平面向量的概念练习(教师版)
(完整版)平面向量基本概念练习题
(完整版)平面向量基本概念练习题第二章平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是()A .质量B .速度C .位移D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD u u u r u u u r u u u r u u u r 、、、是()A .平行向量B .有相同终点的向量C .相等向量D .模相等的向量3.下列命题中,正确的是()A .|a | = |b |?a = bB .|a |> |b |?a > bC .a = b ?a 与b 共线D .|a | = 0?a = 04.在下列说法中,正确的是()A .两个有公共起点且共线的向量,其终点必相同;B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为()(1)向量AB u u u r 的长度与向量BA u u u r 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF u u u r 共线的向量有()A .2个B .3个C .6个D .7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO u u u r 相等的向量有_________________________;(2)与AO u u u r 共线的向量有_________________________;(3)与AO u u u r 模相等的向量有_______________________;(4)向量AO u u u r 与CO u u u r 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =u u u r a ,OB =u u u r b ,AB =u u u r c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有;(2)与b 相等的向量有;(3)与c 相等的向量有.*10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB u u u r 与CD u u u r 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB u u u r =CD u u u r ;(4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =u u u r u u u r 且||||AB AD =u u u r u u u r ,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?O A B C D E F12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB u u u r 、BC u u u r 、CD u u u r (1cm 表示200m );(2)求DA u u u r 的模.*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?。
人教A版高中数学必修第二册课后习题 第6章 平面向量及其应用 6.1 平面向量的概念
6.1 平面向量的概念课后训练巩固提升1.正n 边形有n 条边,它们对应的向量依次为a 1,a 2,a 3,…,a n ,则这n 个向量( ) A.都相等B.都共线C.都不共线D.模都相等n 边形,所以n 条边的边长都相等,即这n 个向量的模都相等.2.在△ABC 中,AB=AC,D,E 分别是AB,AC 的中点,则 ( )A .AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 共线 B .DE⃗⃗⃗⃗⃗ 与CB ⃗⃗⃗⃗⃗ 共线 C .AD ⃗⃗⃗⃗⃗ 与AE ⃗⃗⃗⃗⃗ 相等 D .AD ⃗⃗⃗⃗⃗ 与BD⃗⃗⃗⃗⃗ 相等,因为D,E 分别是AB,AC 的中点,所以由三角形的中位线定理可得DE ∥BC.所以DE⃗⃗⃗⃗⃗ 与CB ⃗⃗⃗⃗⃗ 共线.3.(多选题)下列说法正确的是( )A.1 021 cm 长的有向线段不可能表示单位向量B.若O 是直线l 上的一点,单位长度已选定,则l 上有且只有两个点A,B,使得OA ⃗⃗⃗⃗⃗ ,OB⃗⃗⃗⃗⃗ 是单位向量 C.方向为北偏西50°的向量与南偏东50°的向量是平行向量D.一人从点A 向东走500 m 到达点B,则向量AB ⃗⃗⃗⃗⃗ 表示这个人从点A 到点B 的位移1021cm 时,1021cm 长的有向线段刚好表示单位向量,故A 不正确;因为单位长度已选定,向量的起点为O,所以l 上有且只有两个点A,B,使得OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 是单位向量,故B 正确;方向为北偏西50°的向量与南偏东50°的向量是一对方向相反的向量,因此是平行向量,故C 正确;根据位移的定义,可知向量AB ⃗⃗⃗⃗⃗ 表示这个人从点A 到点B 的位移,故D 正确.4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为( ) A.平行四边形 B.矩形 C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD,且AB ∥CD,即四边形ABCD 为平行四边形. 因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)如图,四边形ABCD,CEFG,CGHD 是全等的菱形,则下列结论中一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗ | B .AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线 C .BD ⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗ 共线 D .CD ⃗⃗⃗⃗⃗ =FG ⃗⃗⃗⃗A,因为四边形ABCD,CEFG,CGHD 是全等的菱形,因此|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗ |一定成立,故A 符合题意;对于B,根据菱形的性质,AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线一定成立,故B 符合题意;对于C,因为BD 与EH 不一定平行,所以BD ⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗ 不一定共线,故C 不符合题意;对于D,根据菱形的性质,知CD ⃗⃗⃗⃗⃗ 与FG ⃗⃗⃗⃗ 方向相同且模相等, 因此CD ⃗⃗⃗⃗⃗ =FG ⃗⃗⃗⃗ 一定成立,故D 符合题意.故选ABD.6.已知A,B,C 是不共线的三点,向量m 与向量AB ⃗⃗⃗⃗⃗ 是平行向量,与BC ⃗⃗⃗⃗⃗ 是共线向量,则m= .A,B,C 三点不共线,所以AB ⃗⃗⃗⃗⃗ 与BC⃗⃗⃗⃗⃗ 不共线, 又因为m ∥AB ⃗⃗⃗⃗⃗ 且m ∥BC ⃗⃗⃗⃗⃗ ,所以m=0.7.如果把平面上一切单位向量归结到共同的起点O,那么这些向量的终点所组成的图形是 .,方向任意,若单位向量有共同的始点O,则其终点构成一个单位圆.O 为圆心的单位圆8.一个4×3的矩形(每个小方格都是单位正方形)如图所示,在起点和终点都在小方格的顶点处的向量中,试问:(1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB ⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB ⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB ⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB ⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个.9.一辆汽车从点A 出发向西行驶了100千米到达点B,然后又改变方向向西偏北50°方向行驶了200千米到达点C,最后又改变方向,向东行驶了100千米到达点D. (1)作出向量AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ; (2)求|AD ⃗⃗⃗⃗⃗ |.如图所示.(2)由题意,易知AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 方向相反,故AB ⃗⃗⃗⃗⃗ 与CD⃗⃗⃗⃗⃗ 共线. 因为|AB ⃗⃗⃗⃗⃗ |=|CD ⃗⃗⃗⃗⃗ |,所以在四边形ABCD 中,AB ∥CD 且AB=CD,所以四边形ABCD 为平行四边形,所以|AD ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=200千米.。
平面向量的概念练习题
平面向量的概念练习题导言:平面向量是数学中一个重要的概念,广泛应用于几何学、物理学等领域。
理解和掌握平面向量的基本概念和运算方法对于解决与平面相关的问题具有关键作用。
本文将通过一系列练习题来帮助读者巩固对平面向量的理解和应用。
1. 平面向量的定义若空间中空间点对有序的,我们就将这样的有序对成为平面向量。
若点 A 和点 B 分别是平面内的两个点,向量 AB 表示从点 A 到点 B 的有向线段。
平面向量 AB 的起点为 A,终点为 B,记作 AB。
2. 平面向量的运算(1) 平面向量的加法设有平面向量 AB 和平面向量 CD,则其和向量记作 AB + CD,其几何意义为:将向量 CD 的起点与向量 AB 的终点连接形成一个新的向量,其起点为 CD 的起点,终点为 AB 的终点。
(2) 平面向量的数乘设有实数 k 和平面向量 AB,则 kAB 的几何意义为:将向量 AB 的起点固定,将向量 AB 的长度等比例地拉长或缩短,方向不变。
若 k > 0,则该向量与原向量方向相同;若 k < 0,则该向量与原向量方向相反。
3. 平面向量的练习题(1) 已知向量 AB = (1, 2),向量 CD = (3, -1),计算向量 AB + CD。
(2) 已知向量 PQ = (2, 4),向量 RS = (5, 1),计算向量 2PQ - RS。
(3) 在直角坐标系中,设向量 AB = (3, 4),向量 AC = (-2, 5),求向量 BC。
(4) 确定向量 a = (4, 2) 和向量 b = (-3, 6) 的数量积和夹角。
(5) 设向量 OX = (1, 0),向量 OY = (0, 1),求向量 OA = 4OX + 3OY。
解答:(1) AB + CD = (1, 2) + (3, -1) = (4, 1)(2) 2PQ - RS = 2(2, 4) - (5, 1) = (4, 8) - (5, 1) = (-1, 7)(3) BC = AC - AB = (-2, 5) - (3, 4) = (-5, 1)(4) 数量积 a·b = 4*(-3) + 2*6 = -12 + 12 = 0夹角cosθ = (a·b) / (|a| |b|) = 0 / (√(4^2+2^2) √((-3)^2+6^2)) = 0 /(2√5 √45) = 0 / (2√5* 3√5) = 0 / (6√5) = 0由于夹角为0,说明向量 a 和向量 b 夹角为零度,即平行。
第1讲 平面向量的概念及加减运算(教师版)
第1讲 平面向量的概念及加减运算一、考点梳理考点1 基本概念既有大小,又有方向的量叫做向量.以A 为起点、B 为终点的有向线段记作AB →.|AB →|叫AB →的模或AB →的绝对值,表示向量AB →的长度.(1)零向量:长度为0的向量叫做零向量,记作0. (2)单位向量:长度等于1个单位的向量,叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量.(4)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于向量b ,记作a∥b . ①规定:零向量与任一向量平行. 例1.(1)下列物理量中不是向量的有( )①质量;①速度;①力;①加速度;①路程;①密度;①功;①电流强度. A .5个 B .4个 C .3个 D .2个解析:(1)看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,①①①既有大小也有方向,是向量,①①①①①只有大小没有方向,不是向量.(2)一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点. (1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又|AB →|=|CD →|,①在四边形ABCD 中,AB ∥CD .①四边形ABCD 为平行四边形. ①AD →=BC →,①|AD →|=|BC →|=200 km.(3)判断下列命题是否正确,并说明理由.(1)若向量a 与b 同向,且|a |>|b |,则a >b ;(2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)由于0方向不确定,故0不能与任意向量平行; (4)向量a 与向量b 平行,则向量a 与b 方向相同或相反; (5)起点不同,但方向相同且模相等的向量是相等向量.解析:(1)不正确.因为向量由两个因素来确定,即大小和方向,所以两个向量不能比较大小.(2)不正确.由|a |=|b |只能判断两向量长度相等,不能确定它们方向的关系. (3)不正确.依据规定:0与任意向量平行.(4)不正确.因为向量a 与向量b 若有一个是零向量,则其方向不定. (5)正确.对于一个向量只要不改变其大小与方向,是可以任意移动的.【变式训练1】.在下列命题中,真命题为( )A .两个有共同起点的单位向量,其终点必相同B .向量AB →与向量BA →的长度相等 C .向量就是有向线段 D .零向量是没有方向的解析:由于单位向量的方向不一定相同,故其终点不一定相同,故A 错误;任何向量都有方向,零向量的方向是任意的,并非没有方向,故D 错误;有向线段是向量的形象表示,但并非说向量就是有向线段,故C 错误,故选B.【变式训练2】.在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2) 在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么? 解析:(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(图略). 【变式训练3】.如图所示,①ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模大小相等的向量; (3)写出与EF →相等的向量.解析:(1)因为E 、F 分别是AC 、AB 的中点, 所以EF =12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →与CD →.考点2 向量的加法 三角形法则如图所示,已知非零向量a ,b ,在平面内任取一点A ,作AB →=a ,BC →=b ,则向量AC →叫做a 与b 的和(或和向量),记作a +b ,即a +b =AB →+BC →=AC →.上述求两个向量和的作图法则,叫做向量加法的三角形法则. 对于零向量与任一向量a 的和有a +0=0+a =a .平行四边形法则如图所示,已知两个不共线向量a ,b ,作OA →=a ,OB →=b ,则O 、A 、B 三点不共线,以OA ,OB 为邻边作平行四边形,则以O 为起点的对角线上的向量OC →=a +b ,这个法则叫做两个向量加法的平行四边形法则.向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ).例2.(1)如图,已知向量a 、b ,求作向量a +b .解析:在平面内任取一点O (如下图),作OA →=a ,OB →=b ,以OA 、OB 为邻边做①OACB ,连接OC ,则OC →=OA →+OB →=a +b .2(2)如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →=________; (2)AC →+CD →+DO →=________; (3)AB →+AD →+CD →=________; (4)AC →+BA →+DA →=________. 解析: (1)AC → (2)AO → (3)AD →(4)0(1)BC →+AB →; (2)DB →+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →. 解析:(1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A →=AD →+DF →+F A →=AF →+F A →=0. 【变式训练1】.(1)如图①所示,求作向量和a +b .(2)如图①所示,求作向量和a +b +c .解析:(1)首先作向量OA →=a ,然后作向量AB →=b ,则向量OB →=a +b .如图①所示.(2)方法一(三角形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,再作向量AB →=b ,则得向量OB →=a +b ,然后作向量BC →=c ,则向量OC →=(a +b )+c =a +b +c 即为所求.方法二(平行四边形法则):如图①所示,首先在平面内任取一点O ,作向量OA →=a ,OB →=b ,OC →=c ,以OA ,OB 为邻边作▭OADB ,连接OD ,则OD →=OA →+OB →=a +b ,再以OD ,OC 为邻边作①ODEC ,连接OE ,则OE →=OD →+OC →=a +b +c 即为所求.【变式训练2】.(1)化简:①BC →+AB →;①AB →+DF →+CD →+BC →+F A →.(2)如图,已知O 为正六边形ABCDEF 的中心,求下列向量: ①OA →+OE →; ①AO →+AB →; ①AE →+AB →.解析:根据加法的交换律使各向量首尾相接,再运用向量的结合律,调整向量顺序相加.(1)①BC →+AB →=AB →+BC →=AC →;①AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A →=AF →+F A →=0.(2)①由题图知,OAFE 为平行四边形,①OA →+OE →=OF →; ①由题图知,OABC 为平行四边形,①AO →+AB →=AC →; ①由题图知,AEDB 为平行四边形,①AE →+AB →=AD →.【变式训练3】.化简:(1)AB →+CD →+BC →. (2)(MA →+BN →)+(AC →+CB →). (3)AB →+(BD →+CA →)+DC →. 解析:(1)AB →+CD →+BC →=AB →+BC →+CD →=AD →.(2)(MA →+BN →)+(AC →+CB →)=(MA →+AC →)+(CB →+BN →)=MC →+CN →=MN →.(3)AB →+(BD →+CA →)+DC →=AB →+BD →+DC →+CA →=0.考点3 向量的减法 相反向量(1)我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量,记作-a . (2)-(-a )=a ,a +(-a )=(-a )+a =0. (3)零向量的相反向量仍是零向量,即0=-0. 向量减法的定义求两个向量差的运算叫做向量的减法.我们定义,a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量.向量减法的几何意义 (1)三角形法则如图,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,这是向量减法的几何意义.(2)平行四边形法则如图①,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义, 知AE →=a +(-b )=a -b .又b +BC →=a ,所以BC →=a -b .如图①,理解向量加、减法的平行四边形法则:在①ABCD 中,AB →=a ,AD →=b ,则AC →=a +b ,DB →=a -b .例3.(1)在①ABC 中,D ,E ,F 分别为AB ,BC ,CA 的中点,则AF →-DB →等于( )A .FD →B .FC → C .FE →D .BE →解析:由题意可知AF →-DB →=DE →-DB →=BE →.答案:D(2)化简AC →-BD →+CD →-AB →得( )A .AB →B .AD →C .BC →D .0解析:答案:D解法一:AC →-BD →+CD →-AB →=AC →-BD →+CD →+BA →=(AC →+CD →)+(BA →-BD →)=AD →+DA →=0. 解法二:AC →-BD →+CD →-AB →=AC →+DB →+CD →+BA →=(AC →+CD →)+(DB →+BA →)=AD →+DA →=0.【变式训练1】.如图,设O 为四边形ABCD 的对角线AC 与BD 的交点,若AB →=a ,AD →=b ,OD →=c ,则OB →=解析:由于OB =DB -DO →,而DB →=AB →-AD →=a -b ,DO →=-OD →=-c , 所以OB →=a -b +c .【变式训练2】.化简:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →. 解析:解答本题可先去括号,再利用相反向量及加法交换律、结合律化简.(1)解法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.解法二:原式=AB →+MB →-OB →-MO →=AB →+(MB →-MO →)-OB →=AB →+(OB →-OB →)=AB →+0=AB →. (2)解法一:原式=DB →-DC →=CB →.解法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.二、课堂检测1.下列物理量:①质量;①速度;①位移;①力;①加速度;①路程.其中是向量的有( ) A .2个 B .3个 C .4个 D .5个 答案 C 解析 ①①①①是向量. 2.下列说法中正确的个数是( )①零向量是没有方向的;①零向量的长度为0;①零向量的方向是任意的;①单位向量的模都相等. A .0 B .1 C .2 D .3 答案 D3. 下列说法正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小答案 D 解析 A 中不管向量的方向如何,它们都不能比较大小,所以A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,所以B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C 不正确;D 中向量的模是一个数量,可以比较大小,所以D 正确. 4. 设O 是正方形ABCD 的中心,则向量AO →,BO →,OC →,OD →是( ) A .相等的向量 B .平行的向量 C .有相同起点的向量 D .模相等的向量 5. 下列等式不成立的是( )A .0+a =aB .a +b =b +a C.AB →+BA →=2BA → D.AB →+BC →=AC →答案C 解析:对于C ,①AB →与BA →方向相反,①AB →+BA →=0.6. 如图,在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → 答案 C7. a ,b 为非零向量,且|a +b |=|a |+|b |,则( )A .a∥b ,且a 与b 方向相同B .a ,b 是共线向量且方向相反C .a =bD .a ,b 无论什么关系均可 答案 A8.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →等于( ) A.BD → B.DB → C.BC → D.CB → 答案 C 解析 BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →. 9. 在①ABC 中,BC →=a ,CA →=b ,则AB →等于( )A .a +bB .-a +(-b )C .a -bD .b -a 答案B ①BA →=BC →+CA →=a +b ,①AB →=-BA →=-a -b . 10. (多选)若a ,b 为非零向量,则下列命题正确的是( )A .若|a |+|b |=|a +b |,则a 与b 方向相同B .若|a |+|b |=|a -b |,则a 与b 方向相反C .若|a |+|b |=|a -b |,则|a |=|b |D .若||a |-|b ||=|a -b |,则a 与b 方向相同答案ABD 当a ,b 方向相同时,有|a |+|b |=|a +b |,||a |-|b ||=|a -b |;当a ,b 方向相反时,有|a |+|b |=|a -b |,||a |-|b ||=|a +b |,故A ,B ,D 均正确.10. 在平行四边形ABCD 中,BC →+DC →+BA →+DA →=________. 答案 0解析 注意DC →+BA →=0,BC →+DA →=0.12. 如图,在①ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE →-DC →+ED →=________.11 答案0 因为D 是边BC 的中点,所以BE →-DC →+ED →=BE →+ED →-DC →=BD →-DC →=0.13. 设|a |=8,|b |=12,则|a +b |的最大值与最小值分别为________.答案 20,4 解析 当a 与b 共线同向时,|a +b |max =20;当a 与b 共线反向时,|a +b |min =4. 14. 已知向量|a |=2,|b |=4,且a ,b 不是方向相反的向量,则|a -b |的取值范围是________. 答案 [2,6) 根据题意得||a |-|b ||≤|a -b |<|a |+|b |,即2≤|a -b |<6.15. 如图所示,P ,Q 是①ABC 的边BC 上两点,且BP =QC . 求证:AB →+AC →=AP →+AQ →.证明 ①AP →=AB →+BP →,AQ →=AC →+CQ →,①AP →+AQ →=AB →+AC →+BP →+CQ →.又①BP =QC 且BP →与CQ →方向相反,①BP →+CQ →=0,①AP →+AQ →=AB →+AC →,即AB →+AC →=AP →+AQ →.。
人教A版(2019)必修第二册《平面向量的概念》同步练习
人教A 版(2019)必修第二册《6.1 平面向量的概念》同步练习一 、单选题(本大题共12小题,共60分)1.(5分)已知平面向量a →=(−2,1),b →=(1,2),则|a →−2b →|的值是( )A. 1B. 5C. √3D. √52.(5分)已知向量a →=(2,4),b →=(−2,m),且|a →+b →|=|a →−b →|,则m =()A. √3B. 1C.2√33D. 23.(5分)已知四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,若BM →=xAB →+yAD →,则x +y =()A. 3B. 52C. 2D. −124.(5分)已知四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,设AB →=a →,AD →=b →,AP →=c →,则下列向量中与PM →相等的向量是( )A. 12a →+b →−c →B. a →+12b →−c →C. −a →−12b →+c →D. a →+12b →+c →5.(5分)已知直线上OA →,OB →的坐标分别为−1,2,则下列结论不正确的是( )A. OA →<OB →B. |OA →|<|OB →| C. |AB →|=3D. AB 的中点坐标为126.(5分)在△ABC 中,已知BC →=3BD →,则AD →=()A. 13(AC →+2AB →) B. 13(AB →+2AC →) C. 14(AC →+3AB →)D. 14(AC →+2AB →)7.(5分)下列说法中错误的是()A. 零向量与任一向量平行B. 方向相反的两个非零向量不一定共线C. 单位向量的长度为1D. 相等向量一定是共线向量8.(5分)下列说法正确的是( )A. 单位向量均相等B. 单位向量e →=1 C. 零向量与任意向量平行D. 若向量a →,b →满足|a →|=|b →|,则a →=±b →9.(5分)若平面单位向量a →,b →,c →不共线且两两所成角相等,则|a →+b →+c →|=( )A. √3B. 3C. 0D. 110.(5分)已知不共线的向量a →,b →,|a →|=2,|b →|=3,a →.(b →−a →)=1,则|a →−b →|=( )A. √3B. 2√2C. √7D. √2311.(5分)有下列四个命题:①互为相反向量的两个向量模相等;①若向量AB →与CD →是共线的向量,则A ,B ,C ,D 必在同一条直线上;①若|a |=|b |,则a =b 或a =-b ;①若a ①b =0,则a =0或b =0;其中正确结论的个数是( )A. 4B. 3C. 2D. 112.(5分)已知a →,b →为两个单位向量,下列四个命题中正确的是( )A. 如果a →与b →平行,那么a →与b →相等 B. a →与b →相等C. 如果a →与b →平行,那么a →=b →或a →=−b →D. a →与b →共线二 、填空题(本大题共5小题,共25分)13.(5分)与向量a →=(1,2,−2)方向相同的单位向量是 ______.14.(5分)若向量AB →=−3CD →,则向量AB →与向量CD →共线.______ (判断对错) 15.(5分)给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a →|=|b →|,则a →=b →;③若AB →=DC →,则A ,B ,C ,D 四点构成平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m →=n →,n →=p →,则m →=p →; ⑥若向a →//b →,b →//c →,则a →//c →. 其中错误的命题有______.(填序号)16.(5分)已知平面内三点A (2,-3),B (4,3),C (5,a )共线,则a=____ 17.(5分)已知向量a →=(m,1),b →=(4−n,2),m >;0,n >;0,若a →//b →,则1m+8n的最小值为__________;三 、多选题(本大题共4小题,共20分) 18.(5分)下列命题中正确的是( )A. 单位向量的模都相等B. 长度不等且方向相反的两个向量不一定是共线向量C. 若⇀ a 与b →满足|a |>|b |,且⇀ a 与b →同向,则a →>b →D. 两个有共同起点而且相等的向量,其终点必相同 19.(5分)下列说法中,正确的个数是( )A. 时间、摩擦力、压强、重力、身高、温度、加速度都是向量;B. 向量的模是一个正实数;C. 相等向量一定是平行向量;D. 向量a →与b →不共线,则a →与b →都是非零向量. 20.(5分)下列关于平面向量的说法中,正确的是()A. 若a →=b →,b →=c →,则a →=c →B. 若a →//b →,b →//c →,则a →//c →C. 若xa →+yb →=0→,x ,y ∈R ,a →,b →不共线,则x =y =0 D. 若|a →+b →|=|a →−b →|,则|a →|2+|b →|2=|a →+b →|221.(5分)已知点P 为△ABC 所在平面内一点,且PA →+2PB →+3PC →=0→,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A. 向量PA →与PC →可能平行 B. 向量PA →与PC →可能垂直 C. 点P 在线段EF 上D. PE :PF =1:2四 、解答题(本大题共4小题,共48分)22.(12分)已知四点A(x,0),B(2x ,1),C(2,x),D(6,2x ). (1)求实数x ,使向量AB →与CD →共线;(2)当向量AB →与CD →共线时,A ,B ,C ,D 四点是否存在同一直线上?23.(12分)如图,半圆的直径AB =6,C 是半圆上的一点,D ,E 分别是AB ,BC 上的点,且AD =1,BE =4,DE =3.[{"ℎ":"57.0","w":"837.0","x":"63.0","y":"509.0"}](1)求证:AC →//DE →;(2)求|AC →|.24.(12分)已知D,E,F 分别是ΔABC 各边AB ,BC ,CA 的中点,分别写出图中与DE →,EF →,FD →相等的向量.25.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量m→=(a,√3b),n→=(cosA,sinB),且m→//n→.(Ⅰ)求角A的大小;(Ⅰ)若c=5,cosB=√21,求a的值.7答案和解析1.【答案】B;【解析】解:a →−2b →=(−4,−3). ∴|a →−2b →|=√(−4)2+(−3)2=5. 故选:B .利用数量积运算性质即可得出.此题主要考查了数量积运算性质,考查了推理能力与计算能力,属于基础题.2.【答案】B;【解析】解:由题意可得|a →+b →|2=|a →−b →|2, 即a →2+2a →·b →+b →2=a →2−2a →·b →+b →2, 可得a →·b →=0,又a →=(2,4),b →=(−2,m), 即有2×(−2)+4m =0, 解得m =1, 故选:B.由已知条件结合向量模的求法可得a →·b →=0,再代入坐标运算即可求解. 此题主要考查了向量模的求法,向量数量积的坐标运算,属于基础题.3.【答案】C;【解析】解:∵四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,∴BC →=4AD →,故点M 为线段DC 的中点, ∴BM →=BD →+BC →2=BA →+AD →+4AD→2=−12AB →+52AD →.又∵BM →=xAB →+yAD →,∴x =−12,y =52, 故 x +y =2, 故选:C.由题意先求得BC →=4AD →,故点M 为线段DC 的中点,再利用平面向量的线性运算,借助平面向量的基本定理即可求解.本题考查的知识点是平面向量的基本定理,平面向量的线性运算,属于中档题.4.【答案】B;【解析】解:∵四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,AB →=a →,AD →=b →,AP →=c →,∴PM →=PB →+12BC →=PA →+AB →+12BC →=−c →+a →+12b →, 故选:B.直接根据向量的三角形法则进行求解即可.此题主要考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.5.【答案】A;【解析】解:向量不能比较大小,故A 不正确, ∵|OA →|=1,|OB →|=2,∴|OA →|<|OB →|,故选项B 正确, ∵AB →=OB →−OA →=2−(−1)=3,∴|AB →|=3,故选项C 正确, ∵A 的坐标为−1,B 的坐标为2,∴AB 的中点坐标为−1+22=12,故选项D 正确.故选:A.利用直线上的向量的坐标运算求解.此题主要考查了直线上的向量的坐标运算,考查了中点坐标公式,是基础题.6.【答案】A;【解析】解:根据向量的三角形法则得到AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →−AB →)=23AB →+13AC →=13(2AB →+AC →);故选:A.利用平面向量的三角形法则,将AD →用AB →,AC →表示,找出正确答案. 此题主要考查了向量的三角形法则,属于基础题.7.【答案】B;【解析】解:零向量与任一向量平行,故A 正确; 方向相反的两个非零向量一定共线,故B 错误; 单位向量的长度为1,故C 正确;相等向量的模相等,方向相同,一定是共线向量,故D 正确. 故选:B.由零向量的概念判断A ;由相反向量的概念判断B ;由单位向量的概念判断C ;由相等向量的概念判断D.此题主要考查向量的基本概念,是基础题.8.【答案】C; 【解析】此题主要考查了向量的概念,属于基础题. 根据向量的概念逐一判定即可.解:单位向量的模相等且为1,但单位向量的方向不确定,故A 、B 错误; 零向量与任意向量平行,故C 正确;若向量a →,b →满足|a →|=|b →|,只能得出向量a →,b →的模相等,但向量a →,b →的方向不确定,故D 错误; 故选C.9.【答案】C;【解析】解:∵平面单位向量a →,b →,c →不共线且两两所成角相等; ∴a →,b →,c →两两夹角为120°,且|a →|=|b →|=|c →|=1;∴|a →+b →+c →|=√(a →+b →+c →)2=√(a →)2+(b →)2+(c →)2+2a →.b →+2a →.c →+2b →.c →=√3+6cos120° =0 故选:C .根据三个向量不共线且两两所成的角相等可知,它们两两夹角为120°;再根据平面向量模的计算公式即可得出答案.该题考查了平面向量模的运算,属基础题.10.【答案】A;【解析】解:∵|a →|=2,|b →|=3,a →⋅(b →−a →)=1, ∴a →⋅b→−a 2→=a →⋅b →−4=1,∴a →⋅b →=5,∴|a →−b →|2=a 2→−2a →⋅b →+b 2→=4−2×5+9=3,∴|a →−b →|=√3, 故选:A .由已知结合数量积的运算可得a →⋅b →=5,代入运算可得|a →−b →|2的值,求其算术平方根即得.此题主要考查平面向量数量积的运算,涉及向量的模长的求解,属中档题.11.【答案】D;【解析】此题主要考查平面向量的基本概念与应用问题,是基础题.根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.解:对于①,互为相反向量的两个向量模相等,命题正确;对于①,向量AB 与CD 是共线的向量,点A ,B ,C ,D 不一定在同一条直线上, 如平行四边形的对边表示的向量,原命题错误; 对于①,当|a |=|b |时,a =b 或a =-b 不一定成立, 如单位向量模长为1,但不一定共线,原命题错误; 对于①,当a ①b =0时,a =0或b =0或a ①b ,原命题错误; 综上,正确的命题是①,共1个. 故选D.12.【答案】C;【解析】解:∵a →,b →为两个单位向量,∴如果a →与b →平行,那么a →=b →或a →=−b →,故A 不正确,C 正确; 因为两向量相等的充要条件是模相等且方向相同,所以B 不正确; ∵a →,b →为两个单位向量,∴a →,b →为两个向量不一定平行,故D 不正确. 故选:C .a →,b →为两个单位向量,它们的模是单位长度1,方向是任意的,根据两个单位向量的这两条性质,可以判断四个选项的真假.该题考查了命题的真假判断与应用,解答该题的关键是单位向量的定义及两向量相等的条件,同时考查了两向量的应用.13.【答案】(13,23,-23);【解析】解:向量a →=(1,2,−2), 可得|a →|=√1+4+4=3,所以与向量a →=(1,2,−2)方向相同的单位向量是:(13,23,−23). 故答案为:(13,23,−23).求出向量的模,然后求解单位向量即可.此题主要考查单位向量的求法,向量的模的计算,是基础题.14.【答案】对;【解析】解:向量AB →=−3CD →,根据平面向量的共线定理知, 向量AB →与向量CD →共线. 故答案为:对.根据平面向量的共线定理,判断即可.本题考查了平面向量的共线定理应用问题,是基础题.15.【答案】①②③⑥;【解析】解:在①中,两个零向量相等,则它们的起点相同,终点不一定相同,故①错误;在②中,若|a →|=|b →|,则a →与b →大小相等,方向不一定相同,故②错误; 在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形,故③错误; 在④中,在平行四边形ABCD 中,由向量相等的定义得一定有AB →=DC →,故④正确; 在⑤中,若m →=n →,n →=p →,则向量相等的定义得m →=p →,故⑤正确; 在⑥中,若向a →//b →,b →//c →,当b →=0→时,a →与c →不一定平行,故⑥不正确. 故答案为:①①①①.在①中,两个零向量相等,则它们的起点相同,终点不一定相同;在②中,a →与b →大小相等,方向不一定相同;在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形;在④中,由向量相等的定义得一定有AB →=DC →;在⑤中,由向量相等的定义得m →=p →;在⑥中,当b →=0→时,a →与c →不一定平行.该题考查命题真假的判断,是基础题,解题时要认真审题,注意向量相等、向量平行的合理运用.16.【答案】6;【解析】解:AB=(2,6) ,AC=(3,a+3) 由已知知AB ∥AC 所以2(a+3)=6×3 解得a=6 故答案为:617.【答案】92; 【解析】此题主要考查利用基本不等式求最值及平面向量共线的充要条件,属于中档题. 由a →//b →,可得:n +2m =4,则1m+8n=14(n +2m )(1m+8n),化简利用基本不等式求解即可.解:∵a →//b →,∴4−n −2m =0,即n +2m =4, ∵m >;0,n >;0, ∴1m +8n=14(n +2m )(1m +8n ) =14(10+n m+16m n)⩾14(10+2√n m·16mn)=92,当且仅当n =4m =83时取等号, ∴1m +8n 的最小值是92. 故答案为92.18.【答案】AD; 【解析】此题主要考查向量的有关概念,属于基础题.利用向量的有关概念,判断各个选项是否正确,从而得出结论.解:对于选项A :单位向量的模均为1,故A 正确,对于选项B :长度不等且方向相反的两个向量一定是共线向量,故B 错误, 对于选项C :向量不能比较大小,故C 错误, 对于选项D :根据相等向量的概念知,故D 正确. 故选AD .19.【答案】CD; 【解析】此题主要考查了向量的基本概念,熟练掌握向量,零向量,平行向量,向量的模的概念是解答该题的关键,属于基础题.直接由向量、零向量、向量相等,向量的模和向量共线的概念逐一核对四个命题得答案.解:对于A ,时间没有方向,不是向量,故A 错误;对于B ,零向量的模为0,故B 错误;对于C ,相等向量的方向相同,因此一定是平行向量,故C 正确;对于D ,根据零向量与任意向量共线,得到向量a →与b →不共线,则a →与b →都是非零向量,故D 正确.故选CD .20.【答案】ACD;【解析】解:若a →=b →,b →=c →,则一定a →=c →,∴A 正确;若a →与c →不平行,b →=0→,满足a →//b →,b →//c →,则得不出a →//c →,即B 错误;若xa →+yb →=0→,x,y ∈R,a →,b →不共线,则一定得出x =y =0,若x ,y 中有一个不为0,则可得出a →,b →共线,与已知不共线矛盾,∴C 正确;若|a →+b →|=|a →−b →|,则(a →+b →)2=(a →−b →)2,则a →·b →=0,从而得出|a →+b →|2=|a →|2+|b →|2,即D 正确.故选:ACD.A 显然正确;b →=0→时,可说明B 错误;根据平面向量基本定理即可说明C 正确;进行向量数量积的运算即可说明D 正确.此题主要考查了平面向量和共线向量基本定理,向量数量积的运算,考查了计算能力,属于基础题.21.【答案】BC;【解析】解:∵PA →+2PB →+3PC →=0→,∴PA →+PC →+2(PB →+PC →)=0→,∵E 为AC 的中点,F 为BC 的中点,∴2PE →+2×2PF →=0→,∴PE →=−2PF →,∴P 为FE 的三等分点(靠近点F),即PE :PF =2:1,故C 正确,D 错误,∴向量PA →与PC →不可能平行,故A 错误;当|AC →|=2|EP →|=43|EF →|=23|AB →|时,向量PA →与PC →垂直,B 正确.故选:BC.由题意并根据平面向量线性运算可知PE →=12(PA →+PC →),PF →=12(PB →+PC →),代入等式可得PE →=−2PF →,即可判断C 和D ;根据平面中的位置关系,可判断A 和B.本题考查平面向量的加法、减法和数乘运算及平面向量平行和垂直的判断,属中档题.22.【答案】解:(1)AB →=(x ,1),CD →=(4,x ),∵AB →与CD →共线,∴x 2-4=0,解得x=±2.∴当x=±2时,向量AB →与CD →共线.(2)取x=2时,A (2,0),B (4,1),C (2,2),D (6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,因此四点不共线.取x=-2时,A (-2,0),B (-4,1),C (2,-2),D (6,-4),直线AB 的方程为y-0=1−0−4−(−2)(x+2),化为:x+2y+2=0.点B ,D 满足直线AB 的方程,因此四点共线.;【解析】(1)AB →=(x,1),CD →=(4,x),利用向量共线定理解出x.(2)取x =2时,A(2,0),B(4,1),C(2,2),D(6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,即可判断出四点共线.取x =−2时,A(−2,0),B(−4,1),C(2,−2),D(6,−4),直线AB 的方程为:x +2y +2=0.验证点B ,D 是否满足直线AB 的方程,即可判断出结论.此题主要考查了向量共线定理、向量共线与直线平行的关系,考查了推理能力与计算能力,属于中档题.23.【答案】(1)证明:由题意知,在△DEB 中,BD =5,DE =3,BE =4,∴DE 2+BE 2=BD 2,∴△DEB 是直角三角形,∠DEB =90∘.又∵点C 为半圆上一点,∴∠ACB =90∘.∴AC//DE ,故AC →//DE →.(2)解:由AC//DE 知△ABC ∽△DBE.∴AC DE =AB BD ,即AC 3=65.∴AC =185,即|AC →|=185.;【解析】本题考查向量的概念及几何表示、平行向量的概念以及向量的模,属于基础题.(1)根据勾股定理可得DE ⊥BE ,因为AC ⊥BC ,故可得AC →//DE →;(2)由三角形相似得相似比,从而可求出答案.24.【答案】略;【解析】DE →=AF →=FC →;EF →=BD →=DA →;FD →=CE →=EB →.25.【答案】解:(Ⅰ)∵m →∥n →,∴asinB −√3bcosA =0,∴根据正弦定理得,sinAsinB −√3sinBcosA =0,且sinB >0,∴sinA =√3cosA ,tanA =√3,且A ∈(0,π),∴A =π3;(Ⅱ)∵cosB =√217,∴sinB =2√77,且C =2π3−B , ∴sinC =sin(2π3−B)=√32×√217+12×2√77=5√714,且c=5, ∴根据正弦定理得,c sinC =b sinB ,即5√714=2√77,解得b=4,∴根据余弦定理得,a 2=b 2+c 2-2bccosA=16+25-2×4×5×12=21,∴a =√21.;【解析】(Ⅰ)根据m →//n →即可得出asinB −√3bcosA =0,然后根据正弦定理即可得出sinA =√3cosA ,然后即可求出A =π3;(Ⅰ)可先求出sinB =2√77,sinC =5√714,然后根据正弦定理可求出b 的值,进而根据余弦定理可求出a 的值.本题考查了平行向量的坐标关系,正余弦定理,两角差的正弦公式,考查了计算能力,属于中档题.。
新版高中数学必修二:6.1平面向量的概念——精选题目练习
6.1平面向量的概念——精选题目练习1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|. A .3 B .2 C .1D .02.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为13.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB→=OC → B.AB →∥DE → C .|AD→|=|BE →| D.AD→=FC → 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( )A .相等向量B .模相等的向量C .平行向量D .起点相同的向量5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.7.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD→长度的最小值为________. 8.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.9.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图.(1)在每两点所确定的向量中,写出与向量FC →共线的向量;(2)求证:BE→=FD →. 10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD 满足下列情况.(1)四边形ABCD 是等腰梯形; (2)四边形ABCD 是平行四边形.答案:DDDBB 2 532 0⃗ 9.(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB→,ED →,DE →,AE →,EA →,AD →,DA →. 在▱ABCD 中,AD //BC 且.AD =BC 又E ,F 分别为AD ,BC 的中点, 所以ED //BF ,ED =BF所以四边形BFDE 是平行四边形, 所以BE //FD ,BE =FD 所以BE→=FD →.10.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB→∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD→|=|BC →|,同时两向量不平行.(2)AD→=BC →(或AD →∥BC →). 若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.。
平面向量知识点+例题+练习+答案
五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
平面向量基本概念习题(已整理)
§2.1 平面向量的实际背景及基本概念一、选择题1.下列物理量中,不能称为向量的是()A.质量B.速度C.位移D.力2.设O是正方形ABCD的中心,向量AO OB CO OD、、、是()A.平行向量B.有相同终点的向量C.相等向量D.模相等的向量3.下列命题中,正确的是()A.|a| = |b|⇒a = b B.|a|> |b|⇒a > b C.a = b⇒a与b共线D.|a| = 0⇒a = 0 4.在下列说法中,正确的是()A.两个有公共起点且共线的向量,其终点必相同;B.模为0的向量与任一非零向量平行;C.向量就是有向线段;D.若|a|=|b|,则a=b5.下列各说法中,其中错误的个数为()(1)向量AB的长度与向量BA的长度相等;(2)两个非零向量a与b平行,则a与b的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A.2个B.3个C.4个D.5个6.△ABC中,D、E、F分别为BC、CA、AB的中点,在以A、B、C、D、E、F为端点的有向线段所表示的向量中,与EF共线的向量有()A.2个B.3个C.6个D.7个二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是__________.8.如图,O是正方形ABCD的对角线的交点,四边形OAED、OCFB是正方形,在图中所示的向量中,(1)与AO相等的向量有_________________________;(3)与AO模相等的向量有_______________________;(4)向量AO与CO是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =a ,OB =b ,AB =c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中:(1)与a 相等的向量有 ;(2)与b 相等的向量有 ;(3)与c 相等的向量有 .10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反;(2)若AB 与CD 共线,则点A 、B 、C 、D 共线;(3)四边形ABCD 为平行四边形,则AB =CD ;(4)若a = b ,b = c ,则a = c ; (5)四边形ABCD 中,AB DC =且||||AB AD =,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的;三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1)是否存在共线向量?相等向量?模相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB 、BC 、CD (1cm 表示200m );(2)求DA 的模.14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处? O A B C D E F。
高中数学必修二 6 1 平面向量的概念(精练)(含答案)
6.1 平面向量的概念(精练)【题组一向量与数量的区别】1.(2021·江苏·泰兴市第三高级中学高一月考)给出下列量:①角度;①温度;①海拔;①弹力;①风速;①加速度.其中是向量的有( )A.2个B.2个C.4个D.5个【答案】B【解析】根据题意,在①角度、①温度、①海拔、①弹力、①风速、①加速度中,是向量的有①弹力、①风速、①加速度,有3个,故选:B.2.(2021·浙江·高一课时练习)下列各量中是向量的是( )A.时间B.速度C.面积D.长度【答案】B【解析】既有大小,又有方向的量叫做向量;时间、面积、长度只有大小没有方向,因此不是向量.而速度既有大小,又有方向,因此速度是向量.故选:B.3.(2021·全国·高一课时练习)给出下列物理量:①密度;①路程;①速度;①质量;①功;①位移.下列说法正确的是A.①①①是数量,①①①是向量B.①①①是数量,①①①是向量C.①①是数量,①①①①是向量D.①①①①是数量,①①是向量【答案】D【解析】由物理知识可知,密度,路程,质量,功只有大小,没有方向,因此是数量而速度,位移既有大小又有方向,因此是向量.故选:D4.(2021·上海·高一课时练习)下列各量中,哪些是向量(即矢量),哪些是数量(即标量)?(1)密度(2)体积(3)电阻(4)推进力(5)长度(6)加速度向量:__________;数量:____________.(填写相应编号).【答案】(4)(6) (1)(2)(3)(5)【解析】密度、体积、电阻、长度都是只有大小没有方向的量,是数量;推进力、加速度是既有大小又有方向的量,是向量.故答案为:(4)(6);(1)(2)(3)(5).【题组二 向量的几何表示】1.(2021·全国·高一课时练习)一位模型赛车手遥控一辆赛车沿正东方向行进1米,逆时针方向转变α度,继续按直线向前行进1米,再逆时针方向转变α度,按直线向前行进1米,按此方法继续操作下去.(1)按1①100比例作图说明当α=45°时,操作几次时赛车的位移为零;(2)按此法操作使赛车能回到出发点,α应满足什么条件?【答案】见解析.【解析】(1)如图所示,操作8次后,赛车的位移为零;(2)要使赛车能回到出发点,只需赛车的位移为零.按(1)的方式作图,则所作图形是内角为180α︒-的正多边形,由多边形的内角和定理可得(180)(2)180n n α︒-=-⋅︒, 解得360nα︒=,且3,*n n N ≥∈.故α应满足的条件为360nα︒=,且3,*n n N≥∈.2.(2021·全国·高一课时练习)如图的方格纸由若干个边长为1的小正方形并在一起组成,方格纸中有两个定点A,B.点C为小正方形的顶点,且5AC=.(1)画出所有的向量AC;(2)求BC的最大值与最小值.【答案】(1)见解析;(2)【解析】(1)画出所有的向量AC,如图所示:(2)由(1)所画的图知,①当点C位于点C1或C2时,|BC|①当点C位于点C5或C6时,|BC|所以|BC|3(2021·全国·高一课时练习)在如图的方格纸(每个小方格的边长为1)上,已知向量a.(1)试以B为起点画一个向量b,使=b a;(2)画一个以C为起点的向量c,使|c|=2,并说出c的终点的轨迹是什么.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)根据相等向量的定义,所作向量b应与a同向,且长度相等,如下图所示.(2)由平面几何知识可作满足条件的向量c,所有这样的向量c的终点的轨迹是以点C为圆心,2为半径的圆,如下图所示.4.(2021·江苏·高一课时练习)在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为起点画一个向量b,使b a=;c=,并说出向量c的终点的轨迹是什么?(2)在图中画一个以A为起点的向量c,使5【答案】(1)作图见解析;(2)向量c的终点的轨迹是以A.【解析】(1)由题意,B为起点画一个向量b,使b a=,如图所示.c=,则向量c的终点表示以A(2)因为5【题组三向量相关概念的辨析】1.(2021·湖南·武广实验高级中学高一期末)下列四个命题正确的是( )A.两个单位向量一定相等B.若a与b不共线,则a与b都是非零向量C.共线的单位向量必相等D.两个相等的向量起点、方向、长度必须都相同【答案】B【解析】两个单位向量一定相等错误,可能方向不同;若a与b不共线,则a与b都是非零向量正确,原因是零向量与任意向量共线;共线的单位向量必相等错误,可能是相反向量;两个相等的向量的起点、方向、长度必须相同错误,原因是向量可以平移.故选:B.2.(2021·全国·高一课时练习)下列关于向量的描述正确的是A .若向量a ,b 都是单位向量,则a b =B .若向量a ,b 都是单位向量,则1a b ⋅=C .任何非零向量都有唯一的与之共线的单位向量D .平面内起点相同的所有单位向量的终点共圆【答案】D【解析】对于选项A :向量包括长度和方向,单位向量的长度相同均为1,方向不定,故向量a 和b 不一定相同,故选项A 错误;对于选项B :因为cos cos a b a b θθ⋅=⋅⋅=,由[]cos 1,1θ∈-知,1a b ⋅=不一定成立,故选项B 错误; 对于选项C :任意一个非零向量有两个与之共线的单位向量,故选项C 错误;对于选项D :因为所有单位向量的模为1,且共起点,所以所有单位向量的终点在半径为1的圆周上,故选项D 正确;故选:D.3.(2021·广西·田东中学)下列命题中,正确的个数是( ) ①单位向量都相等;①模相等的两个平行向量是相等向量;①若a →,b →满足a b →→>且a →与b →同向,则a b →→>; ①若两个向量相等,则它们的起点和终点分别重合;①若a →①,b b →→①c →,则b →①c →.A .0个B .1个C .2个D .3个 【答案】A【解析】对于①,单位向量的模长相等,但方向不一定相同,故①错误;对于①,模相等的两个平行向量是相等向量或相反向量,故①错误;对于①,向量是有方向的量,不能比较大小,故①错误;对于①,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故①错误;对于①,0b →→=时,若a b b c →→→→∥,∥,则a →与c →不一定平行.综上,以上正确的命题个数是0.故选:A.4.(2021·全国·高一课时练习)下列说法中,正确的个数是( )①时间、摩擦力、重力都是向量;①向量的模是一个正实数;①相等向量一定是平行向量;①向量a→与b→不共线,则a→与b→都是非零向量( )A.1B.2C.3D.4【答案】B【解析】①时间没有方向,不是向量,摩擦力,重力都是向量,故①错误;①零向量的模为零,故①错;①相等向量的方向相同,模相等,所以一定是平行向量,故①正确;①零向量与任意向量都共线,因此若向量a→与b→不共线,则a→与b→都是非零向量,即①正确.故选:B.5.(2021·全国·高一课时练习)下列命题中正确的个数是①向量就是有向线段①零向量是没有方向的向量①零向量的方向是任意的①任何向量的模都是正实数A.0B.1C.2D.3【答案】B【解析】有向线段只是向量的一种表示形式,但不能把两者等同起来,故①错;零向量有方向,其方向是任意的,故①错,①正确;零向量的模等于0,故①错.故选:B.6.(2021·江苏·高一)下列各说法:①有向线段就是向量,向量就是有向线段;①向量的大小与方向有关;①任意两个零向量方向相同;①模相等的两个平行向量是相等向量.其中正确的有A.0个B.1个C.2个D.3个【答案】A【解析】有向线段是向量的几何表示,二者并不相同,故①错误;①向量不能比较大小,故①错误;①由零向量方向的任意性知①错误;①向量相等是向量模相等,且方向相同,故①错误.故选:A.7.(2021·全国·高一课时练习)下列说法中,正确的是( )①长度为0的向量都是零向量;①零向量的方向都是相同的;①单位向量都是同方向;①任意向量与零向量都共线.A.①①B.①①C.①①D.①①【答案】D【解析】①长度为0的向量都是零向量,正确;①零向量的方向任意,故错误;①单位向量只是模长都为1的向量,方向不一定相同,故错误;①任意向量与零向量都共线,正确;故选:D8.(2021·全国·高一课时练习)下列命题中正确的个数有( )①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;①单位向量都相等;①任一向量与它的相反向量不相等;①共线的向量,若起点不同,则终点一定不同.A.0B.1C.2D.3【答案】AAB CD,或A,B,C,D在同条直线上,故①错误;【解析】对于①,若向向量AB与CD是共线向量,则//对于①,因为单位向量的模相等,但是它们的方向不一定相同,所以单位向量不一定相等,故①错误;对于①,相等向量的定义是方向相同模相等的向量为相等向量,而零向量的相反向量是零向量,因为零向量的方向是不确定的,可以是任意方向,所以相等,故①错误;对于①,比如共线的向量AC与BC(A,B,C在一条直线上)起点不同,则终点相同,故①错误.故选:A.【题组四相等向量与平行向量】1.(2021·全国·高一课时练习)下图中与向量a相等的向量是( )A.b,c,e,f B.c,f C.f D.c【答案】D【解析】由相等向量的定义可知:两个向量的长度要相等,方向要相同,结合图形可知c满足条件,故选:D2.(2021·全国·高一课时练习)如图,点O是正六边形ABCDEF的中心,图中与CA共线的向量有( )A.1个B.2个C.3个D.4个【答案】C【解析】由图可知,根据正六边形的性质,与CA共线的有AC,DF,FD,共3个,故选:C.3.(2021·全国·高一课时练习)如图,四边形ABCD和ABDE都是边长为1的菱形,已知下列说法:①AE AB AD CD CB DE,,,,,都是单位向量;①AB①DE DE,①DC①与AB相等的向量有3个;①与AE共线的向量有3个;①与向量DC大小相等、方向相反的向量为DE CD BA,,.其中正确的是____.(填序号)【答案】①①①①【解析】①由两菱形的边长都为1,故①正确;①正确;①与AB 相等的向量是ED DC ,,故①错误;①与AE 共线的向量是EA BD DB ,,,故①正确;①正确.故答案为:①①①①4.(2021·上海·高一课时练习)如图,在长方体1111ABCD A B C D -中,3AB =,2AD =,11AA =,以长方体的八个顶点中两点为起点和终点的向量中.(1)单位向量共有______个;(2)______;(3)与AB 相等的向量有______;(4)1AA 的相反向量有______.【答案】8 1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB 11A B 、DC 、11DC 1A A 、1B B 、1C C 、1D D【解析】(1)由图可知,11111AA BB CC DD ====,所以单位向量有428⨯=个;(2)由图可知,1111A D AD BC BC ====1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;(3)由图可知,1111AB DC A B D C ===,所以与AB 相等的向量有:11A B 、DC 、11DC ;(4)由图可知,11111AA BB CC DD ====,所以1AA 的相反向量有:1A A 、1B B 、1C C 、1D D ; 故答案为:8;1AD 、1D A 、1A D 、1DA 、1BC 、1C B 、1B C 、1CB ;11A B 、DC 、11DC ;1A A 、1B B 、1C C 、1D D .5.(2021·全国·高一课时练习)O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在如图所示的向量中:(1)分别找出与AO ,BO 相等的向量;(2)找出与AO 共线的向量;(3)找出与AO 模相等的向量;(4)向量AO 与CO 是否相等?【答案】(1)AO BF =,BO AE =;(2)BF ,CO ,DE ;(3)CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)不相等.【解析】因为O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形, 所以OA AE OD DE OC CF BF BO =======,AB CD BC AD ===;(1)由题中图形可得:AO BF =,BO AE =;(2)由图形可得,与AO 共线的向量有:BF ,CO ,DE ;(3)与AO 模相等的向量有:CO ,DO ,BO ,BF ,CF ,CO ,DE ;(4)向量AO 与CO 不相等,因为它们的方向不相同.6.(2021·全国·高一课时练习)如图所示,O 是正六边形ABCDEF 的中心,且OA =a ,OB =b ,OC =c .(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?(3)请一一列出与a ,b ,c .相等的向量.【答案】(1)OD ,BC ,AO ,FE .(2)EF ,BC ,OD ,FE ,CB ,DO ,AO ,DA ,AD .(3)与a 相等的向量有EF ,DO ,CB ;与b 相等的向量有DC ,EO ,FA ;与c 相等的向量有FO ,ED ,AB .【解析】(1)因为正六边形中各线段长度都相等,且方向相反的有:OD,BC,AO,FE.(2)由共线向量定理得:EF,BC,OD,FE,CB,DO,AO,DA,AD.与a共线.(3)由相等向量的定义得:与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.。
平面向量(附例题_习题及答案)
平⾯向量(附例题_习题及答案)向量的线性运算⼀.教学⽬标1.理解向量的概念;2.掌握向量的线性运算;3.理解向量线性运算的⼏何意义、向量共线的含义、平⾏向量基本定理;4.理解平⾯向量基本定理,掌握平⾯向量的正交分解及其坐标表⽰、平⾯向量的坐标运算;5.理解⽤坐标表⽰平⾯向量的共线条件。
⼆.知识清单1.向量基本概念(1)向量的定义:既有⼜有称为向量;(2)向量的⼤⼩(或称模):有向线段的表⽰向量的⼤⼩;(3)零向量与单位向量:叫做零向量,叫做单位向量;(4)共线向量与相等向量:叫做共线向量(或平⾏向量),叫做相等向量。
2.向量的线性运算(1)向量的加法a.向量加法的三⾓形法则、平⾏四边形法则和多边形法则。
b.向量加法满⾜的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).(2)向量的减法a.定义:a-b=a+(-b),即减去⼀个向量相当于加上这个向量的相反向量。
⼀个向量等于终点位置向量减始点位置向量,即AB=OB-OA。
b.三⾓形法则:“共始点,连终点,指向被减”。
(3)数乘向量a.定义:⼀般地,实数λ和向量a的乘积是⼀个向量,记作λa.b.数乘向量满⾜的运算律:(λ+µ)a=λ(µa)=λ(a+b)=3.向量共线的条件与轴上向量坐标运算(1)向量共线的条件平⾏向量基本定理:如果,则;反之,如果,且,则⼀定存在,使。
(2)轴上向量的坐标运算4. 向量的分解与向量的坐标运算(1)平⾯向量基本定理如果是⼀平⾯内的的向量,那么该平⾯内的任⼀向量a,存在,使。
(2)平⾯向量的正交分解定义:把⼀个向量分解为,叫做把向量正交分解。
(3)向量的坐标表⽰在平⾯直⾓坐标系中,分别取与x轴、y轴⽅向相同的两个_______作为基底。
对于平⾯内的任⼀个向量,由平⾯向量基本定理可知,有且只有⼀对实数x,y使得____________,这样,平⾯内的任⼀向量a都可由__________唯⼀确定,我们把有序数对________叫做向量的坐标,记作___________此式叫做向量的坐标表⽰,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标。
6.1 平面向量的概念(精练)(解析版)-人教版高中数学精讲精练必修二
(1)共线向量?
(2)相反向量?
(3)相同的向量?
(4)模相等的向量?
【答案】(1) a 与 d 共线, b 与 e 共线
(2) a 与 d
(3)无相同向量
(4) a c d
【解析】(1) a 与 d 共线, b 与 e 共线
(2) a 与 d 是相反向量
(3)图中无方向相同的向量,所以向量 a , b , c , d , e 中无相同的向量
(4)由图可知 a c d 5, b
所以模相等的向量为 a c d
2, e 2 2 ,
10.(2022·全国·高一课时练习)如图,ABC 和 ABC是在各边的三等分点处相交的两个全等的正三角形, 设 ABC 的边长为 a,写出图中给出的长度为 a 的所有向量中,
3
(1)与向量 GH 相等的向量;
无意义,C
错;
对于 D 选项,零向量的方向任意,D 错.
故选:B.
5.(2022·新疆·和硕县高级中学高一阶段练习)下列说法正确的是( )
A.单位向量均相等
B.单位向量 e 1
C.零向量与任意向量平行
D.若向量
a
,
b
满足
|
a
||
b
|
,则
a
b
【答案】C
【解析】对于 A:单位向量的模相等,但是方向不一定相同.故 A 错误; 对于 B:单位向量 e 1.故 B 错误;
【解析】①只有零向量的模是 0,因此应有 a 0 ,不是 0,错;
②模相等的向量方向不确定,不一定相同或相反,错;
D.4
③两向量平行,只要方向相同或相反或有一个为零向量,模不作要求,错;
④当 b 0 时, a,c 不一定共线,错.
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
高中数学必修二 6 1 平面向量的概念 练习(含答案)
6.1 平面向量的概念一、选择题(前四个为单选题,后两个为多选题)1.下列说法正确的是()A.数量可以比较大小,向量也可以比较大小B.方向不同的向量不能比较大小,但同向的可以比较大小C.向量的大小与方向有关D.向量的模可以比较大小【答案】D【解析】向量不能比较大小,向量的模能比较大小,显然D正确.2.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有()A.1个B.2个C.3个D.4个【答案】D【解析】向量的定义:既有大小又有方向的量叫向量,①⑥⑦⑧没有方向,不符合向量的定义. 3.设O是正六边形ABCDEF的中心,则以O和各顶点为起点和终点的向量中与向量OA相等的向量的个数有()A.4个B.3个C.2个D.1个【答案】B【解析】根据正六边形的性质可得,与OA方向相同且长度相等的向量有CB,DO,EF,共3个,故选B.4.若|a|=|b|,那么要使a=b,两向量还需要具备()A .方向相反B .方向相同C .共线D .方向任意【答案】B【解析】两向量相等需具备长度相等且方向相同两个条件,因此选B .5.(多选题)给出下列结论,正确的是( )A.两个单位向量是相等向量;B.若a b =,b c =,则a c =;C.若一个向量的模为0,则该向量的方向不确定;D.若a b =,则a b =;E.若a 与b 共线,b 与c 共线,则a 与c 共线.【答案】BC【解析】两个单位向量的模相等,但方向不一定相同,A 错误; 若a b =,b c =,则a c =,向量相等具有传递性,B 正确;一个向量的模为0,则该向量一定是零向量,方向不确定,C 正确; 若a b =,则a b =,还要方向相同才行,D 错误; a 与b 共线, b 与c 共线,则a 与c 共线,当b 为零向量时不成立,E 错误.6.(多选题)如图所示,在等腰梯形ABCD 中,//AB CD ,对角线AC 、BD 交于点O ,过O 作//MN AB ,交AD 于M ,交BC 于N ,则在以A 、B 、C 、D 、M 、O 、N 为起点和终点的向量中,相等向量有( )A .NO OM =B .OD OC = C .ON MO =D .DC AB =【答案】AC【解析】由相等向量的定义及梯形的性质可知,相等向量有,.OM NO MO ON ==,故选AC 。
高中数学《平面向量的概念》知识点及练习题(含答案)
高中数学《平面向量的概念》一、知识点1.向量的定义把既有大小又有方向的量叫做向量,如力、位移等。
只有大小没有方向的量称为数量,如年龄、身高、温度、面积等。
2.向量的表示(1)有向线段:具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记为AB 。
(2)向量的表示:向量可以用有向线段表示,以A 为起点、B 为终点的向量记作AB ,向量也可用字母⋅⋅⋅c b a ,,表示。
(3)向量的模:向量AB 的大小称为向量AB 的长度(或称模)AB 。
(4)零向量:长度为0的向量叫做零向量,记为,其方向是任意的。
(5)单位向量:长度等于1个单位长度的向量,叫做单位向量。
注意:①向量可以用有向线段表示,但不能说向量就是有向线段。
②向量不能比较大小,向量的模可以比较大小。
3.相等向量与共线向量(1)平行向量:方向相同或相反的非零向量叫做平行向量.规定零向量与任意向量平行,即对于任意向量,都有.(2)相等向量:长度相等且方向相同的向量叫做相等向量。
(3)平行向量也叫做共线向量。
注意:①向量不具有平行的传递性,因为零向量与任意向量平行。
②向量平行与直线平行是有区别的,平行向量可以共线,但平行直线不可以共线。
0 a a //0二、单项选择题1.下列说法正确的个数为( )①零向量没有方向 ②向量就是有向线段,有向线段就是向量③若c b b a ////,,则c a // ④若b a //,则b a ,的方向相同或相反A .0B .1C .2D .32.下列关于向量的结论,正确的是( )A .若b a =,则b a =或b a -=B .若两个向量相等,则它们的起点相同,终点相同C .零向量与任意向量平行D .向量可以比较大小,向量的模也可以比较大小3.下列说法正确的是( )A .若b a >,则b a >B .若b a =,则b a =C .若b a =,则b a //D .若b a ≠,则a 与b 不是共线向量 4.下列不能使b a //成立的是( )A .b a =B .b a =C .a 与b 方向相反D .0=a 或0=b5.在四边形ABCD 中,BD AC =且CD BA =,则四边形ABCD 的形状为( )A .平行四边形B .矩形C .菱形D .等腰梯形6.在四边形ABCD 中,已知DC AB =,BC AB =,则四边形ABCD 一定是( )A .梯形B .矩形C .菱形D .正方形7.下列各命题中假命题的个数为( ) ①向量AB 的长度与向量BA 的长度相等.②向量a 与向量b 平行,则a 与b 的方向相同或相反.③两个有共同起点而且相等的向量,其终点必相同.④两个有共同终点的向量,一定是共线向量. ⑤向量AB 与向量CD 是共线向量,则点D C B A 、、、必在同一条直线上.A .0B .1C .2D .3参考答案1、A,2、C,3、C,4、B5、B6、C,7、D②④⑤。
高一数学平面向量的概念练习题(解析版)
练习11 平面向量的概念一、单选题1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其中是向量的有()A.4个B.5个C.6个D.7个【答案】A【解析】【分析】根据向量的定义即可判断;【详解】解:速度、位移、力、加速度4个物理量是向量,它们都有大小和方向.故选:A【点睛】本题考查向量的定义的理解,属于基础题.2.下列各说法:①有向线段就是向量,向量就是有向线段;②向量的大小与方向有关;③任意两个零向量方向相同;④模相等的两个平行向量是相等向量.其中正确的有( )A.0个B.1个C.2个D.3个【答案】A【分析】根据向量的基本概念分析即可.【详解】有向线段是向量的几何表示,二者并不相同,故①错误;②向量不能比较大小,故②错误;③由零向量方向的任意性知③错误;④向量相等是向量模相等,且方向相同,故④错误.故选:A.【点睛】本题主要考查了向量中的基本概念,属于基础题型.3.如图,在O中,向量,,OB OC AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等向量【答案】C【分析】向量是既有大小又有方向的量,通过大小和方向两个方面逐一判断即可.【详解】解:,,OB OC AO起点并不全相同,故A错误;,,OB OC AO的方向均不相同,也不相反,故BD 错误;||||||OB OC AO===圆的半径,故C正确,故选C.【点睛】本题考查向量的概念,是基础题.4.下列说法正确的是( )A.有向线段AB与BA表示同一向量B.两条有公共终点的有向线段表示的向量是平行向量C.零向量与单位向量是平行向量D.对任一向量a,aa是一个单位向量【答案】C【分析】由平面向量的定义、平行向量及单位向量的可依次对选项判断.【详解】对于选项A,向量AB与BA方向相反,不是同一向量,故选项A错误;对于选项B ,有公共终点的有向线段的方向不一定相同或相反,故B 错误;对于选项C ,零向量与任意向量都是平行向量,故C 正确;对于选项D ,当0a =时,a a 无意义,故D 错误. 故选:C 【点睛】本题考查了平面向量的定义与平行向量的应用,属于基础题.二、多选题5.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC = C .AB DC >D .BC AD ∥【答案】BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.6.下列说法正确的是( )A .长度相等的向量是相等向量B .若a b =,b c =,则a c =C.共线向量是在一条直线上的向量D.向量AB与CD共线是A,B,C,D四点共线的必要不充分条件【答案】BD【分析】根据向量的相关概念判断可得.【详解】解:相等向量不仅要求长度相等,还要求方向相同,故A说法错误;B说法显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故C说法错误;A,B,C,D四点共线⇒向量AB与CD共线,反之不成立,所以向量AB与CD共线是A,B,C,D四点共线的必要不充分条件,故D说法正确.故选:BD【点睛】本题考查向量的相关概念的理解,相等向量、共线向量,属于基础题.三、填空题7.下列结论正确的序号是_______.=;①若a,b都是单位向量,则a b②物理学中作用力与反作用力是一对共线向量;③方向为南偏西60°的向量与北偏东60°的向量是共线向量;④直角坐标平面上的x轴,y轴都是向量.【答案】②③【分析】根据题意,对题目中的命题进行分析、判断正误即可.【详解】解:对于①,a,b都是单位向量,则不一定有a b=,①错误;对于②,物理学中的作用力与反作用力大小相等,方向相反,是一对共线向量,②正确;对于③,如图所示,方向为南偏西60︒的向量与北偏东60︒的向量在一条直线上,是共线向量,③正确;对于④,直角坐标平面上的x 轴、y 轴只有方向,没有大小,不是向量,④错误;综上,正确的命题序号是②③.故答案为:②③.【点睛】本题通过命题真假的判断考查了平面向量的概念与应用问题,属于基础题.8.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__________.【答案】3π【解析】【分析】本题首先可以通过题意确定向量的终点构成的图形的形状,然后根据圆的面积公式即可得出结果.【详解】由题意可知,这些向量的终点构成的图形是一个圆环,圆环的小圆半径为1,圆环的大圆半径为2,所以圆环的面积为22213πππ⨯-⨯=,故答案为3π.【点睛】本题考查向量的定义的应用,考查圆的面积公式的使用,向量是有方向和大小的量,考查推理能力与运算能力,是简单题.四、解答题9.如图的方格由若干个边长为1的小正方形组成,方格中有定点A ,点C 为小正方形的顶点,且5AC =,画出所有的向量AC.【答案】见解析【分析】利用向量模长的几何意义,即可画出图形.【详解】AC ,∴C点落在以A为圆心,以5为半径的圆上,又∵点C为小正方形的顶点,∵||5根据该条件不难找出满足条件的点C,解析所有的向量AC,如图所示:【点睛】本题考查了向量模长的几何意义,轨迹问题,属于基础题.10.如图所示,平行四边形ABCD 中,O 是两对角线AC ,BD 的交点,设点集{}S A B C D O =,,,,,向量集合{|,,}T MN M N S M N =∈且,不重合,试求集合T 中元素的个数.【答案】12【分析】本题首先可根据题意明确集合T 中所包含的元素,然后根据平行四边形法则找出其中的相等向量,最后根据集合元素的互异性即可得出结果。
平面向量平面向量练习苏教版必修
平面向量平面向量练习苏教版必修Revised by BLUE on the afternoon of December 12,2020.C. 2A3向量练习二1、若而二3科CD=oe,且 ,贝U 四边形個7?是( )A.平行四边形 B.菱形C.等腰梯形D. 不等腰梯形【解析】 V而=-5?, /.CD=~ - AB, ? ??方与乔平行且方3向相反,易知 \CD\>\AB , XV AD = BC\, 四边形月砲是等腰梯形 .【答案】C2、设点戸在有向线段石的延长线上, P 分石所成的比为几,贝 ( A ) A. 兀〈 TB. -l<A <0C. 0<A <1D. A>13、若丨〒 =2sinl5 ,°~b =4cos375 、°方,于夹角为 30。
,贝~a ? A = (B ).4、若 a = b = a -b , 贝 b 1 J a*b 的夹角为 (A )A. 30 °B. 60 °D.120°5>已知向量 a =(cosgs in 。
),向量 & = 贝 I 2a-b I 的最大值,最小值A. B. V3分别(D )6、在正六边形ABCDEF 中,0为其中心,贝FA + AB + 2BO + ED= ______ FD7、设向量:和乙的长度分别为4和3,夹角为60°,则= _____ s/37& £和£是表示平面内所有向量的一组基底,则下面的四个向量中,不能为一组基底的是」-L( 1) e\ + e 2和石一石;(2) 3e x —2e [和如—飼;(3) e、+ 2e z 和勺+2e、;(4) e?和氏+e、9、已知AABC 的顶点 A (2, 3) , B (8, -4),和重心G (2, -1),则点C的坐标是_ (—4, —2) _____10、与5为共线向量”是’鈴与5方向相同”的—必要不充分一条件11、已知方力是两个非零向量,则方与乙不共线是11方1- 口11<1(;-& 1<1方1 + 1力的充要一条件12、设a= ( —1? 2) , b- (1? —1) , C- (3, —2),用",乙作基底可将;表示7二p7+qM则实数p、q的值为 _______ P二l,q二4 13、已知方二(1, 1) , b= (0, -2)当2 T时,込一&与方+ :共线.14、命题①若且方?厶,则d;②若方",则3方V4厶;③(a ?厶)? c = ii ? (b ? c ),对任意向量厶,b ,厶都成立;④ /?沪二(“ ?厶)2 ;正确命题的个数为_ (0)15、知A、B、C三点共线,且A、B、C三点的纵坐标分别为2, 5,10,则A点分就所得的比为一(--)由<21 ?122+:?7 = 0 21:-21:解得Vio~io~16、同一直线上的三点顺次为 A (-y, 6) , B (-2, y) , C (x, -6),若|BC| = 2|AB | ,贝iJx=_—2, y=_217、若"二(2, 3), /;二(-4, 7),贝叽在/ ;方向上的投影为(逅)18、已知肓仁2, b= (-2>/3,2),若a 〃b,则a 二_______ (巧1),(-巧,1))19、已知由向量血二(3, 2) , AC=(1, k)确定的Z\ABC为直角三角a形,贝U k 二o (5, --J ±3)20、已知x-a , y =2 ci +i> ,且| a .二.b 二1, a 丄/八⑴求‘ y |,⑵若;与勺的夹角为o,求cos o的值。
平面向量的概念练习(教师版)
1、下列说法正确的是()A、数量可以比较大小,向量也可以比较大小.B、方向不同的向量不能比较大小,但同向的可以比较大小.C、向量的大小与方向有关.D、向量的模可以比较大小.2、给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a||b|,则a b ;③若AB DC ,则四边形ABCD是平行四边形;④平行四边形ABCD中,一定有AB DC ;⑤若m n ,n k ,则m k ;⑥a b ,b c ,则a c .其中不正确的命题的个数为()A、2 个B、3 个C、4 个D、5 个3、设O是正方形ABCD的中心,则向量AO, BO, OC ,OD 是()A、相等的向量B、平行的向量C、有相同起点的向量D、模相等的向量4、判断下列各命题的真假:(1)向量AB 的长度与向量BA 的长度相等;(2)向量 a 与向量b 平行,则 a 与 b 的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量AB 和向量CD 是共线向量,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2 个B、3 个C、4 个D、5 个5、若a 为任一非零向量, b 为模为 1 的向量,下列各式:①| a | >| b | ②a ∥ b③| a | >0 ④| b | =±1,其中正确的是()A、①④B、③C、①②③D、②③6、下列命中,正确的是()A、| a | =| b | a=bB、| a| >| b | a > bC、a =b a ∥bD、|a |=0 a= 07、下列物理量:①质量②速度③位移④力⑤加速度⑥路程,其中是向量的有()A、2 个B、3 个C、4 个D、5 个8、平行向量是否一定方向相同?9、不相等的向量是否一定不平行?10、与零向量相等的向量必定是什么向量?11、与任意向量都平行的向量是什么向量?12、若两个向量在同一直线上,则这两个向量一定是什么向量?14、如图所示,四边形ABCD为正方形,△BCE为等腰直角三角形,D CEA B(1)找出图中与AB 共线的向量;(2)找出图中与AB 相等的向量;(3)找出图中与|AB |相等的向量;(4)找出图中与EC 相等的向量.15、如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:A BFEOD C分别写出与AO, BO 相等的向量;写出与AO 共线的向量;(3)写出与AO 模相等的向量;(4)向量AO 与CO 是否相等?参考答案一、选择题1、D;2、C;3、D;4、C;5、B;6、C;7、C二、填空题8、不一定9、不一定10、零向量11、零向量12、平行向量13、长度相等且方向相同三、解答题14、解:∵E、F 分别是AC、AB的中点∴EF∥BC且EF =又因为D是BC的中点12 BC∴①与EF 共线的向量有:FE , BD, DB ,DC ,CD ,BC ,CB②与EF 的模大小相等的向量有FE, BD ,DB , DC ,CD③与EF 相等的向量有:DB ,CD .15、解:(1)AO BF ,BO AE ;(2)与AO 共线的向量为:BF ,CO, DE(3)与AO 模相等的向量有:CO, DO , BO, BF ,CF , AE ,DE(4)向量AO 与CO 不相等. 因为它们的方向不相同.1、下列各量中不是向量的是(A、浮力B、风速C、位移 D2、下列说法中错误..的是()A B 、零向量的长度为0C D3、把平面上一切单位向量的始点放在同一点, 那么这些向量的终点所构成的图形是()A B C D4、在△ABC中,AB=AC,D、E 分别是AB、AC的中点, 则(A、AB 与AC 共线 B 、DE 与CBC、AD 与AE 相等 D 、AD 与BD 相等5、下列命题正确的是(A、向量AB 与BAB、若a、b 都是单位向量, 则a=bC、若AB = DC , 则A、B、C、DD、两向量相等的充要条件是它们的始点、终点相同6、在下列结论中, 正确的结论为((1) a∥b 且| a |=| b| 是a=b 的必要不充分条件(2) a∥b 且| a |=| b| 是a=b(3) a 与b 方向相同且| a|=| b| 是a=b(4) a 与b 方向相反或| a| ≠| b| 是a≠bA、(1)(3) B 、(2)(4) C 、(3)(4) D 、(1)(3)(4)7、“两个向量共线”是“这两个向量方向相反”的8、已知非零向量a∥b, 若非零向量c∥a, 则c 与b 必定、9、已知a、b 是两非零向量, 且a 与b 不共线, 若非零向量 c 与a 共线, 则c 与b 必定10、把平行于某一直线的一切向量归结到共同的始点, 则终点所构成的图形是;若这些向量为单位向量, 则终点构成的图形是11、已知 | AB |=1,| AC |=2, 若∠ BAC=60°, 则 | BC |=12、在四边形 ABCD 中 , AB = DC , 且 | AB |=| AD |, 则四边形 ABCD 是13、设在平面上给定了一个四边形 ABCD,点 K 、L 、M 、N 分别是 AB 、BC 、CD 、DA 的中点 ,KL = NM14、某人从 A 点出发向西走了 200m 到达 B 点, 然后改变方向向60°走了 450m 到达 C 点, 最后又改变方向 , 向东走了 200m 到达 D 点(1) 作出向量 AB 、 BC 、 CD (1 cm 表示 200 m)(2) 求 DA 的模15, 已知四边形 ABCD 是矩形 , 设点集 M={A 、B 、C 、D}, 求集合 T={ PQ 、Q ∈M,且 P 、Q 不重合 } 第 15 题参考答案一、选择题1、D;2、A;3、D;4、B;5、A;6、 D二、填空题78、c∥b9、不共线10、一11、 312、菱形三、解答题13、(略 )14、(1)(2)450 m15、{ AC 、CA 、BD 、DB 、AB 、AD 、BA 、DA }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、下列说法正确的是( )
A 、数量可以比较大小,向量也可以比较大小.
B 、方向不同的向量不能比较大小,但同向的可以比较大小.
C 、向量的大小与方向有关.
D 、向量的模可以比较大小.
2、给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若||||a b =,则a b =;
③若AB DC =,则四边形ABCD 是平行四边形;
④平行四边形ABCD 中,一定有AB DC =;
⑤若m n =,n k =,则m k =;
⑥a b ,b c ,则a c .
其中不正确的命题的个数为( )
A 、2个
B 、3个
C 、4个
D 、5个
3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD 是( )
A 、相等的向量
B 、平行的向量
C 、有相同起点的向量
D 、模相等的向量
4、判断下列各命题的真假:
(1)向量AB 的长度与向量BA 的长度相等;
(2)向量a 与向量b 平行,则a 与b 的方向相同或相反;
(3)两个有共同起点的而且相等的向量,其终点必相同;
(4)两个有共同终点的向量,一定是共线向量;
(5)向量AB 和向量CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上;
(6)有向线段就是向量,向量就是有向线段.
其中假命题的个数为( )
A 、2个
B 、3个
C 、4个
D 、5个
5、若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b | ②a ∥b ③|a |>0 ④|b |=±1,其中正确的是( )
A 、①④
B 、③
C 、①②③
D 、②③
6、下列命中,正确的是( )
A 、|a |=|b |⇒a =b
B 、|a |>|b |⇒a >b
C 、a =b ⇒a ∥b
D 、|a |=0⇒a =0
7、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( )
A 、2个
B 、3个
C 、4个
D 、5个
8、平行向量是否一定方向相同?
9、不相等的向量是否一定不平行?
10、与零向量相等的向量必定是什么向量?
11、与任意向量都平行的向量是什么向量?
12、若两个向量在同一直线上,则这两个向量一定是什么向量?
14、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形,
(1)找出图中与AB 共线的向量;
(2)找出图中与AB 相等的向量;
(3)找出图中与|AB |相等的向量;
(4)找出图中与EC 相等的向量.
A
B
E
C
D
15、如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中:
分别写出与,AO BO 相等的向量;
写出与AO 共线的向量;
(3)写出与AO 模相等的向量;
(4)向量AO 与CO 是否相等?
参考答案
一、选择题
1、D ;
2、C ;
3、D ;
4、C ;
5、B ;
6、C ;
7、C
二、填空题
8、不一定
9、不一定
10、零向量
11、零向量
12、平行向量
13、长度相等且方向相同
三、解答题 14、解:∵E 、F 分别是AC 、AB 的中点 ∴EF ∥BC 且EF =
12
BC 又因为D 是BC 的中点 ∴①与EF 共线的向量有:,,,,FE BD DB DC CD ,,BC CB
②与EF 的模大小相等的向量有,,,,FE BD DB DC CD
③与EF 相等的向量有:,DB CD .
15、解:(1)AO BF =,BO AE =;
(2)与AO 共线的向量为:,,BF CO DE
D
E
A B
F
C
O
CO DO BO BF CF AE DE
(3)与AO模相等的向量有:,,,,,,
(4)向量AO与CO不相等.因为它们的方向不相同.
1、下列各量中不是向量的是(
A、浮力
B、风速
C、位移 D
2、下列说法中错误
..的是()
A B、零向量的长度为0
C D
3、把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是()
A B C D
4、在△ABC中,AB=AC,D、E分别是AB、AC的中点,则(
A、AB与AC共线
B、DE与CB
C、AD与AE相等
D、AD与BD相等
5、下列命题正确的是(
A、向量AB与BA
B、若a、b都是单位向量,则a=b
C、若AB=DC,则A、B、C、D
D、两向量相等的充要条件是它们的始点、终点相同
6、在下列结论中,正确的结论为(
(1)a∥b且|a|=|b|是a=b的必要不充分条件
(2)a∥b且|a|=|b|是a=b
(3)a与b方向相同且|a|=|b|是a=b
(4)a与b方向相反或|a|≠|b|是a≠b
A、(1)(3)
B、(2)(4)
C、(3)(4)
D、(1)(3)(4)
7、“两个向量共线”是“这两个向量方向相反”的
8、已知非零向量a∥b,若非零向量c∥a,则c与b必定、
9、已知a、b是两非零向量,且a与b不共线,若非零向量c与a共线,则c与b必定
10、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是
11、已知|AB |=1,| AC |=2,若∠BAC=60°,则|BC |=
12、在四边形ABCD 中, AB =DC ,且|AB |=|AD |,则四边形ABCD 是
13、设在平面上给定了一个四边形ABCD,点K 、L 、M 、N 分别是AB 、BC 、CD 、DA 的中点,求证:KL =
NM
14、某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C 点,最后又改变方向,向东走了200m 到达D 点
(1)作出向量AB 、BC 、CD (1 cm 表示200 m)
(2)求DA 的模
15、如图,已知四边形ABCD 是矩形,设点集M={A 、B 、C 、D},求集合T={PQ 、Q ∈M,且P 、Q 不重合}
第15
题
参考答案
一、选择题
1、D;
2、A;
3、D;
4、B;
5、A;
6、D
二、填空题
7
8、c∥b
9、不共线
10、一
11、3
12、菱形
三、解答题
13、(略)
14、(1)
(2)450 m
15、{AC、CA、BD、DB、AB、AD、BA、DA}。