第十六章表观遗传学(答)

合集下载

分子生物学之表观遗传学

分子生物学之表观遗传学

分子生物学:表观遗传学表观遗传学( epigenetics):指非基因序列变化导致的基因表达的可遗传的改变。

细胞中生物信息的表达受两种因素的调控:遗传调控提供了“生产’维持生命活动所必需的蛋白质的“蓝本”,而表观遗传调控则指导细胞怎样、何时和何地表达这些遗传信息。

表观遗传学研究的主要内容:DNA的甲基化,染色质的物理重塑和化学修饰,非编码RNA基因调节。

依赖ATP的染色质的重塑由ATP水解释放的能量可以使DNA和组蛋白的构象发生改变;包括DNA的甲基化和组蛋白N端尾巴上特殊位点的化学基团修饰,同样可以直按或间接地影响染色质的结构和功能。

二者之间相互渗透,相互作用,共同影响着染色质的结构和基因的表达。

此外,近些年发现转录组(transcriptome)中组有多种非编码RNA广泛参与基因表达调控,非编码RNA的基因调节也可属于表观遗传学的研究的范畴。

DNA甲基化的概况DNA的甲基化既可以发生在腺嘌呤的第6位氮原子上,也可以发生在胞嘧啶的第5位碳原子上。

*在真核生物中,DNA甲基化只发生在胞嘧啶第5位碳原子上。

真核DNA甲基化由DNA甲基转移酶(Dnmt, DNA methyltransferase)催化,S-腺苷甲硫氨酸(SAM, S-adenosyl methionine)作为甲基供体,将甲基转移到胞嘧啶上,生成5一甲基胞嘧啶(5-mC)。

在哺乳动物中,DNA甲基化主要发生在CpG双核苷酸序列,全部CG二核苷酸中约70%~80%的C是甲基化(mCpG), 所以CpG称为甲基化位点。

CG抑制:DNA中CG的排列出现的概率小于期望值1/16(A42+4=16),如人的基因组中CG排列小于1%,而非随机期望的约6%(1/16).基因组中的CpG位点并非均一分布。

在某些区域中(大约有300~3 000 bp),CpG位点出现的密度高(50%或更高),这些区域即所谓的CpG岛。

大部分CpG岛(>200bp, C+G含量=/>50%. CpG观测值/期望值=/>0.6) 位于基因的5’端,包括基因的启动子区域和第一外显子区,而且60%的人类(哺乳动物40%)基因组的启动子区都含有CpG岛(几乎所有管家基因都存在CpG岛),它们在基因表达调控中可能发挥着重要的作用。

表观遗传学

表观遗传学
In my mind, these studies stress the importance of keeping a close track of dietary intake while pregnant. As you probably know, obesity rates are on the rise and are associated with HUGE health care costs because of the slew of other health problems associated with obesity (diabetes, hypertension, etc.). Additionally, environmental toxins are unfortunately becoming somewhat ubiquitous and can apparently have the ability to exacerbate the obesity problem.
表观遗传学
❖ 经典遗传学以研究基因序列影响生物学功能为核心相比, ❖ 表观遗传学主要研究这些“表观遗传现象”的建立和维持
的机制。
多少年来,基因一直被认为是生物有机体一代代相传的一个 并且仅有的一个遗传载体。越来越多的生物学家发现了一 个被称为表观遗传的现象------生物有机体后天获得的非遗 传变异有时可以被遗传下去。有详细记录的100个关于代 间表观遗传的例子,提示非基因遗传要比科学家们以前想 象的多得多。
其他例子 Rats whose agouti gene is unmethylated (i.e., expressed) have a yellow-ish coat color and are

表观遗传学

表观遗传学
,体细胞中两条X染色体中的一条随机失活,这就是X染色体失活。
细胞中两条X染色体中的一条随机失活,这就是X染色 母猫身上有可能会是花花的,既有棕色又有黄色,而公猫只有一种颜色,棕色或者黄色。
表观遗传学是与遗传学相对应的概念。
体失活。而且,一旦这个细胞启动了对某一条X染色体 遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变和基因杂合丢失等;
性染色体,但是为了保证X染色体上的基因表达剂量在 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。
三色猫背后的生物学机制
对于只有一条X染色体的公猫,它的毛色要么是黄白要么是棕白。
一个合适的范围内,在胚胎发育到原肠胚的时期,体 在雌性体细胞内,虽然有两条X性染色体,但是为了保证X染色体上的基因表达剂量在一个合适的范围内,在胚胎发育到原肠胚的时期
对于只有一条X染色体的公猫,它的毛色要么是黄白 要么是棕白。对于虽然有两条X染色体,但是毛色基 因一致的雌猫,毛色也是黄白或者棕白。只有杂合体 的雌猫,拥有两条X染色体,但是一条上面带的是黄 色毛基因,另一条上面则是棕色毛基因。在胚胎发育 的早期,已经形成了多细胞的阶段,两条X染色体要 失活一条,失活的X染色体浓缩成染色较深的染色质 体。有些细胞保留黄色毛基因所在的X染色体的活性, 而有些细胞保留棕色毛基因所在的X染色体的活性。 而且,这些细胞再分裂出来的子代细胞,都保持一样 的失活程序。最后出生的小猫,身上的花斑就是这里 一块是黄色那里一块是棕色,这是因为同一色的斑块 实际上都来自于同一个前体细胞,并保留相同的X染 色体失活的选择(图1)。
有些细胞保留黄色毛基因所在的X染色体的活性,而有些细胞保留棕色毛基因所在的X染色体的活性。
条有活性的X染色体。在雌性体细胞内,虽然有两条X 在雌性哺乳动物的体细胞中,两条X染色体中的一条总是被异染色质化而失活,这个现象称为X染色体失活。

表观遗传学

表观遗传学

表观遗传学Epigenetics1.达尔文“自然选择”:过度繁殖、生存竞争、遗传和变异、适者生存2.表观遗传学:没有DNA序列的变化,可发生生物体表现型的可遗传的改变。

表观遗传学是在以孟德尔式遗传为理论基石的经典遗传学和分子遗传学母体中孕育的、专门研究基因功能实现的一种特殊机制的遗传学分支学科。

表观遗传研究进一步促进了遗传学和基因组学的研究。

3.染色质DNA或蛋白质的各种修饰(染色质水平的基因表达调控)DNA修饰;组蛋白修饰;RNA干扰;基因组印迹;X染色体失活。

4.DNA甲基化(DNA methylation)甲基化位点:CpG中胞嘧啶第5位碳原子。

DNA甲基转移酶。

甲基来源:一碳单位;S-腺苷蛋氨酸;环境和饮食因素:叶酸、B121)基因组DNA CpG:70%~80%甲基化状态,CpG甲基化与基因组稳定性相关。

2)CpG岛:CpG双核苷酸局部聚集,形成GC含量较高、CpG双核苷酸相对集中的区域。

CpG岛CpG多为非甲基化状态;CpG岛CpG甲基化与基因表达抑制相关。

3)CpG岛分类:转录起始点附近的CpG岛(TSS–CGIs),正常组织是非甲基化的,肿瘤组织发生甲基化,与转录抑制相关。

转录起始点外的CpG岛(non-TSS CpG),正常组织:通常呈高度的甲基化。

肿瘤组织:甲基化程度降低,程度与患病程度相关。

4)CpG岛的分析:长度大于200 bp、GC含量大于50%、CpG含量与期望含量之比大于0.6的区域。

5)DNA甲基化转移酶DNMT:DNMT1:催化子链DNA半甲基化位点甲基化,维持复制过程中甲基化位点的遗传稳定性.DNMT3a和DNMT3b:催化从头甲基化,以非甲基化的DNA为模板,催化新的甲基化位点形成.6)甲基来源:S-腺苷蛋氨酸(胞嘧啶甲基化供体、蛋氨酸是必需氨基酸),一碳单位叶酸:参与一碳单位代谢,间接提供甲基。

补充S-腺苷蛋氨酸。

叶酸摄入不足时可导致DNA低甲基化。

7)DNA甲基化抑制基因转录的机制①直接抑制基因表达:启动子区CpG序列甲基化,影响转录激活因子与启动子识别结合。

遗传学——表观遗传学

遗传学——表观遗传学

• 1879年德国生物学家弗莱明(F1eming· ) w 把细胞核中的丝状和粒状的物质,用染料染红, 观察发现这些物质平时散漫地分布在细胞核中, 当细胞分裂时,散漫的染色物体便浓缩,形成 一定数目和一定形状的条状物,到分裂完成时, 条状物又疏松为散漫状 。 • 1883年美国学者提出了遗传基因在染色体上 的学说。 • 1888年正式被命名为染色体。
2、二级结构:由核小体连接起来的纤维状结构 经螺旋化形成中空的螺线管。螺旋管的每一圈 包括6个核小体,外径约为30 nm。DNA的长 度在一级结构的基础上又被压缩了6倍。 3、三级结构:即由螺线管形成超螺线管,DNA 的长度在二级结构的基础上被压缩了40倍, 4、四级结构:在由三级到四级结构,即形成染 色单体后,DNA的长度在三级结构的基础上被 压缩了5倍。 因此由一条DNA长链,经过多级螺旋化,可以 使几厘米长的DNA与组蛋白等物质共同形成几 微米长的染色体,其长度总共被压缩了8 000 倍~10 000倍。
遗传学和表观遗传学的关系
● 传统遗传学认为遗传信息储存于DNA 的序列中, 它主要研究基因序列改变所致的基因表达水平的 变化,是基因质的变化; ● 表观遗传学则认为遗传信息是DNA甲基化形式 和组蛋白密码、RNA干涉等,是以基因表达水平 为主的量变遗传学。 ● 表观遗传变异也能遗传,并具重要的表型效应, 但其不同于基因突. ▲ 首先,表观遗传学是渐变的遗传过程而非突变 的过程; ▲第二,表观遗传变异常常是可逆的; ▲第三,表观遗传改变多发生在启动子区,而遗 传突变多发生在编码区等。
• 通常,DNA 甲基化与染色体的压缩状态、 DNA 的不可接近性以及与基因处于抑制和 沉默状态相关; 而DNA 去甲基化、组蛋白 的乙酰化和染色质去压缩状态,则与转录 的启动、基因活化和行使功能有关。 • 这意味着,不改变基因本身的结构,而改 变基因转录的微环境条件就可以左右基因 的活性,或令其沉默,或使其激活。

表观遗传学

表观遗传学
生长起着重要的调控作用;
哈工大-遗传学 第十六章 表观遗传学
一、印记的发现
迄今为止,除人类和哺乳动物外,报道印
记的物种还有有袋类动物和种子植物。而在鸟 类、鱼类、爬行类和两栖动物中普遍认为不存
在印记。
哈工大-遗传学
第十六章 表观遗传学
二、印记基因的特 点
(1) 印记基因成簇存在
印记控制中心(imprinting control elements,ICE) 交互印记
X X
×
第十六章 表观遗传学
哈工大-遗传学
一、印记的发现
• McGrath和Solter的小鼠核移植实验(1984): 种质细胞在受精发育过程中 雄原核替代雌原核 雌原核替代雄原核 胚胎组织 胎盘组织 胚胎死亡
可见,父系和母系基因组在发育过程中 担负的任务是不同的,且两者同时存在 是正常发育所必需的
小鼠
68
46 39 33
7
103
2010年12月 /home.html i/printing/implinkhtml
哈工大-遗传学 第十六章 表观遗传学
三、基因组印记的分子机制
1、印记基因表达调控的经典实例
重新甲基化酶可对未甲基化的CpG进行甲基化修饰 。 DNA的从头甲基化主要发生在胚胎发育的早期,所以该类 酶主要在早期表达。
哈工大-遗传学 表观遗传学
目前在真核生物中发现的DNA甲基化转移酶:
DNMT1/MET1:最初从小鼠分离,后来在拟南芥中也分离到
同源序列(MET1)在生殖细胞中广泛表达,目前认为,该酶
因活化相关;
哈工大-遗传学 表观遗传学
二、与DNA甲基化有关的酶类
DNA甲基化有两种方式,维持甲基化和重新甲基化, 所以相应的甲基化酶也分为两类:维持DNA甲基化转移酶 和重新甲基化转移酶。

表观遗传学

表观遗传学
1.2 组蛋白修饰
组蛋白是真核生物染色体的基本结构蛋白,是一类小分子碱性蛋白质。组蛋白有两个活性末端: 羧基端和氨基端。羧基端与组蛋白分子间的相互作用和DNA缠绕有关,而氨基端则与其他调节蛋白和DNA 作用有关,且富含赖氨酸,具有极度精细的变化区,这类变化由乙酰化、磷酸化、甲基化等共价修饰引起。这些修饰可作为一种标记或语言,是“组蛋白密码”的基本组成元素。这种组蛋白密码可被一系列特定的蛋白质所识别,并将其转译成一种特定的染色质状态以实现对特定基因的调节,这显著地扩大了遗传密码的信息储存量。
1 表观遗传学调控的分子机制
基因表达正确与否,既受控于DNA 序列,又受制于表观遗传学信息。表观遗传学主要通过DNA 的甲基化、组蛋白修饰、染色质重塑和非编码RNA 调控等方式控制基因表达。近年发现,副突变也包含有表观遗传性质的变化。
1.1 DNA 甲基化DNA
甲基化是由酶介导的一种化学修饰,即将甲基选择性地添加到蛋白质、DNA 或RNA上,虽未改变核苷酸顺序及组成,但基因表达却受影响。其修饰有多种方式,即被修饰位点的碱基可以是腺嘌呤N!6 位、胞嘧啶的N!4 位、鸟嘌呤的N!7 位和胞嘧啶的C!5 位,分别由不同的DNA 甲基化酶催化。在真核生物DNA 中,5- 甲基胞嘧啶是唯一存在的化学性修饰碱基,CG 二核苷酸是最主要的甲基化位点。DNA 甲基化时,胞嘧啶从DNA 双螺旋突出,进入能与酶结合的裂隙中,在胞嘧啶甲基转移酶催化下,有活性的甲基从S- 腺苷甲硫氨酸转移至胞嘧啶5' 位上,形成5- 甲基胞嘧啶( 5mC)。DNA 甲基化不仅可影响细胞基因的表达,而且这种影响还可随细胞分裂而遗传并持续下去。因此,它是一类高于基因水平的基因调控机制,是将基因型与表型联系起来的一条纽带。在哺乳动物细胞的基因组DNA中,约有3%~5%的胞嘧啶是以5- 甲基胞嘧啶形式存在的,同时70 %的5- 甲基胞嘧啶参与了CpG 序列的形成,而非甲基化的CpG 序列则与管家基因以及组织特异性表达基因有关。因而CpG 的甲基化与否在基因的表达中起重要作用。高度甲基化的基因,如女性两条X 染色体中的一条处于失活状态,而为细胞存活所需一直处于活性转录状态的持家基因则始终处于低水平的甲基化。在生物发育的某一阶段或细胞分化的某种状态下,原先处于甲基化状态的基因,也可以被诱导去除甲基化,而出现转录活性。

什么是表观遗传学什么是表观遗传学,简述其研究进展

什么是表观遗传学什么是表观遗传学,简述其研究进展

什么是表观遗传学什么是表观遗传学,简述其研究进展表观遗传学(epige***ics)——主要研究任务是通过对生活习惯、饮食习惯等因素的研究,寻找在没有改变dna序列的前体下,环境如何影响我们的基因的答案。

比如说,空气中的污染物如何改变一个人的dna的表达,从而导致像肺气肿或肺癌之类的疾病。

在基因组中除了dna和rna序列以外,还有许多调控基因的资讯,它们虽然本身不改变基因的序列,但是可以通过基因修饰,蛋白质与蛋白质、dna和其它分子的相互作用,而影响和调节遗传的基因的功能和特性,并且通过细胞**和增殖周期影响遗传。

因此表观遗传学又称为实验遗传学、化学遗传学、特异性遗传学、后遗传学、表遗传学和基因外调节系统,它是生命科学中一个普遍而又十分重要的新的研究领域。

它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫等许多疾病的发生和防治中亦具有十分重要的意义。

表观遗传学(epige***ics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞**和增值周期进行传递。

表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。

免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分化及功能表达和表观遗传学的联络甚密,无疑使这一交叉领域的发展一开始就置身于一片沃土之中。

为此,本文对表观遗传学的免疫学意义作一简介,侧面重于t细胞分化特别是th1、th2及相关细胞因子基因表达中的表观遗传学调控。

研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化什么是表观遗传学,简述其研究进展表观遗传学,研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。

发展一直以来人们都认为基因组dna决定着生物体的全部表型,但逐渐发现有些现象无法用经典遗传学理论解释,比如基因完全相同的同卵双生双胞胎在同样的环境中长大后,他们在性格、健康等方面会有较大的差异。

表观遗传学课件(带目录)

表观遗传学课件(带目录)

表观遗传学课件一、引言表观遗传学是研究基因表达调控机制的一门学科,它涉及到基因序列不发生变化,但基因表达却发生了可遗传的改变。

这种调控机制对于生物体的生长发育、细胞分化、疾病发生等过程具有重要作用。

本文将对表观遗传学的基本概念、调控机制及其在疾病中的应用进行详细阐述。

二、表观遗传学的基本概念1.基因表达调控:基因表达调控是指生物体通过一系列机制,控制基因在特定时间和空间的表达水平。

基因表达调控是生物体生长发育、细胞分化、环境适应等生命现象的基础。

2.表观遗传修饰:表观遗传修饰是指在基因的DNA序列不发生改变的情况下,通过DNA甲基化、组蛋白修饰、染色质重塑等机制调控基因表达的过程。

3.表观遗传学的研究内容:表观遗传学主要研究基因表达调控的分子机制,包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等。

三、表观遗传学的调控机制1.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的催化下,将甲基基团转移至DNA分子的过程。

DNA甲基化通常发生在基因的启动子区域,抑制基因表达。

2.组蛋白修饰:组蛋白修饰是指在组蛋白分子上发生的一系列化学修饰,如乙酰化、磷酸化、甲基化等。

这些修饰可以改变组蛋白与DNA的结合状态,从而调控基因表达。

3.染色质重塑:染色质重塑是指染色质结构发生变化,使基因的表达状态发生改变的过程。

染色质重塑可以通过改变核小体结构、DNA甲基化、组蛋白修饰等方式实现。

4.非编码RNA调控:非编码RNA是指不具有编码蛋白质功能的RNA分子,包括miRNA、lncRNA、circRNA等。

这些RNA分子可以通过与mRNA结合、调控转录因子活性等方式调控基因表达。

四、表观遗传学在疾病中的应用1.癌症:表观遗传学在癌症研究中的应用主要涉及肿瘤发生、发展和治疗。

研究发现,癌细胞的表观遗传修饰模式发生改变,导致肿瘤相关基因的表达异常。

通过研究这些表观遗传修饰,可以为癌症的早期诊断、预后评估和治疗提供新靶点。

表观遗传学

表观遗传学

表观遗传概述
表观遗传学的特点: 可遗传的,即这类改变通过有丝分裂或减数分裂,能 在细胞或个体世代间遗传;
可逆性的基因表达调节,也有较少的学者描述为基因 活性或功能的改变;
没有DNA序列的改变或不能用DNA序列变化来解释。
表观遗传学研究内容
1
2 3
基因组印记
RNA编辑
与人类疾病的关系
根据其特性,RNA编辑分为两种:
第一种是核苷酸的插入或删除 即碱基掺入到转录物或从转录物中移走,这种编辑 由指导RNA(guide RNA,gRNA)介导。 第二种是核苷酸的替代修饰 即通过化学修饰将一种碱基转变为另一种,这种转 化需要识别核苷酸序列特定位点的酶来参与,如腺 苷脱氨酶将A转为I,胞苷脱氨酶将C转为U。
X X
×
在蕈蚊的X染色体中,只有母系等位基因有活性, 而父系等位基因则处于沉默状态。
一、基因组印记
印记的发现:
McGrath和Solter的小鼠核移植实验(1984): 孤雄生殖 孤雌生殖 胚胎良好,胚盘不全 胚盘良好,胚胎不全
胚胎死亡
可见,父系和母系基因组在发育过程中担负的 任务是不同的,且两者同时存在是正常发育所 必需的
二、RNA编辑
RNA编辑可以是单个碱基的替换,也可以是更多 碱基的变化。
最典型的例子是锥虫动质体的线粒体基因mRNA的编 辑,涉及上百个U的缺失和添加。 哺乳动物中,mRNA有时会发生单碱基替换,如哺乳 动物肠道和肝的载脂蛋白B。 RNA编辑最终导致蛋白质结构和功能的改变。
二、RNA编辑
一、基因组印记
印记的发现:
DeChiara小鼠Igf2基因敲除实验(1991): 父系敲除,则发育成的动物个体小 母系敲除,则动物的个体没有变化 在正常的野生型胚胎中,只有父本基因表达,而 母本的基因则表现为沉默。 首次证实了印 记基因的存在 小鼠Igf2基因为第一个 被鉴定的印记基因

表观遗传学主要内容

表观遗传学主要内容

表观遗传学主要内容全文共四篇示例,供读者参考第一篇示例:表观遗传学是研究遗传物质之外对基因表达所产生影响的科学领域。

表观遗传学主要关注的是通过不影响DNA序列的改变,而对DNA及其相关蛋白进行修饰,从而调控基因表达的方式。

表观遗传学被认为在细胞分化、发育、疾病进展等方面扮演着重要作用。

表观遗传学的主要内容包括DNA甲基化、组蛋白修饰、非编码RNA、噬菌体遗传等。

DNA甲基化是最为常见和重要的一种表观遗传学修饰方式。

DNA甲基化是指在DNA链上的胞嘧啶基团上添加甲基基团的修饰过程。

这种修饰可以抑制基因的转录,从而影响基因的表达。

组蛋白修饰是指组蛋白分子的赋予不同化学修饰,如乙酰化、甲基化等,以调节染色质的结构和功能,从而影响染色质的紧密程度和DNA的可读性。

非编码RNA也是表观遗传学研究的热点内容之一。

非编码RNA 是指不编码蛋白质的RNA分子,包括microRNA(miRNA)、长链非编码RNA(lncRNA)等,它们可以通过介导转录后调控基因的表达和功能,参与信号通路的调控等。

以及噬菌体遗传也是表观遗传学的一个新兴研究领域,噬菌体的遗传物质可以传递到宿主细胞中,从而影响宿主的表观遗传修饰状态。

表观遗传学是一门综合了分子生物学、生物化学、基因组学、生物信息学等多学科知识的学科。

通过研究表观遗传学,我们可以更好地理解基因表达调控的机制,揭示疾病发生发展的内在机理,为疾病的诊断和治疗提供新的思路和方法。

表观遗传学的研究也为基因编辑、干细胞治疗等前沿领域的发展提供了重要的理论支持。

随着技术的不断进步和研究的深入,表观遗传学必将为人类健康和生物学研究带来更多的突破和创新。

第二篇示例:表观遗传学是研究表观遗传现象的一门学科,其主要内容包括遗传变异、表观修饰、染色质结构和功能等方面。

表观遗传学是遗传学领域中一个新兴的研究方向,它研究的对象不是DNA序列本身,而是对DNA序列的修饰和调控。

表观遗传学的研究为我们更好地理解基因表达调控机制和疾病发生的机理提供了重要线索。

表观遗传学

表观遗传学

饮食、遗传基因多态性和环境中的化学物
质的作用,均可导致DNA的甲基化状态改 变 。 饮 食 中 的 蛋 氨 酸 和 叶 酸 是 DNA 甲 基 化
甲基基团的供体。如果饮食中缺乏叶酸,蛋 氨酸或硒元素,就会改变基因的甲基化状态, 导致神经管畸形、癌症和动脉硬化。
这种改变是可以遗传的。
5hmc 可能与特定肿瘤的发生密切相关, 有可能成为肿瘤早期诊断的生物标志物。
基因组印迹是指来自父方和母方的等位基因 在通过精子和卵子传递给子代时发生了修饰, 使带有亲代印迹的等位基因具有不同的表达特 性,这种修饰常为DNA甲基化修饰,也包括组 蛋白乙酰化、甲基化等修饰。在生殖细胞形成 早期,来自父方和母方的印迹(一般)将全部被 消除,父方等位基因在精母细胞形成精子时产 生新的甲基化模式,在受精时这种甲基化模式 还将发生改变;母方等位基因甲基化模式在卵 子发生时形成,因此在受精前来自父方和母方 的等位基因具有不同的甲基化模式。
随后,他们又进行了实验,他们将蛔虫饿了 6天之后,检查其细胞中的分子变化。在饥饿蛔 虫中发现产生一组特定的小RNA(小RNA参与 基因表达的各个方面,但不编码蛋白质)。尽管 蛔虫后被喂食正常饮食,但这种小RNA至少持 续了三代。
推测:饥饿诱导的小RNA找到了可以进入蛔 虫生殖细胞的途径。当蛔虫在复制时,小 RNA 独立于 DNA,并可能在生殖细胞的胞体中从一 代传递到下一代。
研究与实践表明:环境对疾病有着巨大的影 响。对结肠癌、中风、冠心病和II型糖尿病等多 种复杂性疾病的统计学分析发现,至少70%的患 者表现出各种不良的“环境因素”,如偏食、超 重、不运动和抽烟。如果对不良生活习惯加以改 变,就可以大大地降低这些疾病的发生。例如, 不抽烟,少喝酒,良好的饮食以及适量的运动, 可以让冠心病和中风的患病率降低70%。越是复 杂的性状或行为,环境发挥的作用就相对越强、 越重要。

表观遗传学简介

表观遗传学简介
借以调控基因表达活性,在生殖与发育、遗传与进化、生理与病理现象中 具有重要的生物学意义,表观遗传学及应运而生的人类表观基因组计划 (HEP)已成为近年关注的热点问题。已知表观遗传学现象与多种人类疾 病有着密切的关系,如肿瘤、基因印迹病等。同时基因甲基化异常存在可 逆性,这可能为相关疾病的治疗提供崭新的途径。
表观遗传学简介 (Introduce to Epigenetics)
什么是表观遗传学
表观遗传学(epigenetics) 是指基于非基因序列改变所致基因表达水平变 化,如DNA甲基化、组蛋白乙酰化等。
在基因组中除了DNA和RNA序列以外,还有许多调控基因的信息,它 们虽然本身不改变基因的序列,但是可以通过基因修饰,蛋白质与蛋白 质、DNA和其它分子的相互作用,而影响和调节遗传的基因的功能和 特性,并且通过细胞分裂和增殖周期影响遗传的一门新兴学科。因此表 观遗传学又称为实验遗传学、化学遗传学、特异性遗传学、后遗传学、 表遗传学和基因外调节系统,它是生命科学中一个普遍而又十分重要的 新的研究领域。
DNA甲基化
DNA 甲基化是生物关闭基因表达的一种有效手段,也是印迹遗传的主要 机制之一;基因的去甲基化可能使得印迹丢失,基因过度表达,甚至引起 肿瘤或癌症的发生,如促肿瘤生长因子IGF2基因过度表达引发大肠癌。
在特定组织中,非甲基化基因表达,甲基化基因不表达,基因选择性的去甲 基化形成特异的组织类型。
(二) 位点特异性甲基化分析 目前多采用亚硫酸氢盐作前期的基因组DNA预处理。亚硫酸氢盐修饰是 众多序列特异性甲基化检测方法的基础。胞嘧啶(C)与亚硫酸氢钠的 反应可以迅速鉴别出以任何序列存在的5mC,修饰后单链DNA中的C通 过磺酸基作用脱氨基形成U,而CmG不变。
(三)新甲基化位点ቤተ መጻሕፍቲ ባይዱ寻找

表观遗传学

表观遗传学
利用甲基化敏感的限制性内切酶切割DNA,通过比较切割前后DNA片段的差异来检测甲基化。
组蛋白修饰检测技术
染色质免疫沉淀技术
利用特异性抗体与组蛋白修饰结合,通过沉淀和洗脱步骤 富集特定修饰的组蛋白及其结合的DNA片段。
质谱分析技术
通过质谱仪对组蛋白修饰进行定性和定量分析,具有高灵 敏度和高分辨率的优点。
表观遗传学
目录
• 表观遗传学概述 • 表观遗传机制 • 表观遗传与基因表达调控 • 表观遗传在生物发育中作用 • 表观遗传在疾病发生发展中作用 • 表观遗传学技术应用与前景展望
01 表观遗传学概述
定义与发展历程
表观遗传学定义
研究基因表达或细胞表现型的变化, 这些变化在不改变基因序列的情况下, 可通过细胞分裂和增殖进行遗传。
03 表观遗传与基因 表达调控
基因转录水平调控
转录因子
通过与DNA特定序列结合,激活 或抑制基因转录。
染色质重塑
改变染色质结构,影响转录因子与 DNA的结合。
组蛋白修饰
通过乙酰化、甲基化等修饰,影响 基因转录活性。
mRNA稳定性及翻译水平调控
mRNA降解
通过特定酶降解mRNA,调节基因表达。
microRNA
利用特异性抗体或亲和层析等方法,分离和鉴定与非编码RNA结 合的蛋白质,揭示其调控机制。
未来发展趋势预测
多组学整合分析
将表观遗传学数据与基因组学、转录组学、蛋白质组学等多组学数据 进行整合分析,更全面地揭示生物过程的调控机制。
单细胞表观遗传学研究
利用单细胞测序等技术,研究单个细胞水平上的表观遗传学变异和动 态变化过程。
非编码RNA在发育、细胞分化、 代谢等过程中发挥重要作用,同 时也与疾病的发生和发展有关。

第十六章表观遗传学(答)

第十六章表观遗传学(答)

第十六章表观遗传学(答)第十一章表观遗传学一、名词解释epigenetics;human epigenome project,HEP;histone code一、A 型题1、脆性X综合征是何基因发生重新甲基化而沉默导致?(D)A.H19基因 B.MeCP2基因 C.IGF2基因 D. FMR1基因2.对表观遗传的生物学意义的表述错误的是(D)A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。

B、“表观遗传修饰”可以影响基因的转录和翻译。

C、表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。

D、“表观遗传修饰”不能在个体世代间遗传。

3、Prader-Willi(PWS)综合征是由于印记基因缺失引起。

(A)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失4、Amgelman(AS)综合征是由于印记基因缺失引起。

(B)A、父源15q11-q13 缺失B、母源15q11-q13 缺失C、父源和母源15q11-q13 缺失D、父源11P15.5缺失5、表观遗传学三个层面的含义不包括:(D)A、可遗传性,可在细胞或个体世代间遗传;B、基因表达的可变性;C、无DNA序列的变化。

D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;6、siRNA相关沉默修饰的作用机制是:( A )A.与靶基因互补而降解靶基因 B.抑制靶mRNA 翻译C.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸外切酶水解D.互补而降解靶基因和抑制靶mRNA 翻译E.去除靶mRNA的多聚腺苷酸尾巴,使其被3‘核酸内切酶水解二、多选题1、表观遗传学信息主要包括等。

(A、B、C、D)A.DNA甲基化 B. 组蛋白修饰 C. RNA相关沉默 D. 遗传印记 E 以上都不是2、表观遗传的生物学意义包括。

(A、B、C、E)A.补充了“中心法则” B.表观遗传修饰可以影响基因的正常转录和翻译C.表观遗传修饰可以影响个体发育,而且可以遗传D. 表观遗传修饰可以影响个体发育,但不可以遗传E.表观遗传学修饰在基因和环境的相互作用中起重要作用3、肿瘤异常的DNA甲基化主要特点(A、B)A、肿瘤局部相关基因的高甲基化B、肿瘤中整体的低甲基化C、肿瘤局部相关基因的低甲基化D、肿瘤中整体的高甲基化E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化4、表观遗传学三个层面的含义包括:(B、C、E)A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。

表观遗传学 Epigenetics

表观遗传学 Epigenetics

miRNA
? 结构:21-25nt长的单链小分子RNA ,5′端有一个磷 酸基团,3′端为羟基,由具有发夹结构的约70-90个 碱基大小的单链RNA前体经过Dicer酶加工后生成。
? 特点:具有高度的保守性、时序性和组织特异性 。
? 功能:
siRNA 介导的RNAi
相同点/联系点
siRNA
miRNA
? 核小体核心DNA并不是随机的,其具备一定 的定向特性。
? 核小体定位机制:
? 内在定位机制:每个核小体被定位于特定的DNA片断。 ? 外在定位机制:内在定位结束后,核小体以确定的长
度特性重复出现。
? 核小体定位的意义:
? 核小体定位是DNA正确包装的条件。 ? 核小体定位影响染色质功能。
? 重塑因子调节基因表达机制的假设有两种:
? siRNA功能:是RNAi 作用的重要组分,是 RNAi发生的中介分子。内源性siRNA是细 胞能够抵御转座子、转基因和病毒的侵略 。
siRNA 介导的RNAi
? siRNAi 的特点:
? 高效性和浓度依赖性 ? 特异性 ? 位置效应 ? 时间效应 ? 细胞间RNAi 的可传播性 ? 多基因参与及 ATP 依赖性
(2)转录抑制复合物干扰基因转录。甲基化DNA结合蛋 白与启动子区内的甲基化CpG岛结合,再与其他一些 蛋白共同形成转录抑制复合物(TRC),阻止转录因 子与启动子区靶序列的结合,从而影响基因的转录。
(3)通过改变染色质结构而抑制基因表达。染色质构型 变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化 和去乙酰化本身就分别是转录增强子和转录阻遏物蛋 白。
胞嘧啶甲基化反应
? 哺乳动物基因组中5mC占胞嘧啶总量的2%-7%,约70% 的5mC存在于CpG二连核苷。

表观遗传学简介

表观遗传学简介

表观遗传学简介之前在介绍一些关于生物学基本知识的时候,提到过[[SNP是什么东西?]]以及[[基因突变需要了解那些内容?]]。

这类的变异都是通过改变基因序列来影响基因的功能。

除了这样的变异。

还有一类变化叫做表观遗传学 (epigenetics) 。

简单来说表观遗传学主要就是通过不影响基因序列的改变来影响基因基因的表达。

表观遗传 VS 基因关于表观遗传和基因的关系,可以看一眼下面这个视频:表观遗传分类表观遗传属于一个很大的分类,里面包括了多种方式来影响基因表达。

其中比较常见的就是:DNA甲基化,组蛋白修饰以及非编码RNA调控等等。

关于表观遗传的简单的分类可以看一眼下面这个视频:相关数据库在我们之前的推送当中,也介绍了很多表观遗传方面的数据库比如甲基化相关数据库•SurvivalMeth-肿瘤预后相关DNA甲基化数据库•MEXPRESS-TCGA甲基化和表达相关分析•EWAS Atlas-不同疾病甲基化状态查询数据库•DiseaseMeth-疾病相关甲基化分析数据库•DNMIVD-泛癌DNA甲基化分析数据库同时更多的也是非编码RNA的数据库•miRNANet-综合性miRNA靶基因预测数据库•miEAA-miRNA功能预测数据库mi•tsRFun-综合性tRFs分析数据库•tRFTar_tRFTars-tRFs靶基因预测数据库•starbase-ncRNA相互作用基因预测数据库•miTED-miRNA表达数据库•miRactDB-肿瘤当中miRNA靶点预测数据库•miRWalk-miRNA靶基因预测数据库………………而对于组蛋白修饰倒是介绍的少。

只不过关于组蛋白修饰的话,一般也可以通过[[ENCODE-转录调控必知数据库]]来进行观察的。

高中生物学中的表观遗传学

高中生物学中的表观遗传学

高中生物学中的表观遗传学1900 年,孟德尔规律的再发现诞生了经典遗传学,其影响之广泛、传播之迅速不亚于进化学说的提出。

此后10年,大量遗传学数据相继发表,孟德尔的拥趸者与反对者各执其词。

结束上述争论的是摩尔根及其同事的果蝇杂交实验,随后,染色体遗传学说的提出标志着经典遗传学的兴起。

20世纪60年代,随着对基因本质的阐明和中心法则的扩充和完善,“基因如何控制性状”这一核心问题仿佛已然被解决。

然而,近年来越来越多的证据表明,除去基因(碱基排序)之外,还存在一系列复杂和精细的调控机制,共同决定着性状的形成。

科学家将后者称为表观遗传学(Epigenetics),区别于以基因为核心的经典遗传学。

21世纪的表观遗传学崭新且富有活力,已经成为遗传学领域中不可或缺的组成。

为了紧跟科学前沿,2019年版人教版《必修2·遗传与进化》中增加了表观遗传概念,旨在帮助学生更深入地理解基因表达与性状的关系。

那么,在高中生物教学过程中,教师如何在学生所熟悉的(经典遗传)概念体系中引入新的表观遗传概念呢?对于前者而言,后者是挑战还是完善呢?在讨论上述问题之前,先来看教科书中提供的两个“令人困惑”的遗传现象。

1 小鼠毛色杂交实验教材案例1:纯合黄色小鼠(AvyAvy)与纯合黑色小鼠(aa)杂交,F1代没有表现出黄色,反而呈现出介于黄、黑色的一系列过渡类型。

不难想象,上述现象曾给遗传学家们带来过怎样的困扰。

自然界中类似的现象比比皆是,就连摩尔根都曾因为小鼠体色的遗传问题对孟德尔规律产生过怀疑。

遗传学家们将这种F1代“融合”了双亲性状的现象统称为“不完全显性”。

在表观遗传概念建立之前,人们无法解释上述现象的内在机制。

1999年,Emma Whitelaw等通过对上述案例的分析,终于揭开了表观遗传机制的冰山一角。

此前,科学家们已经知道小鼠毛色的深浅主要由Avy基因所决定。

当Avy基因正常表达时,小鼠毛色呈现黄色,反之则为黑色。

分子生物学笔记:表观遗传

分子生物学笔记:表观遗传

表观遗传学表观遗传(epigenetics)是指DNA序列不发生变化,但基因表达却发生了可遗传的改变。

这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。

概述在表观遗传中,DNA序列不发生变化,但基因表达却发生了可遗传的改变。

DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位以共价键结合一个甲基基团。

正常情况下,人类基因组中的“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态;与之相反,人类基因组中大小为100-1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。

人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5-15个CpG岛,平均值为每Mb 含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系。

由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

特点DNA双螺旋结构的发现和重组DNA技术、PCR技术的产生促进了分子遗传学的发展。

几十年来,人们一直认为基因决定着生命过程中所需要的各种蛋白质,决定着生命体的表型。

但随着研究的不断深入,科研人员也发现一些无法解释的现象:马、驴正反交的后代差别较大;同卵双生的两人具有完全相同的基因组,在同样的环境中长大后,他们在性格、健康等方面却会有较大的差异。

这些现象并不符合经典遗传学理论预期的结果,提示在某些情况下,基因的碱基序列不发生改变,但生物体的一些表型却可以发生了变化。

此外,研究还发现有些特征只是由一个亲本的基因来决定,而源自另一亲本的基因却保持“沉默”。

人们对于这样一些现象都无法用经典的遗传学理论去阐明。

遗传学中的一个前沿领域:表观遗传学(Epigenetics),为人们提供了解答这类问题的新思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章表观遗传学
、名词解释
epige netics;
huma n epige nome project,HEP;
hist one code
一、A型题
1脆性X综合征是何基因发生重新甲基化而沉默导致?(D)
A.H19基因
B. MeCP2基因
C. IGF2基因
D. FMR1 基因
2、对表观遗传的生物学意义的表述错误的是(D)
A、补充了“中心法则”,阐明核酸并不是存储遗传信息的唯一载体。

B “表观遗传修饰”可以影响基因的转录和翻译。

C表观遗传学修饰的可遗传性在基因和环境的共同作用中起重要作用。

D“表观遗传修饰”不能在个体世代间遗传。

3、 Prader-Willi ( PW$综合征是由于 __________________ 印记基因缺失引起。

(A)
A、父源15q11-q13缺失 B 、母源15q11-q13 缺失
C父源和母源15q11-q13缺失 D 、父源11P15.5缺失
4、 Amgelma n (AS)综合征是由于 ________________ 印记基因缺失引起。

(B)
A、父源15q11-q13缺失 B 、母源15q11-q13 缺失
C父源和母源15q11-q13缺失 D 、父源11P15.5缺失
5、表观遗传学三个层面的含义不包括:(D)
A、可遗传性,可在细胞或个体世代间遗传;
B、基因表达的可变性;
C、无DNA序列的变化。

D、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传;
6、 siRNA相关沉默修饰的作用机制是:(A )
A.与靶基因互补而降解靶基因
B. 抑制靶mRNA翻译
C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA翻译
E.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸内切酶水解
、多选题
1表观遗传学信息主要包括_____________ 等。

(A、B、C D)
A. DNA甲基化
B. 组蛋白修饰
C. RNA 相关沉默
D. 遗传印记E
以上都不是
2、表观遗传的生物学意义包括____________ 。

(A B C、E)
A.补充了“中心法则”
B. 表观遗传修饰可以影响基因的正常转录和翻译
C.表观遗传修饰可以影响个体发育,而且可以遗传
D.表观遗传修饰可以影响个体发育,但不可以遗传
E.表观遗传学修饰在基因和环境的相互作用中起重要作用
3、肿瘤异常的DNA甲基化主要特点(A、B)
A、肿瘤局部相关基因的高甲基化
B、肿瘤中整体的低甲基化
C 肿瘤局部相关基因的低甲基化D、肿瘤中整体的高甲基化
E、肿瘤局部相关基因和肿瘤中整体基因均低甲基化
4、表观遗传学三个层面的含义包括:(B C E)
A、可遗传性,可在细胞世代间遗传但不可在个体世代间遗传。

B基因表达的可变性。

C无DNA序列的变化。

D可遗传性,可在个体世代间遗传但不可在细胞世代间遗传。

E、可遗传性,可在细胞或个体世代间遗传。

5、 DNA甲基化的生物学意义有(A、C)
A DNA甲基化可抑制基因的活化状态
B抑癌基因启动子区的高甲基化造成基因活化;
C抑癌基因启动子区的高甲基化造成基因沉默;
D DNA甲基化可激活基因
E、抑癌基因启动子区的去甲基化造成基因沉默;
6、 miRNA沉默修饰的作用机制是:(A; B; C )
A.互补而降解靶基因
B. 抑制靶mRNA翻译
C.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸外切酶水解
D.互补而降解靶基因和抑制靶mRNA翻译
E.去除靶mRNA勺多聚腺苷酸尾巴,使其被 3 '核酸内切酶水解
三、填空题
1、1、表观遗传学信息主要包括、、和等。

(DNA甲基化、组蛋白修饰、RNA相关沉默、遗传印记)
2、表观遗传学信息可为蛋白质制造者提供、、以及行使
遗传信息的指令。

(何时;何地;何种方式)
3、组蛋白在翻译后的修饰中会发生改变,发生组蛋白、和
由此构成多种多样的组蛋白密码。

(乙酰化、甲基化和磷酸化)
四、问答题
1、简述肿瘤异常的 DNA甲基化主要特点。

2、表观遗传学的信息的内容?
3、短链非编码RNA乍用机制?
4、表观遗传的生物学意义?
5、表观遗传学信息的意义?。

相关文档
最新文档