三角函数图像与性质知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数图像与性质知识

点总结

The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结

一、三角函数图象的性质 1.“五点法”描图

(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为

(0,0) ⎝ ⎛⎭

⎪⎪

⎫π2,1 (π,0)

⎝ ⎛⎭

⎪⎪⎫

32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪

3π2,0,(2π,1)

2.三角函数的图象和性质

函数 性质

y =sin x y =cos x y =tan x 定义域 R R

{x |x ≠k π+π

2

,k

∈Z}

图象

值域

[-1,1]

[-1,1]

R

对称性

对称轴: x =k π+

π2(k ∈Z);

对称轴:

x =k π(k ∈Z) 对称中心:

对称中心:⎝ ⎛⎭

⎪⎪

⎫k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)

4.求三角函数值域(最值)的方法:

(1)利用sin x、cos x的有界性;

关于正、余弦函数的有界性

由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.

(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.

利用换元法求三角函数最值时注意三角函数有界性,如:y =sin 2x -4sin x +5,令t =sin x (|t |≤1),则y =(t -2)2+1≥1,解法错误.

5.求三角函数的单调区间时,应先把函数式化成形如y =A sin(ωx +φ) (ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,应在函数的定义域内考虑.注意区分下列两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x 系数的正负号) (1)y =sin ⎝ ⎛⎭⎪⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭

⎪⎪

⎫π4-2x .

6、y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:

①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点

2;

②B 的确定:根据图象的最高点和最低点,即B =

最高点+最低点

2

③ω的确定:结合图象,先求出周期,然后由T =2π

ω

(ω>0)来确定ω;

④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,然后根据

φ的范围确定φ即可,例如由函数y =A sin(ωx +φ)+K 最开始与x 轴的交点(最靠近原点)的横坐标为-φω(即令ωx +φ=0,x =-φ

ω

)确定φ.

二、三角函数的伸缩变化

先平移后伸缩

sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)

平移个单位长度

得sin()y x ϕ=+的图象()ωωω

−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)

1

到原来的纵坐标不变 得sin()y x ωϕ=+的图象()

A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)

为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)

(0)

k k k ><−−−−−−→ 得sin()y A x k ϕ=++的图象. 先伸缩后平移

sin y x =的图象(1)(01)

A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)

得sin y A x =的图象(01)(1)

1

()

ωωω

<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象

(0)(0)ϕϕϕω

><−−−−−−−→向左或向右平移

个单位

得sin ()y A x x ωϕ=+的图象(0)(0)

k k k ><−−−−−−−→向上或向下平移个单位长度

得sin()y A x k ωϕ=++的图象. .

相关文档
最新文档