第2章 AT89S51单片机的片内硬件结构课件

合集下载

第2章 AT89S51单片机原理与基本应用系统

第2章  AT89S51单片机原理与基本应用系统

单片机实用教程第2章AT89S51单片机原理与基本应用系统本章主要内容1、单片机的内部结构与引脚功能2、单片机存储器空间配臵与功能3、汇编语言指令格式与内部RAM的操作指令4、单片机I/O输入输出端口结构及工作原理5、单片机基本应用系统一、AT89S51单片机内部结构(1)一个8位的CPU;(2)一个片内振荡器及时钟电路;(3)4KB的Flash ROM;(4)128B的内部RAM(5)可扩展64KB外部ROM和外部RAM的控制电路;(6)两个十六位的定时/计数器;(7)26个特殊功能寄存器(双数据指针);(8)4个8位的并行口;(9)一个全双工的串行口;(10)5个中断源,两个外部中断,三个内部中断;(11)内部硬件看门狗电路;(12)一个SPI串行接口,用于芯片的在系统编程(ISP)。

1、电源VCC (P40)——芯片电源,接+5V 。

VSS (P20)——接电源地。

二、AT89S51单片机引脚功能2、时钟XTAL1(P19)——晶体振荡电路的反相器输入端XTAL2(P18)——晶体振荡电路的反相器输出端。

使用内部振荡电路时,该引脚外接石英晶体和补偿电容。

使用外部振荡输入时从XTAL2输入,此时XTAL1需接地。

3、控制控制引脚有4个,先学习其中的两个。

(1)RST/VPD——复位/备用电源RST复位功能是单片机正常工作必不可少的,因为复位可以使单片机从程序的开头运行,使单片机按照人们设计的程序运行,在单片机系统上电开始工作,或单片机系统由于外界干扰偏离正常运行,都需要复位。

AT89S51单片机是高电平复位,只要在该引脚上一段时间(两个机器周期以上)的高电平,单片机就复位。

在正常运行程序时该引脚为低电平。

VPD功能是在VCC掉电情况下,该引脚接备用电源,向片内的RAM供电,使RAM中的数据不丢失。

3、控制(2)EA/VPP——内外ROM选择/EPROM编程电源在通常的应用中EA功能是作为内部和外部ROM的选择端。

第2章 89C51单片机硬件结构和原理

第2章 89C51单片机硬件结构和原理

2.累加器A 使用最频繁的寄存器,可写为Acc。“A”与“Acc” 书写上 的差别,将在第3章介绍。
作用如下:
(1)ALU单元的输入数据源之一,又是ALU运算结果存放单元。 (2)数据传送大多都通过累加器A,相当于数据的中转站。为 解决“瓶颈堵塞”问题,AT89S51增加了一部分可以不经过 累加器的传送指令。
18
PSW中各个位的功能: (1)Cy(PSW.7)进位标志位
可写为C。在算术和逻辑运算时,若有进位/借位,Cy=1;
否则,Cy=0。在位处理器中,它是位累加器。 (2)Ac(PSW.6)辅助进位标志位 在BCD码运算时,用作十进位调整。即当D3位向D4位产生进 位或借位时,Ac=1;否则,Ac=0。 (3)F0(PSW.5)用户设定标志位 由用户使用的一个状态标志位,可用指令来使它置1或清0, 控制程序的流向。用户应充分利用。
端(12-21V)。
4、I/O端口P0、P1、P2和P3 准双向的含义:
当I/O口作为输入时,应先向此口锁存器写入全1, 此 时该口引脚浮空,可作高阻抗输入。
1)P0口:用作通用的I/O口;当外扩存储器及I/O接口芯片时,P0口作为低8位地址 总线及数据总线的分时复用端口。 2)P1口:用作通用的I/O口 3)P2口:用作通用的I/O口;当外扩存储器及I/O接口芯片时,P2口作为高8位地址 总线 4)P3口:用作通用的I/O口;每个引脚有第二功能
图2-6 高128字节RAM(SFR区)
1、堆栈指针SP
堆栈指针SP(8位),可指向片内RAM00H~7FH的任何单元。系统 复位后,SP指向07H的RAM单元,所以入栈的第一个数据位于08H单元。

堆栈:在片内RAM区专门开辟的一个区域,数据的存取是按“后进先

第2章AT89S51单片机硬件结构

第2章AT89S51单片机硬件结构

TXD
INT0 INT1 T0 T1 WR RD
串行数据发送
外部中断 0 申请 外部中断 1 申请 定时器/计数器 0 计数输入 定时器/计数器 1 计数输入 外部RAM写选通 外部RAM读选通
11
控制信号引脚


RST/VPD(9引脚):RST为复位信号输入端。
当RST端保持2个机器周期以上高电平时,单片机完成复位操作。 第二功能VPD为内部RAM的备用电源输入端。当主电源VCC发生 断电,降到一定电压值时,可通过VPD为单片机内部RAM提供电 源,以保护片内RAM中的信息不丢失,上电后能继续正常运行。 ALE / PROG (30引脚) : ALE为地址锁存允许信号 在系统扩展时,ALE用于控制把P0口输出的低8位地址送入锁存 器锁存起来,以实现低8位地址和数据的分时传送。
CPU是单片机内部的核心部件,完成运算和控制操作。包括运 算器、控制器以及若干寄存器等部件组成

运算器
以算术逻辑单元ALU为核心,加上累加器ACC、寄存器B、暂存器 TMP1和TMP2、 程序状态寄存器PSW、十进制调整电路及专门用
于位操作的布尔处理机组成的。
功能:实现数据的算术逻辑运算,位变量处理和数据传送操作。
可编程I/O
内中断
外中断 控制
并行口
4
89S51单片机的基本组成 一个8位 的微处理器CPU。 片内数据存储器(RAM128B/256B):
用以存放可以读/写的数据,如运算的中间结果、最终 结果以及欲显示的数据等。
片内程序存储器Flash ROM(4KB/8KB):
用以存放程序、一些原始数据和表格。但有一些单
片机内部不带ROM/EPROM,如8031、8032、80C31等。

第2章 AT89S51单片机系统结构和

第2章  AT89S51单片机系统结构和

技术凝聚实力 专业创新出版
2.2.1 8051结构

如图所示为8031、8051、8751的内部总体结构,该结构按功能可划分为8个组成部 分,它们是通过片内单一总线连接起来的。 微处理器(CPU); 数据存储器(RAM); 程序存储器(ROM/EPROM); 特殊功能寄存器(SFR); I/O口; 串行口; 定时器/计数器及中断系统。


当AT89S51工作于节电模式时,CPU进入睡眠模式,但是 所有的端口仍然保持工作状态。节电模式能够通过软件 进入,在这个模式下,所有的内存数据和特殊功能寄存 器的值均保持不变。节电模式能够被任何使能的中断和 硬件复位所结束。 当节电模式是由于硬件复位结束时,程序将从其进入节 电模式的指令继续执行,为了避免在外部引脚有不可预 测的输出,最好不要将写外部端口操作和读取外部内存 放在节电模式指令后的下一步操作。
技术凝聚实力 专业创新出版
2.2.4 特殊寄存器组(SFR)


AT89S51单片机中的特殊功能寄存器(SFR)是非常重要 的内存单元,对于单片机的工程技术人员来说,理解了 SFR也就基本掌握了AT89S51单片机。 AT89S51单片机的SFR包括内部的I/O口锁存器、累加器、 定时器、串行口、中断等各种控制寄存器和状态寄存器, 共26个SFR,它们离散地分布在80H~0FFH的SFR地址空间 内,其余空缺内存位置为保留空间,为将来单片机内核 升级使用,特殊功能寄存器名及对应的地址


SP是一个8为的SFR,它用来指示出堆栈顶部在内部RAM 块中的位置。系统复位后SP的值为07H,若不对SP设置 初值,则堆栈在08H开始的区域,为了不占用工作寄存 器R0~R7的地址,一般在编程时应设置SP的初值。 数据进入堆栈前,SP加1(成为压栈);数据从堆栈中 取出(成为出栈)后,SP减1。

单片机原理及应用第2章AT89s51单片机的 硬件结构

单片机原理及应用第2章AT89s51单片机的 硬件结构
P0W
AD0 控制 地址/数据
BUF2
D
Q
锁存器
C
Q
1 0
多路开关
读引脚
P0R2
BUF1
图1、P0口内部结构
Vcc
P00
说明: 1、当控制信号为0时,P0口做双 输向出I/锁O口存,器为漏极开路(三态) 2、两控个制输信入号缓为冲1时器,(BUPF01口和为BU地F2)址/ 推数拉据式复I/用O驱总线动器
2.2.3 I/O口引脚 P0:双向8位三态口,A7~A0/D7~D0,开漏输出,
作为输出口时,须外加上拉电阻,可驱动8个 TTL负载。
P1,P2,P3:
8位准双向口,片内有上拉电阻,作输入口 时,须先写入“1”,可驱动4个TTL负载。
P1:通用I/O
P2:I/O口/A15~A8
P3:I/O口/第二功能
多路开关
1) 功能:用于控制选通I/O方式
3、还P是0R地1为址读/数锁据存输器出信方号式, 2) 方执式行控“制AN:L由P内0,部#0控FH制”信时号
产该生信号有效
4、P0R2为读引脚信号,执行 “MOV A,P0”时该信号有效
6、读引脚(端口)时,输出 锁存器应为“1”
P0口:
作输出口时,外须接上拉电阻,才能输出“1” P0~P3作为输入口使用时,必须先向其锁存器写入
2.4.3 特殊功能寄存器(SFR)
26个:80H~FFH, 有些SFR可以进行位寻址
这里简单介绍一些SFR 1.堆栈指针SP
①SP:8位, 指示栈顶
7FH 片内RAM
SP
XX
②向上生长型
PUSH后,(SP)+1SP POP后,(SP)-1SP
堆栈

AT89S51单片机

AT89S51单片机

AT89S51AT89S51单片机的硬件组成单片机内硬件组成结构如图2-1所示。

图2-1 AT89S51单片机片内结构有如下功能部件和特性:(1)8位微处理器(CPU);(2)数据存储器(128B RAM);(3)程序存储器(4KB Flash ROM);(4)4个8位可编程并行I/O口(P0口、P1口、P2口和P3口);(5)1个全双工的异步串行口;(6)2个可编程的16位定时器/计数器;(7)1个看门狗定时器;(8)中断系统具有5个中断源、5个中断向量;(9)特殊功能寄存器(SFR)26个;(10)低功耗模式有空闲模式和掉电模式,且具有掉电模式下的中断恢复模式;(11)3个程序加密锁定位。

与AT89C51相比,AT89S51有更突出的优点:(1)增加在线可编程功能ISP(In System Program),字节和页编程,现场程序调试和修改更加方便灵活;(2)数据指针增加到两个,方便了对片外RAM的访问过程;(3)增加了看门狗定时器,提高了系统的抗干扰能力;(4)增加断电标志;(5)增加掉电状态下的中断恢复模式。

单片机内各功能部件通过片内单一总线连接而成(见图2-1),基本结构依旧是CPU 加上外围芯片的传统微机结构。

CPU对各种功能部件的控制是采用特殊功能寄存器(SFR,Special Function Register)的集中控制方式。

单片机内部件功能1)CPU(微处理器)8位的CPU,与通用CPU基本相同,同样包括了运算器和控制器两大部分,还有面向控制的位处理功能。

2)数据存储器(RAM)片内为128B(52子系列为256B ),片外最多可扩64KB 。

片内128B 的RAM 以高速RAM 的形式集成,可加快单片机运行的速度和降低功耗。

3)程序存储器(Flash ROM )片内集成有4KB 的Flash 存储器(A T89S52 则为8KB ;A T89C55片内20KB ),如片内容量不够,片外可外扩至64KB 。

第二章89C51单片机的硬件结构和原理精品PPT课件

第二章89C51单片机的硬件结构和原理精品PPT课件
牢牢记住:振荡周期 = 晶振频率fosc的倒数; 1个机器周期 = 12个振荡周期; 1个指令周期 = 1、2、4个机器周期
2.1.4 复位和复位电路

单片机在重新启动时都需要复位,MCS-51
系列单片机有一个复位引脚输入端RST。
➢ MCS-51系列的单片机复位方法为:在RST上
加一个维持两个机器周期以上的高电平,则单 片机被复位。
➢ 复位时单片机各部分将处于一个固定的状态
➢ 常用的MCS-51单片机复位电路
➢ 上电自动复位电路
➢ 手动复位电路
➢ “看门狗”复位电路
复位后单片机各单元的初始状态
寄存器 PC
ACC
B PSW SP DPTR P1、P2 P3、P4
IP IE
初始状态值 0000H 00H 00H 00H 07H 0000H
Vcc
C1 +
22uF R2
200
RST/VPD
R1 1K
Vs
GND
在系统运行过程中, 有时可能需要对系 统进行复位,以避 免对硬件经常加电 或断电而造成的伤 害,我们可以采用 手动复位的方式。 具体的电路如图所 示。
“看门狗”复位电 路
未稳压电源 R1
R2
WDI
RESET
PFI
WDO
MR
MAX813L
限频率可能有差别)。
C1
XT AL1
30 pF
C2 GND
30 pF
MC S-5 1 XT AL2
常用单片机的最高时钟频率
单片机型号
最高时钟频率
8031 8051
12MHz 12MHz
8751 AT89C2051
12MHz 24MHz

第2章 AT89S51单片机的片内硬件结构(共112张PPT)

第2章 AT89S51单片机的片内硬件结构(共112张PPT)
ALE的第一功能为CPU访问外部程序存储器或外部数据 存储器提供低8位地址锁存信号,将单片机P0口发出的
低8位地址锁存在片外地址锁存器中。
PROG为该引脚的第二功能,在对片内Flash存储器编程时 ,此引脚作为编程脉冲输入端。
〔4〕PSEN〔Program Strobe ENable,29脚〕 片内或片外程序存储器的读选通信号,低电平有效。
13
〔2〕EA/ VPP (Enable Address/Voltage Pulse of Programing,31脚) 〔External Access Enable〕为该引脚的第一功能:外部程序存储器 访问允许控制端。
当EA=1时,在单片机片内的PC值不超出0FFFH〔即不超出片内 4KB Flash存储器的最大地址范围〕时,单片机读片内程序存储器〔 4KB〕中的程序代码,但PC值超出0FFFH〔即超出片内4KB Flash 存储器地址范围〕时,将自动转向读取片外60KB〔1000H~FFFFH 〕程序存储器中的程序代码。
双向口P0与P1口、P2口、P3口这3个准双向口相比,多了一个 高阻输入的“悬浮〞态。这是由于P0口作为数据总线使用时,多个 数据源都挂在数据总线上,当P0口不需与其他数据源打交道时,需 要与数据总线高阻“悬浮〞隔离。而准双向I/O口那么无高阻的“悬 浮〞状态。另外,准双向口作通用I/O的输入口使用时,一定要向该 口先写入“1〞。以上的准双向口与双向口的差异,在学习本章2.5节 的P0~P3口的内部结构后,将会有更深入的理解。
〔1〕电源及时钟引脚—VCC、VSS;XTAL1、XTAL2; 〔2〕控制引脚—PSEN、ALE/PROG、EA/ VPP、RST〔即RESET
〕;
〔3〕I/O口引脚—P0、P1、P2与P3,为4个8位并行I/O口的外部引脚。

AT89S51单片机硬件结构

AT89S51单片机硬件结构

2.2 AT89S51的引脚功能
要想使用单片机就要了解其各个引脚的功能,先了 解引脚,牢记各引脚的功能。
AT89S51与51系列中各种型号芯片的引脚互相兼 容。目前多采用40只引脚双列直插,如图2-2。此外 ,还有44引脚的PLCC和TQFP封装方式的芯片。 引脚按其功能可分为如下3类: (1)电源及时钟引脚—VCC、VSS;XTAL1、XTAL2。 (2)控制引脚— PSEN*、ALE/PROG*、EA*/VPP、 RST(RESET) (3)I/O口引脚——P0、P1、P2、P3,为4个8位I/O 口
的双向I/O口,需外接上拉电阻,每 根线可独立定义输入或输出,也可以 作为地址线或数据线使用。 ✓ P1口(1-8):是一个带内部上拉电 阻的8位准双向I/O口.连接外围负载 时不需外接上拉电阻。
89S51单片机及其引脚
2.2 AT89S51的引脚功能
➢ 并行的I/O口: P2口(21-28):是一个带
➢中断系统 具有6个中断源,2级中断优先权。 ➢定时器/计数器 2个16位定时器/计数器(52子系列有3个),4种 工作方式。 ➢ 1个看门狗定时器WDT 当CPU由于干扰使程序陷入死循环或跑飞时,WDT 可使程序恢复正常运行。
➢串行口 1个全双工的异步串行口,4种工作方式。可进行 串行通信,扩展并行I/O口,还可与多个单片机 构成多机系统。 ➢P0口、P1口、P2口和P3口 4个8位并行I/O口。 ➢ 特殊功能寄存器(SFR) 26个,对片内各功能部件管理、控制和监视。是 各个功能部件的控制寄存器和状态寄存器,映射 在片内RAM区80H~FFH内3Βιβλιοθήκη 钟电路ROMT0 T1
RAM 定时计数器
CPU
并行接口 串行接口
中断系统

AT89S51 单片机的硬件组成_单片机原理及接口技术(第2版)_[共2页]

AT89S51 单片机的硬件组成_单片机原理及接口技术(第2版)_[共2页]

14 第2

AT89S51单片机的片内硬件结构 【内容概要】本章介绍AT89S51单片机的片内硬件结构。

读者应牢记AT89S51单片机的片内硬件结构,以及片内外设资源的基本功能及工作原理,重点掌握AT89S51单片机的存储器结构、常见的特殊功能寄存器的基本功能以及复位电路与时钟电路的设计,掌握单片机最小系统的概念。

最后介绍低功耗节电模式。

本章的学习目的是为单片机应用系统的硬件设计打下基础。

单片机应用的特点是编写程序来控制硬件电路,所以,读者应首先熟知并掌握AT89S51单片机片内硬件的基本结构和特点。

2.1 AT89S51单片机的硬件组成
AT89S51单片机片内硬件结构如图2-1所示,它把那些作为控制应用所必需的基本外围部件都集成在一个集成电路芯片上。

AT89S51单片机具有如下部件及特性。

图2-1 AT89S51单片机片内结构
(1)8位CPU。

(2)数据存储器(128B RAM)。

(3)程序存储器(4KB Flash ROM)。

第2章 AT89S52单片机的片内硬件结构(2)存储器结构

第2章 AT89S52单片机的片内硬件结构(2)存储器结构

pop
A
pop
B
pop
PSW
这样的指令顺序对不对?
30
2.寄存器B
为执行乘法和除法而设。
在不执行乘、除法操作的情况下,可把它当作一个 普通寄存器来使用。
乘数 A × 乘数 B
高8位 B 低8位 A
商 A 余数 B 除数 B 被除数 A
31
4. 数据指针DPTR0和DPTR1
双数据指针寄存器,便于访问数据存储器。 DPTR数据指针是唯一一个既可以当16位寄存器来用,
MOV 21H,ACC ;21H为字节地址
MOV 21H,P1.2 ;21H为位地址
17
2.数据存储器空间
AT89S52与AT89S51 片内数据存储器相比 ,片内数据存储器增 加了128B,对应的字 节地址为80H~FFH 。
这高128B的RAM单元 地址与特殊功能寄存 器区的字节地址重合 ,但它们是两个不同 的物理区域。
② 主要功能:保护断点和保护现场,为程序的正确返 回作准备。
③ 堆栈保护内容:累加器ACC,工作寄存器内容,寄 存器B,程序状态字PSW等。
27
④ 设立目的:为子程序调用和中断操作设立。 ⑤ 区域范围:由用户自己设置,通常设在30H-7FH的范围
内, SP值改置为60H 。 注意,设为堆栈的区域不能再用作普通RAM区。 单片机复位后,(SP)=07H,所以,必须在初始化时改变
18
2.数据存储器空间
对这两个具有相同地址区
域进行访问时,是由不同
的指令寻址方式(将在指
令系统一章中介绍)来区
分,对地址为80H~FFH
的RAM区,只能采用间
接寻址方式访问,而对地
址为80H~FFH的特殊功

第二章+AT89S51单片机的硬件结构(课堂)

第二章+AT89S51单片机的硬件结构(课堂)

微机原理与接口技术
王欣
2 寄存器——要求能记能背 累加器A(Acc)-8位 CPU工作最频繁的reg,用于提供操作数和存放运 算的中间结果 MCS 51系列MCU,结构上仍以累加器A作为基础 (许多指令都以Acc为基础,特别是与外部存储器打 交道的指令,都需在Acc中进行)。 但由于内部电路采取了措施,使得累加器A在数据 传送、逻辑控制等方面的核心作用受到了削载,数据 可以在片内直接/间接地址的存储器之间直接传送而不 必经过累加器A。直接地址存储器也可和常量直接进 行逻辑运算
微机原理与接口技术
王欣
PSW(字节地址:F0H)——凡字节地址可被8整除的均可按位访问
PSW状态 字 PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW. 2 PSW.1 PSW.0
标志位
CY
AC
F0
RS1
RS0
OV

P
CY(PSW.7):进位标志, 如果操作结果在最高位有 进位输出(加法)或借位 输入(减法)时置位,否 则清零。
运算器 程序状态寄存器PSW
寄存器B
暂存器
微机原理与接口技术
王欣
1 算术/逻辑运算部件ALU——对应用开发人员“透明”
ALU的作用: 算术/逻辑运算操作——对传送到CPU的8位数据进行+、-、 *、/算术运算和与、或、异或等逻辑操作。 位处理功能(51MCU的特点):置位、清零、取反、逻辑 与、逻辑或、条件判断转移等(这在控制中特别有用,因为一些 控制中常需要进行按位运行,位操作指令提供了把逻辑等式直接 变换成软件的简单明了的方法,使得不使用过多的数据传送、字 节屏蔽/组合和测试分支树等编程方法,也能实现较为复杂的组 合逻辑功能,从而简化了程序逻辑的编制。为此,它获得了布尔 处理器的称号) 其运算的操作数分别来自累加器A和B寄存器,运算结果的状态信 息送入PSW。

AT89S51单片机的硬件结构

AT89S51单片机的硬件结构

第二章 AT89S51 单片机的硬件结构第二章 AT89S51 单片机的硬件结构本章“从内到外”主要讲述关于AT89S51单片机的一些基础知识。

首先介绍AT89S51单片机的组成、CPU 、存储器组织以及特殊功能寄存器(SFR),然后,详细讲解了AT89S51的引脚分布及其功能;最后,讨论了使用AT89S51单片机时的时钟和复位电路。

2.1 AT89S51 单片机的组成如前所述,AT89S51单片机与MCS-51完全兼容,内部的结构如图2.1所示:从功能上分,它包括如下部件:一个8位中央处理器(CPU);4K可在线编程Flash ;128字节RAM与特殊功能寄存器;2个16位定时/计数器;中断逻辑控制电路;一个全双工串行接口(UART);32条可编程的I/O口线;另外,还包括一些寄存器如程序计数器PC 、程序状态寄存器PSW 、堆栈指针寄存器SP 、数据指针寄存器DPTR等部件。

2.2 AT89S51 单片机 CPU 的结构CPU是单片机的核心,它主要由运算器(ALU)、时序控制逻辑电路(控制器)以及各种寄存器等部件组成。

( 1 )运算器的功能是进行算术和逻辑运算。

它主要由算术逻辑单元ALU(Arithmetic Logic Unit)和寄存器组成,实现“加、减、乘、除、比较”等算术运算和“与、或、异或、求补、循环”等逻辑操作。

运算器中还包含一个布尔处理器,可以执行置位、清零、求补、取反、测试、逻辑与、逻辑或等操作,为单片机的应用提供了极大的便利。

( 2 )控制器的主要功能是产生各种控制信号和时序。

在CPU内部协调各寄存器之间的数据传送,完成ALU的各种算术或逻辑运算操作;在CPU访问外部存储器或端口时,提供地址锁存信号ALE、外部程序存贮器选通信号PSEN以及读(/RD)、写(/WR)等控制信号。

( 3 )寄存器。

CPU中还有一些寄存器,如累加器(ACC)、程序状态字(PSW)、B寄存器、程序计数器PC 、堆栈指针(SP)、指令寄存器(IR)等,这些寄存器有的在片内特殊功能寄存器空间有地址映像,它们既可看作CPU的寄存器,也可看作具有确定单元的存储单元。

第2章 AT89S51单片机的硬件结构[PPT课件]

第2章 AT89S51单片机的硬件结构[PPT课件]

8
2.2
AT89S51的引脚功能
40只引脚双列直插封装(DIP)
44只引脚方形封装方式(4只无用)
9
引脚逻辑图
• 8051单片机为40条引脚双列直插式封装 • 引脚可分为三个部分 电 源 及 时 钟 引 脚 控 制 引 脚
并行I/O口引脚
X1 X2 EA PSEN ALE RST VCC GND
2.8.1 空闲模式
2.8.2 掉电运行模式 2.8.3 掉电和空闲模式下的WDT
内容梗概:
• AT89S51的片内硬件基本结构、引脚功能、存储器结构、
特殊功能寄存器功能、4个并行I/O口的结构和特点,
• 复位电路和时钟电路的设计,节电工作模式。
学习目的: • 为AT89S51系统的应用设计打下基础。 • 在原理和结构上,单片机把微机的许多概念、技术与特点 都继承下来,用学习微机的思路来学习单片机。
程序计数器PC是一个独立的16位计数器,不可访问。单片机 复位时,PC中的内容为0000H,从程序存储器0000H单元取指 令,开始执行程序。 PC工作过程是:CPU读指令时,PC中的内容作为所取指令的地
址,程序存储器按此地址输出指令字节,同时PC自动加1。
19
2.4
AT89S51存储器的结构
1.程序存储器空间 片内和片外两部分。
P1口、P2口、P3口均为准双向口。
13
R IWNDR T1 0
14
★ 注意:准双向口与双向三态口的差别。 双向口通过方向寄存器设置后,要作输出可以直接向数
据寄存器写,做输入可以直接读;而51的结构造成其准双
向口,输出直接用就可以了,入必须先写全1然后再读。
• P1~P3准双向口仅有高、低电平两个状态;作通用I/O的 输入口使用时,一定要向该口先写入“1”。

第二章AT89S51单片机的硬件结构

第二章AT89S51单片机的硬件结构
自激振荡器如上图
电源及时钟引脚 时钟
时钟有两种方式, 一种是片内时钟振荡方式,需在这两 个脚外接石英晶体和振荡电容。 另一种是外接一个输入时钟信号,有 源晶振至XTAL1,令XTAL2悬空。 若使用石英晶体:则C=30pF±10pF; 若使用陶瓷谐振器:则C=40pF±10pF。
控制引脚 RST
2.3 CPU 运算器 PSW
⑦ 奇偶校验标志位P(Parity): PSW.0奇偶校验标志位,用于指示运算结果中“1” 的个数的奇偶性。当累加器A中的数据“1”个数 为偶数时,P=0,若为奇数时,P=1。 在串行通信中,常用奇偶校验的方法来检测数据 串行传输的可靠性。
AT89S51方框图
2.1 AT89S51单片机的硬件组成
各功能部件简单说明: ROM 8031:无此部件;8051:4K字节ROM;8751:4K 字节EPROM ; 89C51/89C52/89C55:4K/8K/20K 字节闪存。 特殊功能寄存器(SFR)用于对片内各功能模块进行 管理、控制、监视。实际上是一些控制寄存器和状 态寄存器。共有26个,是一个具有特殊功能的RAM区。
④工作寄存器组选择位RS1和RS0
RS1 、RS0 工作寄存器组 R0~R7的物理地址
00
0
00H~07H
01
1
08H~0FH
10
2
10H~17H
11
3
18H~1FH
2.3 CPU 运算器 PSW
⑤ 溢出标志位OV(OVerflow):溢出标志位 PSW.2用于指示带符号数运算的过程中是否发生溢 出。 如果结果产生溢出,则OV=1;否则OV=0 ⑥ PSW.1:保留位,无定义。给芯片制造商预留 的。
并行I/O口引脚P2口

AT89S51单片机原理及应用技术第2章

AT89S51单片机原理及应用技术第2章
VPP功能:对片内Flash存储器并行编程时,接编程电压。 (3)ALE/PROG(Address Latch Enable/Program Pulse,30引脚):低8 位地址锁存信号/编程脉冲。
双功能引脚,ALE功能是输出端,PROG功能是输入端。 ALE功能:是为CPU访问外部程序存储器或外部数据存储器时提供低 8位地址锁存信号输出,将低8位地址信号锁存在外部的低8位地址锁存器中 。ALE信号是下降沿有效。当单片机正常运行时,不包括访问外部数据存 储器操作,ALE引脚一直有周期性正脉冲信号输出,信号频率固定为单片 机时钟振荡器频率fosc的1/6,此信号可用作外部定时或触发信号;每当单片
AT89S51单片机的主要特性参数如下: 与MCS-51系列产品完全兼容。 4K字节在系统编程(ISP) Flash存储器,承受10000次擦写周期。 4.0-6.0V的工作电压范围。 全静态工作方式:0MHz-33 MHz。 3级程序加密位。 128×8位内部RAM。 32个可编程I/O端口线。 2个16位定时/计数器。 5个中断源。 全双工UART串行口。 低功耗空闲和掉电方式。 掉电方式的中断唤醒功能。
2.1 AT89S51的内部结构及外部引脚特性
通用I/O端口:没有第三态,为准双向I/O端口。P1口作为通用I/O端口 输入时,应先向端口锁存器写入1(FFH),然后再输入(读引脚);作为 通用I/O端口输出时,P1口可驱动4个LS型TTL负载。
串行编程接口:引脚P1.5/MOSI、P1.6/MISO和P1.7/SCK(Serial Clock)可用于对片内Flash存储器串行编程和校验,分别是串行数据输入 、串行数据输出和串行移位脉冲(串行时钟)引脚。
另外,该引脚可接上备用电源,当主电源发生故障,降低到低电平 规定值或掉电时,该备用电源为片内RAM供电,以保证RAM中的数据不 会丢失。

第2章 AT89系列单片机的硬件体系结构(结构、引脚、存储器配置、专用寄存器、时钟与时序、工作方式)

第2章 AT89系列单片机的硬件体系结构(结构、引脚、存储器配置、专用寄存器、时钟与时序、工作方式)

2021/8/1
3
2.1 AT89系列单片机概述
2.1.1 AT89系列单片机简介
AT89系列单片机是与MCS—51系列单片机兼容 的低功耗高性能8位Flash单片机。它是在MCS-51 的技术内核为主导的基础上倾注了ATMEL公司优良 技术进行新的设计和开发,使之功能更强、更具特色, 尤其是AT89S系列单片机具有在系统可程序设计功能, 使生产维护更加方便灵活。
当CPU访问64KB的外部数据存储器时,就用
DPTR作地址指针,存放外部内存的地址;
当CPU访问64KB的程序存储器时,DPTR用作基
址寄存器。
CPU也可单独对DPH、DFra bibliotekL操作,即将DPTR分成
两个寄存器使用。
2021/8/1
21
2.3 AT89系列单片机的存储器
结构AT89系列单片机采用哈佛结构,有单独的程序存储器和
(2) 堆栈指针SP 堆栈指针SP(stack pointer)是一个8位特殊功能寄存器。
它指示出堆栈顶部在内部RAM中的位置。系统复位后,SP初 始化为07H,使得堆栈事实上由08H单元开始。考虑到08H ~1FH单元分属于工作寄存器区1~3,若程序设计中要用到 这些区,则最好把SP值改置为1FH或更大的值如60H。
处理情况。
例如:有一个单片机型号为“AT89C51—12PI”,
则表示意义为该单片机是 ATMEL公司的Flash单片
机,内部是CMOS结构,速度为12 MHz,封装为塑
封DIP,是工业用产品,按标准处理工艺生产。
2021/8/1
9
2.2 AT89系列单片机的结构原
2.2理.1 AT89系列单片机的基本组成
2021/8/1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
当EA =0时,只读取外部的程序存储器中的内容,读取
的地址范围为0000H~FFFFH,片内的4KB Flash 程序
存储器不起作用。 VPP为该引脚的第二功能,在对片内Flash进行编程
时,VPP引脚接入编程电压。
16
(3)ALE/PROG(Address Latch Enable/PROGramming
片内或片外程序存储器的读选通信号,低电平有效。
17
2.2.3 并行I/O口引脚 (1)P0口:P0.7~ P0.0引脚 漏极开路的双向I/O口。当AT89S51扩展外部存储 器及I/O接口芯片时,P0口作为地址总线(低8位)及数 据总线的分时复用端口。 P0口也可作为通用I/O口使用,但需加上拉电阻, 这时为准双向口。P0口可驱动8个LS型TTL负载。
(8)特殊功能寄存器(SFR):共有26个特殊功能寄
存器,用于CPU对片内各外围部件进行管理、控制和监
视。特殊功能寄存器实际上是片内各外围部件的控制寄
存器和状态寄存器,这些特殊功能寄存器映射在片内
RAM区的80H~FFH的地址区间内。
(9)1个看门狗定时器WDT,当单片机由于干扰而使
程序陷入死循环或跑飞状态时,可引起单片机复位,使
2.2.1 电源及时钟引脚
1.电源引脚 (1)VCC(40脚):接+5V电源。 (2)VSS(20脚):接数字地。
12
2.时钟引脚 (1)XTAL1(19脚):片内振荡器的反相放大器和外 部时钟发生器的输入端。使用片内的振荡器时,该引 脚外接石英晶体和微调电容。当采用外部的独立时钟
源时,本引脚接外部时钟振荡器的信号。
下面对图2-1中的片内各部件作简单介绍。
(1)CPU(微处理器):8位的CPU,包括了运算器和控制器
两大部分,此外还有面向控制的位处理和位控功能。
(2)数据存储器(RAM):片内为128B(增强型的52子系列为 256B),片外最多还可外扩64KB的数据存储器。
7
(3)程序存储器(Flash ROM):用来存储程序。
(2)P1口:P1.7~ P1.0引脚 准双向I/O口,具有内部上拉电阻,可驱动4个LS型 TTL负载。 P1口是完全可提供给用户使用的准双向I/O口。 P1.5/MOSI、P1.6/MISO和P1.7/SCK也可用于对片 内Flash存储器的串行编程和校验,它们分别是串行数据 输入、串行数据输出和移位脉冲引脚。
(2)XTAL2(18脚):片内振荡器反相放大器的输出
端。当使用片内振荡器时,该引脚连接外部石英晶体
和微调电容。当使用外部时钟源时,本引脚悬空。
13
2.2.2 控制引脚
控制引脚提供控制信号,有的引脚还具有复用功能。
(1)RST(RESET,9脚)
复位信号输入端,高电平有效。在此引脚加上持续
时间大于2个机器周期的高电平,就可使单片机复位。在
AT89S51片内有4KB的Flash存储器,若片内程序存
储器容量不够,片外最多可外扩64KB程序存储器。
(4)中断系统:具有5个中断源,2级中断优先权。
(5)定时器/计数器:片内有2个16位的定时器/计数器
具有4种工作方式。
(6)串行口:1个全双工的异步串行口(UART),具
有4种工作方式。
8
(7)4个8位的并行口:P0口、P1口、P2口和P3口。
AT89S51单片机具有如下外围部件及特性: (1)8位CPU; (2)数据存储器(128B RAM); (3)程序存储器(4KB Flash ROM); (4)4个8位可编程并行I/O口(P0口、P1口、P2口和P3
口);
(5)2个可编程16位定时器/计数器;
(6)中断系统具有5个中断源、5个中断向量;
(8)特殊功能寄存器(SFR)26个;
(9)1个看门狗定时器(WDT);
6
AT89S51片内的各部件通过片内单一总线连接而成,其基 本结构依旧是CPU加上外围芯片的传统微型计算机结构模式,但 CPU对各种外围部件的控制是采用特殊功能寄存器SFR(Special Function Register)的集中控制方式。
,30脚)
ALE的第一功能为CPU访问外部程序存储器或外部数
据存储器提供低8位地址锁存信号,将单片机P0口发出的
低8位地址锁存在片外地址锁存器中。
PROG为该引脚的第二功能,在对片内Flash存储器编 程时,此引脚作为编程脉冲输入端。 (4)PSEN(Program Strobe ENable,29脚)
单片机正常工作时,此引脚应为≤0.5V的低电平。 当看门狗定时器溢出输出时,该引脚将输出长达96 个时钟振荡周期的高电平。
14
(2)EA/ VPP (Enable Address/Voltage Pulse of Programing
,31脚)
(External Access Enable)为该引脚的第一功能:外部程序
存储器访问允许控制端。 当EA=1时,在单片机片内的PC值不超出0FFFH(即不超 出片内4KB Flash存储器的最大地址范围)时,单片机读片 内程序存储器(4KB)中的程序代码,但PC值超出0FFFH( 即超出片内4KB Flash存储器地址范围)时,将自动转向读 取片外60KB(1000H~FFFFH)程序存储器中的程序代码。
40只引脚按功能可分为如下3类: (1)电源及时钟引脚—VCC、VSS;XTAL1、XTAL2; (2)控制引脚—PSEN、ALE/PROG、EA/ VPP、RST(即 RESET); (3)I/O口引脚—P0、P1、P2与P3,为4个8位并行I/O口的外 部引脚。 下面结合图2-2介绍各引脚的功能。
程序恢复正常运行。
9
2.2 AT89S51的引脚功能
掌握AT89S51单片机,应首先熟悉并掌握各引 脚的功能。AT89S51与各种8051单片机的引脚是互 相兼容的。目前,AT89S51单片机多采用40只引脚 的塑料双列直插封装(DIP)方式,如图2-2所示。
10
图2-2 AT89S51双列直插封装方式的引脚
第 2章
AT89S51单片机的硬件结构
1
内容概要
本章介绍AT89S51单片机的片内硬件结构。 片内存储器结构
常见的特殊功能寄存器的基本功能
掌 握
片内外设资源的基本功能及工作原理 复位电路与时钟电路的设计
单片机最小系统
2
控制
指令(程序)
硬件
3
2.1 AT89S51单片机的硬件组成
图2-1 AT89S51单片机片内结构
相关文档
最新文档