九年级数学三角形中位线的应用PPT优秀课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵F 是 AD 的中点,∴HF∥AB,HF=12AB,同理,HE∥CD,HE=12CD, ∵AB=CD,∴HF=HE,∵∠EFC=60°,∴∠HEF=60°,∴∠HEF= ∠HFE=60°,∴∠DHE=∠HFE=60°,∠EFC=∠AFG=60°,∴∠ AFG=∠DHE=60°,∴△AGF 是等边三角形,∴AF=FG,∵AF=FD, ∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=90°,即△AGD 是直 角三角形
来自百度文库
[对应练习] 1.如图所示,点 G 是△ABC 的重心,CG 的延长线交 AB 于点 D,GA =5 cm,GC=4 cm,GB=3 cm,将△ADG 绕点 D 旋转 180°得到△BDE,
则 DE=__2__cm,△ABC 的面积=1_8___cm2.
2.如图,△ABC 的周长为 26,点 D,E 都在边 BC 上,∠ABC 的平分 线垂直于 AE,垂足为 Q,∠ACB 的平分线垂直于 AD,垂足为 P,若 BC=
(2)如图②,在△ABC中,AC>AB,D点在AC上,AB=CD,E ,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点 G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.
分析:已知三角形的边的中点,常取另一边的中点,构造三角形 的中位线.
解:(1)等腰三角形 (2)△AGD 是直角三角形,连结 BD,取 BD 的中点 H,连结 HF,HE,
第23章 图形的相似
专题课堂(八)三角形中位线的应用
类型: (1)三角形中线的应用;
(2)三角形中位线的应用;
(3)三角形重心的应用.
【例1】(1)如图①,在四边形ADBC中,AB与CD相交于点O, AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB 于点M,N,判断△OMN的形状,请直接写出结论;
10,则 PQ 的长为( C )
3
5
A.2
B.2
C.3
D.4
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
6
来自百度文库
[对应练习] 1.如图所示,点 G 是△ABC 的重心,CG 的延长线交 AB 于点 D,GA =5 cm,GC=4 cm,GB=3 cm,将△ADG 绕点 D 旋转 180°得到△BDE,
则 DE=__2__cm,△ABC 的面积=1_8___cm2.
2.如图,△ABC 的周长为 26,点 D,E 都在边 BC 上,∠ABC 的平分 线垂直于 AE,垂足为 Q,∠ACB 的平分线垂直于 AD,垂足为 P,若 BC=
(2)如图②,在△ABC中,AC>AB,D点在AC上,AB=CD,E ,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点 G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.
分析:已知三角形的边的中点,常取另一边的中点,构造三角形 的中位线.
解:(1)等腰三角形 (2)△AGD 是直角三角形,连结 BD,取 BD 的中点 H,连结 HF,HE,
第23章 图形的相似
专题课堂(八)三角形中位线的应用
类型: (1)三角形中线的应用;
(2)三角形中位线的应用;
(3)三角形重心的应用.
【例1】(1)如图①,在四边形ADBC中,AB与CD相交于点O, AB=CD,E,F分别是BC,AD的中点,连结EF,分别交DC,AB 于点M,N,判断△OMN的形状,请直接写出结论;
10,则 PQ 的长为( C )
3
5
A.2
B.2
C.3
D.4
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
6