2014年北京市海淀区中考数学一模试题及答案

合集下载

海淀区初三年级第一学期期末练习试卷答案2014.1数学

海淀区初三年级第一学期期末练习试卷答案2014.1数学

海淀区九年级第一学期期末练习2014.1数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)9.<;10.130;11.0,22y x x =-(每空2分);12.70,180αβ-- (每空2分). 三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)0(2013)|-+- 1=+………………………………………………………………4分1=.…………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为(3)2(3)0x x x -+-=. ……………………………………………1分(3)(2)0x x -+=,30x -=或20x +=,……………………………………………………………4分 ∴123 2x ,x ==-.…………………………………………………………………5分15.(本小题满分5分)证明:∵90B ∠= ,∴90A ACB ∠+∠= .∵C 为线段BD 上一点,且AC CE ⊥,∴90ACB ECD ∠+∠=.∴A ECD ∠=∠.…………………………………………………………………2分 ∵B D ∠=∠=90 ,…………………………………………………………………3分 ∴△ABC ∽△CDE .………………………………………………………………4分 ∴AB BC CDDE=.………………………………………………………………………5分EDCBA16.(本小题满分5分)解:∵抛物线2y x bx c =++过(0,-1),(3,2)两点,∴1,293c b c.-=⎧⎨=++⎩解得,12c ,b .=-⎧⎨=-⎩………………………………………………………………………2分∴抛物线的解析式为221y x x =--.……………………………………………3分 ∵2221(1)2y x x x =--=--,……………………………………………………4分 ∴抛物线的顶点坐标为(1,-2).……………………………………………5分17.(本小题满分5分)证明:∵AD ∥BC ,∴ADB DBC ∠=∠.………………………………………………………………1分 ∵BD CD =, ∴DBC C ∠=∠.……………………………………………………………………2分 ∴ADB C ∠=∠.…………………………………………………………………3分 在△ABD 与△EDC 中, ,,,AD EC ADB C BD DC =∠=∠=⎧⎪⎨⎪⎩∴△ABD ≌△EDC .………………………………………………………………4分 ∴AB ED =.……………………………………………………………………5分18.(本小题满分5分)解:(1)∵关于x 的方程22+10x x k +-=有实数根,∴44(1)0k ∆=--≥.………………………………………………………1分解不等式得,2k ≤.………………………………………………………2分 (2)由(1)可知,2k ≤,∴k 的最大整数值为2.………………………………………………………3分 此时原方程为2210x x ++=.………………………………………………4分 解得, 121x x ==-.…………………………………………………………5分E DCB A四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)设扇形的弧长为l 米.由题意可知,220l r +=. ∴202l r =-.∴21(202)+102S r r r r =-=-. …………………………………………………2分 其中410r <<.…………………………………………………………………3分 (2)∵22+10(5)25S r r r =-=--+.∴当5r =时,25S =最大值.……………………………………………………5分20.(本小题满分5分)解:(1)证明:连接OD .∵OC OD =, ∴13∠=∠.∵CD 平分∠PCO , ∴1=2∠∠.∴2=3∠∠.……………………………1分 ∵DE AP ⊥,∴2=90EDC ∠+∠ . ∴3=90EDC ∠+∠ . 即=90ODE ∠ . ∴OD DE ⊥.∴DE 为 O 的切线.…………………………………………………………2分(2)过点O 作OF AP ⊥于F .由垂径定理得,AF CF =. ∵8AC =,∴4AF =.………………………………………………………………………3分 ∵OD DE ⊥, DE AP ⊥, ∴四边形ODEF 为矩形. ∴OF DE =. ∵3DE =,∴3OF =.………………………………………………………………………4分 在Rt △AOF 中,222224325OA OF AF =+=+=. ∴5OA =.∴210AB OA ==.………………………………………………………………5分21.(本小题满分5分)解:(1)1y <2y .……………………………………………………………………2分 (2)∵二次函数22y x m =+的图象经过点(0,-4),∴m = -4.……………………………………………………………………3分∵四边形ABCD 为正方形,又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴, ∴OD=OC ,=BCOE S S 阴影矩形. 设点B 的坐标为(n ,2n )(n >0), ∵点B 在二次函数224y x =-的图象上, ∴2224n n =-.解得,122,1n n ==-(舍负).…………………………………………4分 ∴点B 的坐标为(2,4).∴=BCOE S S 阴影矩形=2⨯4=8.…………………………………………………5分22.(本小题满分5分)(1) 4 , 2 ,-1 ,-7 .(最后两空可交换顺序)………2分 (2)(3)(1)5x x -+=.原方程可变形,得[(1)2][(1)2]5x x ---+=.……………………………3分22(1)25x --=, 22(1)52x -=+,2(1)9x -=.……………………………………………………………4分直接开平方并整理,得124, 2x x ==-.………………………………………………………5分五、解答题(本题共22分,第23、24小题各7分,第25小题8分)23.(本小题满分7分)解:(1)令0y =,则2(1)210m x mx m --++=.∵2(2)4(1)(1)4m m m ∆=---+=, 解方程,得222(1)m x m ±=-.∴11x =,211m x m +=-. ∴抛物线与x 轴的交点坐标为(1,0),(11m m +-,0).…………………2分 (2)∵1m >,∴111m m +>-.由题意可知,1121m m +-=-.…………………………………………………3分 解得,2m =.经检验2m =是方程的解且符合题意.∴2m =.………………………………………………………………………4分 (3)∵一次函数y kx k =-的图象与抛物线始终只有一个公共点,∴方程2(1)21kx k m x mx m -=--++有两个相等的实数根. 整理该方程,得2(1)(2)10m x m k x m k --++++=,∴222(2)4(1)(1)44(2)0m k m m k k k k ∆=+--++=++=+=, 解得122k k ==-.…………………………………………………………6分 ∴一次函数的解析式为22y x =-+.………………………………………7分24.(本小题满分7分)解:(1)证明:∵四边形ABCD 和CEFG 为正方形,∴BC DC =,CG CE =,90BCD GCE ∠=∠=︒. ∴BCD DCG GCE DCG ∠+∠=∠+∠.BCG DCE ∠=∠即:.……………………1分 ∴△BCG ≌△DCE .∴BG DE =.………………………………2分(2)①连接BE .由(1)可知:BG=DE . ∵//CG BD ,∴=45DCG BDC ∠∠=︒.∴9045135BCG BCD GCD ∠=∠+∠=︒+︒=︒. ∵90GCE ∠=︒,∴36036013590135BCE BCG GCE ∠=︒-∠-∠=︒-︒-︒=︒. ∴=BCG BCE ∠∠.…………………………3分 ∵BC BC CG CE ==,, ∴△BCG ≌△BCE .∴BG BE =.………………………………4分 ∵BG BD DE ==, ∴BD BE DE ==. ∴△BDE 为等边三角形.∴60.BDE ∠=︒…………………………5分②正方形CEFG1.……………………………………………7分ABCDFGB25.(本小题满分8分)解:(1)∵点D (1,m )在232y x bx b =++图象的对称轴上,∴112b -=. ∴2b =-.∴二次函数的解析式为223y x x =--.………………………………………1分 ∴C (1,-4).…………………………………………………………………2分(2)∵D (1,1),且DE 垂直于y 轴, ∴点E 的纵坐标为1,DE 平行于x 轴. ∴DEB EBO ∠=∠.令1y =,则2231x x --=,解得121xx ==∵点E 位于对称轴右侧,∴E (1+. ∴DE令0y =,则223=0x x --,求得点A 的坐标为(3,0),点B 的坐标为(-1,0). ∴BD =.∴BD =DE .……………………………………………………………………3分∴DEB DBE ∠=∠. ∴DBE EBO ∠=∠.∴BE 平分ABD ∠.……………………………………………………………4分 (3)∵以A 、C 、G 为顶点的三角形与以G 、D 、E 为顶点的三角形相似,且△GDE 为直角三角形, ∴△ACG 为直角三角形.∵G 在抛物线对称轴上且位于第一象限, ∴90CAG ∠= .∵A (3,0)C (1,-4),A F C G ⊥,∴求得G 点坐标为(1,1). ∴AG AC = ∴AC =2AG .∴GD =2DE 或DE =2GD .图1图2设()2, 23E t t t --(t >1),1︒.当点D 在点G 的上方时,则DE=t -1,GD =(223t t --)1-=224t t --. i.如图2,当GD =2DE 时, 则有,224t t --=2(t -1).解得,=2t 舍负)………………………5分 ii. 如图3,当DE =2GD 时, 则有,t -1=2(224t t --). 解得,127=1=2t t -,.(舍负)…………………6分 2︒.当点D 在点G 的下方时,则DE=t -1,GD =1- (223t t --)=-2+2+4t t . i.如图4,当GD =2DE 时, 则有,2+2+4t t -=2(t -1).解得,=t ±舍负)………………………7分 ii. 如图5,当DE =2GD 时, 则有,t -1=2(2+2+4t t -). 解得,123=3=2t t -,.(舍负) …………………8分 综上,E点的横坐标为或72或3.图3图4图5。

【2014海淀一模】北京市海淀区2014届高三下学期期中练习数学文扫描版含答案

【2014海淀一模】北京市海淀区2014届高三下学期期中练习数学文扫描版含答案

海淀区高三年级第二学期期中练习参考答案数学(文科)2014.4 阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.B2.B3.C4.C5.A6.D7. C8.B二、填空题:本大题共6小题,每小题5分,共30分.9. 1 10. 方案三11. 35,712. ③,2()817f x x x=-+13. 15214.π[0,)2{说明:两空的第一空3分,第二空2分;14题的第二空若写成π(0,)2不扣分}三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.解:(Ⅰ)ππππ()sin sin()6663f=-----------------------------------1分ππsin sin()66=-----------------------------------2分ππsin sin66=+---------------------------------3分π2sin16==---------------------------------4分(Ⅱ)1()sin sin22f x x x x=-+---------------------------------6分1sin2x x=+sin()3xπ=+--------------------------------8分因为ππ22x-≤≤所以ππ5π636x-≤+≤--------------------------------10分所以1πsin()123x -≤+≤ --------------------------------12分所以()f x 的取值范围是1[,1]2- --------------------------------13分16.解:(Ⅰ)答对题目数小于9道的人数为55人,记“答对题目数大于等于9道”为事件A55()10.45100P A =-= --------------------------------5分 (Ⅱ)设答对题目数少于8道的司机为 A 、B 、C 、D 、E ,其中A 、B 为女司机 ,选出两人包含AB 、AC 、AD 、AE 、BC 、BD 、BE 、CD 、CE 、DE 共10种情况,至少有1名女驾驶员的事件为AB 、AC 、AD 、AE 、BC 、BD 、BE 共7种.记“随机选出的两人中至少有1名女驾驶员”为事件M ,则7()0.710P M == --------------------------------13分 17.解:(Ⅰ)因为D ,M 分别为,AC BD 中点,所以DM //EF ---------------------2分 又1EF A EF ⊂平面,1DM A EF ⊄平面所以1//DM A EF 平面. -----------------------4分 (Ⅱ)因为1A E BD ⊥,EF BD ⊥且1A EEF E =所以1BD A EF ⊥平面 -------------7分 又11A F A EF ⊂平面所以1BD A F ⊥ ------------------------9分(Ⅲ)直线1A B 与直线CD 不能垂直 ---------------------------------------10分因为1A BD BCD ⊥平面平面,1A BDBCD BD =平面平面,EF BD ⊥,EF CBD ⊂平面,所以 1EF A BD ⊥平面. ---------------------------------------12分 因为11A B A BD ⊂平面,所以1A B EF ⊥, 又因为//EF DM ,所以1A B DM ⊥. 假设1A B CD ⊥,因为1A B DM ⊥,CDDM D =,所以1A B BCD ⊥平面, ------------------------------------------13分 所以1A B BD ⊥,这与1A BD ∠为锐角矛盾所以直线1A B 与直线CD 不能垂直. ---------------------------------------14分18.解:(Ⅰ) 定义域为()0,+∞ ------------------------------------1分'()ln 1f x x =+ ------------------------------------2分令'()0f x =,得 1ex =------------------------------------3分 '()f x 与()f x 的情况如下:分所以()f x 的单调减区间为1(0,)e ,单调增区间为1(,)e+∞--------------------------6分 (Ⅱ) 证明1:设1()ln g x x x=+,0x > ------------------------------------7分 22111'()x g x x x x-=-= -------------------------------8分 '()g x 与()g x 的情况如下:所以()(1)1g x g ≥=,即 1ln 1x x+≥在0x >时恒成立, ----------------------10分 所以,当1k ≤时,1ln x k x+≥, 所以ln 1x x kx +≥,即ln 1x x kx ≥-,所以,当1k ≤时,有()1f x kx ≥-. ------------------------13分 证明2:令()()(1)ln 1g x f x kx x x kx =--=-+ ----------------------------------7分'()ln 1g x x k =+- -----------------------------------8分令'()0g x =,得1e k x -= -----------------------------------9分'()g x 与()g x 的情况如下:分()g x 的最小值为11(e )1e k k g --=- -------------------11分当1k ≤时,1e 1k -≤,所以11e 0k --≥故()0g x ≥ -----------------------------12分 即当1k ≤时,()1f x kx ≥-. ------------------------------------13分 19.解:(Ⅰ)证明:因为,A B 在椭圆上,所以2211222224,2 4.x y x y ②①ìï+=ïíï+=ïî -----------------------------------1分 因为,A B 关于点(1,0)M 对称,所以12122,0x x y y +=+=, --------------------------------2分将21212,x x y y =-=-代入②得2211(2)24x y -+= ③,由①和③消1y 解得11x =, ------------------------------------------4分 所以 121x x ==. ------------------------------------------5分 (Ⅱ)当直线AB不存在斜率时,(0,A B -,可得AB MA ==∆ABM 不是等边三角形. -----------------------6分当直线AB 存在斜率时,显然斜率不为0.设直线AB :3y kx =+,AB 中点为00(,)N x y ,联立2224,3,x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)12140k x kx +++=, ------------------7分2221444(12)143256k k k ∆=-+⋅=-由0∆>,得到274k >① -----------------------------------8分 又1221212kx x k -+=+, 1221412x x k⋅=+ 所以0002263,31212k x y kx k k -==+=++, 所以 2263(,)1212k N k k-++ -------------------------------------------10分 假设∆ABM 为等边三角形,则有⊥MN AB , 又因为(1,0)M ,所以1MNk k ⨯=-, 即2231216112k k kk +⨯=---+, ---------------------11分 化简 22310k k ++=,解得1=-k 或12k =----------------12分 这与①式矛盾,所以假设不成立.因此对于任意k 不能使得⊥MN AB ,故∆ABM 不能为等边三角形. ------------14分 20.解:(Ⅰ)有序整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列.-------------------------1分理由如下:由题设可知 1223(3,2),(2,2)=-=A A A A ,1223(2,3)(33)B B B B ==-,,, 因为 12120=A A B B ,23230=A A B B 所以 12122323⊥⊥A A B B A A B B ,.所以整点列123(0,2),(3,0),(5,2)A A A 与123(0,2),(2,5),(5,2)B B B 互为正交点列. ----------------------------3分 (Ⅱ)证明 :由题意可得 122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)B B B B B B λλλ=-==-,,123λλλ∈,,Z 因为1144,与与A B A B 相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9①3+3+3=1②因为λλλ∈123,,Z ,方程②不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列.----------8分 (Ⅲ)存在无正交点列的整点列(5)A . -------------------------------------------9分当5n =时,设1(,),,,i i i i i i A A a b a b +=∈Z 其中,i i a b 是一对互质整数,1,2,3,4i = 若有序整点列12345,,,,B B B B B 是点列12345,,,,A A A A A 的正交点列, 则1(,),1,2,3,4i i i i i B B b a i λ+=-= ,由441i+1=11+==∑∑i i i i i A AB B得44=1144=11,.i i i i i i i i i i b a a b λλ==⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①②取1,(0,0)A =3,1,2,3,4i a i =,12342,1,1,1b b b b ==-==- 由于12345,,,,B B B B B 是整点列,所以有,1,2,3,4i i λ∈=Z .等式②中左边是3的倍数,右边等于1,等式不成立,所以存在无正交点列的整点列(5)A . -----------------------------------13分。

2014海淀一模数学试题参考答案(理科)2014海淀一模数学试题参考答案(理科)

2014海淀一模数学试题参考答案(理科)2014海淀一模数学试题参考答案(理科)

海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2.其它正确解法可以参照评分标准按相应步骤给分。

一、选择题:本大题共8小题,每小题5分,共40分.1.C2.D3.D4. A5.B6. B7.C8. B二、填空题:本大题共6小题,每小题5分,共30分.9.9610.1611.212.3413.32414.9;3 (本题第一空3分,第二空2分)三、解答题: 本大题共6小题,共80分.15.解: (Ⅰ)π()sin3f x x = ---------------------------2分(1)(0)(0)1f fg -=------------------------------3分π3sinsin 03=-=.-------------------------------5分(Ⅱ)(1)()π()sin()sin 1333f t f tg t t t t t ππ+-==+-+-------------------------------6分πππsincos cos sin sin 33333t t t ππ=+- ------------------------------7分1π3πsin 233t t =-------------------------------8分ππsin()33t =--------------------------------10分因为33[,]22t ∈-,所以ππ5ππ[,]3366t -∈-,------------------------------11分所以π1sin()[1,]332t π-∈-,-----------------------------12分所以()g t 在33[,]22-上的取值范围是1[,1]2------------------------------13分16.解:(Ⅰ)甲公司员工A 投递快递件数的平均数为36,众数为33. --------------------------------2分(Ⅱ)设a 为乙公司员工B 投递件数,则当a =34时,X =136元,当a >35时,354(35)7X a =⨯+-⨯元,X 的可能取值为136,147,154,189,203 -------------------------------4分{说明:X 取值都对给4分,若计算有错,在4分基础上错1个扣1分,4分扣完为止}X 的分布列为:X136147154189203P110310 210 310110--------------------------------------9分{说明:每个概率值给1分,不化简不扣分,随机变量值计算错误的此处不再重复扣分}13231()1361471541892031010101010E X =⨯+⨯+⨯+⨯+⨯ 1655==165.5()10元--------------------------------------11分(Ⅲ)根据图中数据,可估算甲公司被抽取员工该月收入4860元,乙公司被抽取员工该月收入4965元.------------------------------------13分17.(Ⅰ)因为平面ABD ⊥平面BCD ,交线为BD ,又在ABD ∆中,AE BD ⊥于E ,AE ⊂平面ABD所以AE ⊥平面BCD .--------------------------------------3分(Ⅱ)由(Ⅰ)结论AE ⊥平面BCD 可得AE EF ⊥.由题意可知EF BD ⊥,又AE ⊥BD .如图,以E 为坐标原点,分别以,,EF ED EA 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系E xyz ---------------------------4分不妨设2AB BD DC AD ====,则1BE ED ==. 由图1条件计算得,3AE =23BC =3BF =则3(0,0,0),(0,1,0),(0,1,0),3),((3,2,0)3E D B AF C --------5分 (3,1,0),(0,1,3)DC AD ==.由AE ⊥平面BCD 可知平面DCB 的法向量为EA . -----------------------------------6分设平面ADC 的法向量为(,,)x y z =n ,则0,0.DC AD ⎧⋅=⎪⎨⋅=⎪⎩n n 即30,30.x y y z +=-=⎪⎩ 令1z =,则3,1y x ==,所以3,1)=-n .------------------------------------8分平面DCB 的法向量为EA 所以5cos ,||||EA EA EA ⋅<>==⋅n n n , 所以二面角A DC B --5------------------------------9分(Ⅲ)设AM AF λ=,其中[0,1]λ∈.由于3(3)3AF =, yzxE CA 1D F所以3(3)3AM AF λλ==,其中[0,1]λ∈ --------------------------10分所以3,0,(1)33EM EA AM λ⎛=+=- ⎝--------------------------11分由0EM ⋅=n ,即3303λλ=-(1-)---------------------------12分解得3=(0,1)4λ∈.-----------------------------13分所以在线段AF 上存在点M 使EM ADC ∥平面,且34AM AF =.-------------14分 18.解(Ⅰ)e axy a '=,-----------------------------------2分因为曲线C 在点(0,1)处的切线为L :2y x m =+,所以120m =⨯+且0|2x y ='=.----------------------------------4分解得1m =,2a =-----------------------------------5分(Ⅱ)法1:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于 ∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e 0axax b -->恒成立,--------------------------------------6分令()e axg x ax b =--,----------------------------------------7分①若a=0,则()1g x b =-,所以实数b 的取值范围是1b <;----------------------------------------8分②若0a ≠,()(e 1)axg x a '=-,由'()0g x =得0x =, ----------------------------------------9分'(),g x 的情况如下:x0∞(-,)0 ∞(0,+)'()g x -+()g x极小值-----------------------------------------11分所以()g x 的最小值为(0)1g b =-,-------------------------------------------12分所以实数b 的取值范围是1b <;综上,实数b 的取值范围是1b <.--------------------------------------13分法2:对于任意实数a ,曲线C 总在直线的y ax b =+的上方,等价于∀x ,a R ∈,都有eaxax b >+,即∀x ,a ∈R ,e ax b ax <-恒成立, -------------------------------------------6分令t ax =,则等价于∀t ∈R ,e tb t <-恒成立,令()e t g t t =-,则()e 1tg t '=-,-----------------------------------------7分由'()0g t =得0t =, ----------------------------------------9分'(),(g t g t 的情况如下:t 0∞(-,)0 ∞(0,+)'()g t -+()g t极小值-----------------------------------------11分所以()e tg t t =-的最小值为(0)1g =, ------------------------------------------12分实数b 的取值范围是1b <. --------------------------------------------13分19.解:(Ⅰ)设00(,)A x y ,00(,)-B x y ,---------------------------------------1分因为∆ABM 为等边三角形,所以003||1|=-y x . ---------------------------------2分又点00(,)A x y 在椭圆上,所以0022003|||1|,3239,y x x y ⎧=-⎪⎨⎪+=⎩消去0y ,-----------------------------------------3分得到2003280--=x x ,解得02=x 或043=-x ,----------------------------------4分当02=x 时,23||3=AB ; 当043=-x 时,143||9=AB .-----------------------------------------5分{说明:若少一种情况扣2分}(Ⅱ)法1:根据题意可知,直线AB 斜率存在.设直线AB :=+y kx m ,11(,)A x y ,22(,)B x y ,AB 中点为00(,)N x y ,联立22239,⎧+=⎨=+⎩x y y kx m消去y 得222(23)6390+++-=k x kmx m ,------------------6分由0∆>得到222960--<m k ① ----------------------------7分所以122623+=-+kmx x k ,121224()223+=++=+my y k x x m k , ----------------------------8分所以2232(,)2323-++km mN k k ,又(1,0)M如果∆ABM 为等边三角形,则有⊥MN AB , --------------------------9分所以1MN k k ⨯=-,即2222313123mk k km k+⨯=---+,------------------------------10分化简2320k km ++=,②------------------------------11分由②得232k m k+=-,代入①得2222(32)23(32)0k k k +-+<,化简得2340+<k ,不成立,-------------------------------------13分{此步化简成42291880k k k++<或4291880k k ++<或22(32)(34)0k k ++<都给分} 故∆ABM 不能为等边三角形.-------------------------------------14分法2:设11(,)A x y ,则2211239x y +=,且1[3,3]x ∈-,所以222221111121||(1)(1)3(3)133MA x y x x x =-+=-+-=-+----------------8分 设22(,)B x y ,同理可得221||(3)13MB x =-+2[3,3]x ∈- -----------------9分因为21(3)13y x =-+在[3,3]-上单调 所以,有12x x =⇔||||MA MB =, ---------------------------------11分因为,A B 不关于x 轴对称,所以12x x ≠.所以||||MA MB ≠, ---------------------------------13分所以∆ABM 不可能为等边三角形. ---------------------------------14分20.解:(Ⅰ)设点列123(0,2),(3,0),(5,2)A A A 的正交点列是123,,B B B ,由正交点列的定义可知13(0,2),(5,2)B B ,设2(,)B x y ,1223(3,2),(2,2)=-=A A A A ,1223(,2)(5,2)=-=--B B x y B B x y ,,由正交点列的定义可知12120A A B B ⋅=,23230A A B B ⋅=,即32(2)0,,2(5)2(2)0x y x y --=⎧⎨-+-=⎩解得25=⎧⎨=⎩x y 所以点列123(0,2),(3,0),(5,2)A A A 的正交点列是123(0,2),(2,5),(5,2)B B B .------3分 (Ⅱ)由题可得122334(3,1),(3,1)(3,1)A A A A A A ==-=,, 设点列1234,,,B B B B 是点列1234,,,A A A A 的正交点列,则可设121232343(1,3),(1,3)(1,3)λλλ=-==-B B B B B B ,,λλλ∈123,,Z 因为1144,A B A B 与与相同,所以有λλλλλλ⎧⎪⎨⎪⎩123123-+-=9,(1)3+3+3=1.(2)因为λλλ∈123,,Z ,方程(2)显然不成立,所以有序整点列12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列;---------------8分(Ⅲ)5n n ∀≥∈,N ,都存在整点列()A n 无正交点列. -------------------------9分5n n ∀≥∈,N ,设1(,),i i i i A A a b +=其中,i i a b 是一对互质整数,1,2,3,1i n =-若有序整点列123,,,n B B B B 是点列123,,,n A A A A 正交点列,则1(,),1,2,3,,1λ+=-=-i i i i i B B b a i n ,则有11=1111=11,(1).(2)n n i i i i i n n i i i i i b a a b λλ--=--=⎧-=⎪⎪⎨⎪=⎪⎩∑∑∑∑①当n 为偶数时,取1,(0,0)A 1,=3=,1,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数.由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列;②当n 为奇数时,取1,(0,0)A 11=3,2=a b ,1,=3=,2,3,,1-1⎧=-⎨⎩i i i a b i n i 为奇数,,为偶数, 由于123,,,n B B B B 是整点列,所以有i λ∈Z ,1,2,3,,1i n =-.等式(2)中左边是3的倍数,右边等于1,等式不成立, 所以该点列123,,,n A A A A 无正交点列.综上所述,5n n ∀≥∈,N ,都不存在无正交点列的有序整数点列()A n ----------13分。

2014北京海淀区中考一模数学试卷

2014北京海淀区中考一模数学试卷

相关信息链接: 北达教育|北京高考网|北京中考网|北京小学网|新浪微博|新浪博客|论坛|QQ群北达教育学校简介北达教育总部位于北京大学校内,分校遍及北京各城区40多所,多年来被家长认可的教育机构,法制晚报曾报道:是什么让北达教育成为京城良好口碑课外辅导品牌?为此北达教育被法制晚报评为:公众最信赖知名教育品牌!曾多次被新浪网,中国网评为课外绿色发展机构!北达教育旗下北京中考网()为北京咨询;报考;体育咨询;体检;填报志愿等综合门户网站,论坛在线人数已超35896位。

○1开课背景:针对每年京籍外地回京家长求学难现状特开设2014年外地回京全日制班,以满足外地回京考生尽快适应北京中考考点、难点及最新中考动态等。

同时针对北京公立中学班级人数过多、成绩层次不同、部分潜力学生成为学校忽视对象等,也可以报名。

○2教学大纲:以2014年北京中考《考试说明》为风向标,兼顾每个考点,详细讲解重点难点。

在授课过程中融入中考思维、答题思路、考试技巧等知识的传授。

○3授课讲义:各科老师总结多年北京中考经验整理编排出独家讲义、习题,根据学生学习情况和中考考点设臵难易程度,目的性强,阶段性提高。

○4办学成绩:13年的中考培优经历,有多年辅导中考经验的优秀教师,上千位优秀学员的坚定选择,成就了北达教育。

○5教学效果:学生的努力,专业老师辅导,共同创造中考辉煌!外辅导部北达教育初高中课外辅导部是专门从事初、高中特别是中考、高考考试成功等教学辅导、学习方法研究的机构。

办学来该校成功举办多年初中高中假期(暑假、寒假)辅导班、初中高中(春季、秋季)周末班、中考高考复读班、中考高考考前冲刺班中考高考(压题)串讲班、家教一对一。

北达教育学校中学部以中考高考成功为中心,以突破学生学习瓶颈,提高学生成绩获得考试成功为宗旨,坚持诚信教学,育人为本,积极打造北达教育知名品牌,多年来经过全体教职工的不懈努力,取得了辉煌的成绩。

现在已发展成为北京实力最大、师资精良、教学过硬、口碑良好、学生成绩在短期提高成绩最快的专业化中学生教学辅导学校。

1、2014年北京市各城区中考一模数学—选择题第8题

1、2014年北京市各城区中考一模数学—选择题第8题

2014年北京市各城区中考一模数学—选择题第8题1、(2014年门头沟一模)8.如图3,是由矩形和半圆组成的一个封闭图形,其中AB =8,AD=DE=FC =2,点P 由D 点出发沿DE →半圆→FC 运动,到达C 点停止运动.设AP 的长为x , △ABP 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )2、(2014年丰台一模)8. 如图,在矩形ABCD 中,AB=4cm ,AD =,E 为CD 边上的中点,点P 从点A 沿折线AE EC -运动到点C 时停止,点Q 从点A 沿折线AB BC -运动到点C 时停止,它们运动的速度都是s cm /1.如果点P ,Q 同时开始运动,设运动时间为)(s t ,APQ ∆的面积为)(2cm y ,则y 与t 的函数关系的图象可能是( )3、(2014年平谷一模)8.如图,在矩形ABCD 中,AB =9,BC =3,点E 是沿A →B 方向运动,点F 是沿A →D →C 方向运动.现E 、F 两点同时出发匀速运动,设点E 的运动速度为每秒1个单位长度,点F 的运动速度为每秒3个单位长度,当点F 运动到C 点时,点E 立即停止运动.连接EF ,设点E 的运动时间为x 秒,EF 的长度为y 个单位长度,则下列图象中,能表示y 与x 的函数关系的图象大致是( )4、(2014年顺义一模)8.如图,点C 为⊙O 的直径AB 上一动点,2AB =,过点C 作DE AB ⊥交⊙O 于点D 、E ,连结AD ,AE . 当点C 在AB 上运动时,设AC 的长为x ,ADE △的面积为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( )5、(2014年石景山一模)8.如图,边长为1的正方形ABCD 中有两个动点P ,Q ,点P 从点B 出发沿BD 作匀速运动,到达点D 后停止;同时点Q 从点B 出发,沿折线BC →CD 作匀速运动,P ,Q 两个点的速度都为每秒1个单位,如果其中一点停止运动,则另一点也停止运动.设P ,Q 两点的运动时间为x 秒,两点之间的距离为y ,下列图 象中,能表示y 与x 的函数关系的图象大致是 ( )6、(2014年海淀一模)8.如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )7、(2014年西城一模)8. 如图,在平面直角坐标系xOy 中,以点(23)A ,为顶点任作一直角PAQ ∠,使其两边分别与x 轴、y 轴的正半轴交于点P 、Q ,连接PQ ,过点A 作AH PQ ⊥于点H ,设点P 的横坐标为x ,AH 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )8、(2014年通州一模)8.如图,平行四边形纸片ABCD ,CD =5,BC =2,∠A =60°,将纸片折叠,使点A 落在射线AD 上(记为点A '),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )9、(2014年东城一模)8. 在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边分别交于点M ,N ,直线m 运动的时间为t (秒).设△OMN 的面积为S ,则能反映S 与t 之间函数关系的大致图象是( )10、(2014年朝阳一模)8.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是()A.(1)和(2)B.(3)和(4)C.(1)和(4)D.(2)、(3)、(4)11、(2014年密云一模)8..如右图,MN⊥PQ,垂足为点O,点A、C在直线MN上运动,点B、D在直线PQ上运动.顺次连结点A、B、C、D,围成四边形ABCD。

2014-2015学年北京市海淀区2015年九年级数学一模试题(word版,含答案)

2014-2015学年北京市海淀区2015年九年级数学一模试题(word版,含答案)

海 淀 区 九 年 级 第 二 学 期 期 中 练 习数 学2015.5下面各题均有四个选项,其中只有一个..是符合题意的. 1.2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为A . 50.1510⨯B .41.510⨯C .51.510⨯D .31510⨯ 2.右图是某几何体的三视图,该几何体是A. 三棱柱B. 三棱锥C. 长方体D.正方体 3.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为2A0BA .-1B .1C .-2D .24.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为A .12 B .45 C .49 D .595.如图,直线a 与直线b 平行,将三角板的直角顶点放在直线a 上,若∠1=40°,则∠2等于A . 40°B .50°C .60°D .140°6.如图,已知∠AOB .小明按如下步骤作图:ba 21(1)以点O 为圆心,适当长为半径画弧,交OA 于D ,交OB 于点E . (2)分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部相交于点C . (3)画射线OC .根据上述作图步骤,下列结论正确的是A .射线OC 是AOB ∠的平分线 B .线段DE 平分线段OC C .点O 和点C 关于直线DE 对称D .OE =CE7.某次比赛中,15名选手的成绩如图所示,则 这15名选手成绩的众数和中位数分别是 A .98,95 B .98,98 C .95,98 D .95,958. 甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S (单位:千米)与时间t (单位:分钟)的函数关系的图象如图所示,则图中a 等于A .1.2B .2C .2.4D .69.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若60B ∠=︒,AC =3,则CD 的长为A . 6 B. CD .310.小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象.如左下图所示.小明选择的物体可能是二、填空题(本题共18分,每小题3分) 11.分解因式:32a ab -=____________.12.写出一个函数y kx =(0k ≠),使它的图象与反比例函数1y x=的图象有公共点,这个函数的解析式为___________.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)14.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA AB ⊥,1AD =,BD BC 的长为__________. 15. 在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD =BC ”,小红说“添加AB =DC ” .你同意 的观点, 理由是 .16.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为 . 三、解答题(本题共30分,每小题5分)A B C D17.计算:2022cos60(3.14π)--+-o .18.解不等式组:345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥19.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.20.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A =∠F ,∠EBC =∠FCB . 求证: BE=CD .21.已知关于x 的方程220 (0)kx x k k--=≠. (1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根都是整数,求整数k 的值.22.列方程或方程组解应用题:为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)四、解答题(本题共20分,每小题5分)23.如图,在□ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于点F ,连接BE ,∠F =45°. (1)求证:四边形ABCD 是矩形; (2)若AB =14,DE =8,求sin ∠AEB 的值.24.根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为亿;(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有万人.25.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.26.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC 中,DE ∥BC 分别交AB 于D ,交AC 于E .已知CD ⊥BE ,CD =3,BE =5,求BC +DE 的值.小明发现,过点E 作EF ∥DC ,交BC 延长线于点F ,构造△BEF ,经过推理和计算能够使问题得到解决(如图2).图1 图2 图3请回答:BC +DE 的值为_______.参考小明思考问题的方法,解决问题:如图3,已知□ABCD 和矩形ABEF ,AC 与DF 交于点G ,AC =BF =DF ,求∠AGF 的度数.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称. (1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若图象G 向下平移t (0t >)个单位后与直线BC 只有一个公共点,求t 的取值范围. 28.在菱形ABCD 中,120ADC ∠=︒,点E 是对角线AC 上一点,连接DE ,50DEC ∠=︒,将线段BC 绕点B 逆时针旋转50︒并延长得到射线BF ,交ED 的延长线于点G . (1)依题意补全图形;EDC BAEDCBA备用图(2)求证:EG BC =;(3)用等式表示线段AE ,EG ,BG 之间的数量关系:_____________________________.29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若,1,1≥b a b b a ⎧'=⎨-<⎩,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)①点)的限变点的坐标是___________;②在点()2,1A --,()1,2B -中有一个点是函数2y x=图象上某一个点的限变点, 这个点是_______________;(2)若点P 在函数3(2,2)y x x k k =-+->-≤≤的图象上,其限变点Q 的纵坐标b '的取值范围是52≤≤b '-,求k 的取值范围;(3)若点P 在关于x 的二次函数222y x tx t t =-++的图象上,其限变点Q 的纵坐标b '的取值范围是≥b m '或b n '<,其中m n >.令s m n =-,求s 关于t 的函数解析式及s 的取值范围.海淀区九年级第二学期期中练习数学试卷答案及评分参考2015.5一、 选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)17. (本小题满分5分) 解:原式=112142-⨯+ ………………………………………………………4分 14=+ ………………………………………………………………5分 18. (本小题满分5分) 解: 345214.33x x x x +>-⎧⎪⎨-⎪⎩,≥ ② ①由不等式①得 3x <. ……………………………………………………2分由不等式②得 2≥x -. ……………………………………………………4分 ∴不等式组的解集为23≤x -<. ……………………………………………………5分19. (本小题满分5分)解: 22(2)()()2x y x y x y y ---+-2222244()2x xy y x yy =-+---………………………………………………2分243xy y =-+ ……………………………………………………………………3分()43y x y =--.…………………………………………………………………4分∵43x y =,∴原式= 0. ………………………………………………………………………5分 20. (本小题满分5分) 证明:∠EBC =∠FCB ,A B E F C D ∴∠=∠. …………………………………………………………1分在△ABE 与△FCD 中,,,,A F AB FC ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆ABE ≌∆FCD .………………………………………………………………4分 ∴BE=CD . ………………………………………………………………………5分21. (本小题满分5分) (1)证明:0k ≠,∴220 kx x k--=是关于x 的一元二次方程.22(1)4()k k∆=--- ……………………………………………………1分90=>.∴方程总有两个不相等的实数根. ………………………………………2分(2)解:由求根公式,得x =. ∴1221,x x k k==-. …………………………………………………………4分方程的两个实数根都是整数,且k 是整数,∴ 1k =-或1k =.…………………………………………………………5分22. (本小题满分5分)解: 设例子中的A4厚型纸每页的质量为x 克.………………………………………1分由题意,得40016020.8x x =⨯-. ………………………………………………2分 解得 4x =. ………………………………………………………3分 经检验, 4x =为原方程的解,且符合题意. ………………………………4分 答:例子中的A4厚型纸每页的质量为4克. …………………………………5分四、解答题(本题共20分,每小题5分) 23. (本小题满分5分) (1)证明:四边形ABCD 是平行四边形,∴AD //BC . ∴∠DAF=∠F .∠F =45°,∴∠DAE=45°.………………………………………1分 AF 是∠BAD 的平分线,45EAB DAE ∴∠=∠=.90DAB ∴∠=.又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形. …………………………2分(2)解:过点B 作BH AE ⊥于点H ,如图. 四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠DCB =∠D =90°.AB =14,DE =8, ∴ CE=6.在Rt △ADE 中,∠DAE=45°, ∴∠DEA =∠DAE=45°. ∴ AD=DE =8. ∴ BC =8.在Rt △BCE 中,由勾股定理得10BE ==. ……………………………………………3分 在Rt △AHB 中,∠HAB=45°,∴sin 4572BH AB =⋅=. …………………………………………4分在Rt △BHE 中,∠BHE=90°,∴sin ∠AEB=10BH BE =. ……………………………………………5分 24. (本小题满分5分)(1)36. ……………………………………………………………………………1分(2)6.700.01±. ……………………………………………………………………3分 (3)21. ……………………………………………………………………………5分25. (本小题满分5分) (1)证明:⊙O 与边AB 相切于点E ,且 CE 为⊙O 的直径.∴CE ⊥AB .AB=AC ,AD ⊥BC ,BD DC ∴=. ………………………………1分又 OE=OC ,∴OD ∥EB .∴ OD ⊥CE .………………………………2分(2)解:连接EF .CE 为⊙O 的直径,且点F 在 ⊙O 上, ∴ ∠EFC =90°.CE ⊥AB , ∴∠BEC =90°. ∴+BEF FEC FEC ECF ∠=∠+∠∠=90°. ∴BEF ECF ∠=∠.∴tan tan BEF ECF ∠=∠.∴BF EF EFFC=.又DF =1, BD=DC =3, ∴ BF =2, FC =4.∴EF =. ………………………………………………… 3分∵∠EFC =90°, ∴∠BFE =90°.由勾股定理,得BE . ……………………4分 EF ∥AD , ∴21BE BF EA FD ==.∴AE =. ……………………………………………………5分26. (本小题满分5分)解:BC +DE. ……………………………………………………2分解决问题:连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB // DC .∵四边形ABEF 是矩形, ∴AB // FE ,BF =AE . ∴DC // FE .∴四边形DCEF 是平行四边形. ………………………………………………3分 ∴ CE // DF . ∵AC =BF =DF , ∴AC =AE =CE .∴△ACE 是等边三角形. …………………………………………………………4分 ∴∠ACE =60°. ∵CE ∥DF ,∴∠AGF =∠ACE =60°. …………………………………………………………5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27. (本小题满分7分)解:(1)∵抛物线2212y x x =-+与y 轴交于点A,∴点A 的坐标为(0,2). …………………………………………1分 ∵2211(232)212y x x x -+==+-, ∴抛物线的对称轴为直线1x =,顶点B 的坐标为(1,32). …………2分又∵点C 与点A 关于抛物线的对称轴对称,∴点C 的坐标为(2,2),且点C 在抛物线上.设直线BC 的解析式为y kx b =+. ∵直线BC 经过点B (1,32)和点C (2,2),∴322 2.,k b k b ⎧+=⎪⎨⎪+=⎩ 解得121.k b ⎧=⎪⎨⎪=⎩, ∴直线BC 的解析式为112y x =+.…………………………3分(2) ∵抛物线2212y x x =-+中,当4x =时,6y =,∴点D 的坐标为(4,6). ………………4分∵直线112y x =+中,当0x =时,1y =, 当4x =时,3y =,∴如图,点E 的坐标为(0,1),点F 的坐标为(4,3).设点A 平移后的对应点为点'A ,点D 平移后的对应点为点'D . 当图象G 向下平移至点'A 与点E 重合时, 点'D 在直线BC 上方, 此时t =1;…………………………………………………………5分当图象G 向下平移至点'D 与点F 重合时,点'A 在直线BC 下方,此时t =3.……………………………………………………………………………………6分 结合图象可知,符合题意的t 的取值范围是13t <≤.……………………………7分28. (本小题满分7分)(1)补全图形,如图1所示.…………………………………………………………1分GFEDCBA图1 图2(2)方法一:证明:连接BE ,如图2. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ……………………………………………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知, 50BEC DEC ∠=∠=︒,GFEDCBA100EBC EDC ∠=∠=︒.……………………………………………………………………3分100GEB DEC BEC ∴∠=∠+∠=︒.GEB CBE ∴∠=∠.50FBC ∠=︒,50EBG EBC FBC ∴∠=∠-∠=︒.…………………………………………………………4分EBG BEC ∴∠=∠.在△GEB 与△CBE 中,,,,GEB CBE BE EB EBG BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEB ≌△CBE .EG BC ∴=.……………………………5分 方法二:证明:连接BE ,设BG 与EC 交于点H ,如图3. ∵四边形ABCD 是菱形, ∴AD ∥BC . 120ADC ∠=︒, 60DCB ∴∠=︒.AC 是菱形ABCD 的对角线,∴1302DCA DCB ∠=∠=︒. ………………………2分180100EDC DEC DCA ∴∠=︒-∠-∠=︒.由菱形的对称性可知,50BEC DEC ∠=∠=︒,100EBC EDC ∠=∠=︒.……………………………………………3分50FBC ∠=︒, 图350EBG EBC FBC BEC ∴∠=∠-∠=︒=∠. ………………………………………………4分 BH EH ∴=.在△GEH 与△CBH 中,,,,GEH CBH EH BH EHG BHC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GEH ≌△CBH .EG BC ∴=. ………………………………………………………………………………5分 (3)AE BG +=. …………………………………………………………………7分 29.(本小题满分8分)解:(1)① ; ……………………………………………………………………1分② 点B . ………………………………………………………………………2分(2)依题意,3(2)y x x =-+-≥图象上的点P 的限变点必在函数3,13,21x x y x x -+⎧=⎨--<⎩≥≤的BA图象上.2≤b '∴,即当1x =时,b '取最大值2.当2b '=-时,23x -=-+.5x ∴=. ………………………………………3分 当5b '=-时,53x -=-或53x -=-+.2x ∴=-或8x =. ………………………………4分 52≤≤b '-,由图象可知,k 的取值范围是58≤≤k .……………………………………………5分 (3)2222()y x tx t t x t t =-++=-+,∴顶点坐标为(,)t t .………………………………………………………………6分若1t <,b '的取值范围是≥b m '或≤b n ',与题意不符. 若1≥t ,当1≥x 时,y 的最小值为t ,即m t =;当1x <时,y 的值小于2[(1)]t t --+,即2[(1)]n t t =--+.22(1)1s m n t t t t ∴=-=+-+=+.∴s 关于t 的函数解析式为 211)s t t =+≥ (. ……………………………7分 当t=1时,s 取最小值2.∴s 的取值范围是s ≥2. ………………………………………………………8分。

2014年北京市海淀区高三一模数学(文)试题和答案

2014年北京市海淀区高三一模数学(文)试题和答案

海淀区高三年级第二学期期中练习数学 (文科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i - 2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则 A.{}1- B.{}0 C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B.3C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A BCD6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为 A.1 B.2C.12D.3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为 A .0 B .1 C .2 D .4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线221 3x y m -=的离心率为2,则m =__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则s i n ______,_______.s i n Ac B==12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型: ①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++. 能较准确反映商场月销售额()f x 与月份x 关系的函数模型为 _________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________. 13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a = ;(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.O y x O y xO yxO y x 俯视图主视图侧视图求()f x 在[,]22-上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC=90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ;(Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =.(Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形. 20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,nA A A A 与()B n :123,,,,nB B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ;(Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(文科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

海淀区2014—2015学年初三数学第一学期期中练习及参考答案

海淀区2014—2015学年初三数学第一学期期中练习及参考答案

O DCB A 海淀区2014—2015学年初三数学第一学期期中练习2014.11一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.下列图形是中心对称图形的是( )A B C D2.将抛物线2y x =向上平移1个单位,得到的抛物线的解析式为( ) A.21y x =+ B.21y x =- C.()21y x =+D.()21y x =-3.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( ) A.这个球一定是黑球 B.这个球一定是白球C.“摸出黑球”的可能性大D.“摸出黑球”和“摸出白球”的可能性一样大4.用配方法解方程2230x x --=时,配方后得到的方程为( )A.2(1)=4x - B.2(1)4x -=- C.2(1)=4x + D.2(1)=4x +- 5.如图,O 为正五边形ABCDE 的外接圆,O 的半径为2,则AB 的长为( )A.5πB.25πC.35πD.45π6.如图,AB 是O 的直径,CD 是O 的弦,59ABD ∠=︒,则C ∠等于( )A.29︒B.31︒C.59︒D.62︒7.已知二次函数24y x x m =-+(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程240x x m -+=的两个实数根是( ) A.121,1x x ==-B.121,2x x =-=B AEDO CEDCBAC.121,0x x =-=D.121,3x x ==8.如图,C 是半圆O 的直径AB 上的一个动点(不与A ,B 重合),过C 作AB 的垂线交半圆于点D ,以点D ,C ,O 为顶点作矩形DCOE . 若AB =10,设AC =x ,矩形DCOE 的面积为y ,则下列图象中能表示y 与x 的函数关系的图象大致是( )A B C D二、填空题(本题共16分,每小题4分)9.如图,PA ,PB 分别与O 相切于点A ,B ,连接AB .60APB ∠=︒,5AB =,则PA 的长是 .10.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k 的值为_________.11.在平面直角坐标系xOy 中,函数2y x =的图象经过点11(,)M x y ,22(,)N x y 两点,若1 42x -<<-,202x <<,则1y 2y .(用“<”,“=”或“>”号连接)12.如图,正方形ABCD 中,点G 为对角线AC 上一点,AG=AB . ∠CAE =15°且AE=AC ,连接GE .将线段AE 绕点A 逆时针旋转得到 线段AF ,使DF=GE ,则∠CAF 的度数为____________.三、解答题(本题共30分,每小题5分)13.解方程:2310x x +-=.14.如图,∠DAB =∠EAC ,AB =AD ,AC =AE .求证:BC =DE .EGDCA BEDCBO A OBA POD CBA15.已知二次函数的图象经过点(0,1),且顶点坐标为(2,5),求此二次函数的解析式.16.如图,四边形ABCD 内接于⊙O ,∠ABC =130°,求∠OAC 的度数.17.若1x =是关于x 的一元二次方程22420x mx m -+=的根,求代数式()2213+m -的值.18.列方程解应用题:某工厂废气年排放量为450万立方米,为改善空气质量,决定分两期治理,使废气的排放量减少到288万立方米.如果每期治理中废气减少的百分率相同,求每期减少的百分率.四、解答题(本题共20分,每小题5分)19.下图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)由图可知,该月1日至15日中空气重度污染的有 天; (2)小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率.20.已知关于x 的方程2(3)30ax a x +--=(0)a ≠. (1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a 的值.21.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,点G 在直径DF 的延长线上,∠D =∠G =30.(1)求证:CG 是⊙O 的切线; (2)若CD =6,求GF 的长.FG D CE O A B空气质量指数22.阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:123,,x x x ,称为数列123,,x x x .计算1x ,122x x +,1233x x x ++,将这三个数的最小值称为数列123,,x x x 的价值.例如,对于数列2,1-,3,因为22=,2(1)122=+-,2(1)3433+-+=,所以数列2,1-,3的价值为12. 小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列1-,2,3的价值为12;数列3,1-,2的价值为1;….经过研究,小丁发现,对于“2,1-,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为12. 根据以上材料,回答下列问题:(1)数列4-,3-,2的价值为______;(2)将“4-,3-,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为______ ,取得价值最小值的数列为___________(写出一个即可); (3)将2,9-,a (1)a >这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a 的值为__________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,抛物线2(1)y x m x m =---(0)m >与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当15ABC S △=时,求该抛物线的表达式;(3)在(2)的条件下,经过点C 的直线l :y kx b =+(0)k <与抛物线的另一个交点为D . 该抛物线在直线l 上方的部分与线段CD 组成一个新函数的图象. 请结合图象回答:若新函数的最小值大于8-,求k 的取值范围.xy 123456–1–2–3–4–5–612345678910–1–2–3–4–5–6–7–8–9–10O24.将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0120)α<<得到线段AD,连接CD.(1)连接BD,①如图1,若α=80°,则∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED=90°,求α的值.25.如图,在平面直角坐标系xOy 中,点(,)P a b 在第一象限.以P 为圆心的圆经过原点,与y 轴的另一个交点为A .点Q 是线段OA 上的点(不与O ,A 重合),过点Q 作PQ 的垂线交⊙P 于点(,)B m n ,其中0≥m .xPAy OxPAy O(1)若5b =,则点A 坐标是________________; (2)在(1)的条件下,若OQ =8,求线段BQ 的长;(3)若点P 在函数2y x =(0)x >的图象上,且△BQP 是等腰三角形. ①直接写出实数a 的取值范围:__________________; ②在12,64,10这三个数中,线段PQ 的长度可以为 ,并求出此时点B 的坐标.备用图海淀区九年级第一学期期中练习2014.11数学试卷答案及评分参考阅卷须知:1. 为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2. 若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3. 评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分) 题 号 1 2 3 4 5 6 7 8 答 案BACADBDA二、填空题(本题共16分,每小题4分) 9. 5 ; 10. 4 ; 11. > ; 12. 30°或60°.(注:每个答案2分)三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:∵131a ,b ,c ===-, …………………………………………………………………1分∴2341(1)=13>0∆=-⨯⨯-. … ……………………………………………………2分∴2431322b b ac x a -±--±==.∴1231331322x ,x -+--==. ……………………………………………………5分 14.(本小题满分5分)证明:∵∠DAB =∠EAC ,∴∠DAB +∠BAE =∠EAC+∠BAE .∴∠DAE =∠BAC . ………………………………………………………………1分 在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,,, ∴△BAC ≌△DAE . ………………………………………………………………4分 ∴BC =DE . ………………………………………………………………………5分 15.(本小题满分5分)解:设二次函数的解析式为()225y a x =-+ (0)a ≠.……………………………1分∵二次函数的图象经过点(0,1).∴()21025a =-+.………………………………………………………………2分 ∴1a =-. …………………………………………………………………………4分 ∴二次函数的解析式为241y x x =-++.………………………………………5分16. (本小题满分5分)解:∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°. …………………………………………………………1分 ∵∠ABC =130°,∴∠ADC =180°-∠ABC =50°. …………………………………………………2分∴∠AOC =2∠ADC =100°. ………………………………………………………3分 ∵OA=OC ,∴∠OAC =∠OCA . ……………………………………………………………4分∴∠OAC =1(180)402AOC -∠=. ……………………………………………… 5分17. (本小题满分5分)解:依题意,得 21420m m -+=. ……………………………………………………2分∴2241m m -=-. ………………………………………………………………3分 ∴()()2222132213245154+=m m m m m --++=-+=-+=. …………5分18. (本小题满分5分)解:设每期减少的百分率为x .…………………………………………………… ……1分 由题意,得()24501288x -=. ……………………………………………… ………2分解方程得 115x =,295x =. ………………………………………………… ……3分经检验,915x =>不合题意,舍去;15x = 符合题意. ……………… …………4分答:每期减少的百分率为20%. ……………………………………………… ………5分四、解答题(本题共20分,每小题5分) 19. (本小题满分5分)解:(1)3. …………………………………………………………………………… 2分(2)小丁随机选择该月1日至15日中的某一天到达该市,则到达该市的 日期有15种不同的选择,在其中任意一天到达的可能性相等. ……………3分 由图可知,其中有9天空气质量优良. ………………………………… ……4分所以,P (到达当天空气质量优良)93155==. …………………… ………5分20. (本小题满分5分) 解:(1)∵0a ≠,∴原方程为一元二次方程.∴()234(3)a a ∆=--⨯⨯- ………………………………………………1分()23a =+.∵()230≥a +.∴此方程总有两个实数根. …………………………………………………2分 (2)解原方程,得 11x =-,23x a=. ……………………………………………3分 ∵此方程有两个负整数根,且a 为整数,∴1a =-或3-. …………………………………………………………………4分 ∵12x x ≠,∴3a ≠-.∴1a =-. ………………………………………………………………………5分 21. (本小题满分5分) (1)证明:连接OC .∵OC=OD ,∠D =30°, ∴∠OCD =∠D = 30°.…………………………………1分 ∵∠G =30°,∴∠DCG =180°-∠D -∠G =120°. ∴∠GCO =∠DCG -∠OCD =90°. ∴OC ⊥CG .又∵OC 是⊙O 的半径.∴CG 是⊙O 的切线.……………………………………2分(2)解:∵AB 是⊙O 的直径,CD ⊥AB ,∴132CE CD ==. ………………………………………………………3分∵在Rt △OCE 中,∠CEO =90°,∠OC E =30°,∴12OE OC =,222OC OE CE =+.设OE x =,则2OC x =.∴()22223x x =+.解得3x =(舍负值).∴23OC =. ………………………………………………………………4分∴23OF =.在△OCG 中,∵∠OCG =90°,∠G =30°, ∴243OG OC ==.∴23GF GO OF =-=. ……………………………………………………5分22. (本小题满分5分)答:(1)53. …………………………………………………………………………………1分(2)12, ………………………………………………………………………………2分 3,2,4--或2,3,4--.(写出一个即可)…………………………………………3分 (3)11或4.(每个答案各1分) ……………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本小题满分7分)解:(1)∵ 抛物线2(1)y x m x m =---(0)m >与x 轴交于A 、B 两点,∴ 令0y =,即 2(1)0x m x m ---=.解得 11x =-,2x m =. …………………………………………………1分 又∵ 点A 在点B 左侧,且0m >,∴ 点A 的坐标为(1,0)-. …………………………………………………2分(2)由(1)可知点B 的坐标为(0)m ,.∵抛物线与y 轴交于点C ,∴点C 的坐标为(0,)m -. ……………………………………………………3分 ∵0m >,∴1AB m =+,OC m =. ∵15△ABC S =,∴1(1)152m m +=. ∴6m =-或5m =.∵0m >, ∴5m =.∴抛物线的表达式为245y x x =--. ………………………4分(3)由(2)可知点C 的坐标为(0,5)-.xy 123456–1–2–3–4–5–612345678910–1–2–3–4–5–6–7–8OABCD∵直线l :y kx b =+(0)k <经过点C ,∴5b =-. ………………………………………5分 ∴直线l 的解析式为5y kx =-(0)k <. ∵2245(2)9y x x x =--=--,∴当点D 在抛物线顶点处或对称轴左侧时,新函数的最小值为9-,不符合题意. 当点D 在抛物线对称轴右侧时,新函数的最小值有可能大于8-. 令8y =-,即2458x x --=-.解得 11x =(不合题意,舍去),23x =. ∴抛物线经过点(3,8)-.当直线5y kx =-(0)k <经过点(3,8)-时,可求得1k =-.…………………6分 由图象可知,当10k -<<时新函数的最小值大于8-. ………………………7分24.(本小题满分7分) 解:(1)①30°. …………………………………………………………………………1分②不改变,∠BDC 的度数为30.方法一:由题意知,AB=AC=AD .∴点B 、C 、D 在以A 为圆心,AB 为半径的圆上.…………………………2分 ∴∠BDC=12∠BAC =30.……………………………………………………3分 方法二:由题意知,AB=AC=AD . ∵AC =AD ,∠CAD =α, ∴1801=9022ADC C αα-==-∠∠.…………………………………2分 ∵AB=AD ,∠BAD =60α+,∴()18060120160222ADB B ααα-+-====-∠∠. ∴11(90)(60)3022BDC ADC ADB αα=-=---=∠∠∠.…………3分(2)过点A 作AM ⊥CD 于点M ,连接EM .∴90AMC ∠=. 在△AEB 与△AMC 中,AEB AMC B ACD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEB ≌△AMC . ………………………………………………………4分 ∴AE AM =,BAE CAM ∠=∠.∴60EAM EAC CAM EAC BAE BAC ∠=∠+∠=∠+∠=∠=.∴△AEM 是等边三角形.∴EM AM AE ==. …………………………………………………………5分 ∵AC AD =,AM CD ⊥ , ∴CM DM =. 又90DEC ∠=,∴EM CM DM ==.∴AM CM DM ==. …………………………………………………………6分 ∴点A 、C 、D 在以M 为圆心,MC 为半径的圆上.∴90CAD α=∠=. …………………………………………………………7分 25. (本小题满分8分) 解: (1)(0,10). …………………………………………………………………1分(2)连接BP 、OP ,作PH ⊥OA 于点H .∵5,b =PH ⊥OA , ∴152OH AH OA ===.∵OQ =8,∴3QH OQ OH =-=.在Rt △QHP 中,22229PQ QH PH PH =+=+.在Rt PHO △中,2222225PO OH PH PH BP =+=+=.在Rt △BQP 中,22222(25)(9)16BQ BP PQ PH PH =-=+-+=. ∴4BQ =.……………………………………………………………………3分(3)①1≥a .……………………………………………………………………………4分②10. ……………………………………………………………………………5分 解:∵△BQP 是等腰直角三角形,10PQ =,HQ PBA O xyMDCAB E∴半径25BP =. 又∵2(,)P a a ,∴2242(25)OP a a =+=. 即42200a a +-=.解得2a =±.∵0a >,∴2a =. ……………………………………………………………………………6分 ∴(2,4)P .如图,作BM y ⊥轴于点M ,则△QBM ≌△PQH . ∴2MQ PH ==,226MB QH PQ PH ==-=.∴1(6,66)B +. …………………………………7分若点Q 在OH 上,由对称性可得2(6,26)B -. ……………………………8分综上,当10PQ =时,B 点坐标为(6,66)+或(6,26)-.M HQ P BA O xy。

北京市海淀区2014届下学期初中九年级一模考试数学试卷

北京市海淀区2014届下学期初中九年级一模考试数学试卷

北京市海淀区2014届下学期初中九年级一模考试数学试卷【试题答案】一、选择题(本题共32分,每小题4分)13. 解:0(3π)-++︒60tan 211()3-=13+-…………………………………………………………………4分=4 ……………………………………………………………………………5分14. 解:49132. 2x x x x >-⎧⎪⎨+>⎪⎩, ①②由①,得3x >-, ……………………………………………………………………2分 由②,得1x <, ……………………………………………………………………4分 ∴原不等式组的解集为31x -<<. …………………………………………………5分15. 解: 2(3)(3)(23)x x x +++-22=69239x x x x ++++- 2=39.x x + ……………………………………………………………………………3分2340,x x +-= 23 4.x x ∴+=∴原式()233x x =+=34=12.⨯ ………………………………………………………5分 16. 证明:∵∠EAB =90º, ∴∠EAD+∠CAB =90º.∵∠ACB =90º, ∴∠B+∠CAB =90º.∴∠B =∠EAD . ……………………………………………………………………1分 ∵ED ⊥AC , ∴∠EDA =90º.∴∠EDA =∠ACB . ………………………………………………………………2分 在△ACB 和△EDA 中, ,,,B EAD BC AD ACB EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△EDA . ……………………………………………………………4分 ∴AB=AE . …………………………………………………………………………5分17. 解:设原计划每年建造保障性住房x 万套. ………………………………………1分 根据题意可得:80802(125%)x x-=+ . ……………………………………………2分 解方程,得 8x =. …………………………………………………………………3分 经检验:8x =是原方程的解,且符合题意. ………………………………………4分答:原计划每年建造保障性住房8万套. ……………………………………………5分18.解:(1)∵B (1)m ,在2(0)y x x=>的图象上, ∴2m =.∴B (2, 1). …………………………………………………………………………1分 ∵B (2, 1)在直线y ax a =-(a 为常数)上, ∴12,a a =-∴ 1.a = ……………………………………………………………………………2分 ∴一次函数的解析式为 1.y x =- …………………………………………………3分 (2)P 点的坐标为(0,1)或(0,3). ……………………………………………5分四、解答题(本题共20分,每小题5分)19. 解:(1)∵在△ABC 中,∠ACB =90º,∠ABC =30º,BD =∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=.∴14,42cos cos302BC AB AC ABC ====⨯=∠. …………………………1分∵△ACD 为等边三角形,∴2AD CD AC ===,60DAC ∠=. 过点D 作DE AC ⊥于E , 则sin 2sin603DE AD DAC =∠=⨯=∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE =⋅+⋅ 112222=⨯⨯⨯=. ………………………………………3分 (2)过点D 作DF AB ⊥于F .∵180180606060DAF BAC DAC ∠=-∠-∠=--=, ∴sin 2sin603DF AD DAF =⋅∠==cos 2cos601AF AD DAF =⋅∠==. ………………………………………4分∴415BF AB AF =+=+=. ∵DF AB ⊥,∴在Rt BDF △中,22222528BD DF BF =+=+=.∴BD = …………………………………………………………………5分20. 解:(1)20.0%; ……………………………………………………………………1分(2)8365; ……………………………………………………………………………2分北京市2009至2013年社会消费品零售总额统计图………………………………………………3分(3)9%,2016. …………………………………………………………………………5分21. 解:(1)连接,OD AD .∵AB 是⊙O 的直径, ∴90ADB ∠=. 又∵AB AC =, ∴D 为BC 的中点. 又∵O 为AB 的中点, ∴OD //AC . ∵DF ⊥AC , ∴DF ⊥OD .又∵OD 为⊙O 的半径,∴DF 为⊙O 的切线.………………………………………………………………2分 (2)∵DF ⊥AC ,9CF =,∴cos CFC CD=. ∴3915cos 5CF CD C ==÷=.…………………3分∵90ADB ∠=,∴90ADC ∠=. ∴cos CD C AC =. ∴31525cos 5CD AC C ==÷=. . ……………………………………………………4分 连接BE .∵AB 是⊙O 的直径,∴90AEB ∠=.又∵DF ⊥AC ,∴DF //BE . ∴1CF CD EF BD==. ∴9EF CF ==.∴25997AE AC EF CF =--=--=. ……………………………………5分22. 解:①6;………………………………………………………………………………1分 ②不变. ……………………………………………………………………………2分(1) ……………………………………………………………………3分(2)4+4sin α. ………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)令2()=0mx m n x n -++,则22=()4=()m n mn m n ∆+--. ………………………………………………………1分∵二次函数图象与y 轴正半轴交于A 点,∴(0,)A n ,且0n >.又0m <,∴0m n -<.∴2=()0m n ∆->.∴该二次函数的图象与x 轴必有两个交点.………………………………………2分(2)令2()=0mx m n x n -++,解得:121,n x x m ==. 由(1)得0n m<,故B 的坐标为(1,0). ………………………………………3分 又因为45ABO ∠=,所以(0,1)A ,即=1n .则可求得直线AB 的解析式为1y x =-+.再向下平移2个单位可得到直线:1l y x=--.…………………………………4分(3)由(2)得二次函数的解析式为2(1)1y mx m x=-++∵M (,)p q为二次函数图象上的一个动点,∴2(1)1q mp m p=-++.∴点M关于x轴的对称点M'的坐标为(,)p q-.∴点M'在二次函数2(1)1y mx m x=-++-上.∵当30p-<<时,点M关于x轴的对称点都在直线l的下方,当0p=时,1q=;当3p=-时,124q m=+;……………………………5分结合图象可知:(124)2m-+≤,解得:12m≥-,………………………………………………………………………6分∴m的取值范围为12m-≤<.……………………………………………………7分24.解:(1)30°;………………………………………………………………………1分(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA =40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°. ①∵AC=CD,AC=FC,∴DC=FC . ②∵BC=BC ,③∴由①②③,得 △DCB ≌△FCB ,∴DB=BF , ∠DBC=∠FBC.∵∠BAC =100°, ∠FAC=60°,∴∠BAF =40°. ∵∠ACD =20°,AC=CD ,∴∠CAD=80°. ∴∠DAF=20°. ∴∠BAD=∠FAD=20°. ④ ∵AB=AC , AC=AF ,∴AB= AF . ⑤∵AD= AD ,⑥∴由④⑤⑥,得 △DAB ≌△DAF .∴FD= BD .∴FD= BD=FB .∴∠DBF=60°. ∴∠CBD=30°. ………………………………………………………………………4分 (3)120m α=︒-, α=60° 或 240m α=︒- . ……………………………7分 25. 解:(1)①(-2,-4); ……………………………………………………………1分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .……………3分(2)±1; ……………………………………………………………………………5分 (3)设B (a ,b ).∵B 的“属派生点”是A ,∴A (a -b +). ………………6分∵点A 还在反比例函数y =的图象上,∴a b -+()∴212b ()=.∵0b >∴b =∴b =+.∴B 在直线y =+…………………7分过Q 作y =+的垂线Q B 1,垂足为B 1,∵(Q ,且线段BQ 最短,∴1B 即为所求的B 点,∴易求得3(2B .…………………………………………………………8分注:其他解法请参照给分.。

2014年北京中考数学各区一模试题最新汇编--几何综合全(教师版)

2014年北京中考数学各区一模试题最新汇编--几何综合全(教师版)

1、(2014西城数学一模)24.四边形ABCD 是正方形,BEF △是等腰直角三角形,90BEF ∠=︒,BE EF =.连接DF ,G 为DF 的中点,连接EG CG EC ,,. (1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及ECGC的值; (2)将图1中的BEF △绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)将图1中的BEF △,绕点B 顺时针旋转(090)αα︒<<︒,若1BE =,2AB =,当E 、F 、D 三点共线时,求DF 的长及tan ABF ∠的值.备用图图2图1ACBDACBDEFGGFEDBCA解析:24解:(1)EG GC ⊥,2ECGC=; (2)倍长EG 至H ,连接GH 、OH 、CH 、CE ; 在EFG △与HDG △中, GF GD EGF HGD EG HG =⎧⎪∠=∠⎨⎪=⎩∴ EFG HDG △≌△(SAS)∴ DH EF BE ==,FEG DHG ∠=∠. ∴ //EF OH∴ 129034∠=∠=︒-∠=∠.∴ 18041801EBC HDC ∠=︒-∠=︒-∠=∠. 在EBC △与HDC △中 BE DH EBC HDC BC CD =⎧⎪∠=∠⎨⎪=⎩∴ EBC HDC △≌△(SAS ) ∴ CE CH =,BCE DCH ∠=∠∴90ECH DCH ECD BCE ECD BCD ∠=∠+∠=∠+∠=∠=︒ ∴ ECH △为等腰Rt △ 又∵G 为EH 的中点 ∴EG GC ⊥,2ECGC=,故(1)中的结论仍然成立; (3)连接BD则2BD =,2AB =,∴1cos 2BE DBE BD ∠== ∴60DBE ∠=︒∴15ABE DBE ABD ∠=∠-∠=︒ ∴451530ABF ∠=︒-︒=︒ ∴3tan 3ABF ∠=; ∴33DE BE == ∴31DF DE EF =-=-2、(2014朝阳一模)24.在△ABC 中,CA =CB ,在△AED 中, DA =DE ,点D 、E 分别在CA 、AB 上,.(1)如图①,若∠ACB =∠ADE =90°,则CD 与BE 的数量关系是 ;(2)若∠ACB =∠ADE =120°,将△AED 绕点A 旋转至如图②所示的位置,则CD 与BE 的数量关系是 ;,(3)若∠ACB =∠ADE =2α(0°< α 〈 90°),将△AED 绕点A 旋转至如图③所示的位置,探究线段C D 与BE 的数量关系,并加以证明(用含α的式子表示).解析:24.解:(1)BE =2CD ; ……………………………………………………………… 1分(2)BE =3CD ; ………………………………………………………………… 3分 (3)BE =2CD ·sin α. ……………………………………………………………… 4分 证明:如图,分别过点C 、D 作CM ⊥AB 于点M ,DN ⊥AE 于点N , ∵ CA =CB ,DA =DE ,∠ACB =∠ADE =2α , ∴ ∠CAB =∠DAE ,∠ACM =∠ADN=α ,AM=12AB ,AN=12AE . ∴∠CAD =∠BAE . ……………………………………………………………… 5分Rt △ACM 和Rt △ADN 中,sin ∠ACM =AM AC,sin ∠ADN =ANAD .∴ sin AM AN AC AD α==.∴ 2sin AB AE AC ADα==.……………………… 6分又 ∵∠CAD =∠BAE,∴ △BAE ∽△CAD .E D B A C 图① E D B A C图③E D B A C图②QPED CBAQPEDCBAQ PED CBA∴2sin BE ABCD ACα== ∴ BE =2DC ·sin α. ……………………………………………………………… 7分 3、(2014东城一模)24. 如图1,已知∠DAC =90°,△ABC 是等边三角形,点P 为射线AD 上任意一点(点P 与点A 不重合),连结CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,连结QB 并延长交直线AD 于点E . (1)如图1,猜想∠QEP = °;(2)如图2,3,若当∠DAC 是锐角或钝角时,其它条件不变,猜想∠QEP 的度数,选取一种情况加以证明;(3)如图3,若∠DAC =135°,∠ACP =15°,且AC =4,求BQ 的长. 解析:24。

2014北京中考数学(含答案)

2014北京中考数学(含答案)

2014年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分) 1、(2014北京中考,1,4分) 2的相反数是 A 、2 B 、-2 C 、21- D 、21【答案】B2、(2014北京中考,2,4分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨,将300 000用科学计数法表示应为A 、6103.0⨯B 、5103⨯C 、6103⨯D 、41030⨯ 【答案】B3、(2014北京中考,3,4分)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是A 、61B 、41C 、31D 、21 【答案】D4、(2014北京中考,4,4分)右图是几何体的三视图,该几何体是 A 、圆锥 B 、圆柱 C 、正三棱柱 D 、正三棱锥【答案】C5、(2014北京中考,5,4分)某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12 名队员年龄的众数和平均数分别是A、18,19B、19,19C、18,19.5D、19,19.5 【答案】A6、(2014北京中考,6,4分)园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为A、40平方米B、50平方米C、80平方米D、100平方米【答案】B7、(2014北京中考,7,4分)如图,○O的直径AB⊥弦CD垂足是E,∠A=22.5°,OC=4,CD的长为A、24D、8 2B、4 C、2【答案】C8、(2014北京中考,8,4分)已知点A为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系大致如右图所示,则该封闭图形可能是【答案】A二、填空题(本题共16分,每小题4分)9、(2014北京中考,9,4分)分解因式:_____________________924=-ay ax 【答案】)3)(3(22y x y x a +-10、(2014北京中考,10,4分)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25米,那么这根旗杆的高度为_____________m 【答案】1511、(2014北京中考,11,4分)如图,在平面直角坐标系xoy 中,正方形OABC 的边长为2,写出一个函数)0(≠=k xky 使它的图象与正方形OABC 有公共点,这个函数的表达式为 __________________【答案】xy 1=,)40(≤=k x k y ,(答案不唯一)12、(2014北京中考,12,4分)在平面直角坐标系xoy 中,对于点P (x ,y )我们把点P ’(-y+1,x+1)叫做点P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到A 1 ,A 2,A 3,……A n ……,若点A 1的坐标为(3,1),则点A 3的坐标为___________,点A 2014的坐标为___________;若点A 1的坐标为(a,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为___________。

2014北京海淀区一模数学文 试卷及答案

2014北京海淀区一模数学文 试卷及答案

海淀区高三年级第二学期期中练习数 学 (文科)2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.A. B. C. D.2. 已知集合A. B. C. D.3. 抛物线上到其焦点距离为5的点有A.0个B.1个C. 2个D. 4个4. 平面向量满足,,且的夹角为,则=A.1B. 3C.5D. 75. 函数的部分图象可能是A B C D6. 已知等比数列的前项和为,且,,成等差数列,则数列的公比为A.1 B.2 C. D.37. 已知和是指数函数,则“”是“”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件8. 已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.那么曲线关于曲线的关联点的个数为A.0 B.1 C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分.9.双曲线的离心率为2,则__________.10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一:方案二:方案三:11. 在中,,,,则12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①,;②;③.能较准确反映商场月销售额与月份x关系的函数模型为 _________(填写相应函数的序号),若所选函数满足,则=_____________.13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组表示的区域为,不等式表示的平面区域为.(1) 若与有且只有一个公共点,则= ;(2) 记为与公共部分的面积,则函数的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数.(Ⅰ)求;(Ⅱ)求在上的取值范围.16.(本小题满分13分)某出租车公司为了解本公司出租车司机对新法规的知晓情况,随机对100名出租车司机进行调查.调查问卷共10道题,答题情况如下表:答对题目89数女213128男337169(Ⅰ)如果出租车司机答对题目数大于等于9,就认为该司机对新法规的知晓情况比较好,试估计该公司的出租车司机对新法规知晓情况比较好的概率;(Ⅱ)从答对题目数少于8的出租车司机中任选出两人做进一步的调查,求选出的两人中至少有一名女出租车司机的概率.17. (本小题满分14分)如图1,在Rt△ABC中,∠ABC=90°,D为AC中点,于(不同于点),延长AE交BC于F,将△ABD沿BD折起,得到三棱锥,如图2所示.(Ⅰ)若M是FC的中点,求证:直线//平面;(Ⅱ)求证:BD⊥;(Ⅲ)若平面平面,试判断直线与直线CD能否垂直?并说明理由.18. (本小题满分13分)已知函数.(Ⅰ)求的单调区间;(Ⅱ) 当时,求证:恒成立.19. (本小题满分14分)已知是椭圆上两点,点的坐标为.(Ⅰ)当关于点对称时,求证:;(Ⅱ)当直线经过点时,求证:不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点):与:,其中,若同时满足:①两点列的起点和终点分别相同;②线段,其中,则称与互为正交点列.(Ⅰ)试判断:与:是否互为正交点列,并说明理由;(Ⅱ)求证::不存在正交点列;(Ⅲ)是否存在无正交点列的有序整数点列?并证明你的结论.。

2014年北京市各城区中考一模数学——应用题18题汇总

2014年北京市各城区中考一模数学——应用题18题汇总

2014年北京市各城区中考一模数学——应用题汇总1、(2014年门头沟一模)18.某建筑集团完成一路段的高架桥铺设任务,在合同期内高通过这段对话,请你求出该建筑集团原来每天铺设的米数.2、(2014年丰台一模)17.列方程或方程组解应用题:为了进一步落实“北京市中小学课外活动计划”,某校计划用4000元购买乒乓球拍,用6000元购买羽毛球拍,且购买的乒乓球拍与羽毛球拍的数量相同.已知一副羽毛球拍比一副乒乓球拍贵40元,求一副乒乓球拍和一副羽毛球拍各是多少元.3、(2014年平谷一模)17. 端午节期间,某校“慈善小组”筹集善款600元,全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?解题备注:4、(2014年顺义一模)18.重量相同的甲、乙两种商品,分别价值900元和1 500元,已知甲种商品每千克的价值比乙种商品每千克的价值少100元,分别求甲、乙两种商品每千克的价值.记者:5、(2014年石景山一模)18.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?解题备注:6、(2014年海淀一模)17.某市计划建造80万套保障性住房,用于改善百姓的住房状况. 开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务. 求原计划每年建造保障性住房多少万套?7、(2014年西城一模)17. 某校甲、乙给贫困地区捐款购买图书,每班捐款总数均为1200元,已知甲班比乙班多8人,乙班人均捐款是甲班人均捐款的1.2倍,求:甲、乙两班各有多少名学生。

2014北京海淀区一模数学(理科)(海淀一模)试卷及答案

2014北京海淀区一模数学(理科)(海淀一模)试卷及答案

海淀区高三年级第二学期期中练习数 学 (理科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A AB ⎧⎫===∈=⎨⎬⎩⎭集合则A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是A B C D4.已知直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.4 8. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则A .0a =B .1a =C .2a =D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.AB俯视图主视图侧视图三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sin cos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t . (Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.1图 图 2B F18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

2014年北京市海淀区高三一模数学(理)试题和答案

2014年北京市海淀区高三一模数学(理)试题和答案

海淀区高三年级第二学期期中练习数学(理科) 2014.4本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 A. (1,0) B. (0,2) C.()1,0 D. (2,0)1((2)f >的只可能是A BC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有 A. 4种 B.5种 C.6种 D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为 线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点 的个数为a ,则 A .0a = B .1a = C .2a = D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______. 10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______. 11.如图,AB 切圆O 于B ,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=________. 14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)已知函数ππ()2sincos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t .(Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围. 16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、10天的数据,制表如下:35件以内(含35AB D俯视图主视图侧视图件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望; (Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费. 17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB=30°,∠ABC=90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1) 处的切线为2y x m =+,求实数a 和m 的值;(Ⅱ)对任意实数a , 曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围. 19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点, 点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长;(Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.海淀区高三年级第二学期期中练习参考答案数学(理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

北京市海淀区2014届高三一模 数学(理)试题 Word版含解析

北京市海淀区2014届高三一模 数学(理)试题 Word版含解析

一、选择题:1.已知集合{}211,2,,,,2A B y y x x A AB ⎧⎫===∈=⎨⎬⎩⎭集合则 ( )A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ2.复数()()1i 1i z =+-在复平面内对应的点的坐标为 ( ) A. (1,0) B. (0,2) C.()1,0 D. (2,0)3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是( )【解析】4.已知直线l 的参数方程为1,1x t y t =+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为( )A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x5.在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A. 4种 B.5种C.6种D.9种考点:枚举法计数7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( ) A.1 B.2 C.3D.48.已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则( ) A .0a = B .1a = C .2a = D .2a >二、填空题9.一个空间几何体的三视图如图所示,该几何体的体积为______.10.函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.11.如图,AB 切圆O 于B ,3AB =,1AC =,则AO 的长为_______.考点:切割线定理12.已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m _______.13.如图,已知ABC ∆中,30BAD ∠=,45CAD ∠=,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a 中第_____项最小.【解析】。

14、2014年北京市各城区中考一模数学—代几综合25题

14、2014年北京市各城区中考一模数学—代几综合25题

2014年北京市各区中考一模数学—代几综合1、(2014年门头沟一模)25.概念:点P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述概念,根据上述概念,完成下面的问题(直接写答案)①当m=,n=1时,如图13-1,线段BC与线段OA的理想距离是;②当m=未找到引用源。

,n=2时,如图13-2,线段BC与线段OA的理想距离为;③当m=BC与线段OA则n的取值范围是 .(2)如图13-3,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的理想距离记为d,则d的最小值为(说明理由)(3)当m的值变化时,动线段BC与线段OA的距离始终为1,线段BC的中点为G,求点G随线段BC 运动所走过的路径长是多少?2、(2014年丰台一模)25. 在平面直角坐标系xOy 中,抛物线2y ax c =+与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,AC 上有一动点P 从点A 出发,以每秒1个单位长度的速度向点C 移动,线段AB 上有另一个动点Q 从点B 出发,以每秒2个单位长度的速度向点A 移动,两动点同时出发,设运动时间为t 秒. (1)求该抛物线的解析式;(2)在整个运动过程中,是否存在某一时刻,使得以A ,P ,Q 为顶点的三角形与△AOC 相似?如果存在,请求出对应的t 的值;如果不存在,请说明理由.(3)在y 轴上有两点M (0,m )和N (0,m+1),若要使得AM+MN+NP 的和最小,请直接写出相应的m 、t 的值以及AM+MN+NP 的最小值.3、(2014年平谷一模)25.在平面直角坐标系中,已知抛物线y =-12x 2+bx +c (b ,c 为常数)的顶点为P ,等腰直角三角形ABC 的顶点A 的坐标为(0,–1),C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过A ,B 两点,求b ,c 的值;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与直线AC 交于另一点Q .①点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M ,P ,Q 三点为顶点的三角形是以PQ 为腰的等腰直角三角形时,求点M 的坐标; ②取BC 的中点N ,连接NP ,BQ .当PQNP +BQ取最大值时,点Q 的坐标为________.4、(2014年顺义一模)25.设p q ,都是实数,且p q <.我们规定:满足不等式p x q ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[]p q ,.对于一个函数,如果它的自变量x 与函数值y 满足:当p x q ≤≤时,有p y q ≤≤,我们就称此函数是闭区间[]p q ,上的“闭函数”.(1)反比例函数2014y x=是闭区间[]12014,上的“闭函数”吗?请判断并说明理由; (2)若一次函数()0y kx b k =+≠是闭区间[]m n ,上的“闭函数”,求此函数的解析式; (3)若实数c ,d 满足c d <,且2d >,当二次函数2122y x x =-是闭区间[]c d ,上的“闭函数”时,求c d ,的值.5、(2014年石景山一模)25.在平面直角坐标系xOy 中,对于任意三点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a :任意两点横坐标差的最大值,“铅垂高”h :任意两点纵坐标差的最大值,则“矩面积”=S ah .例如:三点坐标分别为)2,1(A ,)1,3(-B ,)2,2(-C ,则“水平底”5=a ,“铅垂高”4=h ,“矩面积”20==S ah .(1)已知点)2,1(A ,)1,3(-B ,),0(t P .①若A ,B ,P 三点的“矩面积”为12,求点P 的坐标; ②直接写出A ,B ,P 三点的“矩面积”的最小值. (2)已知点)0,4(E ,)2,0(F ,)4,(m m M ,)16,(nn N ,其中0>m ,0>n . ①若E ,F ,M 三点的“矩面积”为8,求m 的取值范围;②直接写出E ,F ,N 三点的“矩面积”的最小值及对应n 的取值范围.6、(2014年海淀一模)25.对于平面直角坐标系x Oy中的点P(a,b),若点P'的坐标为(bak+,ka b+)(其中k为常数,且0k≠),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+42,214⨯+),即P'(3,6).(1)①点P(-1,-2)的“2属派生点”P'的坐标为____________;②若点P的“k属派生点”P'的坐标为(3,3),请写出一个符合条件的点P的坐标____________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP'为等腰直角三角形,则k的值为____________;(3)如图, 点Q的坐标为(0,),点A在函数y=0x<)的图象上,且点A是点B的“属派生点”,当线段B Q最短时,求B点坐标.7、(2014年西城一模)25. 定义1:在ABC ∆中,若顶点A ,B ,C 按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A ,B ,C 按顺时针方向排列,则规定它的面积的相反数为ABC ∆的“有向面积”。

北京市海淀区2014年中考一模数学试题及答案

北京市海淀区2014年中考一模数学试题及答案

北京市海淀区2014年初三一模试题 数学 2014.5一、选择题 1.13-的绝对值是A . 3-B . 3C . 13- D . 132. 据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000. 数字1720000用科学记数法表示为A .517.210⨯B .61.7210⨯C .51.7210⨯D .70.17210⨯ 3.下列图形中,既是轴对称图形又是中心对称图形的是A B C D4.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为A .23B .12C .13D .165.如图,AB 为⊙O 的弦,OC ⊥AB 于C ,AB=8,OC =3,则⊙O 的半径长为 A .3 C .4 D .56.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A .甲 B .乙 C .丙 D .丁7.如图,在ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为 A .150° B .130° C .120°D .100°8.如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D 二、填空题(本题共16分,每小题4分) 9.分解因式:24xy x -= .10.已知关于x的方程220x x a -+=有两个不相等的实数根,则a 的取值范围是_________.11.如图,矩形台球桌ABCD 的尺寸为2.7m ⨯1.6m ,位于AB 中点处的台球E 沿直线向BC 边上的点F 运动,经BC 边反弹后恰好落入点D 处的袋子中,则BF 的长度为 m.12.在一次数学游戏中,老师在AB C 、、三个盘子里分别放了一些糖果,糖果数依次为0a ,0b ,0c ,记为0G =(0a ,0b ,0c ). 游戏规则如下: 若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作. 若三个盘子中的糖果数都相同,游戏结束. n 次操作后的糖果数记为n G =(n a ,n b ,n c ).E DCBA F EDCB A 1.6m2.7m(1)若0G =(4,7,10),则第_______次操作后游戏结束;(2)小明发现:若0G =(4,8,18),则游戏永远无法结束,那么2014G =________. 三、解答题(本题共30分,每小题5分)13.计算:0(3π)-++︒60tan211()3--14. 解不等式组:49132.2x x x x >-⎧⎪⎨+>⎪⎩,15. 已知2340x x +-=,求代数式2(3)(3)(23)x x x +++-的值.16.如图,在△ABC 中,∠ACB =90º, D 是AC 上的一点,且AD=BC ,DE ⊥AC 于D , ∠EAB =90º. 求证:AB=AE .17.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况. 开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务. 求原计划每年建造保障性住房多少万套?EDCB A18.如图,在平面直角坐标系xOy 中,一次函数y ax a =-(a 为常数)的图象与y 轴相交于点A ,与函数2(0)y x x=>的图象相交于点B (m ,1). (1)求点B 的坐标及一次函数的解析式;(2)若点P 在y 轴上,且△PAB 为直角三角形,请直接写出点P 的坐标.四、解答题(本题共20分,每小题5分)19. 如图,在△ABC 中,∠ACB =90º,∠ABC =30º,BC=,以AC 为边在△ABC 的外部作等边△ACD ,连接BD . (1)求四边形ABCD 的面积; (2)求BD 的长.20. 社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:5310622969007703总额/亿元年份吃类商品8.7%64.1%7.2%用类商品穿类商品烧类商品北京市2009至2013年社会消费品零售总额统计图 北京市2013年各类社会消费品零售总额分布统计图A BCD(1)北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比为;(2)北京市2013年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为亿元;请补全条形统计图,并标明相应的数据.......;(3)小红根据条形统计图中的数据,绘制了北京市2010至2013年社会消费品零售总额年增长率统计表(如下表),其中2013年的年增长率为(精确到1%);请你估算,如果按照2013年的年增长率持续增长,当年社会消费品零售总额超过10000亿元时,最早要到年(填写年份).北京市2010至2013年社会消费品零售总额年增长率统计表21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点, DF⊥AC 于F.(1)求证:DF为⊙O的切线;(2)若3cos5C=,CF=9,求AE的长.22.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为2,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD 上移动时,六边形AEFCHG的周长的变化情况是怎样的?小明发现:若∠ABC=60°,①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为_________;②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长_________(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m . (1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为2α,则六边形AEFCHG 的周长可表示为________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,二次函数2()y mx m n x n =-++(0m <)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若45ABO ∠=,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式;(3)在(2)的条件下,设M (,)p q 为二次函数图象上的一个动点,当30p -<<时,点M关于x 轴的对称点都在直线l 的下方,求m 的取值范围.24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD .(1)如图1,当∠BAC =100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.25. 对于平面直角坐标系 x Oy 中的点P (a ,b ),若点P '的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点P '为点P 的“k 属派生点”.DCBAABC例如:P(1,4)的“2属派生点”为P'(1+42,214⨯+),即P'(3,6).(1)①点P(-1,-2)的“2属派生点”P'的坐标为____________;②若点P的“k属派生点”P'的坐标为(3,3),请写出一个符合条件的点P的坐标____________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP'为等腰直角三角形,则k的值为____________;(3)如图, 点Q的坐标为(0,点A在函数y=0x<)的图象上,且点A是点B的“,当线段B Q最短时,求B点坐标.海淀区九年级第二学期一模试题数学试卷答案及评分参考2014.5一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:0(3π)-++︒60tan 211()3-=13+-…………………………………………………………………4分 =4. ……………………………………………………………………………5分14. 解:49132. 2x x x x >-⎧⎪⎨+>⎪⎩, ①②由①,得3x >-, ……………………………………………………………………2分由②,得1x <, ……………………………………………………………………4分∴原不等式组的解集为31x -<<. …………………………………………………5分15. 解: 2(3)(3)(23)x x x +++-22=69239x x x x ++++- 2=39.x x + ……………………………………………………………………………3分2340,x x +-=23 4.x x ∴+=∴原式()233x x =+=34=12.⨯ ………………………………………………………5分16. 证明:∵∠EAB =90º, ∴∠EAD+∠CAB =90º.∵∠ACB =90º, ∴∠B+∠CAB =90º.∴∠B =∠EAD . ……………………………………………………………………1分 ∵ED ⊥AC ,EDCBA∴∠EDA =90º.∴∠EDA =∠ACB . ………………………………………………………………2分 在△ACB 和△EDA 中, ,,,B EAD BC AD ACB EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△EDA . ……………………………………………………………4分 ∴AB=AE . …………………………………………………………………………5分17. 解:设原计划每年建造保障性住房x 万套. ………………………………………1分根据题意可得:80802(125%)x x-=+ . ……………………………………………2分 解方程,得 8x =. …………………………………………………………………3分 经检验:8x =是原方程的解,且符合题意. ………………………………………4分答:原计划每年建造保障性住房8万套. ……………………………………………5分18.解:(1)∵B (1)m ,在2(0)y x x=>的图象上, ∴2m =.∴B (2, 1). …………………………………………………………………………1分 ∵B (2, 1)在直线y ax a =-(a 为常数)上, ∴12,a a =-∴ 1.a = ……………………………………………………………………………2分 ∴一次函数的解析式为 1.y x =- …………………………………………………3分 (2)P 点的坐标为(0,1)或(0,3). ……………………………………………5分四、解答题(本题共20分,每小题5分)19. 解:(1)∵在△ABC 中,∠ACB =90º,∠ABC =30º,BD =∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=. ∴14,42cos 2BC AB AC ABC ====⨯=∠. …………………………1分∵△ACD 为等边三角形,∴2AD CD AC ===,60DAC ∠=. 过点D 作DE AC ⊥于E , 则sin 2sin603DE AD DAC =∠=⨯=∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE =⋅+⋅112222=⨯⨯⨯= ………………………………………3分 (2)过点D 作DF AB ⊥于F . ∵180180606060DAF BAC DAC ∠=-∠-∠=--=,∴sin 2sin603DF AD DAF =⋅∠==cos 2cos601AF AD DAF =⋅∠==. ………………………………………4分∴415BF AB AF =+=+=.∵DF AB ⊥,∴在Rt BDF △中,22222528BD DF BF =+=+=.∴BD = …………………………………………………………………5分20. 解:(1)20.0%; ……………………………………………………………………1分(2)8365; ……………………………………………………………………………2分 ………………………………………………3分(3)9%,2016. …………………………………………………………………………5分21. 解:(1)连接,OD AD .∵AB 是⊙O 的直径,∴90ADB ∠=.又∵AB AC =,∴D 为BC 的中点.又∵O 为AB 的中点,5310 6229 6900 7703 总额/亿元年份 北京市2009至2013年社会消费品零售总额统计图 8365∴OD //AC .∵DF⊥AC ,∴DF ⊥OD . 又∵OD 为⊙O 的半径,∴DF 为⊙O 的切线.………………………………………………………………2分(2)∵DF ⊥AC ,9CF =, ∴cos CF C CD=. ∴3915cos 5CF CD C ==÷=.…………………3分 ∵90ADB ∠=,∴90ADC ∠=. ∴cos CD C AC=. ∴31525cos 5CD AC C ==÷=. . ……………………………………………………4分 连接BE .∵AB 是⊙O 的直径,∴90AEB ∠=.又∵DF⊥AC ,∴DF //BE . ∴1CF CD EF BD==. ∴9EF CF ==.∴25997AE AC EF CF =--=--=. ……………………………………5分22. 解:①6;………………………………………………………………………………1分 ②不变. ……………………………………………………………………………2分(1) ……………………………………………………………………3分(2)4+4sin α. ………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 解:(1)令2()=0mx m n x n -++,则22=()4=()m n mn m n ∆+--. ………………………………………………………1分 ∵二次函数图象与y 轴正半轴交于A 点,∴(0,)A n ,且0n >.又0m <,∴0m n -<.∴2=()0m n ∆->.∴该二次函数的图象与x 轴必有两个交点.………………………………………2分(2)令2()=0mx m n x n -++,解得:121,n x x m ==. 由(1)得0n m<,故B 的坐标为(1,0). ………………………………………3分 又因为45ABO ∠=,所以(0,1)A ,即=1n .则可求得直线AB 的解析式为1y x =-+.再向下平移2个单位可得到直线:1l y x =--. …………………………………4分(3)由(2)得二次函数的解析式为2(1)1y mx m x =-++∵M (,)p q 为二次函数图象上的一个动点,∴2(1)1q mp m p =-++.∴点M 关于x 轴的对称点M '的坐标为(,)p q -.∴点M '在二次函数2(1)1y mx m x =-++-上.∵当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,当0p =时,1q =;当3p =-时,124q m =+; ……………………………5分 结合图象可知:(124)2m -+≤, 解得:12m ≥-,………………………………………………………………………6分 ∴m 的取值范围为102m -≤<.……………………………………………………7分 24.解:(1)30°;……………………………… ………………………………………1分 (2)如图作等边△AFC ,连结DF 、BF .∴AF=FC=AC , ∠F AC=∠AFC=60°. ∵∠BAC =100°,AB=AC ,∴∠ABC =∠BCA =40°. ∵∠ACD =20°,∴∠DCB=20°. ∴∠DCB=∠FCB=20°. ①∵AC=CD ,AC=FC ,∴DC=FC . ②∵BC=BC ,③∴由①②③,得 △DCB ≌△FCB ,∴DB=BF , ∠DBC=∠FBC.∵∠BAC =100°, ∠F AC=60°,∴∠BAF =40°. ∵∠ACD =20°,AC=CD ,∴∠CAD=80°. ∴∠DAF=20°. ∴∠BAD=∠F AD=20°. ④ ∵AB=AC , AC=AF ,∴AB= AF . ⑤2∵AD= AD ,⑥∴由④⑤⑥,得 △DAB ≌△DAF .∴FD= BD .∴FD= BD=FB .∴∠DBF=60°. ∴∠CBD=30°. ………………………………………………………………………4分 (3)120m α=︒-, α=60° 或 240m α=︒- . ……………………………7分 25. 解:(1)①(-2,-4); ……………………………………………………………1分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .……………3分(2)±1; ……………………………………………………………………………5分 (3)设B (a ,b ).∵B 的“A ,∴A (a ,b +). ………………6分∵点A 还在反比例函数y =∴a b -+()∴212b ()=.∵0b >∴b =∴b =+.∴B 在直线y +上.…………………7分过Q 作y +的垂线Q B 1,垂足为B 1,∵(0,Q ,且线段BQ 最短,∴1B 即为所求的B 点,∴易求得3(2B .…………………………………………………………8分注:其他解法请参照给分.。

北京市海淀区2014年高三一模数学(理科)试题及答案

北京市海淀区2014年高三一模数学(理科)试题及答案

海淀区高三年级第二学期期中练习数 学 (理科)本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上 作答无效。

考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}211,2,,,,2A B y y x x A A B ⎧⎫===∈=⎨⎬⎩⎭I 集合则 A.⎭⎬⎫⎩⎨⎧21 B.{}2 C.{}1 D.φ 2.复数()()1i 1i z =+-在复平面内对应的点的坐标为A. (1,0)B. (0,2)C.()1,0D. (2,0) 3.下列函数()f x 图象中,满足1()(3)(2)4f f f >>的只可能是ABC D4.已知直线l 的参数方程为1,1x t y t=+⎧⎨=-+⎩(t 为参数),则直线l 的普通方程为A.02=--y xB.02=+-y xC.0x y +=D.02=-+y x 5.在数列{}n a 中,“12,2,3,4,n n a a n -==L ”是“{}n a 是公比为2的等比数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有A. 4种B.5种C.6种D.9种7.某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为 A.1 B.2 C.3 D.48. 已知(1,0)A ,点B 在曲线:G ln(1)y x =+上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.记曲线G 关于曲线M 的关联点的个数为a ,则A .0a =B .1a =C .2a =D .2a >二、填空题:本大题共6小题,每小题5分,共30分.9.一个空间几何体的三视图如图所示,该几何体的体积为______.10. 函数2y x x =-的图象与x 轴所围成的封闭图形的面积等于_______.主视图侧视图11.如图,AB 切圆O 于B,AB =1AC =,则AO 的长为_______.12. 已知圆04122=-++mx y x 与抛物线24y x =的准线相切,则=m13.如图,已知ABC ∆中,30BAD ∠=o ,45CAD ∠=o ,3,2AB AC ==,则BDDC=_____________.14.已知向量序列:123,,,,,n a a a a L L 满足如下条件:1||4||2==a d ,121⋅=-a d 且1n n --=a a d (2,3,4,n =L ).若10k ⋅=a a ,则k =________;123||,||,||,,||,n a a a a L L 中第_____项最小.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15.(本小题满分13分)已知函数ππ()2sin cos 66f x x x =,过两点(,()),(1,(1))A t f t B t f t ++的直线的斜率记为()g t . (Ⅰ)求(0)g 的值;(II )写出函数()g t 的解析式,求()g t 在33[,]22-上的取值范围.16. (本小题满分13分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(Ⅰ)根据表中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(Ⅱ)为了解乙公司员工B 的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X 的分布列和数学期望;(Ⅲ)根据表中数据估算两公司的每位员工在该月所得的劳务费.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE BD ⊥于E ,延长AE 交BC 于F ,将∆ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示. (Ⅰ)求证:AE ⊥平面BCD ;AB(Ⅱ)求二面角A –DC –B 的余弦值.(Ⅲ)在线段AF 上是否存在点M 使得//EM 平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.18. (本小题满分13分)已知曲线:e ax C y =.(Ⅰ)若曲线C 在点(0,1)处的切线为2y x m =+,求实数a 和m 的值; (Ⅱ)对任意实数a ,曲线C 总在直线l :y ax b =+的上方,求实数b 的取值范围.19. (本小题满分14分)已知,A B 是椭圆22:239C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 两点关于x 轴对称,且MAB ∆为等边三角形时,求AB 的长; (Ⅱ)当,A B 两点不关于x 轴对称时,证明:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A L 与()B n :123,,,,n B B B B L ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-L , 则称()A n 与()B n 互为正交点列.(Ⅰ)求(3)A :123(0,2),(3,0),(5,2)A A A 的正交点列(3)B ;(Ⅱ)判断(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 是否存在正交点列(4)B ?并说明理由; (Ⅲ)5n n ∀≥∈,N ,是否都存在无正交点列的有序整点列()A n ?并证明你的结论.B F海淀区高三年级第二学期期中练习参考答案数 学 (理科) 2014.4阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海 淀 区 九 年 级 第 二 学 期 期 中 练 习 2014.5一、选择题(本题共32分,每小题4分) 1.13-的绝对值是A . 3-B . 3C . 13- D . 132. 据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000. 数字1720000用科学记数法表示为A .517.210⨯B .61.7210⨯C .51.7210⨯D .70.17210⨯ 3.下列图形中,既是轴对称图形又是中心对称图形的是A B C D4.一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为A .23B .12C .13D .165.如图,AB 为⊙O 的弦,OC ⊥AB 于C ,AB=8,OC =3,则⊙O 的半径长为 A .3 C .4 D .56.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 A .甲 B .乙 C .丙 D .丁7.如图,在ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为 A .150° B .130° C .120°D .100°8.如图,点P 是以O 为圆心, AB 为直径的半圆的中点,AB=2,等腰直角三角板45°角的顶点与点P 重合, 当此三角板绕点P 旋转时,它的斜边和直角边所在的直线与直径AB 分别相交于C 、D 两点.设线段AD 的长为x ,线段BC 的长为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A B C D 二、填空题(本题共16分,每小题4分) 9.分解因式:24xy x -= .10.已知关于x 的方程220x x a -+=有两个不相等的实数根,则a 的取值范围是_________.11.如图,矩形台球桌ABCD 的尺寸为2.7m ⨯1.6m ,位于AB 中点处的台球E沿直线向BC 边上的点F 运动,经BC 边反弹后恰好落入点D 处的袋子中,则BF 的长度为 m.E DCBA F EDCB A 1.6m2.7m12.在一次数学游戏中,老师在A B C 、、三个盘子里分别放了一些糖果,糖果数依次为0a ,0b ,0c ,记为0G =(0a ,0b ,0c ). 游戏规则如下: 若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作. 若三个盘子中的糖果数都相同,游戏结束. n 次操作后的糖果数记为n G =(n a ,n b ,n c ).(1)若0G =(4,7,10),则第_______次操作后游戏结束;(2)小明发现:若0G =(4,8,18),则游戏永远无法结束,那么2014G =________. 三、解答题(本题共30分,每小题5分)13.计算:0(3π)-++︒60tan211()3--14. 解不等式组:49132.2x x x x >-⎧⎪⎨+>⎪⎩,15. 已知2340x x +-=,求代数式2(3)(3)(23)x x x +++-的值.16.如图,在△ABC 中,∠ACB =90º, D 是AC 上的一点,且AD=BC ,DE ⊥AC 于D , ∠EAB =90º. 求证:AB=AE .EDCB A17.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况. 开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务. 求原计划每年建造保障性住房多少万套?18.如图,在平面直角坐标系xOy 中,一次函数y ax a =-(a 为常数)的图象与y 轴相交于点A ,与函数2(0)y x x=>的图象相交于点B (m ,1). (1)求点B 的坐标及一次函数的解析式;(2)若点P 在y 轴上,且△PAB 为直角三角形,请直接写出点P 的坐标.四、解答题(本题共20分,每小题5分)19. 如图,在△ABC 中,∠ACB =90º,∠ABC =30º,BC=,以AC 为边在△ABC 的外部作等边△ACD ,连接BD . (1)求四边形ABCD 的面积; (2)求BD 的长.ABCD20. 社会消费品通常按类别分为:吃类商品、穿类商品、用类商品、烧类商品,其零售总额是反映居民生活水平的一项重要数据.为了了解北京市居民近几年的生活水平,小红参考北京统计信息网的相关数据绘制了统计图的一部分:(1)北京市2013年吃类商品的零售总额占社会消费品零售总额的百分比为 ; (2)北京市2013年吃类商品零售总额约为1673亿元,那么当年的社会消费品零售总额约为 亿元;请补全条形统计图,并标明相应的数据.......; (3)小红根据条形统计图中的数据,绘制了北京市2010至2013年社会消费品零售总额年增长率统计表(如下表),其中2013年的年增长率为 (精确到1%);请你估算,如果按照2013年的年增长率持续增长,当年社会消费品零售总额超过10000亿元时,最早要到 年(填写年份).北京市2010至2013年社会消费品零售总额年增长率统计表21.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与边BC 、AC 分别交于D 、E 两点, DF ⊥AC 于F .(1)求证:DF 为⊙O 的切线; (2)若3cos 5C =,CF =9,求AE 的长. 5310622969007703总额/亿元年份吃类商品8.7%64.1%7.2%用类商品穿类商品烧类商品北京市2009至2013年社会消费品零售总额统计图 北京市2013年各类社会消费品零售总额分布统计图22.阅读下面材料:在学习小组活动中,小明探究了下面问题:菱形纸片ABCD 的边长为2,折叠菱形纸片,将B 、D 两点重合在对角线BD 上的同一点处,折痕分别为EF 、GH .当重合点在对角线BD 上移动时,六边形AEFCHG 的周长的变化情况是怎样的? 小明发现:若∠ABC =60°,①如图1,当重合点在菱形的对称中心O 处时,六边形AEFCHG 的周长为_________; ②如图2,当重合点在对角线BD 上移动时,六边形AEFCHG 的周长_________(填“改变”或“不变”).请帮助小明解决下面问题:如果菱形纸片ABCD 边长仍为2,改变∠ABC 的大小,折痕EF 的长为m . (1)如图3,若∠ABC =120°,则六边形AEFCHG 的周长为_________;(2)如图4,若∠ABC 的大小为2α,则六边形AEFCHG 的周长可表示为________.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy 中,二次函数2()y mx m n x n =-++(0m <)的图象与y 轴正半轴交于A 点.(1)求证:该二次函数的图象与x 轴必有两个交点;(2)设该二次函数的图象与x 轴的两个交点中右侧的交点为点B ,若45ABO ∠=,将直线AB 向下平移2个单位得到直线l ,求直线l 的解析式; (3)在(2)的条件下,设M (,)p q 为二次函数图象上的一个动点,当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,求m 的取值范围.24.在△ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD .(1)如图1,当∠BAC =100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC =100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.DCBAABC25.对于平面直角坐标系x Oy中的点P(a,b),若点P'的坐标为(bak+,ka b+)(其中k为常数,且0k≠),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P'(1+42,214⨯+),即P'(3,6).(1)①点P(-1,-2)的“2属派生点”P'的坐标为____________;②若点P的“k属派生点”P'的坐标为(3,3),请写出一个符合条件的点P的坐标____________;(2)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且△OPP'为等腰直角三角形,则k的值为____________;(3)如图, 点Q的坐标为(0,),点A在函数y=0x<)的图象上,且点A是点B的“,当线段B Q最短时,求B点坐标.海淀区九年级第二学期期中测评一、选择题(本题共32分,每小题4分)二、填空题(本题共16分,每小题4分)三、解答题(本题共30分,每小题5分)13. 解:0(3π)-++︒60tan 211()3-=4 ………………5分14. 解:∴原不等式组的解集为31x -<<. …………………………………………………5分15. 解: 2(3)(3)(23)x x x +++-∴原式()233x x =+=34=12.⨯ …………5分16. 证明:17. 解:设原计划每年建造保障性住房x 万套. ………………………………………1分根据题意可得:80802(125%)x x-=+ . ……………………………………………2分 解方程,得 8x =. …………………………………………………………………3分 经检验:8x =是原方程的解,且符合题意.………………………………………4分答:原计划每年建造保障性住房8万套. ……………………………………………5分18.解:(1)∵B (1)m ,在2(0)y x x =>的图象上,∴一次函数的解析式为 1.y x =- ……3分(2)P 点的坐标为(0,1)或(0,3). ……………………………………………5分 四、解答题(本题共20分,每小题5分)19. 解:(1)∵在△ABC 中,∠ACB =90º,∠ABC =30º,BD =∴1cos ,2BC ABC AC AB AB ∠==,90903060BAC ABC ∠=-∠=-=. 14,42cos 2BC AB AC ABC ====⨯=∠. ………1分∵△ACD 为等边三角形,∴2AD CD AC ===,60DAC ∠=.过点D 作DE AC ⊥于E , 则sin 2sin603DE AD DAC =∠=⨯=∴ABC ACD ABCD S S S =+△△四边形1122AC BC AC DE =⋅+⋅112222=⨯⨯⨯= …3分(2)过点D 作DF AB ⊥于F .∵180180606060DAF BAC DAC ∠=-∠-∠=--=, ∴sin 2sin603DF AD DAF =⋅∠==cos 2cos601AF AD DAF =⋅∠==. ………………………………………4分∴415BF AB AF =+=+=. ∵DF AB ⊥,∴在Rt BDF △中,22222528BD DF BF =+=+=.∴BD = …………………………………………………………………5分20. 解:(1)20.0%; ……………………………………………………………………1分(2)8365; ……………………………………………………………………………2分………………………………………………3分(3)9%,2016. …………………………………………………………………………5分 21. 解:(1)连接,OD AD .∵AB 是⊙O 的直径,∴90ADB ∠=.又∵AB AC =,∴D 为BC 的中点. 又∵O 为AB 的中点,∴OD //AC .∵DF ⊥AC ,∴DF ⊥OD .又∵OD 为⊙O 的半径,∴DF 为⊙O 的切线.…2分 (2)∵DF ⊥AC ,9CF =,∴cos CF C CD =.∴3915cos 5CF CD C ==÷=.…3分 ∵90ADB ∠=,∴90ADC ∠=.∴cos CDC AC=.∴31525cos 5CD AC C ==÷=. . …………4分 连接BE .∵AB 是⊙O 的直径,∴90AEB ∠=.又∵DF ⊥AC ,∴DF //BE .∴1CF CD EF BD==.∴9EF CF ==.∴25997AE AC EF CF =--=--=. ……5分 53106229 69007703 总额/亿元 年份北京市2009至2013年社会消费品零售总额统计图836522. 解:①6;………………………………………………………………………………1分 ②不变. ……………………………………………………………………………2分(1) ……………………………………………………………………3分 (2)4+4sin α. ………………………………………………………………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)令2()=0mx m n x n -++,则22=()4=()m n mn m n ∆+--. ………………………………………………………1分∵二次函数图象与y 轴正半轴交于A 点,∴(0,)A n ,且0n >. 又0m <,∴0m n -<. ∴2=()0m n ∆->.∴该二次函数的图象与x 轴必有两个交点.………………………………………2分(2)令2()=0mx m n x n -++,解得:121,nx x m==.由(1)得0nm<,故B 的坐标为(1,0). ………………………………………3分 又因为45ABO ∠=,所以(0,1)A ,即=1n .则可求得直线AB 的解析式为1y x =-+.再向下平移2个单位可得到直线:1l y x =--. …………………………………4分 (3)由(2)得二次函数的解析式为2(1)1y mx m x =-++∵M (,)p q 为二次函数图象上的一个动点, ∴2(1)1q mp m p =-++.∴点M 关于x 轴的对称点M '的坐标为(,)p q -. ∴点M '在二次函数2(1)1y mx m x =-++-上.∵当30p -<<时,点M 关于x 轴的对称点都在直线l 的下方,当0p =时,1q =;当3p =-时,124q m =+; ……………………………5分 结合图象可知:(124)2m -+≤,解得:12m ≥-,………………………………………………………………………6分∴m 的取值范围为102m -≤<.……………………………………………………7分224.解:(1)30°;……………………………… ………………………………………1分 (2)如图作等边△AFC ,连结DF 、BF .∴AF=FC=AC , ∠F AC=∠AFC=60°. ∵∠BAC =100°,AB=AC ,∴∠ABC =∠BCA =40°. ∵∠ACD =20°,∴∠DCB=20°. ∴∠DCB=∠FCB=20°. ① ∵AC=CD ,AC=FC , ∴DC=FC . ② ∵BC=BC ,③∴由①②③,得 △DCB ≌△FCB ,∴DB=BF , ∠DBC=∠FBC. ∵∠BAC =100°, ∠F AC=60°,∴∠BAF =40°. ∵∠ACD =20°,AC=CD ,∴∠CAD=80°. ∴∠DAF=20°. ∴∠BAD=∠F AD=20°. ④ ∵AB=AC , AC=AF , ∴AB= AF . ⑤ ∵AD= AD ,⑥∴由④⑤⑥,得 △DAB ≌△DAF . ∴FD= BD . ∴FD= BD=FB .∴∠DBF=60°. ∴∠CBD=30°. ………………………………………………………………………4分 (3)120m α=︒-, α=60° 或 240m α=︒-.……………………………7分25. 解:(1)①(-2,-4); ……………………………………………………………1分②答案不唯一,只需横、纵坐标之和为3即可,如(1,2) .……………3分(2)±1; ……………………………………………………………………………5分 (3)设B (a ,b ).∵B 的“A ,∴A (a ,b +). ………………6分∵点A 还在反比例函数y =∴a b -+()∴212b ()=.∵0b >∴b =∴b =+.∴B 在直线y +上.…………………7分过Q 作y +的垂线Q B 1,垂足为B 1,∵(0,Q ,且线段BQ 最短, ∴1B 即为所求的B 点,∴易求得3(2B .…………………………………………………………8分注:其他解法请参照给分.。

相关文档
最新文档