电流电压互感器额定二次容量计算方法

合集下载

电流互感器和电压互感器容量,准确级,互感器负载计算

电流互感器和电压互感器容量,准确级,互感器负载计算

电流互感器和电压互感器容量,准确级,互感器负载计算Q:互感器容量是什么?A:互感器容量即额定输出、二次额定负荷,在额定二次电压或电流下及接有额定负荷时,互感器所供给二次电路的视在功率(在规定功率因数下的伏安数)。

电压互感器容量国家标准规定的标准值为:10、15、25、30、50、75、100、150、200、250、300、400、500VA。

电流互感器容量国家标准规定的标准值为:1、2.5、3.75、5、7.5、10、15、20、25、30、40、50、60、80、100VA。

Q:互感器准确等级是什么?A:互感器的误差限值标准,表示它在规定使用条件下的比值差和相位差保持在规定的限值以内。

比值差:互感器在测量中由于实际变比与额定变比不相等所引入的误差。

相位差:一次电压相量或电流相量与二次电压相量或电流相量的相位差。

电压互感器的准确级:a、计量用为0.2级或0.5级。

b、测量用为0.2、0.5、1.0或3.0级。

c、保护用为3P或6P级d、0.5&3P、0.5(3P)准确级,表示二次只有1个绕组,这个绕组既要满足0.5级的要求,又要满足3P级的要求。

测量用电压互感器的电压误关和相位差限值:保护用电压互感器的电压误关和相位差限值电流互感器的准确级:a、测量级有0.2S、0.2、0.5S、0.5、1、3、5。

b、对于保护级,我们经常见到的是5P( )、10P( ),其中5和10代表复合误差,P代表保护用,P后面的数字代表准确限值系数,5、10、15、20、30、40。

测量用电流互感器的比值差和相位差限值(0.1-1级):保护用P级和PR级保护用电流互感器的误差限值:Q:互感器负载如何计算?A:(1)电压互感器负载计算:因电压互感器二次负载,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。

(完整版)电流互感器二次容量的计算及选择

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

常规电流互感器和电压互感器参数选择及计算

常规电流互感器和电压互感器参数选择及计算

1.概述 电流互感器类型及性能:
• 分为两大类:1)测量用;2)保护用 • 测量用电流互感器 -重点考核正常运行时的准确性能 • 保护用电流互感器 -重点考核系统短路时的准确性能 a) 对称短路电流下的稳态性能 b) 短路电流偏移(有直流分量)和/或 有剩磁时的暂态性能
1.概述
• 电流误差(比值差),相位差 ຫໍສະໝຸດ 定输出(容量) ( CT额定负载)
额定电阻性负荷
对TP级电流互感器,当额定二次电流为1A时,以表示的额定电 阻性负荷标准值在下列数值中选取: 2.5、5、7.5、10、15。对额定二 次电流不是1A的电流互感器,上列值按电流平方的反比进行换算。
简述
保护用电流互感器的准确限值系数(P)(二次专业复核)
3 电流互感器的选择和配置要求
电流互感器的配置应符合以下要求: DL/T 5136



1. 电流互感器的类型、二次绕组的数量与准确等级应满足继电保 护自动装臵和测量表计的要求。 2. 保护用电流互感器的配臵应避免出现主保护的死区。保护接入 电流互感器二次绕组的分配,应注意避免当一套保护停用时,出 现电流互感器内部故障时的保护死区;双重化保护的电流互感器 应采用不同的二次绕组。 3. 保护用电流互感器的配臵应避免出现电流互感器内部故障时扩 大故障范围。 4. 对中性点直接接地系统,可按三相配臵;对中性点非直接接地 系统,依具体要求可按两相或三相配臵。
2 相关的国际标准、国标及行标 暂不细及二次各专业相关标准 太多
GB 1208-2006 电流互感器(eqv IEC 60044-1:2003 ) GB 16847-1997 保护用电流互感器暂态特性技术要求 (idt IEC 60044-6: 1992) IEC 60044-1 :2003 电流互感器 第一号修改单 GB 1207-2006 电磁式电压互感器(eqv IEC 60044-2:2003) GB 4703-2007电容式电压互感器(已作废) DL/T 725-2000 电力用电流互感器订货技术条件 DL/T 726-2000 电力用电压互感器订货技术条件 英国标准 BS 3938:1973 电流互感器规范 IEEE Std C57.13-2008: 仪表用互感器要求 IEEE Std C37.110-2007: 保护用电流互感器应用导则 及IEEE C37.110 Corri 1-2010保护用电流互感器应用导则 勘误表1:等式18和等式19的 更正 DL/T 5136 火力发电厂、变电站二次接线设计技术规程 DL/T 866 电流互感器和电压互感器选择及计算导则

变压器一二次额定电流计算口诀

变压器一二次额定电流计算口诀

变压器一、二次额定电流计算口诀容量处电流,系数相乘求。

六千零点一,十千点零六。

低压流好算,容量一倍半。

说明:通常我们说变压器多大,是指额定容量而言,如何通过容量很快算出变压器一、二次额定电流?口诀说明了只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流A。

“6 千乘零点1,10千乘点零6”是指一次电压为6 千伏的三相变压器,它的一次额定电流为容量数乘0.1 ,即千伏安数乘0.1 。

一次电压为10 千伏的三相变压器,一次额定电流为容量数乘0.06 ,即千伏安数乘0.06 。

以上两种变压的二次侧(低压侧)额定电流皆为千伏安数乘 1.5 ,这就是“低压流好算,容量一倍半”的意思。

导线载流量的计算口诀, 评论导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。

各种导线的载流量通常可以从手册中查找。

但利用口诀再配合一些简单的心算,便可直接算出,不必查表。

1.口诀铝芯绝缘线载流量与截面的倍数关系10 下五,100 上二,25 、35,四、三界,.70 、95,两倍半。

穿管、温度,八、九折。

裸线加一半。

铜线升级算。

2.说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数来表示。

为此将我国常用导线标称截面(平方毫米)排列如下:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185 …(1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。

口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。

把口诀的截面与倍数关系排列起来如下:1 〜10 16、25 35、50 70、95 120 以上五倍四倍三倍二倍半二倍倍。

“ 100 上二”(读百上二)是指截面100 以上的载流量是截面数值的二倍。

截面为25 与35 是四倍和三倍的分界处。

这就是口诀“25 、35 ,四三界”。

而截面70、95 则为二点五倍。

电压互感器二次绕组数量和容量的确定

电压互感器二次绕组数量和容量的确定

0概述电压互感器是一种将系统的一次电压按一定比例缩小为要求的二次电压,供测量仪表、继电保护和自动装置使用的设备。

电压互感器的选择,除按系统电压、环境条件选择其一次电压、绝缘水平、爬电距离、结构型式外,尚应按供电负荷要求,确定二次绕组的准确等级、数量和容量。

1电压互感器准确级的选择1.1测量用电压互感器的准确级测量用电压互感器的准确等级应与测量仪表的准确等级相匹配,见表1。

表1测量仪表与配套的电压互感器准确等级仪表准确级互感器准确级0.50.51.00.51.51.02.51.00.5级指数字式仪表等级1.2微机监控系统用电压互感器的准确级微机监控系统用电压互感器的准确级没有明文规定,建议用0.5级。

1.3电能计量用电压互感器的准确级。

电能计量装置按计量对象的重要程度和计量电能的多少分为五类。

(1)Ⅰ类电能计量装置月平均用电量500万kWh及以上或变压器容量为10000kVA及以上的高压计费用户、200MW及以上发电机、发电企业上网电量、电网经营企业之间的电量交换点、省级电网经营企业与其供电企业的供电关口计量点的电能计量装置。

(2)Ⅱ类电能计量装置月平均用电量100万kWh及以上或变压器容量为2000kVA及以上的高压计费用户、100MW及以上发电机、供电企业之间的电量交换点的电能计量装置。

(3)Ⅲ类电能计量装置月平均用电量10万kWh及以上或变压器容量为315kVA及以上的计费用户、100MW以下发电压互感器二次绕组数量和容量的确定TheSelectionoftheNumberandCapacityoftheVoltageTransformerSecondaryWindings张善芝,徐卫东,于青(山东电力工程咨询院,山东济南250013)摘要:为提高电力工程设计质量,合理选择电压互感器,统计分析了影响选择电压互感器二次绕组的准确等级、数量和容量的因素,范围10kV~500kV电压等级的线路和变压器。

电流互感器设计与计算

电流互感器设计与计算

电流互感器设计与计算电流互感器(Current Transformer,简称CT)是一种用于测量和保护电力系统中电流的装置。

它通过将高电压侧的电流转换成低电压侧的电流,使得电流测量和保护设备能够安全可靠地使用。

在电流互感器的设计中,主要考虑以下几个方面:一是额定电流的选择,即根据实际需求确定电流互感器的额定一次电流。

一般情况下,电流互感器的额定一次电流应根据所测量的电流范围来确定,一般选择在被测电流的60%~120%范围内。

二是磁路设计,即通过设计合适的磁路结构,使得电流互感器能够满足测量和保护的要求。

常见的磁路结构有环形磁路和磁链式磁路,设计时需要考虑磁路的饱和和磁通分布等因素。

三是绕组设计,即通过设计合适的绕组结构和参数,使得电流互感器能够实现理想的变比和相位误差。

绕组设计需要考虑绕组的匝数、铜导体的断面积和长度等因素。

对于电流互感器的计算,主要包括变比计算和额定一次电流计算。

变比计算是根据所需的额定一次电流和二次电流来确定电流互感器的变比。

变比计算公式为变比=二次电流/额定一次电流。

例如,如果所需的额定一次电流为1000A,二次电流为5A,则变比为5/1000=1/200。

额定一次电流计算是根据电流互感器的额定二次电流和变比来确定其额定一次电流。

额定一次电流计算公式为额定一次电流=二次电流/变比。

例如,如果电流互感器的额定二次电流为5A,变比为1/200,则额定一次电流为5/(1/200)=1000A。

除了变比和额定一次电流的计算,还需要考虑电流互感器的负荷和准确度等参数。

负荷是指电流互感器在额定一次电流下的阻抗大小,一般以VA为单位。

负荷的选择应根据所需的测量和保护精度来确定。

准确度是指电流互感器的测量误差,一般以百分比形式表示。

准确度的选择应根据具体应用场景和精度要求来确定。

电流互感器的设计和计算是一个综合考虑多个因素的过程,包括额定电流的选择、磁路设计、绕组设计等。

通过合理的设计和准确的计算,可以实现电流互感器的可靠工作和精确测量。

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择

电流互感器二次负载的计算及选择1.电流互感器简介互感器就是将电力网络中的大电流、高电压这些高电平的电力参数按比例变换成低电平的参数或信号,以供测量仪器仪表、继电保护和其他类似仪器使用的变压器。

而电流互感器是用一种将大电流按照一定的变比变换成小电流的仪器,当电流互感器用于电路时,可作电流、电能、功率测量和继电保护及自动化设备的辅助装置,它将大电流变换成小电流——现在在厂站中大多变换成1A 的电流,供给二次回路测量仪表和继电保护等设备用,从而保证测量仪表及其他装置的安全,并使其便于工作。

目前用于敞开式的超高压变电站中的油浸式电流互感器,有电容型结构和链型 2 种。

电容型结构的主绝缘由若干串联的电容屏(多为铝箔与半导体纸)与绝缘纸组成;链型结构的是将一次绕组与绕有二次绕组的环状铁心交叉后形成“ 8”字形,一、二次绕组分开绝缘,并与铁心一起浸入有绝缘油的瓷套内。

油浸式电流互感器通常装有隔膜或金属膨胀器,使油与空气隔离,防止绝缘受潮与氧化。

为防止瓷套炸裂的危险,以硅橡胶伞裙代替瓷套的六氟化硫()气体绝缘的电流互感器也已开始投入运行。

2.电流互感器的特点1)电流互器的二次回路中所串的负载一般是电流表以及继电器等元件中的电流线圈,阻抗一般不大,因此,电流互感器的正常运行情况相当于二次侧短路的变压器运行状态。

2)电流互感器的一次电流是由电网输送的负载决定的,在一定的条件(下文会提到)下,二次侧的电流大小是由一起起主导作用。

3)电流互感器中,当二次回路的负载阻抗发生变化时,会影响二次电动势。

因为,电流互感器的二次回路是闭合的,在某一定值的一次电流作用下,感应二次电流的大小决定于二次回路中的阻抗,当二次阻抗值较大时,二次电流会相应地减小,一次电流中,用来平衡二次电流的分量也就随之变小,作用于励磁回路的电流分量增多,造成二次电动势升高。

相反地,当二次阻抗变小时,感应的二次电流增大,一次电流中用于平衡二次电流的分量就大,作用于励磁回路的电流分量减小,二次电动势因此降低。

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算

浅谈电流互感器的误差和二次负载的计算摘要:电流互感器是电力系统中非常重要的一次设备,掌握其误差特性及二次负载的计算,对设计人员来说至关重要,本文分析了电流互感器误差产生的原因以及分别对测量电流互感器、保护电流互感器二次负载进行了计算。

关键词:电流互感器、误差、二次负载、计算1、电流互感器的误差电流互感器是用来将一次系统的大电流按比例变换为二次系统的小电流,以满足测量、监控、保护及自动装置等的需要,并将一、二次设备安全隔离,使高、低压回路不存在电的联系的一种常见的电气设备。

测量误差是指电流互感器的二次输出量I2与其归算二次侧的一次输入量I1’的大小不相等,幅角不相同所造成的差值,因此测量误差分为数值(变比)误差和相位(角度)误差两种。

产生测量误差的原因一是电流互感器本身造成的,二是运行和使用条件造成的。

电流互感器本身造成的测量误差是由于电流互感器有励磁电流Ie存在,而Ie是输入电流的一部分,它不传到二次侧,故形成变比误差,Ie除在铁芯中产生磁通外,尚产生铁芯损耗,包括涡流损失和磁滞损失,Ie所流经的励磁支流是一个呈电感性的支路,Ie和I2不同相位,这是造成角度误差的主要原因。

运行和使用中造成的测量误差过大是电流互感器铁芯饱和和二次负载过大所致。

故为保证电流互感器工作在误差范围内,在不改变其本身固有特性的情况下,作为设计人员来说,根据实际情况,选择适当的电流互感器二次容量尤为重要,以下介绍二次负载容量的计算。

2、测量电流互感器二次负载容量的计算为了保证测量仪表的准确度,互感器的准确度级不得低于所供测量仪表的准确度级。

电流互感器的一定准确等级是与一定的负荷容量S2相对应的。

当接入负荷(仪表继电器等)的容量超过互感器准确级规定的容量Se2时,电流互感器的准确级将要下降,即测量误差增大。

因此,为了保证测量的准确度,互感器二次侧所接负荷容量S2应小于互感器准确度级所规定的额定容量Se2。

,即应满足:Se2≥S2即Se2≥I22Z2 (1)由上式可知,二次负荷容量与二次阻抗有着直接关系。

PT、CT计算

PT、CT计算

电流二次回路负荷计算根据《Q/GXD 116.01-2007广西电网电能计量装置配置及验收技术标准》,对于三相四线制接线方式,若3台电流互感器与电能表之间采用四线连接,则不计算N 线电阻(因线路三相负荷平衡时N 线电流为0,N 线电阻不构成CT 二次负荷);若3台电流互感器与电能表之间采用六线连接,则应计算N 线电阻(因三相N 线始终流过电流,N 线电阻构成CT 二次负荷)。

电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nI S ——设计选择的电流互感器二次额定负荷,VAK ——系数,一般选择1.5~4。

A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接线系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。

2n I ——电流互感器二次额定电流,A ,为1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接触电阻,取0.1Ω① 110kV CT 二次容量计算:高岭站110kV CT 二次额定电流为1A ,电缆综合长度为120米,电缆截面使用4mm 2。

根据公式(2),则:Ω=⨯==5.0457120A L R l ρ 其中:二次电流回路使用三相星型接法,所以jx K =1,2jx K =1。

电流互感器二次容量的计算

电流互感器二次容量的计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

电流、电压互感器额定二次容量计算方法

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L R A ρ= (2)式中:2I S ——电流互感器实际二次负荷(计算负荷),VA2nIS ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3A ——二次回路导线截面, 2mm ρ——铜导电率,257m /m m )ρ=Ω,(•L ——二次回路导线单根长度,m lR ——二次回路导线电阻,Ωjx K——二次回路导线接触系数,分相接法为2,不完全星形接法为星形接法为1; 2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。

2nI ——电流互感器二次额定电流,A ,一般为5A 或1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接头接触电阻,一般取0.05~0.1根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,222221.5()21001.55(120.050.1)57440I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。

而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:222221.5()11005(120.050.1)574I n jx l jx m k S I K R KZ R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)取30VA 。

PT、CT计算

PT、CT计算

电流二次回路负荷计算根据《Q/GXD 116.01-2007广西电网电能计量装置配置及验收技术标准》,对于三相四线制接线方式,若3台电流互感器与电能表之间采用四线连接,则不计算N 线电阻(因线路三相负荷平衡时N 线电流为0,N 线电阻不构成CT 二次负荷);若3台电流互感器与电能表之间采用六线连接,则应计算N 线电阻(因三相N 线始终流过电流,N 线电阻构成CT 二次负荷)。

电流互感器实际二次负荷(计算负荷)按公式(1)计算:2222()I n jx l jx m k S I K R K Z R =+∑+ (1)2nI S =K ×2I S电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L R Aρ= (2) 式中:2I S ——电流互感器实际二次负荷(计算负荷),V A2nI S ——设计选择的电流互感器二次额定负荷,V AK ——系数,一般选择1.5~4。

A ——二次回路导线截面, 2mmρ——铜导电率,257m /mm )ρ=Ω,(•L ——二次回路导线单根长度,ml R ——二次回路导线电阻,Ωjx K ——二次回路导线接线系数,分相接法为2,星形接法为1;2jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入901。

2n I ——电流互感器二次额定电流,A ,为1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之和。

k R ——二次回路接触电阻,取0.1Ω① 110kV CT 二次容量计算:高岭站110kV CT 二次额定电流为1A ,电缆综合长度为120米,电缆截面使用4mm 2。

根据公式(2),则:Ω=⨯==5.0457120A L R l ρ 其中:二次电流回路使用三相星型接法,所以jx K =1,2jx K =1。

常用的计算电流公式

常用的计算电流公式

常用的计算公式和经验公式将大家都熟悉的额定电流做一简单整理归纳,对一些人也许有用。

也欢迎诸位将设计和实践中常用的计算公式和经验公式跟帖贡献出,方便大家。

0.成套设备的额定电流:开关设备和控制设备的额定电流是在规定的使用和性能条件下,开关设备和控制设备应该能够持续通过的电流的有效值。

指该设备中一次设备额定电流中最小的额定电流。

如一台KYN28-12中配置VS1-12/1250-31.5 LZZBJ9-10 400/5 则该设备额定电流为400A.如果该设备为馈出柜,则下引母线按400A的载流量选取TMY60*6。

(已经考虑动热稳定)隔离柜的额定电流按相邻的母联柜确定;所变柜和PT柜的额定电流按熔断器的额定电流标注。

(也可不标注)1.变压器一次额定电流[I1e]和二次额定电流[I2e]:计算公式:S=√3UI40.5KV:I1e=0.017S12KV:I1e=0.06S7.2KV:I1e=0.1S当二次为0.4KV时:I2e=1.5S式中S为变压器容量(KVA),U为额定电压(KV),I为额定电流(A)2.三相电动机的额定电流(A):计算公式=√3UICOS∮考虑电机功率因数和效率的综合因数:Ie=0.76P/Ue12KV: I=0.076P7.2KV; I=0.126P3.6KV; I=0.25P0.4KV; I=2P式中P为电动机功率(KW),Ue为额定电压(KV),I为额定电流(A)3.单相(220V)电动机的额定电流(A):计算公式=UICOS∮考虑电机功率因数和效率的综合因数Ie=5.7P式中P为电动机功率(KW),Ue为额定电压(KV),I为额定电流(A)4.电容器额定电流(A):电容器采用星接法Iq=Q/U√3式中Q为电容器容量(Kvar),U为额定电压(KV),I为额定电流(A)如果电容器采用三角接法:Iq=Q/U5.熔断器熔体额定电流(A):PT保护[RN2,XRNP型]:I=0.5A或1A变压器保护[RN1,XRNT型]:I=(1.5-2.5)变压器一次额定电流[查标准值后按最接近值选]一般系数按2倍选取电容器保护[BRN型或德国西霸电容器专用熔断器]:I=(1.43-1.55)电容器额定电流[查标准值后按最接近值选]电动机保护:最好按产品样本直接选取。

电流互感器S1_S2_指的是二次电流输出端

电流互感器S1_S2_指的是二次电流输出端

电流互感器接线方式额定变比和误差互感器的额定变比KN指电压互感器的额定电压比和电流互感器的额定电流比。

前者定义为原边绕组额定电压U1N与副边绕组额定电压U2N之比;后者则为额定电流I1N与I2N之比。

即KN=U1N/U2N(对电压互感器)KN=I1N/I2N电压(或电流)互感器原边电压表(或电流表)在一定范围内变动时,一般规定为0.85~1.15U1N(或10~120%I1N),副边电压(或电流)应按比例变化,而且原、副边电压(或电流)应该同相位。

但由于互感器存在内阻抗、励磁电流和损耗等因素而使比值及相位出现误差,分别称为比差和角差。

比差为经折算后的二次电压(或二次电流)与一次电压(或一次电流)量值大小之差对后者之比,即fU 为电压互感器的比差,fI 为电流互感器的比差。

当KNU2>U1(或KNI2>I1)时,比差为正,反之为负。

对没有采取补偿措施的电压互感器,比差为负,角差一般为正值,比差的绝对值和角差均随电压的增大而减小;铁心饱和时,比差与角差均随电压的增大而增大。

对于没有采取补偿措施的电流互感器,比差为负值,角差为正值,比差的绝对值和角差均随电流增大而减小。

采用补偿的办法可以减小互感器的误差。

一般通过在互感器上加绕附加绕组或增添附加铁心,以及接入相应的电阻、电感、电容元件来补偿。

常用的补偿法有匝数补偿、分数匝补偿、小铁心补偿、并联电容补偿等。

以下是电表电流互感器接线图电流互感器S1 S2 指的是二次电流输出端,接地端就是指电流互感器接地点,电流互感器的端子标S1,S2(K1,K2)S1 或K1 接电流信号S2或K2 接地不要弄错了,一定不能接反电流互感器标准规定,电流互感器一次线圈首端标为L1或P1,尾端标为L2或P2;二次线圈的首端标为K1,尾端标为K2。

在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。

接线端P1/P2,一次的接线端S1/S2,二次的接线端。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。

一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。

电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。

电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想;2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点;3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量の计算及选择1 引言电流互感器在电力系统中起着重要の作用,电流互感器の工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用の电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备の安全,也使仪表和继电器の制造简单化、标准化,提高了经济效益。

(完整版)电压互感器容量计算

(完整版)电压互感器容量计算

电压互感器的容量
我们使用电压互感器就是想知道一次系统的电压,是一个测量设备,测量设备最主要的参数就是测量精度,而电压互感器的容量,就是决定测量精度的关健因素;虽然电压互感器的精度是在制造完成后就固定了,但电压互感器的特殊之处在于,其所带的负荷大小能够影响二次输出电压,也就是影响“比差”的大小,因而在有计量、测量等与精度有关的用途时,就要验算选用的电压互感器是否在误差允许范围之内了;使用中的电压互感器,常采用实际测量的方法,主要是电压互感器在负载下的“角差”和“比差”在误差允许范围内;选用设备时,先通过统计计算,汇总出电压互感器所带的总负荷,再根据厂家产品样本,选出在负荷下能够保障精度的容量即可;110KV以下的电压互感器大多是用熔断器保护的,为它设计的专门熔断器型号是RN2型,都是0.5A,没有选择的,在一次设备保护上用的RN1型熔断器理论上是不能用在电压互感器上的;如果要计算电压互感器的额定电流是比较简单的,就和计算变压器的额定电流是一样的;如果一个10KV变电所的电压互感器是三相的,额定容量是30VA,则其一次额定电流就是:I=S/(1.732*U)=30/(1.732*10000)=0.001732A;如果一个10KV变电所的电压互感器是单相的,能接成V/V接线的那种,单台额定容量是30VA,则其一次额定电流就是:I=S/U=30/10000=0.003A;如果一个10KV变电所的电压互感器是单相的,能接成Y/Y/开口三角接线的那种,单台额定容量是30VA,则其一次额定电流就是:I=1.732*S/U=1.732*30/10000=0.0052A;。

电流互感器和电压互感器选择及计算规程--注册电气注册工程师(发输变电专业)

电流互感器和电压互感器选择及计算规程--注册电气注册工程师(发输变电专业)

4 测量用电流互感器选择
4.1 类型选择 4.1.1 电流互感器类型应根据电力系统测量和计量系统的实际需要合理选 择。在工作电流变化范围较大情况下作准确计量时应选用S类电流互感器。 为保证二次电流在合适的范围内,可采用复合变比或二次绕组带抽头的电 流互感器。 4.1.2 电能关口计量装置应设置S类专用电流互感器或专用二次绕组。对 于发供电企业内部经济技术指标分析,以及考核用的电能计量装置,在满 足准确度条件下,可与常规测量仪表共用一个二次绕组。
没有一次绕组和一次绝缘。直接安装在绝缘的电缆上使用的电流互感 器。 2.1.5 分裂铁心电流互感器 split core type current transformer
没有一次导体和一次绝缘,其磁路可以铰链方式打开(或以其他方式 分为两个部分),套在载有被测电流的绝缘导线上,然后闭合电流互感器。
2.术语和符号
4 测量用电流互感器选择
4.2 额定参数选择 4.2.1 测量用电流互感器二次负荷不应超出规定的保证准确级的负荷范 围。 4.2.2 测量用电流互感器额定一次电流应接近但不低于一次回路正常最 大负荷电流。对于指示仪表,为使仪表在正常运行和过负荷运行时能有适 当指示,电流互感器额定一次电流不宜小于1.25倍一次设备的额定电流或 线路最大负荷电流,对于直接起动电动机的测量仪表用电流互感器额定一 次电流不宜小于1.5倍电动机额定电流。 4.2.3 为适应电力系统的发展变化或测量仪表与继电保护的不同要求, 测量用电流互感器可选用较小变比互感器或二次绕组带抽头的互感器。 4.2.4 为在故障时一次回路短时通过大短路电流不致损坏测量仪表,测 量用电流互感器宜选用具有仪表保安限值的互感器,仪表保安系数宜选择 10,也可选择5。 4.2.5 当采用具有电流扩大值特性的电流互感器时,其连续热电流可选 用额定一次电流的120%,特殊情况可选用150%或200%。

DL/T 866-2004 电流互感器和电压互感器选择及计算导则

DL/T 866-2004  电流互感器和电压互感器选择及计算导则

目次前言1范围2规范性引用文件3术语、定义和符号3.1电流互感器术语和定义3.2电压互感器术语和定义3.3符号4电流互感器应用的一般问题4.1基本特性及应用4.2电流互感器的配置4.3一次参数选择4.4二次参数选择5测量用电流互感器5.1类型及额定参数选择5.2准确级选择5.3二次负荷选择及计算6保护用电流互感器6.1性能要求6.2类型选择6.3额定参数选择6.4准确级及误差限值6.5稳态性能验算6.6二次负荷计算7TP类保护用电流互感器7.1电流互感器暂态特性基本计算式7.2TP类电流互感器参数7.3TP类电流互感器的误差限值和规范7.4TP类电流互感器的应用7.5TP类电流互感器的性能计算8电压互感器8.1分类及应用8.2配置和接线8.3一次电压选择8.4二次绕组和电压选择8.5准确等级和误差限值8.6二次绕组容量选择及计算8.7电压互感器的特殊问题附录A(资料性附录)TP类电流互感器的暂态特性附录B(资料性附录)测量仪表和保护装置电流回路功耗附录C(资料性附录)P类或PR类电流互感器应用示例附录D(资料性附录)TP类电流互感器应用示例附录E(资料性附录)电子式互感器简介前言随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。

为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。

有关电流互感器和电压互感器的国家标准和行业标准对互感器的技术规范和订货技术条件作了规定,本标准是对电力工程中如何选定这些规范和需要进行的相应计算方法作出规定,并对新产品开发提出要求。

本标准主要适用于工程广泛使用的常规电流互感器和电压互感器。

对于新开发的尚未普遍应用的新型电子式互感器,仅在附录中给出简要介绍。

本标准的附录均为资料性附录。

本标准由中国电力企业联合会提出。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择

电流互感器容量选择电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。

一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。

电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA或30VA,特殊情况可选的更大一些。

电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。

考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA 或10VA就可以满足要求。

建议按三个方面综合考虑:1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想;2、计量用的互感器就选精确度高点(级足矣),测量用的可以更低点;3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点:1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来;2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件;3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器;4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多;5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。

电流互感器二次容量的计算及选择1 引言电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。

它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录C 电流互感器额定二次容量计算方法
电流互感器实际二次负荷(计算负荷)按公式(1)计算:
2222()I n jx l jx m k S I K R K Z R =+∑+ (1)
2nI S =K ×2I S
电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。

l L
R A ρ= (2)
式中:
2I S ——电流互感器实际二次负荷(计算负荷),VA
2nI
S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3
A ——二次回路导线截面, 2mm
ρ——铜导电率,257m /mm )ρ=Ω,(•
L ——二次回路导线单根长度,m
l R ——二次回路导线电阻,Ω
jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2
jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入
90,其余为1。

2n
I ——电流互感器二次额定电流,A ,一般为5A 或1A 。

m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。

m
Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之
和。

k R ——二次回路接头接触电阻,一般取0.05~0.1
根据上述的设定,以二次额定电流为5A ,分相接法,4 mm ²的电缆长100米,本计量点接入2个三相电子表为例,
222221.5()
21001.55(
120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ = =(VA)
取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。

而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为:
222221.5()
11005(
120.050.1)574I n jx l jx m k S I K R K Z R =+∑+⨯⨯⨯+⨯⨯+⨯ =1.5 =24(VA)
取30VA 。

附录D 电压互感器额定二次容量选择方法
电压互感器的实际二次负载按公式(3)计算:
22Y n U S U =2 (3)
因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。

2U b
S S =∑ (4) b S ——电能表单相电压回路功耗
根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:。

相关文档
最新文档