K j1 n
1
(s pi)
i1
m
n
(szj) (spi)(2k1)
j1
i1
k0,1,2,L
(1)相角条件是决定闭环根轨迹的充要条件; 在测量相角时,规定以逆
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
自动控制原理第四章根轨迹法
i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
自动控制原理第4章根轨迹法精
m
( zj )
K K*
J 1 n
( pi )
i 1
zj
1
j
(j
1,2,, m);
pi
1 Ti
(i
1,2,, n)
可写出幅值方程与相角方程,即
G(s)H (s) 1
G(s)H(s) 1
开环零点: z1 1.5; z2,3 2 j
(1)实轴(0~1.5)和( 2.5 ~ )有根轨迹。
(2)渐近线n=4 m=3,故只有一条根轨迹趋向无穷远。由实根
轨迹可知 180 。
(3)根轨迹出射角与入射角。
出射角
3
4
p2 ( 2K 1) ( p2 zi ) ( p2 pi )
d= -3.7
s2 4s 1 0
解法2 用公式有
1 1 1
d 1 j 2 d 1 j 2 d 2
解此方程 d1 3.7, d2 0.3
d1在根轨迹上,即为所求的分离点,d2不在根轨迹上舍去。 因为
z1 2, p1,2 1 j 2 n=2,m=1
系统有两条根轨迹,一条消失于零点,另一条趋于负无穷远 在实轴(-2,-∞)区段有根轨迹。 出射角
4.1根轨迹与根轨迹方程
什么是时域分析? 指控制系统在一定的输入下,根据输出量的时
域表达式,分析系统的稳定性、瞬态和稳态性能。
4.1.1 根轨迹 4.1.2 根轨迹方程
4.1.1 根轨迹
[根轨迹定义]:系统开环传递函数增益K(或某一参数)由零到 无穷大变化时,闭环系统特征根在S平面上移动的轨迹。
例:如图所示二阶系统,
自动控制原理第四章--根轨迹法
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl
根轨迹法(自动控制原理)
i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。
自动控制原理根轨迹
等效为:
D( s ) = ∏ ( s + p j ) = 0
j =1
n
得:s = − p j
说明当 Kg = 0时,根轨迹始于各开环极点。
22
根轨迹终点条件: Kg = ∞ 当 Kg =∞时,闭环系统的特征方程
等效为:
N ( s) = ∏ ( s + z i ) = 0
i =1
m
得:s = − zi
24
3. 实轴上的根轨迹
判断准则: 实轴上若有根轨迹分布的线段,则该线段右侧的 开环有限零极点个数之和必为奇数。否则不存在根轨迹。 可用相角条件证明此规则,基于以下事实:
■ 复平面上的所有零、极点是共轭的,它们到实轴上根轨迹
(任意试验点)的矢量辐角之和总为零。
■ 根轨迹(任意试验点)左侧的实数零、极点到根轨迹的矢量
θ p = 180 − [∑ ∠( pk − p j ) − ∑ ∠( pk − zi )]
k
n
m
j =1 j≠k
i =1
= 180 − [∑ β j −∑ α i ]
j =1 i =1
36
n −1
m
终止角计算公式(第K个零点的入射角):
θ z = 180 + [∑ ∠( z k − p j ) − ∑ ∠( z k − zi )]
整理为:
(µ为自然数)
( N z + N z − N z )π − N pπ = 2 N zπ − ( N z + N p )π = ±π (1 + 2 µ )
所以,实轴上存在根轨迹的条件应满足:
N z + N p = 1 + 2µ
即实轴上根轨迹右侧的开环有限零、极点的个数之和为奇数.
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
(完整版)第四章根轨迹法
j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
自动控制原理第4章-根轨迹
zl
1800
m
( zl
j 1 jl
zj)
n
( zl
j 1
p
j
)
第四章 根轨迹法
4.2.3 绘图示例
G(s)H (s)
K
s(s 1)(s 2)
闭环特征方程 : s3 3s2 2s K 0
按7个基本规则绘制根轨迹图:
首先,系统有三个无穷远
零点,有三个开环极点:
p1=0,p2=-1,p3=-2,将它们 标在复平面上。
第四章 根轨迹法
7、 根轨迹的出射角和入射角
根轨迹从某个开环极点出发时的切线与正实轴的夹角称
为出射角,根轨迹从开环极点pi出发的出射角为:
pi
1800
m
( pi
j 1
zj)
n
( pi
j 1
p
j
)
ji
根轨迹进入某个开环零点的切线与正实轴的夹角称为 入射角,根轨迹进入开环零点Zl的入射角为:
根据规则1)和2),根轨
迹将有3支,分别开始于这
三个开环极点,趋向无穷
远。
第四章 根轨迹法
根据规则3),根轨迹有3根渐近线,它们与实轴的夹角是:
k
(2k
1)1800 3
,
k 0,1,2
0 600 ,1 1800 ,2 3000
所有渐近线交于实轴上 的一点,其坐标为:
0 1 2 1
3
1 K (s z1 )(s z2 )....(s zm ) 0 (s p1 )(s p2 )....(s pn )
m
上式变形: K (s zl )
l 1 n
1 0 ——典型根轨迹方程
(s pi )
自控第四章
(4-7)
K 式中:
* H
为反馈通道的根轨迹增益。
* * G ( s) H ( s) K G K H
( s z ) ( s z
i 1 q i j 1 l i 1 i i 1
f
l
j
) )
(4-8)
( s p ) ( s p
j
j
K*
( s z ) ( s z
• 闭环特征方程 D(s)=1+G(s)H(s)=0 (4-11) 闭环极点就是闭环特征方程的解,也称为特征 根。 • 根轨迹方程 G(s)H(s)=-1 (4-12) 式中G(s)H(s)是系统开环传递函数,该式明确表 示出开环传递函数与闭环极点的关系。
设开环传递函数有m个零点,n个极点,并假 定n≥m,这时式(4-12)又可以写成:
最后绘制出根轨迹如图4-7所示。
图4-7
例4-3根轨迹
五、根轨迹的渐近线
渐近线与实轴正方向的夹角为
(2k 1) π a nm
渐近线与实轴相交点的坐标为
a
p z
i 1 i j 1
n
m
j
nm
例4-4 已知系统的开环传递函数
K * ( s 1) G ( s) H ( s) s ( s 4)( s 2 2 s 2)
•根轨迹法可以在已知开环零、极点时,迅速求
出开环增益(或其他参数)从零变到无穷时闭环 特征方程所有根在复平面上的分布,即根轨迹。
4-2 绘制根轨迹的基本法则 一、根轨迹的分支数
分支数=开环极点数 =开环特征方程的阶数
即为max(n,m)条。
二、根轨迹的连续性与对称性 根轨迹是连续曲线,对称于实轴
自动控制原理第四章 根 轨 迹 法
K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)
如
G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )
自动控制原理第4章
z2 ) p2 )
m
sm z j n1
i 1
(s zm )
(s pn )
m
(zj)
j 1
n
( pi )
i 1
自动控制原理
第四章 复域分析法-根轨迹法
如果开环零、极点的数目满足n-m 2,则 闭环特征方程为
snnp isn 1 n( p i)K *m( zj) 0
证明:系统的闭环特征方程
n
m
D(s) (spi)K* (szj)0
i1
j1
根轨迹有分离点,说明闭环特征方程有重
根。因此,
n
m
(s pi ) K* (s zj ) 0
i1
j1
d
ds
n i1
(s
pi )
K*
m j1
(s zj )
0
自动控制原理
第四章 复域分析法-根轨迹法
将上面两式相除,整理得
自动控制原理
第四章 复域分析法-根轨迹法
4.1 根轨迹的基本概念
一、根轨迹的定义
根轨迹:是指系统开环传递函数中某个参数 (如开环增益K)从零变到无穷时,闭环特征 根在s平面上移动所画出的轨迹。
常规根轨迹:当变化的参数为开环增益时 所对应的根轨迹。
广义根轨迹:当变化的参数为开环传递函 数中其它参数时所对应的根轨迹。
自动控制原理
第四章 复域分析法-根轨迹法
证明: 由根轨迹方程,得
m
(s
j 1
n
(s
zj) pi )
1 K*
i1
令K* =0,得
m
j 1 n
(s (s
zj) pi )
1 K*
自动控制原理 第四章 根轨迹
第四章 根轨迹分析法
输入
偏差
+-
控制器
输出 被控对象
反馈元件
4.1.1 自动控制系统的根轨迹
什么是根轨迹? 根轨迹是系统开环传递函数某一参数或某几
个参数从零变化到无穷大时,闭环系统特征根
在s平面上变化的轨迹。
用时域分析法,每次系统的参数发生变化都 要重新计算闭环传递函数和闭环极点。计算量 大且难以看出系统性能指标的变化趋势。
1 Gk (s) 0
根轨 迹方
m
程
s zi
K i1 gn
1s pjj 1源自根轨迹方程可以分解成幅值条件和相角条 件两个方程,即
幅值条件
Gk s 1
相角条件
Gk (s) 180 (2k 1)
k 0,1, 2,
幅值条件方程为
m
s zi
K i1 gn
1
s pj
j 1
相角条件方程为
或无穷远处。
m
s zi
i 1
n
s pj
1 Kg
j 1
根轨迹分支的起点是指当Kg=0时的闭环极点。当 s=pj ,即开环极点。
根轨迹分支的终点是指当Kg→∞时的闭环极点。
•当s=zi,即开环零点。
m
•当s→∞,方程左边趋于0.
s zi
lim i1
sm lim 0
s n
s pj
s s n
b0 )
Kg
n
(s pj )
sn an1sn1 a0
snm (an1 bm1 )snm1
j 1
当s模值很大时,可以在分母中只保留前两项,即
G(s)H (s)
snm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lim s mn 0
s
1 k k
四、实轴上的根轨迹(规则四)
实轴上根轨迹区段的右侧,开环传函零、极点数目之和应为 奇数
(s z ) (s p ) (2h 1)
i 1 i j 1 i
m
n
*
*
*
五、根轨迹的分离点和会和点(规则五)
1、分离点和会和点——两条根轨迹在S平面的某点相遇,然 后又立即分开
闭环极点(特征根)
参数变化对系统的影响
问题:闭环特征方程一般是高次代数方程,求解困难,且不能分析
方法:直接由开环传递函数确定闭环特征根的图解法——根轨迹法 特征:可以研究参数变化对系统的影响
1、根轨迹——系统开环传递函数的某一参数变化时,闭环特征根
在S平面上移动的轨迹
2、目的——分析参数变化对系统动态特性的影响、确定可变参数
(s z ) (s p ) (2h 1)
i 1 i j 1 i
m
4.2 绘制根轨迹的规则(掌握)
一、根轨迹分支数(规则一)
根轨迹在S平面上的分支数等于闭环特征方程的阶数n,也就 是分支数等于闭环极点的个数(闭环特征方程的阶数)
二、根轨迹对称于实轴(规则二)
三、根轨迹的起点与终点(规则三)
2、特征方程 1 G(s) H (s) 0
3、将开环传函写成零极点形式
k ( s z1 )(s z 2 ) ( s z m ) G( s) H ( s) ( s p1 )(s p2 ) ( s pn ) k (s z i )
m
(s p
3、参数选择——一般是选取开环增益,但也可选择其他参数 4、举例研究根轨迹与系统性能的密切联系
R(s) -
K s( s 1)
C(s
1、闭环传函:
C (s)
K s2 s K
1 1 s2 1 4K 2 2
2、特征方程:
3、特征根:
s2 s K 0
1 1 s1 1 4K 2 2
2、实质——特征方程的二重根
3、分布位置——实轴上
b
*
a *
4、求重根的方法
1 G( s ) H ( s ) 0
'
令 G ( s) H ( s) k
N ( s) D( s)
D(s) kN (s) 0 kN ' (s) D' (s) 0
D(s) N (s) N (s) D (s) 0
第四章
根轨迹法(6学时)
4.1 根轨迹与根轨迹方程(了解) 4.2 绘制根轨迹的规则(掌握) 4.3 零度根轨迹及其基本法则(自学)
4.4 参变量根轨迹及多回路根轨迹(自学)
4.5 增加开环零点、极点对根轨迹的影响(了解) 4.6 用根轨迹分析控制系统(重点掌握)
第一节
根轨迹与根轨迹方程(了解)
系统的稳定性、动态性能
i 1 i j 1 i
m
n
(ma na ) (2h 1)
(2h 1) a nm
B)渐进线与实轴的交点
( p1 p2 pn ) ( z1 z2 zm ) a nm
3
2
1
Imag Axis
0
-1
-2
-3 -3
-2.5
-2
-1.5
根轨迹起始于开环极点,终止于开环零点,如果 则有(n-m)条根轨迹终止于无穷远处 ?
nm
(s z )
i
m
(s p
j 1
i 1 n
j
)
1 k
s pj 当k=0时(起始点), s zj k 当 (终止点 )
lim
s
s z1 s z2 s zm s p1 s p2 s pn
-1
-0.5 Real Axis
0
0.5
1
1.5
2
七、根轨迹的起始角与终止角(规则七)
K
-1 * * 0
1 1 s 1 4K 特征根:1 2 2 1 1 s2 1 4K 2 2
K
1)当 0 k 0.25 ,闭环特征根为两个实数,系统过阻尼 2)当 k 0.25 3)当 k 0.25 ,闭环特征根为两相等实数,系统临界 阻尼 ,闭环特征根为两共轭复根,系统欠 阻尼
六、根轨迹的渐进线(规则六) k 有(n-m)条根轨迹趋向于 1、渐进线——当n>m时,
无穷远,无穷远处的方位 2、主要参数——渐进线倾角、渐进线与实轴的交点 A)渐进线倾角 a 设在无穷远处有特征根 sk 则: (sk zi ) (sk p j ) a 代入
(s z ) (s p ) (2h 1)
j 1
i 1 n
j
)
1 G( s ) H ( s ) 0
(s z )
i
m
(s p
j 1
i 1 n
j
)
1 k
根轨迹方程
根轨迹应满足的两个基本条件
(s z )
i
m
(s p
j 1
i 1 n
j
)
1 k
n
幅值条件
必须清楚该式 的物理意义
相角条件(决定根轨迹 的充分必要条件) 规定:顺时针-,逆时针+
'
d [G ( s) H ( s)] 0 ds
d [G ( s ) H ( s )] d 1 又因为:[ ] 1 ds ds G ( s ) H ( s ) [G ( s ) H ( s )] 2
d 1 [ ]0 ds G ( s) H ( s)
d D( s) [ ]0 ds N ( s )
4、K( 0 )值变化时特征根(闭环极点)分布
特征根:
1.5
1 1 s1 1 4K 2 2
1 1 s2 1 4K 2 2
K
1
0.5
Imag Axis
0
K 0
K 0 K
-0.5
-1
-1.5 -2
-1.5
-1
-0.5 Real Axisຫໍສະໝຸດ 00.51
5、根据根轨迹分析系统性能
6、绘制根轨迹的主要方法:根据开环传递函数与闭环传递函数的 关系、开环传函零点和极点的分布, 绘出系统的根轨迹
绘制根轨迹的基础——根轨迹方程
一、根轨迹方程 E (s) R(s) B( s )
G (s)
C(s)
H (s)
G( s) ( s) 1 G( s) H ( s)
1、闭环传函
从开环传函零极点描绘根轨迹