高中数学竞赛讲义_不等式

合集下载

高中数学 不等式证明的基本方法 竞赛讲义

高中数学 不等式证明的基本方法 竞赛讲义

不等式证明的基本方法及例题讲解【学习目标】1. 熟练掌握不等式的几个基本性质2. 应用不等式的基本性质解题、证明问题等【重点、难点】1. 不等式的几个基本性质2. 应用不等式的基本性质解题、证明问题【教学过程】一、知识内容梳理 1. 不等式的基本性质 (1)a b b a >⇔< (2),a b b c a c >>⇒>注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立 (3)a b a c b c >⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒< (5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>⇒>≥∈2、a b a b a b -≤+≤+(1)a b a b +≤+等号成立条件当且仅当0ab ≥(2)a b a b -≤+等号成立条件当且仅当0ab ≤(3.)a b b c a c-+-≥-,其中等号成立当且仅当()()0a b b c --≥二、不等式证明的基本方法:1.差值比较.欲证,b a >只需证明.0>-b a2.商值比较.欲证()0>>b b a ,,只需证明.1>ba三、例题讲解:1.()改编题设,1->a 求证:6322≥+aa 思路:没有拆项而言,只有分析 证明:欲证6322≥+aa , 只需证明032623≥+-a a 即证()().0242≥+-a a因为,1->a所以()().0242≥+-a a2.设,1->a 求证:3040002≥+aa 思路:没有拆项而言,只有分析证明:欲证3040002≥+a a , 只需证明040003023≥+-a a 即证()().010202≥+-a a因为,1->a所以()().010202≥+-a a3.()增加一个方法常规题-设,,a b c R +∈,求证:()3a b c a b ca b c abc ++≥思路1:函数法,所证不等式中的变量位于指数和底数位置,且为乘法与乘方运算,并不利于不等式变形;所以考虑利用两边同取对数使得指数变为系数,同时将乘法运算转为加法运算。

高中竞赛不等式公式大全

高中竞赛不等式公式大全

高中竞赛不等式公式大全摘要:一、前言二、高中竞赛不等式公式简介1.基本不等式2.柯西不等式3.排序不等式4.切比雪夫不等式5.其他常见不等式三、应用举例1.基本不等式应用2.柯西不等式应用3.排序不等式应用4.切比雪夫不等式应用5.其他常见不等式应用四、结论正文:一、前言不等式是数学中的一个重要概念,广泛应用于各个领域。

在高中竞赛数学中,掌握不等式的运用尤为重要。

本文将介绍一些高中竞赛中常见的不等式公式及其应用。

二、高中竞赛不等式公式简介1.基本不等式基本不等式是最常见的不等式之一,形式为:对于任意实数a1, a2, ..., an 和b1, b2, ..., bn,有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。

当且仅当a1/b1 = a2/b2 = ...= an/bn时,等号成立。

2.柯西不等式柯西不等式是一种特殊的不等式,形式为:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有(a1^2 + a2^2 + ...+ an^2)(b1^2 + b2^2 + ...+bn^2) >= (a1b1 + a2b2 + ...+ anbn)^2。

当且仅当存在常数k,使得a1 = kb1, a2 = kb2, ..., an = kbn时,等号成立。

3.排序不等式排序不等式是一种关于排序的不等式,形式为:对于任意实数a1, a2, ..., an,有(a1 + a2 + ...+ an)^2 <= (a1^2 + a2^2 + ...+ an^2)(1 + 1/2 + 1/3 + ...+ 1/n)。

当且仅当a1 = a2 = ...= an时,等号成立。

4.切比雪夫不等式切比雪夫不等式是一种关于方差的不等式,形式为:对于任意实数x1,x2, ..., xn,有(x1 - x平均值)^2 + (x2 - x平均值)^2 + ...+ (xn - x平均值)^2 <= n * (x1^2 + x2^2 + ...+ xn^2) / (n - 1)。

高中数学竞赛holder不等式

高中数学竞赛holder不等式

高中数学竞赛holder不等式摘要:1.介绍高中数学竞赛的holder 不等式2.holder 不等式的基本原理3.holder 不等式的应用实例4.结论正文:一、介绍高中数学竞赛的holder 不等式在高中数学竞赛中,holder 不等式是一个非常重要的知识点,它是解决许多数学问题的关键思想。

holder 不等式是一种不等式,它的本质是关于p 和q 指数的不等式,可以广泛应用于各种数学问题中。

二、holder 不等式的基本原理holder 不等式的基本形式为:$|a_1b_1+a_2b_2+...+a_nb_n|leqprod_{i=1}^{n}|a_ib_i|$。

其中,$a_i$和$b_i$是实数或复数,$n$是正整数,$p$和$q$是正实数,满足$1<p<q$。

holder 不等式的证明比较复杂,需要涉及到一些高级的数学知识,比如Hlder 不等式和Minkowski 不等式。

在理解holder 不等式的基本原理之前,需要先理解它的前提条件和结论。

三、holder 不等式的应用实例holder 不等式在实际应用中非常广泛,它可以用于解决各种数学问题,比如不等式问题、最大值最小值问题、积分问题等。

例如,考虑以下不等式问题:$|x^2-4y^2+z^2|leq 1$,如何求解$x,y,z$的取值范围?这就是一个典型的holder 不等式问题,可以通过holder 不等式来解决。

具体来说,我们可以把$x^2-4y^2+z^2$看作是一个三元数的平方,然后应用holder 不等式,得到:$|x^2-4y^2+z^2|leq 1$$Leftrightarrow |x|leq 1, |2y|leq 1, |z|leq 1$$Leftrightarrow -1leq xleq 1, -1/2leq yleq 1/2, -1leq zleq 1$因此,$x,y,z$的取值范围为$[-1,1]times [-1/2,1/2]times [-1,1]$。

高中数学竞赛讲义_不等式

高中数学竞赛讲义_不等式

不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n >b n ; (8)a>b>0, n ∈N +⇒n nb a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab; (12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n nb a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b矛盾,所以假设不成立,所以n nb a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc =(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。

三元齐次不等式问题的数学竞赛讲义——均值不等式与柯西不等式应用拓广 学生版

三元齐次不等式问题的数学竞赛讲义——均值不等式与柯西不等式应用拓广 学生版

三元齐次不等式问题的解答讲义-均值不等式与柯西不等式应用拓广众所周知,三元齐次不等式是一类基本型不等式问题,证明所需技巧性简单,本文通过几个例题梳理证明的一般步骤:通常只要展开分析,考察展开式,能否首先使用均值不等式,均值不等式的元可以任意,其次考虑应用柯西不等式,能否配方,能否使用同一类型的3-u -v 法证明。

一、基本三元齐次不等式问题1原始问题:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a .2问题的加强1:已知a ,b ,c >0,求证:a 2b 2+b 2c 2+c 2a2≥a b +b c +c a +3a -b 2+b -c 2+c -a 2ab +bc +ca .3问题的加强2:已知a ,b ,c >0,求证:a 2b +b 2c +c 2a ≥a +b +c +2a -b 2+b -c 2+c -a 2a +b +c.根据上述两个题,增加字母次数,变形改编一题,1加强变形题1:已知a,b,c>0,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥3(a−b)4+(b−c)4+c−a4a2+b2+c2.舍掉一部分元素,使得题目条件难度加大,改编题目,2加强变形题2:问题[2023-06-2500:00]:已知a,b,c>0,,求证:a(a2−b2)b +b(b2−c2)c+c(c2−a2)a≥4c−a4a2+b2+c2.二、复杂一点的三元齐次不等式问题:这类问题看能否使用均值不等式,凑一组不等式问题,使用均值不等式,若使用过程出现困难,则展开证明.1问题1:已知a,b,c>0,求证:b+c4a+b+c+c+a4b+c+a+a+b4c+a+b≥3.2问题2:已知a,b,c>0,求证:a2(b+c)4a+b+c +b2(c+a)4b+c+a+c2(a+b)4c+a+b≥29bc+ca+ab.3问题3:已知a,b,c>0,求证:b(b+c)c(4a+b+c)+c(c+a)a(4b+c+a)+a(a+b)b(4c+a+b)≥13.4问题4:已知a,b,c>0,求证:a(b+c)b(4a+b+c)+b(c+a)c(4b+c+a)+c(a+b)a(4c+a+b)≥13.5问题5是多元均值不等式的应用问题.再看一个题8次不等式的展开证明:已知a,b,c≥0,β∈0,31,求证:cyc [(b4+c4)(3b+c)(b+3c)(b2+c2-2a2)]≥42cyc a2⋅cyca2-c2+βcycc-a 2⋅cycc-a 2.三、思考问题:6①已知a ,b ,c >0,求证:2cyc a 4 cyc a 3(a +b ) 5a −c (4a +3b −7c )−20cyc a 2b 3(a −c )≥cyc bc (a −b )8 +cyc (c −a )2⋅ cyc(b −c )2(c −a )2 .7②已知a ,b ,c >0,求证:a 2+b 2+c 2≥a b 2−bc +c 2+b c 2−ca +a 2+c a 2−ab +b 2≥ab +bc +ca .。

山东省实验中学高中数学竞赛辅导——不等式部分

山东省实验中学高中数学竞赛辅导——不等式部分

重要不等式应用汇总1. 排序不等式:设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++- 2. 均值不等式:当+∈R a i (n i ,2,1=)时,有:na a a na a a a a a a a a nn nnn n22221212121111+++≤+++≤≤+++3. 柯西不等式:设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni in i i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ. 从历史角度看,柯西不等式又可称柯西--布理可夫斯基-席瓦兹不等式 变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni iib a b a(2)设i i b a ,同号,且,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni ii b a a b a4. 琴生(Jensen )不等式:若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.幂均值不等式:设α)(0+∈>>R a i β 则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++=6. 切比雪夫不等式:设两个实数组n a a a ≤≤≤...21,n b b b ≤≤≤...21则)....(1)...(12211111121n n ni in i i n n n b a b a b a nnbna b a b a b a n+++≤⋅≤+++∑∑==- (该不等式的证明只用排序不等式及∑∑==⋅n i ini ib a 11的表达式就可得证)7.一个基础不等式:y x y x )1(1αααα-+≤- 其中]1,0[,0,∈≥αy x ,若y x ,中有一个为零,则结论成立8.赫尔德(Holder )不等式:设 ).,...2,1(0,n k b a k k =≥ 1,≥q p 且111=+qp ,则 qnk q kpnk p kknk k b a ba 11111)()(∑∑∑===⋅≤(等号成立当且仅当q k p k tb a =)*9.与对数函数有关的一个不等式:x x xx<+<+)1ln(1, .0>x (该不等式的证明利用导数的符号得出函数的单调性)*10.三角函数有关的不等式:x x x tan sin << )2,0(π∈x*11.绝对值不等式: 设C a a a b a n ∈ ,,,,21,则有:│|a |-|b |│≤│a +b │≤│a │+│b │;│n a a a +++ 21│≤n a a a +++ 21*12.舒尔(Schur )不等式:设+∈R z y x ,,,则0))(())(())((≥--+--+--y z x z z z y x y y z x y x x *13. 闵可夫斯基(Minkowski )不等式:如果n x x x ,......,,21与n y y y ,......,,21都是非负实数1≥p , 那么pni p ipni pippi ni i y x y x 111111)()())((∑∑∑===+≤+14. 贝努利不等式(1)设2,,2,1,1≥=->n n i x i 且同号,则∑∏==+>+ni in i ixx 111)1((2)设1->x ,则(ⅰ)当10<<α 时,有x x αα+≤+1)1(;(ⅱ)当1>α或0<α 时,有x x αα+≥+1)1(,上两式当且仅当0=x 时等号成立。

高中数学竞赛解题方法篇(不等式)

高中数学竞赛解题方法篇(不等式)

高中数学竞赛中不等式的解法摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。

希望对广大喜爱竞赛数学的师生有所帮助。

不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个著名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用.1.排序不等式 定理1设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有1211...n n n a b a b a b -+++ (倒序积和)1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和)其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或12...n b b b ===时成立.(说明: 本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.)证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...nr r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n===时,S 达到最大值1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有.n n k n n r k r n n a b a b a b a b +≤+ (1-1)事实上, ()()()0n n n n nk r k n n r n r n k a b a b a b a b b b a a +-+=--≥不等式(1-1)告诉我们当nr n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++.再证不等式左端,由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端,得1211(...)nn n a b a b a b --+++1212(...)n r r n r a b a b a b ≥-+++即 1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++ .例1 (美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3()a b c a b ca b c abc ++≥.思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设ab c ≥≥,则有lg lg lg a b c ≥≥根据排序不等式有:lg lg lg lg lg lg a a b b c c a b b c c a ++≥++lg lg lg lg lg lg a a b b c c a c b a c b ++≥++ 以上两式相加,两边再分别加上 lg lg lg a a b b c c ++有 3(lg lg lg )()(lg lg lg )a a b b c c a b c c a b ++≥++++ 即 lg lg 3a b ca b cab c abc ++≥故 3()a b c a b cab c abc ++≥ .例2 设a,b,c R +∈,求证:222222333222a b b c c a a b c a b c c a b bc ca ab+++++≤++≤++. 思路分析:中间式子每项都是两个式子之和,将它们拆开,再用排序不等式证明. 证明:不妨设ab c ≥≥,则 222a b c ≥≥且111c b a≥≥根据排序不等式,有222222111a b c a b c c a b a b c++≥++222222111a b c a b c b c a a b c++≥++ 两式相加除以2,得222222222a b b c c a a b c c a b+++++≤++再考虑333ab c ≥≥,并且111bc ca ab≥≥ 利用排序不等式,333333111 a b c a b c bc ca ab ca ab bc++≥++333333111 a b c a b c bc ca ab ab bc ac++≥++ 两式相加并除以2,即得222222333222a b b c c a a b c c a b bc ca ab+++++≤++ 综上所述,原不等式得证.例3 设12120...,0...n n a a a b b b ≤≤≤≤≤≤≤≤,而1,2,...,n i i i 与1,2,...,n j j j 是1,2,...,n 的两个排列. 求证:1111r snnnni j r sr s r s a b a b r sr s ====≥++∑∑∑∑. (1-2) 思路分析:已知条件中有两组有序实数,而式(1-2)具有“积和”形式,考虑使用排序不等式.证明:令 1s nj rs b d r s==+∑(r=1,2,...,n )显然 12...n d d d ≥≥≥ 因为 12...n b b b ≤≤≤ , 且111...(1)1r n r n r ≤≤≤++-+ 由排序不等式1nsr s b d r s =≤+∑ 又因为 12...n a a a ≤≤≤所以 11rnnr r i r r r a d a d ==≤∑∑且111nnnsr r r r s r b a a d r s ===≤+∑∑∑(注意到r a ≥0)故11111r ssrn nn nni j j iri rr s r s r a b b a a dr s r s =======++∑∑∑∑∑11111nn nn ns r s r r r r r s r s b a ba d a r s r s=====≥≥=++∑∑∑∑∑ 故 原式得证.2.均值不等式定理2 设12,,...,n a a a 是n 个正数,则()()()()H n G n A n Q n ≤≤≤称为均值不等式.其中,121()111...nH n a a a =+++,()G n =12...()na a a A n n+++=,()Q n =分别称为12,,...,n a a a 的调和平均数,几何平均数,算术平均数,均方根平均数. 证明: 先证 ()()G n A n ≤.记c= i ia b c=,则 原不等式12...n b b b n ⇔+++≥其中 12121...( (1)n n b b b a a a c == 取 12,,...,n x x x 使 11212123,,...,,n n n x x xb b b x x x --=== 则 1.n n x b x = 由排序不等式,易证111221......n n n n x x x b b b n x x x -+++=+++≥下证()()A n Q n ≤因为 222212121...[(...)n n a a a a a a n+++=+++22212131()()...()n a a a a a a +-+-++-2222232421()()...()...()n n n a a a a a a a a -+-+-++-++-]2121(...)n a a a n≥+++ 所以12...n a a a n +++≤从上述证明知道,当且仅当12...n a a a ===时,不等式取等号.下面证明 ()()H n G n ≤对n 个正数12111,,...,na a a ,应用 ()()G n H n ≤,得12111...n a a a n +++≥即 ()()H n G n ≤(等号成立的条件是显然的).例4已知2201,0a x y <<+=,求证:1log ()log 28x y a a a a +≤+. 证明:由于 01a <<,0,0x y a a >>,有xy aa +≥=从而log ()log log 22xy a a a x ya a ++≤=+下证128x y +≤ , 即 14x y +≤。

_琴生不等式、幂平均不等式

_琴生不等式、幂平均不等式

高二数学竞赛班二试讲义 第一讲 琴生不等式、幂平均不等式一、知识要点:1.琴生不等式凸函数的定义:设连续函数()f x 的定义域为[],a b ,对于区间[],a b 任意两点12,x x ,都有1212()()()22x x f x f x f ++≤,则称()f x 为[],a b 上的下凸(凸)函数; 反之,若有1212()()()22x x f x f x f ++≥,则称()f x 为[],a b 上的上凸(凹)函数。

琴生(Jensen)不等式(1905年提出):若()f x 为[],a b 上的下凸(凸)函数,则 1212()()()()n n x x x f x f x f x f n n++⋅⋅⋅+++⋅⋅⋅+≤(想象n 边形的重心在图象的上方,n 个点重合时“n 边形”的重心在图象上) 琴生(Jensen)不等式证明:1)2n =时,由下凸(凸)函数性质知结论成立;2)假设n k =时命题成立,即1212()()()()k k x x x f x f x f x f k k++⋅⋅⋅+++⋅⋅⋅+≤那么当1n k =+时,设12111k k x x x A k ++++⋅⋅⋅+=+,1211111(1)(1)(1)()()()22k k k k k k x x x x k A k A k A k k f A f f k +++++++⋅⋅⋅++-+++-==11111()(1)()(1)()11[()()][]22ki k k i k k k f x x k A f x k f A f A f k k k++=+++-+-≤+≤+∑所以112112()()()()()(1)()k k k k kf A f x f x f x f x k f A +++≤++⋅⋅⋅+++-所以1121(1)()()()()()k k k k f A f x f x f x f x +++≤++⋅⋅⋅++,得证 2.加权平均琴生(Jensen)不等式: 若()f x 为[],a b 上的下凸(凸)函数, 且11,0n iii λλ==>∑,则11(()()n ni iiii i f x f x λλ==≤∑∑ 3.曲线凸性的充分条件:设函数f(x)在开区间I 具有二阶导数, (1)如果对任意x ∈I,()0f x ''>,则曲线y=f(x)在I 是下凸的; (2)如果对任意x ∈I,()0f x ''<,则y=f(x)在I 是上凸的。

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式

全国高中数学竞赛专题-不等式(2)商值比较法(原理:若>1,且B>0,则A>B 。

)例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|. 解:因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x aa -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1). 所以|log a (1+x)|>|log a (1-x)|.2.分析法(即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。

)例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab - 证明:要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+,因为33332abc b a c ab ab c ab c =⋅⋅≥++=+, 所以原不等式成立。

例 4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤-证明:因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a) ≤b(1-b) ≤c(1-c),所以)1(1)1(1)1(1c c b b a a -≥-≥-, 所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-, 所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-, 也就是证)1)(1()1)(1(b a b b a b a a b a ---≤---,只需证b(a-b) ≤a(a-b),即(a-b)2≥0,显然成立。

高中数学竞赛试题汇编三 《二次函数、方程、不等式》讲义

高中数学竞赛试题汇编三 《二次函数、方程、不等式》讲义

高中数学竞赛试题汇编二《二次函数、方程、不等式》1. 如果不等式21x x a <-+的解集是()3,3-的子集,则实数a 的取值范围是( ) (A) (),7-∞ (B) (],7-∞ (C) (),5-∞ (D) (],5-∞2. 若[]1,1a ∈-,则2(4)420x a x a +-+->的解为( ) (A) 3x >或2x < (B) 2x >或1x <(C) 3x >或1x < (D) 13x <<3. 函数2()20112012f x x x =-+的图像与x 轴交点的横坐标之和为 .4. 已知2()2f x x x a =++,2()441f bx x x =-+,则()0f ax b +>的解集为 .5. 设方程22210x mx m -+-=的根大于2-,且小于4,则实数m 的范围是 .6. 实数,x y 满足224+3=0x x y -+,则22x y +的最大值与最小值之差是 .7. 已知,x y R ∈,且221x y +≤,则x y xy +-的最大值是 .8. 已知,x y 满足14xy x y +=+,且1x >则()()12x y ++的最小值是 .9. 已知,x y 为实数,22(,)f x y x xy y x y =++--的最小值是 .10. 已知实数,x y 满足22116y x +=,则的最大值是 .11. 若,x y R ∈,满足2222222()5x x y y x x x --+-=,则x = ,y = .12. 已知,x y 为实数,则()22225410max x y x x y +=+= .13. 实数,x y 满足x -x 的取值范围是 .14. 已知0,0x y ≥≥,且221x y +=,则()x x y +的最大值是 .15. 实数,x y 满足228624=0x x y y -+-+,则2x y -的最大值是 .。

【刘蒋巍竞赛讲座】第二讲:不等式(江苏高中数学复赛系列课程)

【刘蒋巍竞赛讲座】第二讲:不等式(江苏高中数学复赛系列课程)

abc(a
n+b
n
+c
n
)≤Leabharlann 1 3n2(本题满分 40 分)设整数 n 2 ,若 0 a1 a2 a3 ... an ,a1a2a3...an x ,求证:
a1a2a3...an1
1 1
xn

5
【刘蒋巍讲座】第二讲:不等式(江苏高中数学复赛系列课程)
(本题满分 40 分)设实数 a1 ,a2 ,...,a2016 满足 9ai 11ai21( i 1,2,...,2015).

(a1
a22 ) (a2
a32 )......(a2015
a2 2016
) (a2016
a12 )
的最大值
6
【刘蒋巍讲座】第二讲:不等式(江苏高中数学复赛系列课程)
(本题满分 50 分)设正整数的无穷数列an( n N * )满足 a4 4 ,an2 an1 an1 1 ( n 2 ),求an 的通项公式.
已知正实数 x,y 满足 (x 2)2 ( y 2)2 16 ,则 x y
.
y
x
【答案】4 【解析】解法一:将题设条件式通分并整理,得 x(x 2)2 + y(y 2)2 16xy 0 x(x 2)2 y (y 2)2 8(x y)2 0 x y 2 x y 4.
设 a1 、 a2 、 a3 、 a4 R ,且 a1a4 a2a3 1 ,记 f (a1, a2 , a3, a4 ) a12 a22 a32 a42 a1a3 a2a4 ,求 f (a1, a2 , a3, a4 ) 最小值
3
【刘蒋巍讲座】第二讲:不等式(江苏高中数学复赛系列课程)
3a4 2a3 2a2 2a 3 a4 2a2 1 2 a4 a3 a2 1

高中数学竞赛均值不等式讲义

高中数学竞赛均值不等式讲义

⾼中数学竞赛均值不等式讲义均值不等式1.均值不等式知识点1: ⼆元均值不等式可以推⼴到n 元,即:设,,,123a a a a n 为n 个⾮负实数,则12na a a n+++≥123a a a a n ====).如何证明?知识点2: 设,,,123a a a a n 为n 个⾮负实数,n Q, 12nn a a a A n+++=,n G =, 12111n nnH a a a =++,则n n n n Q A G H ≥≥≥(等号成⽴当且仅当123a a a a n ====) 更⼀般的平均值的定义: 设正数(1,2,3...)i a i n =,则α的幂平均值=11()ni i a nαα=∑,特别的,我们有:lim ()n f G αα→=,11()()ni i a f nααα==∑为关于α的增函数.知识点3:重要结论 (1)222,,,.a b c R a b c ab bc ac ∈++≥++(2) ()2,,,3().a b c R a b c ab bc ac ∈++≥++ (3) 2222,,,3()().a b c R a b c a b c ∈++≥++ (4) 2,,,()3().a b c R ab bc ca abc a b c ∈++≥++ (5),,,()()()()().a b c R a b b c a c abc a b c ab cb ac ∈++++=++++(6) 222;2a a a b b a b b-≥-+≥(a,b,c>0)(7) 2222221()()3a b b c c a a b c a b c ++≤++++(a,b,c>0)(8)正实数(1,2,3...)i a i n =,则2111n ni i i ia n a ==?≥∑∑(当且仅当12...n a a a ===); (9) 222222222222()()()()()a b b c c a ab bc ca a b c a bc b ca c ab ++++=++++知识点4:加权平均值不等式已知12+...1(0,1,2.,,,)n i w w w w i n +=>=,则对任意正实数12112212........n w w w n n n w a w a w a a a a +++≥.均值不等式的使⽤前要注意两个⽅⾯,⼀个是观察题⽬中不等式证明⽅向,另外⼀个是取等条件,根据这些信息,相应去选择均值不等式的技巧、模型,不断尝试,最终解决问题。

数学不等式(竞赛)

数学不等式(竞赛)

潍坊讲义(新高二)(一)不等式1. (排序不等式)设,...21n a a a ≤≤≤ n b b b ≤≤≤...21 n j j j ,...,,21是n ,...,2,1的一个排列,则..........221121112121n n j n j j n n n b a b a b a b a b a b a b a b a b a n +++≤+++≤+++- 2.(均值不等式) 设n a a a ,......,,21是n 个正数,则na a a n +++...21....21nn a a a ≥3.(柯西不等式)设),...2,1(,n i R b a i i =∈则.)())((211212i ni i ni in i i b a ba ∑∑∑===≥等号成立当且仅当存在R ∈λ,使得),...,2,1(n i a b i i ==λ变形:(1)设+∈∈R b R a i i ,则.)()(11212∑∑∑===≥ni i ni i ni ii b a b a(2)设i i b a ,同号,且 ,0,≠i i b a 则.)()(1121∑∑∑===≥ni i i ni i ni iib a a b a4.(J e n s不等式)若)(x f 是),(b a 上的凸函数,则对任意),(,...,,21b a x x x n ∈)].(...)()([1)...(2121n n x f x f x f nn x x x f +++≤+++5.(幂均值不等式)设α)(0+∈>>R a i β则 .)...()...(121121βββββαααααM na a a n a a a M nn =+++≥+++= 证: 作变换 令i i x a =β,则β1i i x a =则.)...()...(12121βαβαβαβαβαnx x x x x x n M M n n +++≥+++⇔≥ 因 0>>βα 所以 ,1>βα则函数βαx x f =)(是),0(+∞上的凸函数,应用Jensen 不等式即得。

高中数学奥林匹克竞赛知识讲座-不等式

高中数学奥林匹克竞赛知识讲座-不等式

a
x y z , b , c ( x, y, z 0) ,使非奇次不等式变为奇次不等式;对于三角形的 3 条边,常 y z x
作代换
a m n, b n l , c l m(m, n, l 0) .
例 2 a 是一个循环小数, f k (m) 表示 a 的小数点后第 k 位开始,连续 m 位上的数字之积,
nk 2 (n 2) tan .分别在 A1 A2 , A2 A3 ,..., An A1 上取点 B1 , B2 ,..., Bn ,使得 4 2n
| A1 B1 | b1 ,| B1 A2 | a1 ,| A2 B2 | b2 ,| B2 A3 | a2 ,..., | Ai Bi | bi ,| Bi Ai 1 | ai ,...,| An Bn | bn ,| Bn A1 | an .于是 1 | Bi Ai 1 | | Ai 1 Bi 1 | sin Bi Ai 1 Bi 1 2 1 (n 2) 。 ai bi 1 sin 2 n S Bi Ai1Bi1
从而 s aq 1a p 2 ...a p s G 。
s t 同理可证,一定存在正整数 q ,对任意的 t ,有 t aq 1aq 2 ...aq 1 G 即 f p (s) f q (t ) . 1 1
评注 这里采用的证题方法叫做磨光变换,它实质上就是逐步调整法,通常适合对 n 个正 数的不等式,其中当 n 个变量相等时,取到等号.本题在设置变换时,保持 n 个正数的几何平均 不变. 2.2 不等式证明的特殊技巧 例 3 ai 0, bi 0(i 1, 2,..., n), n 3 , 且 a1 b1 a2 b2 ... an bn k ,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n >b n ; (8)a>b>0, n ∈N +⇒n nb a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab; (12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。

(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n nb a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b矛盾,所以假设不成立,所以n nb a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc =(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。

二、方法与例题1.不等式证明的基本方法。

(1)比较法,在证明A>B 或A<B 时利用A-B 与0比较大小,或把BA(A ,B>0)与1比较大小,最后得出结论。

例 1 设a, b, c ∈R +,试证:对任意实数x,y,z,有x 2+y 2+z 2.))()((2⎪⎪⎭⎫ ⎝⎛++++++++≥xz b a c yz a c b xy c b a a c c b b a abc 【证明】 左边-右边= x 2+y 2+z 2yz a c b a bcxy a c c b ab ))((2))((2++-++--++++++-+=++-222))((2))((2y ac cy a c a xy a c c b ab x c b b xz c b b a ca=++++-++++++222))((2))((2x cb cxz c b b a ca z b a a z b a b yz a c b a bc.0222≥⎪⎪⎭⎫ ⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+-++⎪⎪⎭⎫ ⎝⎛+++x c b c z b a a z b a b y a c c y a c a x c b b 所以左边≥右边,不等式成立。

例2 若a<x<1,比较大小:|log a (1-x)|与|log a (1+x)|. 【解】 因为1-x ≠1,所以log a (1-x)≠0,|)1(log ||)1(log |x x a a -+=|log (1-x)(1+x)|=-log (1-x)(1+x)=log (1-x)x +11>log (1-x)(1-x)=1(因为0<1-x 2<1,所以x+11>1-x>0, 0<1-x<1). 所以|log a (1+x)|>|log a (1-x)|.(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。

例3 已知a, b, c ∈R +,求证:a+b+c-33abc ≥a+b .2ab -【证明】 要证a+b+c 33b a c ⋅⋅-≥a+b .2ab -只需证332abc ab c ≥+,因为33332abc b a c ab ab c ab c =⋅⋅≥++=+,所以原不等式成立。

例4 已知实数a, b, c 满足0<a ≤b ≤c ≤21,求证:.)1(1)1(1)1(2a b b a c c -+-≤-【证明】 因为0<a ≤b ≤c ≤21,由二次函数性质可证a(1-a) ≤b(1-b) ≤c(1-c),所以)1(1)1(1)1(1c c b b a a -≥-≥-, 所以)1(2)1(2)1(1)1(1c c b b b b a a -≥-≥-+-, 所以只需证明)1(1)1(1)1(1)1(1a b b a b b a a -+-≤-+-,也就是证)1)(1()1)(1(b a b ba b a a b a ---≤---,只需证b(a-b) ≤a(a-b),即(a-b)2≥0,显然成立。

所以命题成立。

(3)数学归纳法。

例5 对任意正整数n(≥3),求证:n n+1>(n+1)n .【证明】 1)当n=3时,因为34=81>64=43,所以命题成立。

2)设n=k 时有kk+1>(k+1)k ,当n=k+1时,只需证(k+1)k+2>(k+2)k+1,即12)2()1(++++k k k k >1. 因为1)1(1>++k k k k ,所以只需证12)2()1(++++k k k k kk k k )1(1+>+,即证(k+1)2k+2>[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k 2+2k+1>k 2+2k. 显然成立。

所以由数学归纳法,命题成立。

(4)反证法。

例6 设实数a 0, a 1,…,a n 满足a 0=a n =0,且a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0,…, a n-2-2a n-1+a n ≥0,求证a k ≤0(k=1, 2,…, n-1).【证明】 假设a k (k=1, 2,…,n-1) 中至少有一个正数,不妨设a r 是a 1, a 2,…, a n-1中第一个出现的正数,则a 1≤0, a 2≤0,…, a r-1≤0, a r >0. 于是a r -a r-1>0,依题设a k+1-a k ≥a k -a k-1(k=1, 2, …, n-1)。

所以从k=r 起有a n -a k-1≥a n-1-a n-2 ≥…≥a r -a r-1>0.因为a n ≥a k-1≥…≥a r+1≥a r >0与a n =0矛盾。

故命题获证。

(5)分类讨论法。

例7 已知x, y, z ∈R +,求证:.0222222≥+-++-++-yx x z x z z y z y y x【证明】 不妨设x ≥y, x ≥z. ⅰ)x ≥y ≥z ,则zy z x y x +≤+≤+111,x 2≥y 2≥z 2,由排序原理可得yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立。

ⅱ)x ≥z ≥y ,则z y y x z x +≤+≤+111,x 2≥z 2≥y 2,由排序原理可得 yx x x z z z y y y x z x z y z y x +++++≥+++++222222,原不等式成立。

(6)放缩法,即要证A>B ,可证A>C 1, C 1≥C 2,…,C n-1≥C n , C n >B(n ∈N +).例8 求证:).2(12131211≥<-++++n n n 【证明】12212121414121112131211-⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛+++>-++++n n n n n22121121nn n n >--+=-,得证。

例9 已知a, b, c 是△ABC 的三条边长,m>0,求证:.mc cm b b m a a +>+++【证明】 m b a mm b a b a m b a b m b a a m b b m a a ++-=+++=+++++>+++1mc c m c m +=+->1(因为a+b>c ),得证。

(7)引入参变量法。

例10 已知x, y ∈R +, l, a, b 为待定正数,求f(x, y)=2323yb x a +的最小值。

【解】 设k xy =,则k kly k l x +=+=1,1,f(x,y)==⎪⎪⎭⎫⎝⎛++23322)1(k b a l k 22333233333211111l k a k b k b k b k a k a b a l ≥⎪⎪⎪⎪⎭⎫ ⎝⎛+⋅+⋅+⋅++++ (a 3+b 3+3a 2b+3ab 2)= 23)(lb a +,等号当且仅当y bx a =时成立。

所以f(x, y)min =.)(23l b a + 例11 设x 1≥x 2≥x 3≥x 4≥2, x 2+x 3+x 4≥x 1,求证:(x 1+x 2+x 3+x 4)2≤4x 1x 2x 3x 4. 【证明】 设x 1=k(x 2+x 3+x 4),依题设有31≤k ≤1, x 3x 4≥4,原不等式等价于(1+k)2(x 2+x 3+x 4)2≤4kx 2x 3x 4(x 2+x 3+x 4),即kk 4)1(2+(x 2+x 3+x 4) ≤x 2x 3x 4,因为f(k)=k+k1在⎥⎦⎤⎢⎣⎡1,31上递减, 所以kk 4)1(2+(x 2+x 3+x 4)=)21(41++k k (x 2+x 3+x 4)≤42313++·3x 2=4x 2≤x 2x 3x 4. 所以原不等式成立。

(8)局部不等式。

相关文档
最新文档