中考数学尺规作图专题复习(含答案)
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)
2023年中考数学---《尺规作图》知识总结与专项练习题(含答案解析)知识总结1.尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.2.基本要求它使用的直尺和圆规带有想像性质,跟现实中的并非完全相同.①直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.②圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度3.基本作图有:(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M、N。
如图①②连接MN,过MN的直线即为线段的垂直平分线。
如图②(4)作已知角的角平分线.具体步骤:①以角的顶点O为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M、N。
如图①。
②分别以点M与点N为圆心,大于MN长度的一半为半径画圆弧,两圆弧交于点P。
如图②。
③连接OP,OP即为角的平分线。
(5)过一点作已知直线的垂线.4.复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作。
5.设计作图:应用与设计作图主要把简单作图放入实际问题中.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图。
专项练习题1.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.【分析】先在直线l上取点A,过A点作AD⊥l,再在直线l上截取AB=m,然后以B点为圆心,n为半径画弧交AD于C,则△ABC满足条件.【解答】解:如图,△ABC为所作.2.如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.【分析】(1)按照角平分线的作图步骤作图即可.(2)证明△ACE≌△ABD,即可得出AD=AE.【解答】(1)解:如图所示.(2)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD是∠ABC的角平分线,CE是∠ABC的角平分线,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ACE≌△ABD(ASA),∴AD=AE.3.如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.【分析】(1)①按照线段垂直平分线的作图步骤作图即可.②以点O为圆心,OA的长为半径画弧,再以点A为圆心,线段a的长为半径画弧,两弧在线段AC上方交于点B,同理,以点O为圆心,OC的长为半径画弧,再以点C为圆心,线段a的长为半径画弧,两弧在线段AC下方交于点D,连接AD,CD,AB,BC,即可得矩形ABCD.(2)利用勾股定理求出BC,再利用矩形的面积公式求解即可.【解答】解:(1)①如图,直线l即为所求.②如图,矩形ABCD即为所求.(2)∵四边形ABCD为矩形,∴∠ABC=90°,∵a=2,∴AB=CD=2,∴BC=AD===,∴矩形ABCD的面积为AB•BC=2×=.4.如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.【分析】(1)根据角平分线的作图步骤作图即可.(2)由角平分线的定义和平行四边形的判定定理,可得四边形ABCE为平行四边形,再结合AB=BC,可证得四边形ABCE为菱形.【解答】(1)解:如图所示.(2)证明:∵BE是∠ABC的角平分线,∴∠ABE=∠CBE,∵AB∥CD,∴∠ABE=∠BEC,∴∠CBE=∠BEC,∴BC=EC,∵AB=BC,∴AB=EC,∴四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE为菱形.5.如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).6.“水城河畔,樱花绽放,凉都宫中,书画成风”的风景,引来市民和游客争相“打卡”留念.已知水城河与南环路之间的某路段平行宽度为200米,为避免交通拥堵,请在水城河与南环路之间设计一条停车带,使得每个停车位到水城河与到凉都宫点F的距离相等.(1)利用尺规作出凉都宫到水城河的距离(保留作图痕迹,不写作法);(2)在图中格点处标出三个符合条件的停车位P1,P2,P3;(3)建立平面直角坐标系,设M(0,2),N(2,0),停车位P(x,y),请写出y与x之间的关系式,在图中画出停车带,并判断点P(4,﹣4)是否在停车带上.【分析】(1)利用过直线外一点作垂线的方法作图即可;(2)根据停车位到水城河与到凉都宫点F的距离相等,可得点P1,P2,P3;(3)根据停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,得1﹣y=,从而解决问题.【解答】解:(1)如图,线段F A的长即为所求;(2)如图,点P1,P2,P3即为所求;(3)∵停车位P(x,y)到点F(0,﹣1)和直线y=1的距离相等,∴1﹣y=,化简得y=﹣,当x=4时,y=﹣4,∴点P(4,﹣4)在停车带上.7.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.8.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC的长.【分析】(1)过点A作AD⊥AO即可;(2)连接OB,OC.证明∠ACB=75°,利用三角形内角和定理求出∠CAB,推出∠BOC=120°,求出CH可得结论.【解答】解:(1)如图,切线AD 即为所求;(2)过点O 作OH ⊥BC 于H ,连接OB ,OC .∵AD 是切线,∴OA ⊥AD ,∴∠OAD =90°,∵∠DAB =75°,∴∠OAB =15°,∵OA =OB ,∴∠OAB =∠OBA =15°,∴∠BOA =150°,∴∠BCA =∠AOB =75°,∵∠ABC =45°,∴∠BAC =180°﹣45°﹣75°=60°,∴∠BOC =2∠BAC =120°,∵OB =OC =2,∴∠BCO =∠CBO =30°,∵OH ⊥BC ,∴CH =BH =OC •cos30°=,∴BC =2. 9.如图,在△ABC 中,AD 是△ABC 的角平分线,分别以点A ,D 为圆心,大于21AD 的长为半径作弧,两弧交于点M ,N ,作直线MN ,分别交AB ,AD ,AC 于点E ,O ,F ,连接DE ,DF .(1)由作图可知,直线MN 是线段AD 的 .(2)求证:四边形AEDF是菱形.【分析】(1)根据作法得到MN是线段AD的垂直平分线;(2)根据垂直平分线的性质则AF=DF,AE=DE,进而得出DF∥AB,同理DE∥AF,于是可判断四边形AEDF是平行四边形,加上F A=FD,则可判断四边形AEDF为菱形.【解答】(1)解:根据作法可知:MN是线段AD的垂直平分线;故答案为:垂直平分线;(2)证明:∵MN是AD的垂直平分线,∴AF=DF,AE=DE,∴∠F AD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FDA=∠BAD,∴DF∥AB,同理DE∥AF,∴四边形AEDF是平行四边形,∵F A=FD,∴四边形AEDF为菱形.10.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.【分析】(1)利用基本作图,作BC的垂直平分线即可;(2)根据线段垂直平分线的性质得到DC=DB,则利用等角的余角相等得到∠A=∠DCA,则DC=DA,然后利用等线段代换得到△BCD的周长=AB+BC.【解答】解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.11.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.【分析】(1)作∠ABC,∠ACB的角平分线交于点O,点O即为所求;(2)△ABC的面积=(a+b+c)•r计算即可.【解答】解:(1)如图,点O即为所求;(2)由题意,△ABC的面积=×14×1.3=9.1(cm2).12.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;13.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.14.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)【分析】【初步尝试】如图1,作∠AOB的角平分线OP即可;【问题联想】如图2,作线段MN的垂直平分线RT,垂足为R,在射线RT上截取RP=RM,连接MP,NP,三角形MNP即为所求;【问题再解】方法一:构造等腰直角三角形OBE,作BC⊥OE,以O为圆心,OC为半径画弧交OB于点D,交OA于点F,弧DF即为所求.方法二:作OB的中垂线交OB于点C,然后以C为圆心,CB长为半径画弧交OB中垂线于点D,再以O为圆心,OD长为半径画弧分别交OA、OB于点E、F.则弧EF即为所求.【解答】解:【初步尝试】如图1,直线OP即为所求;【问题联想】如图2,三角形MNP即为所求;【问题再解】如图3中,即为所求.15.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.。
中考专题复习《尺规作图》巩固练习(真题)含答案
中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。
2023年中考数学解答题专项复习:尺规作图(附答案解析)
2023年中考数学解答题专项复习:尺规作图1.(2021•青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:∠O及其一边上的两点A,B.
求作:Rt△ABC,使∠C=90°,且点C在∠O内部,∠BAC=∠O.
2.(2021•赤峰)如图,在Rt△ABC中,∠ACB=90°,点D是斜边AB上一点,且AC=AD.
(1)作∠BAC的平分线,交BC于点E;(要求尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接DE,求证:DE⊥AB.
3.(2021•襄阳)如图,BD为▱ABCD的对角线.
(1)作对角线BD的垂直平分线,分别交AD,BC,BD于点E,F,O(尺规作图,不写作法,保留作图痕迹);
(2)连接BE,DF,求证:四边形BEDF为菱形.
4.(2021•陕西)如图,已知△ABC,AB>AC.请在边AB上求作一点P,使点P到点B、
C的距离相等.(尺规作图,保留作图痕迹,不写作法)
第1 页共13 页。
初中中考复习之尺规作图(精编含答案)
中考复习之尺规作图一、选择题:1.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点;2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点; 2、连接AB ,BC ,CA .△ABC 即为所求的三角形。
对于甲、乙两人的作法,可判断【 】 A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是【 】 A .SSS B .ASA C .AAS D .角平分线上的点到角两边距离相等3.如图,点C 在∠AOB 的OB 边上,用尺规作出了CN∥OA,作图痕迹中,弧FG 是【 】A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4. 如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB,使OA=OB ;再分别以点A, B 为圆心,以大于12AB 长为半径作弧,两弧交于点C .若点C 的坐标为(m -1,2n),则m 与n 的关系为【 】 (A)m +2n=1 (B)m -2n=1 (C)2n -m=1 (D)n -2m=1 二、填空题:1.如图,在△ABC 中,∠C=900,∠CAB=500,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径,画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边与点D ,则∠ADC2.如图,已知正五边形ABCDE,仅用无刻度的直尺准确作出其一条对称轴。
(保留作图痕迹)三、解答题:1.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.2.比较两个角的大小,有以下两种方法(规则)①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.3.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)4.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.5.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明SS>π∆圆.6.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.7.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)8.①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转90°,画出旋转后的△OA’B’;②折纸:有一张矩形纸片ABCD(如图2),要将点D沿某条直线翻折180°,恰好落在BC边上的点D’处,请在图中作出该直线。
中考数学专题复习第31章 尺规作图(含解析)
第三十一章尺规作图1.(浙江省绍兴,7,3分)如图,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断()A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确【解析】将圆三等分,依次连结各等分点,即可作出圆内接正三角形.【答案】A【点评】本题主要考查圆内接正三角形的作法和判定以及圆的有关知识.19.( 山东德州中考,19,8,)有公路同侧、异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇,的距离必须相等,到两条公路,的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)AB19.【解析】分析此题的条件可知,要想到A 、B 两点的距离相等,可知点C 必在AB 的垂直平分线上;要想到两公路的距离相等,必须在两公路夹角的角平分线上.作出二者的交点即为所求.注意两公路夹角的角平分线不止一条.解:根据题意知道,点C 应满足两个条件,一是在线段的垂直平分线上;二是在两条公路夹角的平分线上,所以点C 应是它们的交点. ⑴ 作两条公路夹角的平分线或;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点,就是所求的位置.…………………(8分)注:本题学生能正确得出一个点的位置得6分,得出两个点的位置得8分.【点评】此题综合考查了角平分线的性质和线段垂直平分线的性质,解答此类题不要漏电所有符合条件的点,要注意在角的外部也有符合条件的点.(2)( 贵州铜仁,19(2),5分)某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M 的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)ABFGDOE 19(2)题图【分析】根据垂直平分线上的点到两个端点的距离相等,连接AB 并作AB 的垂直平分线,然后以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点,即为所求的点M 位置 【解析】作图1、连结AB2、作出线段AB 的垂直平分线3、以C 点为圆心,以AB 的长度一半为圆心画弧,与垂直平分线交于一点M4、 在矩形中标出点M 的位置【点评】此题看出来图形设计作图与实际应用,本题主要利用垂直平分线的作法,属于基本作图,应牢固掌握。
中考数学专题复习导学案尺规作图》(含答案)
中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。
中考数学复习之尺规作图(含答案)
中考数学复习之尺规作图(含答案)1.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A. ①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB. ①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC. ①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD. ①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ2.如图,在△ABC中,AB=AC,∠ABC=70°,以点B为圆心,任意长为半径画弧分别交BA,BC于点E,F,再分别以点E,F为圆心,以大于12EF的长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC的度数为()A. 65°B. 75°C. 80°D. 85°3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC= 5.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A. 2 2B. 2 3C. 5D. 64.在△ABC中,AB=AC,∠C=65°,AD⊥BC于点D,按以下步骤作图:①以点A为圆心,适当长为半径画弧,分别交AB,AD于点M,N;②以点B为圆心,AM长为半径画弧,交BC于点E;③以点E为圆心,MN长为半径画弧,交前弧于点F;④作射线BF,交AD于点H,则∠AHB的度数为________________.5.如图,OP平分∠MON,A是边OM上一点,以点A为圆心,大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于12BC的长为半径作弧,两弧交于点D,作直线AD分别交OP、ON于点E、F,若∠MON=60°,EF=1,则OA=___________________.6.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为___________________.7.如图,依据尺规作图的痕迹,计算∠α=___________________°.8.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,连接BD,按以下步骤作图:①分别以点B,D为圆心,大于12BD的长为半径作弧,两弧相交于点P和点Q;②作直线PQ交AB于点E,交BC于点F,则BF=___________________.参考答案:1-3 DBC4. 115°5. 236. 237. 568.13 6。
2024年中考数学微专题复习+尺规作图+课件
+ +
= , = +
10.[原创新题]如图,一次函数 y = 3x 与反比例函数
y=
k
x
x > 0 的图象交于点 A 1, a ,点 B 在 x 轴正半轴
上.
(1)求反比例函数的表达式.
[答案] 将 , 代入 = ,得 = , ∴ , . 将 , 代入 =
[答案] ∵ 四边形 是菱形, ∴ = , // ,
∴△ ∼△ , ∴
=
.
设 = ,则 = − ,
∴
−
=
,解得
= ,
∴ 中所作菱形 的边长为6.
5.[2023洛阳二模] 如图,在 △ ABC 中,
∴ = , ∴ ∠ = ∠ , ∴ ∠ = ∠ , ∴ // , ∴ △ =
△ = .
8.[原创新题]如图,点 A , B 在反比例函数
y=
k
x
x > 0 的图象上, AC ⊥ x 轴于点 C , BD ⊥ x
轴于点 D .已知 OC =
=
.
4.如图,已知 △ ABC .
(1)请用无刻度的直尺和圆规在边 BC , CA , AB 上
分别确定点 D , E , F ,使四边形 BDEF 是菱形,并画
出菱形 BDEF (要求:不写作法,保留作图痕迹).
[答案] 如图所示,菱形 即为所求.
(2)若 AB = 10 , BC = 15 ,求(1)中所作菱形 BDEF 的边长.
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学《尺规作图》专题复习试卷含试卷分析
初三数学专题复习尺规作图一、单选题1.用尺规作图,不能作出唯一直角三角形的是()A. 已知两条直角边B. 已知两个锐角C. 已知一直角边和直角边所对的一锐角D. 已知斜边和一直角边2.根据已知条件作符合条件的三角形,在作图过程中,主要依据是()A. 用尺规作一条线段等于已知线段B. 用尺规作一个角等于已知角C. 用尺规作一条线段等于已知线段和作一个角等于已知角D. 不能确定3.用尺规作图,下列条件中可能作出两个不同的三角形的是()A. 已知三边B. 已知两角及夹边C. 已知两边及夹角D. 已知两边及其中一边的对角4.尺规作图是指()A. 用直尺规范作图B. 用刻度尺和圆规作图C. 用没有刻度的直尺和圆规作图D. 直尺和圆规是作图工具5.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧6. 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A. 以点B为圆心,OD为半径的圆B. 以点B为圆心,DC为半径的圆C. 以点E为圆心,OD为半径的圆D. 以点E为圆心,DC为半径的圆7.如图,下面是利用尺规作∠AOB的角平分线OC的作法:①以点O为圆心,任意长为半径作弧,交OA、OB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内部交于点C;③作射线OC,则射线OC就是∠AOB的平分线.以上用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS8.尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP,由作法可得△OCP≌△ODP,判定这两个三角形全等的根据是()A. SASB. ASAC. AASD. SSS9.下列作图语句中,不准确的是()A. 过点A、B作直线ABB. 以O为圆心作弧C. 在射线AM上截取AB=aD. 延长线段AB到D ,使DB=AB10.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧11.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>012.如图所示的作图痕迹作的是()A. 线段的垂直平分线B. 过一点作已知直线的垂线C. 一个角的平分线D. 作一个角等于已知角13.下列作图语句正确的是()A. 作射线AB,使AB=aB. 作∠AOB=∠aC. 延长直线AB到点C,使AC=BCD. 以点O为圆心作弧14.某探究性学习小组仅利用一副三角板不能完成的操作是()A. 作已知直线的平行线B. 作已知角的平分线C. 测量钢球的直径D. 作已知三角形的中位线15.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(m,n﹣3),则m与n的数量关系为()A. m﹣n=﹣3B. m+n=﹣3C. m﹣n=3D. m+n=316.小明用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是()A. ①②③④B. ④③②①C. ②④③①D. ④③①②17.已知∠AOB ,求作射线OC ,使OC平分∠AOB作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD ,OE ,使OD=OE;③分别以D ,E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C .A. ①②③B. ②①③C. ②③①D. ③②①二、填空题18.画线段AB;延长线段AB到点C,使BC=2AB;反向延长AB到点D,使AD=AC,则线段CD=________AB.19.已知,∠AOB .求作:∠A′O′B′,使∠A′O′B′=∠AOB .作法:①以________为圆心,________为半径画弧.分别交OA ,OB于点C ,D .②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.④过点________画射线O′B′,则∠A′O′B′=∠AOB .20.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为________ .21.已知△ABC,小明利用下述方法作出了△ABC的一条角平分线.小明的作法:(i)过点B作与AC平行的射线BM;(边AC与射线BM位于边BC的异侧)(ii)在射线BM上取一点D,使得BD=BA;(iii)连结AD,交BC于点E.线段AE即为所求.小明的作法所蕴含的数学道理为________.22.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是________ ;由此可证明直线PA,PB都是⊙O 的切线,其依据是________三、解答题23.如图所示,作△ABC关于直线l的对称.24.在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE//BC,交AC于E;(3)说明∠EDC=∠GFB的理由.25.如图,△ABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)四、综合题26.看图、回答问题(1)已知线段m和n,请用直尺和圆规作出等腰△ABC,使得AB=AC,BC=m,∠A的平分线等于n.(只保留作图痕迹,不写作法)(2)若①中m=12,n=8;请求出腰AB边上的高.27.如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.28.已知不在同一条直线上的三点P,M,N(1)画射线NP;再画直线MP;(2)连接MN并延长MN至点R,使NR=MN;(保留作图痕迹,不写作图过程)(3)若∠PNR比∠PNM大100°,求∠PNR的度数.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】B14.【答案】C15.【答案】D16.【答案】D17.【答案】C二、填空题18.【答案】619.【答案】O;任意长;O′;OC;C ;CD;D′20.【答案】30°21.【答案】等边对等角;两直线平行,内错角相等22.【答案】直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线三、解答题23.【答案】解答:解:如图所示:24.【答案】(1)(2)(3)解:因为DE//BC,所以∠EDC=∠BCD,因为FG⊥AB,CD⊥AB,所以CD//FG,所以∠BCD=∠GFB,所以∠EDC=∠GFB。
中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学复习《尺规作图》测试题(含答案)
中考数学复习《尺规作图》测试题(含答案)一、选择题(每题5分,共10分)1.[2015·嘉兴]数学活动课上,四位同学围绕作图问题:“如图25-1,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A)【解析】根据分析可知,选项B,C,D都能够得到PQ⊥l于点Q;选项A 不能够得到PQ⊥l于点Q.图25-1 图25-22.[2015·深圳]如图25-2,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是(D)【解析】由PB+PC=BC和P A+PC=BC易得P A=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.二、填空题(每题5分,共5分)3.[2014·绍兴]用直尺和圆规作△ABC,使BC=a,AC=b,∠B=35°,若这样的三角形只能作一个,则a,b间满足的关系式是__sin35°=ba或b≥a__.【解析】如答图所示:第3题答图若这样的三角形只能作一个,则a,b间满足的关系式是:①当AC⊥AB时,即sin35°=ba;②当b≥a时.三、解答题(共40分)4.(10分)[2015·自贡]如图25-3,将线段AB放在边长为1的小正方形网格中,点A,点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=2173,并保留作图痕迹.(备注:本题只是找点不是证明,只需连结一对角线就行)图25-3 第4题答图解:由勾股定理得,AB=42+12=17,所以AP=2173时,AP∶BP=2∶1.点P如答图所示.5.(15分)[2015·宜昌]如图25-4,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.解:(1)证明:∵AD∥BC,∴∠AEB=∠EBC.由BE是∠ABC的角平分线,得∠EBC=∠ABE,∴∠AEB=∠ABE,∴AB=AE;(2)由∠A=100°,∠ABE=∠AEB,得∠ABE=∠AEB=40°.由(1)得∠EBC=∠AEB=40°.6.(15分)[2015·东莞]如图25-5,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=34,求DC的长.图25-4图25-5 第6题答图解:(1)如答图,直线MN 即为所求;(2)∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,∵tan ∠BAD =BD AD =34, ∴BD =34×4=3,∴DC =BC -BD =5-3=2.7.(15分)[2015·珠海]如图25-6,在平行四边形ABCD 中,AB <BC .(1)利用尺规作图,在BC 边上确定点E ,使点E 到边AB ,AD 的距离相等(不写作法,保留作图痕迹);(2)若BC =8,CD =5,求CE .图25-6 第7题答图解:(1)如答图所示,E 点即为所求;(2)∵四边形ABCD 是平行四边形,∴AB =CD =5,AD ∥BC ,∴∠DAE =∠AEB ,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC-BE=3.8.(15分)[2015·武威]如图25-7,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明);(2)若∠B=60°,AB=3,求⊙P的面积.图25-7 第8题答图解:(1)如答图所示,则⊙P为所求作的圆;(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,,∵tan∠ABP=APAB∴AP=3,∴S⊙P=3π.9.(15分)[2015·山西]如图25-8,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求劣弧DE的长.图25-8 第9题答图解:(1)如答图,⊙C即为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°-∠A=90°-30°=60°,∴∠BCD=90°-∠ACD=30°,在Rt△BCD中,∵cos∠BCD=CDBC,∴CD=3cos30°=332,∴劣弧DE的长为60·π·332180=32π.。
2024年中考数学总复习:尺规作图(附答案解析)
的实数来表示,则以下选项中,可能是此四点在纸上数轴表示的实数是( )
A.1,2,4,8B.3,4,6,9C.1,5,8,9D.1,7,9,10
22.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是( )
8.如图,由作图痕迹做出如下判断,其中正确的是( )
A.FH=HGB.FH>HGC.FH<HGD.FH≤HG
9.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.AD=CDB.∠ABP=∠CBPC.∠BPC=115°D.∠PBC=∠ACD
17.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.AF=BFB.∠AFD+∠FBC=90°
C.DF⊥ABD.∠BAF=∠CAF
18.如图,在△ABC中,∠A=30°,∠C=90°.下列尺规作图痕迹中,不能将△ABC的面积平分的是( )
A. B.
C. D.
19.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是( )
2024年中考数学总复习:尺规作图
一.选择题(共25小题)
1.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的一半长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=( )
A.80°B.25°C.105°D.95°
中考数学专题练习:尺规作图(含答案)
中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。
初三中考数学尺规作图含答案
尺规作图一、作图题(共14题;共133分)1.如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)2.如图,中,,,.(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长.3.如图,已知等腰△ABC顶角∠A=36°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.4.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.5.在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连接ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的平分线(保留作图痕迹,不写作法).6.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.7.如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.8.如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.如图,在中,.(1)作的平分线交边于点,再以点为圆心,的长为半径作;(要求:不写作法,保留作图痕迹)(2)判断(1)中与的位置关系,直接写出结果.10.如图,在中.①利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;②利用尺规作图,作出(1)中的线段PD.要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑11.如图,在△ABC中(1)作图,作BC边的垂直平分线分别交于AC,BC于点D,E(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,连接BD,若BD=9,BC=12,求∠C的余弦值.12.如图,点D在△ABC的AB边上,且∠ACD=∠A。
2024河南中考数学复习专题 尺规作图 强化训练 (含答案)
2024河南中考数学复习专题尺规作图强化训练基础题1.根据下列选项中尺规作图的痕迹,能推出PA =PC 的是()2.(2023通辽)下面是“作已知直角三角形的外接圆”的尺规作图过程:已知:如图①,在Rt △ABC 中,∠C =90°.求作:Rt △ABC 的外接圆.作法:如图②,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.第2题图下列不属于该尺规作图依据的是()A.两点确定一条直线B.直角三角形斜边上的中线等于斜边的一半C.与线段两个端点距离相等的点在这条线段的垂直平分线上D.线段垂直平分线上的点与这条线段两个端点的距离相等3.(2022商丘一模)如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(8,6),以A 为圆心,任意长为半径画弧,分别交AC ,AO 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点Q ,作射线AQ 交y 轴于点D ,则点D 的坐标为()第3题图A.(0,1)B.(0,83)C.(0,53)D.(0,2)4.(2023兰州)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康,则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥B.按以上作图顺序,若∠MNO =35°,则∠AOC =()第4题图A.35°B.30°C.25°D.20°5.(2023山西)如图,在▱ABCD 中,∠D =60°.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点A ,E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OF OE的值为________.第5题图6.在▱ABCD 中,以点D 为圆心,以一定长度为半径作弧,与边AB 交于点M ,N ,再分别以点M,N为圆心,以大于12MN的长为半径作弧,两弧交于点P,连接DP交AB于点E,若AD=4,AB=6,∠DAB=30°,则BE的长为________.第6题图7.如图,在△ABC中,∠A=90°,BD是∠ABC的平分线,且交AC于点D.第7题图(1)在斜边BC上求作一点E,使DE⊥BD;(要求:尺规作图,不写作法,保留作图痕迹)(2)若AB=6,BE=8,求DE的长.拔高题8.[2022年版课标新增](2023绥化)已知:点P是⊙O外一点.(1)尺规作图:如图,过点P作出⊙O的两条切线PE,PF,切点分别为点E、点F;(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,若点D在⊙O上(点D不与E,F两点重合),且∠EPF=30°,求∠EDF 的度数.第8题图9.已知:如图,△ABC为锐角三角形.(1)求作菱形AEDF,使得∠A为菱形的一个内角,点D,E,F分别在边BC,AB,AC上;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=AC=10,BC=8.求菱形AEDF的面积.第9题图参考答案与解析1.D【解析】∵PA =PC ,∴P 点为AC 垂直平分线上的点.2.D 【解析】如解图,作直线PQ (两点确定一条直线),连接PA ,PB ,QA ,QB ,OC ,由作图步骤得,PA =PB ,QA =QB ,∴PQ ⊥AB 且AO =BO (与线段两个端点距离相等的点在这条线段的垂直平分线上),∵∠ACB =90°,∴OC =12AB (直角三角形斜边中线等于斜边的一半),∴OA =OB =OC ,∴A ,B ,C 三点在以O 为圆心,AB 为直径的圆上,∴⊙O 为△ABC 的外接圆.第2题解图3.B 【解析】如解图,过点D 作DE ⊥AC 于点E ,∵四边形OABC 为矩形,点B 的坐标为(8,6),∴OA =8,OC =6∴AC =OC 2+AO 2=10,由题意可得,AD 平分∠OAC ,∴∠DAE =∠DAO ,AD =AD ,∠AOD =∠AED =90°,∴△ADO ≌△ADE (AAS),∴AE =AO =8,OD =DE .∴CE =2,∵CD 2=DE 2+CE 2,∴(6-OD )2=4+OD 2,解得OD =83,∴点D (0,83).第3题解图4.A 【解析】由作图得:a ∥b ,∴∠CON =∠MNO =35°,∵OA =OB ,点C 为AB 的中点,∴OC 平分∠AON ,∴∠AOC =∠CON =35°.5.3【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠D =∠ABC =60°,∴∠BAD =180°-60°=120°,∵BA =BE ,∴△ABE 是等边三角形,∴∠BAE =60°,∵BF 平分∠ABE ,∴AO =OE ,BO ⊥AE ,∵∠OAF =∠BAD -∠BAE =120°-60°=60°,∴tan ∠OAF =OF OA=3,∴OF OE=3.6.6-23【解析】由题意得:DP ⊥AB ,∴cos ∠DAB =AE AD,∵∠DAB =30°,∴AE =AD ·cos 30°=4×32=23,∴BE =AB -AE =6-23.7.解:(1)如解图,点E 即为所求;第7题解图(2)如解图,过点E 作EF ⊥DC 于点F ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵DE ⊥BD ,∴∠BDE =∠BAD =90°,∴△ABD ∽△DBE ,∴AB DB =BD BE,即BD 2=AB ·BE ,∵AB =6,BE =8,∴BD =43,∴在Rt △BDE 中,DE =BE 2-BD 2=64-48=4.8.解:(1)作图如解图,PE ,PF 即为所求;【解法提示】①连接PO ,分别以点P ,O 为圆心,大于12OP 长为半径画弧,两弧交于M ,N 两点,作直线MN 交OP 于点A ,②以点A 为圆心,以AO 为半径画弧(或画圆),与⊙O 交于E ,F 两点.作射线PE ,PF ,则PE ,PF 即为所求.第8题解图(2)如解图,连接OE ,OF ,∵PE ,PF 为⊙O 的两条切线,∴OE ⊥PE ,OF ⊥PF ,∴∠OEP =∠OFP =90°,∴∠EOF =180°-∠EPF =180°-30°=150°,当点D 1在优弧EF 上时,连接ED 1,FD 1,∠ED 1F =12∠EOF =75°,当点D 2在劣弧EF 上时,连接ED 2,FD 2,∠ED 2F =180°-75°=105°,综上所述,∠EDF 的度数为75°或105°.9.解:(1)如解图①,菱形AEDF 即为所求;第9题解图(2)如解图,设AD 与EF 交于点O ,∵AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD =12BC =4,在Rt △ABD 中,AD =AB 2-BD 2=102-42=221,∵EF ⊥AD ,∴EF ∥BC ,∵AO =OD ,∴E ,F 分别为AB 和AC 的中点,∴EF =12BC =4,∴S 菱形AEDF =12AD ·EF =421,∴菱形AEDF 的面积为421.。
2020中考数学尺规作图专题复习(含解析)
尺规作图一.选择题1. (2019•湖南长沙•3分)如图,Rt △ABC 中,∠C =90°,∠B =30°,分别以点A 和点B 为圆心,大于AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ,交BC 于点D ,连接AD ,则∠CAD 的度数是( )A .20°B .30°C .45°D .60° 【分析】根据内角和定理求得∠BAC =60°,由中垂线性质知DA =DB ,即∠DAB =∠B =30°,从而得出答案.【解答】解:在△ABC 中,∵∠B =30°,∠C =90°,∴∠BAC =180°﹣∠B ﹣∠C =60°,由作图可知MN 为AB 的中垂线,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =∠BAC ﹣∠DAB =30°,故选:B .【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.2. (2019•广东深圳•3分)如图,已知AB =AC ,AB =5,BC =3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M ,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( )A.8B.10C.11D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD =BD ,又因为AB =AC =5,BC =3,所以△BDC 的周长为8.二.填空题1. .( 2019甘肃省兰州市) 如图, 矩形ABCD , ∠BAC =600. 以点A为圆心,以任意长为半径作弧分别交A B.AC 于点M 、N 两点,再分别以点M 、N 为圆心,以大于21MN 的长为半径作弧交于点P ,作射线AP 交BC 于点E ,若BE =1,则矩形ABCD 的面积等于___________.【答案】33.【考点】尺规作图,矩形的性质.【考察能力】基础运算能力,空间想象能力,推理论证能力..【难度】难.【解析】 由题可知AP 是∠BAC 的角平分线∵∠BAC =600∴∠BAE =∠EAC =300∴AE =2 BE =2.∴AB =3∴∠AEB =600又∵∠AEB =∠EAC +∠ECA∴∠EAC =∠ECA =300∴AE =EC =2∴BC =3∴S 矩形ABCD =33.2. (2019,四川成都,4分)如图,□ABCD 的对角线AC 与BD 相交于点O ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AO ,AB 于点M ,N ;②以点O 为圆心,以AM 长为半径作弧,交OC 于点M ';③以点M '为圆心,以MN 长为半径作弧,在∠COB 内部交前面的弧于点N ';④过点N '作射线N O '交BC 于点E ,若AB =8,则线段OE 的长为 . 【解析】此题考察的是通过尺规作图构造全等三角形的原理及两直线平行的判定,连接MN 和N M '',因为M O AM '=,N O AN '=,N M MN ''=,所以)(SSS N M O AMN ''≅△△,所以,N O M MAN ''∠=∠,所以AB OE ∥,又因为O 是AC 中点,所以OE 是△ABC 的中位线,所以AB OE 21=,所以4=OE .3.三.解答题1. (2019•广东•6分)如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求EC AE 的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE =∠B∴DE ∥BC∴EC AE =DBAD ∵DBAD =2 ∴EC AE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例2. (2019•甘肃•4分)如图,在△ABC 中,点P 是AC 上一点,连接BP ,求作一点M ,使得点M 到AB 和AC 两边的距离相等,并且到点B 和点P 的距离相等.(不写作法,保留作图痕迹)【分析】根据角平分线的作法、线段垂直平分线的作法作图即可.【解答】解:如图,点M即为所求,【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本尺规作图的一般步骤是解题的关键.3. (2019•广西贵港•5分)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知△ABC,请根据“SAS”基本事实作出△DEF,使△DEF≌△AB C.【分析】先作一个∠D=∠A,然后在∠D的两边分别截取ED=BA,DF=AC,连接EF即可得到△DEF;【解答】解:如图,△DEF即为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.4. (2019•湖北孝感•8分)如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK 于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是CD=CE;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE =90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF ==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握过直线外一点作已知直线的垂线和角平分线的尺规作图及全等三角形的判定与性质等知识点.5.(2019,山东枣庄,8分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A.B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.6. (2019安徽)(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段A B.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段C D.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案;(2)直接利用菱形的判定方法进而得出答案.【解答】解:(1)如图所示:线段CD即为所求;(2)如图:菱形CDEF即为所求,答案不唯一.【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键.7. (2019•江苏泰州•8分)如图,△ABC中,∠C=90°,AC=4,BC=8.(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.【分析】(1)分别以A,B为圆心,大于AB为半径画弧,两弧交于点M,N,作直线MN即可.(2)设AD=BD=x,在Rt△ACD中,利用勾股定理构建方程即可解决问题.【解答】解:(1)如图直线MN即为所求.(2)∵MN垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∵AD2=AC2+CD2,∴x2=42+(8﹣x)2,解得x=5,∴BD=5.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(2019▪广西池河▪8分)如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.【分析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=A C.【解答】解:(1)如图所示;(2)OE∥AC,OE=A C.理由如下:∵AD平分∠BAC,∴∠BAD=∠BAC,∵∠BAD=∠BOD,∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,∴OE∥AC,OE=A C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.9.(2019甘肃省陇南市)(8分)已知:在△ABC中,AB=A C.(1)求作:△ABC的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC的外接圆的圆心O到BC边的距离为4,BC=6,则S⊙O=25π.【分析】(1)作线段AB,BC的垂直平分线,两线交于点O,以O为圆心,OB为半径作⊙O,⊙O 即为所求.(2)在Rt△OBE中,利用勾股定理求出OB即可解决问题.【解答】解:(1)如图⊙O即为所求.(2)设线段BC的垂直平分线交BC于点E.由题意OE=4,BE=EC=3,在Rt△OBE中,OB==5,∴S圆O=π•52=25π.故答案为25π.【点评】本题考查作图﹣复杂作图,等腰三角形的性质,三角形的外接圆与外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10. (2019•山东省济宁市•7分)如图,点M和点N在∠AOB内部.(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);(2)请说明作图理由.【考点】基本作图【分析】(1)根据角平分线的作法、线段垂直平分线的作法作图;(2)根据角平分线的性质、线段垂直平分线的性质解答.【解答】解:(1)如图,点P到点M和点N的距离相等,且到∠AOB两边的距离也相等;(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等.【点评】本题考查的是复杂作图、角平分线的性质、线段垂直平分线的性质,掌握基本作图的一般步骤、角平分线的性质、线段垂直平分线的性质是解题的关键.11。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
中考数学复习专题25:尺规作图(含中考真题解析)
专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.第1 页共32 页考点:作图—复杂作图.考点:作图—复杂作图.2.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【答案】D.【解析】【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线..直角三角形斜边上的中线. 3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(的度数,结果为( )A.80°B.90°C.100°D.105°【答案】B.【解析】【解析】试题分析:如图,试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.基本作图.4.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.的长是( )若BD=6,AF=4,CD=3,则BE的长是(A.2 B.4 C.6 D.8 【答案】D.基本作图.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆分别作出了下列四个图形.其中作法错误的是( )规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A.B.C.D.【答案】A.考点:作图—基本作图.考点:作图—基本作图.6.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是(是直角的依据是( )A .勾股定理.勾股定理B .直径所对的圆心角是直角.直径所对的圆心角是直角C .勾股定理的逆定理.勾股定理的逆定理D .90°的圆周角所对的弦是直径的圆周角所对的弦是直径 【答案】B . 【解析】【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理.角定理.7.如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)证明,∴只需连接一对角线就行)【答案】作图见试题解析.【答案】作图见试题解析.考点:作图—应用与设计作图.考点:作图—应用与设计作图.8.)阅读下面材料:在数学课上,老师提出如下问题:)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 .请回答:小芸的作图依据是【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线..作图题.考点:1.作图—基本作图;2.作图题.9.已知⊙O为△ABC的外接圆,圆心O在AB上.上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC=4,连接OD 交BC 于F .①求证:OD ⊥BC ; ②求EF 的长.的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.【解析】【解析】 试题分析:(1)按照作角平分线的方法作出即可;)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到CD BD =,再由垂径定理推论可得到结论;,再由垂径定理推论可得到结论;②由勾股定理求得CF 的长,然后根据平行线分线段成比例定理求得34EFFD CEAC==,即可求得37EF CF =,继而求得EF 的长.的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周.压轴题.角定理;5.作图—复杂作图;6.压轴题.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【答案】答案见试题解析.【解析】【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题..压轴题.11.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】【解析】 试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;即为所求; (2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论.,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180p ´=154p ,设这个圆锥底面圆的半径为R ,∴2πR=154p,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.复杂作图.12.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:试题解析:根据分析,可得:..操作型.考点:1.作图—应用与设计作图;2.操作型.13.如图,一条公路的转弯处是一段圆弧(AB).(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)所在圆的半径.(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O为所求;为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵222OA OD BD=+,∴222(20)40r r=-+,解得r=50,即AB所在圆的半径是50m.考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题..作图题.14.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.的度数.【答案】(1)证明见试题解析;(2)40°.°.考点:1.作图—基本作图;2.等腰三角形的判定与性质..等腰三角形的判定与性质.15.如图,射线P A切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OP A(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.的长.【答案】(1)作图见试题解析,证明见试题解析;(2)839p.【解析】【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;的切线;(2)先证明△P AB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.,用弧长公式计算即可.试题解析:(1)作图如右图,作图如右图,连接连接OA,过O作OB⊥PC,∵P A切⊙O于点A,∴OA⊥P A,又∵∠OPC=∠OP A ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;的切线;(2)∵P A 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△P AB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°tan60°==4OA ,∴OA=433,∴431203180AB l p ´´==839p .考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.基本作图.16.如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;)如图所示;考点:1.作图—复杂作图;2.圆周角定理..圆周角定理.17.)图①,图②,图③都是4×4×44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:图:为一边画一个等腰三角形;(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;为一边画一个正方形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.)作图见试题解析.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】【解析】的等腰三角形即可; 试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;的正方形;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.个:试题解析:(1)如图①,符合条件的C点有5个:;的面积最大.(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.考点:作图—应用与设计作图.18.)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均,每个小正方形的顶点叫做格点.为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.)答案见试题解析.所示;试题解析:(1)如图1所示;(2)如图2、3所示;所示;考点:作图—应用与设计作图.考点:作图—应用与设计作图. 19.)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°. (1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;的度数; (3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ÐÐ=cot ,根据定义,利用图形求cot22.5°的值.的值.【答案】(1)答案见试题解析;(2)22.5°;(3)21+.试题解析:(1)如图,)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°45°=22.5°=22.5°,即∠BDC 的度数为22.5°;(3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx+=21+,即cot22.5°cot22.5°==21+. 考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题..综合题.20.)如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求DE 的长.的长.【答案】(1)作图见试题解析;(2)32p .试题解析:(1)如图,)如图,⊙C 为所求;为所求;(2)∵⊙C 切AB 于D ,∴CD ⊥AB ,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°30°=60°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt △BCD 中,∵cos ∠BCD=CD BC ,∴CD=3cos30°CD=3cos30°==332,∴DE 的长=33602180p ×=32p. 考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题..作图题.21.如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.的一个外角. 实验与操作:实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法) (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE ,CF . 猜想并判断四边形AECF 的形状并加以证明.的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF 的形状为菱形.的形状为菱形. 【解析】【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定..菱形的判定.22.在边长为1的小正方形组成的方格纸中,的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点(横竖格(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.为常数. (1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.的值.【答案】(1)答案见试题解析;(2)112m n =ìïí=ïî.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=ìí+-=î,解得:112m n =ìïí=ïî. 考点:作图—应用与设计作图.考点:作图—应用与设计作图.23.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.的整数个单位长度. (1)用记号(a ,b ,c )(a≤b≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析.)答案见试题解析. 【解析】【解析】 试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系..三角形三边关系.24.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形..各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算如何计算它的面积?奥地利数学家皮克(G•Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-´+=S .(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)(注:图甲、图乙在答题纸上)【答案】. 【解析】【解析】 试题分析:(1)根据皮克公式画图计算即可;)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.考点:作图—应用与设计作图. 25.【问题提出】【问题提出】用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?,能搭成多少种不同的等腰三角形? 【问题探究】【问题探究】不妨假设能搭成m 种不同的等腰三角形,为探究m 与n 之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.手,通过试验、观察、类比、最后归纳、猜测得出结论. 【探究一】【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 此时,显然能搭成一种等腰三角形.此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.根木棒这一种情况,不能搭成三角形. 所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形. 所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1. 综上所述,可得:表①综上所述,可得:表①n 3 4 5 6 m 1 0 1 1 【探究二】【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?根相同的木棒搭一个三角形,能搭成多少种不同的三角形? (仿照上述探究方法,写出解答过程,并将结果填在表②中)(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? (只需把结果填在表②中)(只需把结果填在表②中) 表②表②n 7 8 9 10 m 你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n是正整数,把结果填在表③中)分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③表③n 4k﹣1 4k 4k+1 4k+2 m 【问题应用】:(写能搭成多少种不同的等腰三角形?(写用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形(木棒无剩余)(只填结果)出解答过程),其中面积最大的等腰三角形每腰用了,其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形三角形根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根木棒,则能搭成一种等腰三角形分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷2016÷4=5044=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷2016÷3=6723=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题..压轴题.【2014年题组】年题组】1.)用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .ASAD .AAS 【答案】B .考点:作图—基本作图;全等三角形的判定与性质.考点:作图—基本作图;全等三角形的判定与性质.2.模)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:下:甲:①作OD 的垂直平分线,交⊙O 于B ,C 两点.两点. ②连接AB ,AC .△ABC 即为所求作的三角形.即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.两点.即为所求作的三角形.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )对于甲、乙两人的作法,可判断(A.甲、乙均正确.甲、乙均错误.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误.甲错误,乙正确.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】【解析】试题分析:根据甲的思路,作出图形如下:试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,故选A 考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.度角的直角三角形.3.)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是,并直接写出旋转角度是 .【答案】90°.°.【解析】【解析】试题分析:如图所示:旋转角度是90°.°.考点:作图-旋转变换.旋转变换.4.)如图,在△ABC中,按以下步骤作图:中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为的度数为 【答案】105°.°.考点:作图—基本作图;线段垂直平分线的性质.考点:作图—基本作图;线段垂直平分线的性质.5.)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考尺规作图专题复习(含答案)
尺规作图定义:
用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画
等长的线段,画等角。
1. 直线垂线的画法:
【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B 为
圆心,大于求的垂线1
2
AB 的长为半径画圆弧,分别交直线l 两侧于点M,N,连接MN,则MN即为所
2. 线段垂直平分线的画法
【分析】:作法如下:分别以点A,B 为圆心,大于1
2
AB 的长为半径画圆弧,分别交直
线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.
3. 角平分线的画法
【分析】1. 选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B 点,再分别以
A,B为圆心,大于求的角平分线. 1
2
AB 的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所
4. 等长的线段的画法
直接用圆规量取即可。
5. 等角的画法
【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B 两点,连接AB;画一条射线l ,以上面的那个半径为半径,l 的顶点K 为圆心画圆,交l 与L,以L 为圆心,AB 为半径画圆,交以K为圆心,KL 为半径的圆与M点,连接KM,则角LKM即为所求.
备注:1. 尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;
2. 求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;
3. 当作图要满足多个要求时,应逐个满足,取公共部分.
例题讲解
例题 1. 已知线段a,求作△ABC,使AB=BC=AC=a.
解:
作法如下:
①作线段BC=a;(先作射线BD,BD截取BC=a).
②分别以B、C为圆心,以 a 半径画弧,两弧交于点A;
③连接AB、AC.
则△ABC要求作三角形.
例2. 已知线段 a 和∠α,求作△ABC,使AB=AC=a,∠A=∠α.
解:
作法如下:
①作∠MAN=∠α;
②以点 A 为圆心, a 为半径画弧,分别交射线AM,AN于点B,C.
③连接B,C.
△ABC即为所求作三角形.
例3.( 深圳中考) 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项中,正确的是(D)
【解析】由题意知,做出AB的垂直平分线和BC的交点即可。
故选 D.
2. 如图,用直尺和圆规作一个角等于已知角,其依据是SSS.
1
例4. 如图,在△ABC中,分别以点A和点B为圆心,大
2AB的长为半径画弧,两弧相于
交于点M,N,作直线MN,交BC于点D,连结AD. 若△ADC的周长为16,AB=12,则△ABC 的周长为__28__.
【解析】由题意知
16
C AC DC A
D AC CD DB AC CB
ADC
16 12 28
C AC CB AB
ABC
例5. 如图,一块三角形模具的阴影部分已破损.
(1) 只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一
块与原来的模具ABC形状和大小完全相同的模具A′B′C′?请简要说明理由.
(2) 作出模具△A′B′C′的图形( 要求:尺规作图,保留作图痕迹,不写作法和证明) .
( 第5 题)
( 第5 题解)
【解】(1) 量出∠B 和∠C的度数及BC边的长度即可作出与△ABC形状和大小完全相同的三角形.
理由是两角及其夹边对应相等的两个三角形全等.
(2) 如解图,△A′B′C′就是所求作的三角形.
链接中考
6. 【2018 常州中考27】(本小题满分10 分)
(1) 如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.
求证:AFE CFD
(2) 如图2,在Rt GMN 中,M 900 ,P为MN的中点.
①用直尺和圆规在GN边上求作点Q,使得GQM PQN ( 保留作图痕迹,不要
求写作法) ;
②在①的条件下,如果0
G , 那么Q是GN的中点吗?为什
么?
60
图1 图2
【解析】第二问:①作点P 关于GN的对称点P′,连接P′M交GN于Q,连接PQ,点Q即为所求.
7. 【2018 年江苏省南京市】如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分
别交AB、AC于点D、E,连接DE.若BC=10cm,则DE= 5 cm.
【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.
【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,
∴D为AB的中点,E为AC的中点,
∴DE是△ABC的中位线,
∴
1
DE BC 5cm.
2
故答案为:5.
8. 【2018 南通中考16】下面是“作一个30 角”的尺规作图过程.
请回答:该尺规作图的依据是.
【答案】同弧所对圆周角是圆心角的一半
9. 【2018 无锡中考26】(本题满分10 分)
如图,平面直角坐标系中,已知点 B 的坐标为(6,4 )
(1)请用直尺(不带刻度)和圆规作一条直线AC,它与x 轴和y 轴的正半轴分别交于点 A 和点C,且使∠ABC=90°,△ABC与△AOC的面积相等。
(作图不必写作法,但要保留作图
痕迹。
)
(2)问:(1)中这样的直线AC是否唯一?若唯一,请说明理由;若不唯一,请在图中画
出所有这样的直线AC,并写出与之对应的函数表达式。
y
B
x O
【解答】(1)过 B 作BA⊥x 轴,过 B 作BC⊥y 轴
(2)不唯一,∵AOC ABC ,设A a,0
∴OA BA 2 2
a 6 a 4 a 13 3
∴
A 13
3
,0
设C 0,c
∴CO CB , c c 2 2
4 6 c 13 2
∴C
13
2
0,
3 13 2
l AC 或 4
2 2 3
: y x y x
10. 【2018 江西中考】如图,在四边形中,∥, =2 , 为的中点,请仅用无.刻.度.的.直.尺.分别按下列
要求画图( 保留作图痕迹)
(1)在图 1 中,画出△ABD的BD边上的中线;
(2)在图 1 中,若BA=BD, 画出△ABD的AD边上的高.
【解析】(1)如图AF是△ABD的BD边上的中线;
(2)如图AH是△ABD的AD边上的高.
11. 【2018 山东滨州中考11】如图,∠AOB=60°,点P 是∠AOB 内的定点且
OP 3,
若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()
A.3 6
2 B.
3 3
2
C.6 D.3
【解答】作P 点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,则MP=M,C NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+NC,=∠D CCOD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,
∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=3°0,
∴ 1 3
OH OC ,
2 2
3
CH 3OH ,
2
∴CD=2CH=.3
故选:D.
心,以大于
1
2 AC 的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,
CE=3,则矩形的对角线AC的长为.
【答案】30
【解答】连接AE,如图,
由作法得MN垂直平分AC,
∴EA=EC=3,
在Rt△ADE中,AD 32 22 5 ,
在Rt△ADC中,
2
2
AC 5 5 30 .
故答案为30 .
13.【2018 天津中考18】如图,在每个小正方形的边长为 1 的网格中,ABC 的顶点A,B,C 均在格点上.
(1)ACB 的大小为__________(度);
(2)在如图所示的网格中,P 是BC 边上任意一点. A 为中心,取旋转角等于BAC ,把点P 逆时针旋转,点P 的对应点为P'. 当CP ' 最短时,请用无刻.度..的直尺,画出点P',并简要说明点P'的位置是如何找到的(不要求证明)__________.
【答案】(1). 90 ;(2). 见解析
【解析】分析:(1)利用勾股定理即可解决问题;
(2)如图,取格点D, E,连接DE 交AB 于点T ;取格点M , N ,连接MN 交BC 延长线于点G ;取格点 F ,连接FG 交TC 延长线于点P',则点P'即为所求.
详解:(1)∵每个小正方形的边长为1,
AC 3 2, BC 4 2, AB 5 2
2 2 2
3 2
4 2
5 2
2 2 2
AC BC AB
∴ΔABC是直角三角形,且∠C=90°
故答案为90;
(2)如图,即为所求.。