历年全国初中数学竞赛试题及参考答案

合集下载

全国初中数学竞赛试题

全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。

【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。

在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。

求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。

【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。

求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。

【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。

【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。

随机抽取两个球,求两个球颜色相同的概率。

【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。

求不同的放法有多少种。

【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。

”- 乙说:“丙是说谎者。

”- 丙说:“甲和乙都是说谎者。

”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。

【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。

如果水池开始时是空的,求水池被填满的时间\( t \)。

【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。

全国初中数学竞赛试题及解答

全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。

请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。

4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。

全国初中数学竞赛试题及答案(完整资料).doc

全国初中数学竞赛试题及答案(完整资料).doc

【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

全国初中数学竞赛历年竞赛试题及参考答案

全国初中数学竞赛历年竞赛试题及参考答案

一、选择题(只有一个结论正确)1、设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。

(A)M=P;(B)M>P;(C)M<P;(D)不确定。

答:(B)。

∵M=,N=,P=,M-P=,∵,∴>,即M-P>0,即M>P。

2、某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路返回千米(),再前进千米,则此人离起点的距离S与时间t的关系示意图是()。

答:(C)。

因为图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。

(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。

答:(A)。

由题意知3×(甲-乙)=25-10,∴甲-乙=5。

4、一个一次函数图象与直线平行,与轴、轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有()。

(A)4个;(B)5个;(C)6个;(D)7个。

答:(B)。

在直线AB上,横、纵坐标都是整数的点的坐标是=-1+4N,=-25+5N,(N是整数).在线段AB上这样的点应满足-1+4N>0,且-25+5N≤0,∴≤N≤5,即N=1,2,3,4,5。

5、设分别是△ABC的三边的长,且,则它的内角∠A、∠B的关系是()。

(A)∠B>2∠A;(B)∠B=2∠A;(C)∠B<2∠A;(D)不确定。

答:(B)。

由得,延长CB至D,使BD=AB,于是CD=,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC。

6、已知△ABC的三边长分别为,面积为S,△A1B1C1的三边长分别为,面积为S1,且,则S与S1的大小关系一定是()。

全国初中数学竞赛历年竞赛试题及参考答案

全国初中数学竞赛历年竞赛试题及参考答案

初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是准确的. 请将准确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a =,则代数式32312612a a a +--的值为( ).(A )24 (B )25 (C )10 (D )12 2.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ++,).如果对于任意实数u v ,, 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92(D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 5.设3333111112399S =++++,则4S 的整数部分等于( ).(A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可 以作为一个三角形的三条边的长,则m的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .9.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙(第8题)(第10题)1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x=于P ,Q 两点. (1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.(第13题)(第12题)(第14题)初中数学竞赛试题参考答案一、选择题 1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 因为实数u v ,的任意性,得(x y ,)=(1,0).3.C解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEFS S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. (第4题)于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=. 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,. 因为AC a b =-,BD c d =-, 又因为2BD AC =,于是22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 因为13124<<,所以当34x =时,2y 取到最大值1,故1a =. (第8题)当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC=,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49(另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,(第10题)故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , . 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=, 于是 32P Q x x t =-,即 23P Q t x x =-.于是222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ ,(第12题)(第13题)故∠ABP =∠ABQ .(2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由(1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以 AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC ACDQ AD=,即a b ,所以a b +=.由(1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=,于是可求得2a b ==将2b =代入223y x =,得到点Q ,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解析式为1y =+.根据对称性知,所求直线PQ 的函数解析式为1y =+,或1y +. 解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =.将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1)得3322P Q x x t =-=-,32P Q x x k +=. 若3Q x =,代入上式得 3P x =-, 从而 23()3P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()3P Q k x x =+=.所以,直线PQ 的函数解析式为31y x =-+,或31y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 因为2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==.(第14题)。

历年初中数学竞赛真题库(含答案)

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4. 已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,q pn m xx x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________. 3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答()7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( ) 8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初中数学竞赛专项训练(1)1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。

故选C方法二:代入法2、若2001119811198011⋯⋯++=S ,则S 的整数部分是____________________解:因1981、1982……2001均大于1980,所以9022198019801221==⨯>S ,又1980、1981……2000均小于2001,所以22219022*********221==⨯<S ,从而知S 的整数部分为90。

3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。

解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 16答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数列1, 1, 2, 3, 5, ...,每个数都是前两个数的和,这个数列的第6个数是多少?A. 8B. 13C. 21D. 34答案:B5. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是________。

答案:非负数7. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是________。

答案:24立方厘米8. 一个分数的分子和分母同时乘以一个相同的数,这个分数的值________。

答案:不变9. 如果一个数的立方等于它本身,那么这个数是________。

答案:1,-1,010. 一个圆的周长是2πr,其中r是圆的半径,π是圆周率,π的值约等于________。

答案:3.14三、解答题(每题5分,共20分)11. 一个班级有50名学生,其中30名学生参加了数学竞赛,20名学生参加了英语竞赛,并且有5名学生同时参加了数学和英语竞赛。

请问只参加数学竞赛的学生有多少人?答案:只参加数学竞赛的学生有30-5=25人。

12. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

答案:等差数列的公差d=5-2=3,第10项a10=a1+(10-1)*d=2+9*3=29。

13. 一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边长。

答案:根据勾股定理,另一条直角边长b=√(13²-5²)=12。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。

如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。

A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。

而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。

2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。

现在以D为圆心,DE为半径画圆弧,交AB于G。

则△DFE的面积是阴影部分面积的()。

A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。

而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。

所以,△DFE的高是DE的一半,即1/4AB。

因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。

而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。

所以,△DFE的面积是阴影部分面积的4倍。

3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。

现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。

A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。

其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。

答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。

7. 如果一个数的绝对值等于5,那么这个数可以是______。

8. 一个数的倒数是1/4,那么这个数是______。

9. 一个数的平方是25,这个数可以是______。

10. 一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。

12. 一个圆的半径是r,求圆的面积。

13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。

四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。

15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。

五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。

如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案This manuscript was revised on November 28, 2020中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-+11123a+++的值为( ).(A )2- (B 2(C )2 (D )22(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )OAB CED4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 . 6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,xyO ECABD若12OC =,则线段CE 、BD 的长度差是 。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

全国初中数学竞赛历年竞赛试题及参考答案(1)

全国初中数学竞赛历年竞赛试题及参考答案(1)

2 001 年 TI 杯全国初中数学比赛试题一、选择题( 30 分)1. 化简2n 4 2(2n ) ,得()。

2(2n 3 )( A )2n 1 1 (B) 2n 1 (C) 7 (D) 7答案: C8 8 42. 假如 a, b, c 是三个随意整数,那么 a b , b c , c a ()。

2 2 2( A )都不是整数( B)起码有两个整数( C)起码有一个整数( D )都是整数答案: C3. 假如 a, b 是质数,且a2 13a m 0,b 2 13b m 0, 那么b a的值为()。

a b( A )123 (B )125或2 ( C)125( D )123或222 22 22 22答案: B4. 如图,若将正方形分红k 个全等的矩形,此中上、下各横排两个,中间竖排若干个,则k 的值为()( A)6 (B) 8 (C)10 (D)12答案: B5.如图,若(( A)6PA=PB ,∠ APB=2)。

(B)7(C)12∠ACB ,AC(D)16与 PB 交于点D, 且PB=4, PD=3 ,则AD DC 等于答案: B6. 若 a, b 是正数,且知足 12345 (111 a)(111 b) ,则 a和 b 之间的大小关系是()。

( A )a b ( B )a b ( C)a b (D)不可以确立答案: A二、填空题( 30 分)7. 已知: x 3 2, y 3 2 。

那么y x ____________ 。

3 2 3 2 x 2 y 2答案: 9708. 若 x2 xy y 14, y2 xy x 28, 则x y 的值为____________。

答案: 6 或-79. 用长为1, 4, 4, 5 的线段为边作梯形,那么这个梯形的面积等于____________ 。

答案: 6 3或 1010. 销售某种商品,假如单价上升 m %,则售出的数目就将减少m。

为了使该商品的销售总金m 的值应当确立为 ____________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年全国初中数学竞赛试题及参考答案
一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且仅有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填都得0分)
1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪. 刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )
(A)36(B)37(C)55 (D)90
2.已知,,且,则a的值等于( )
(A)-5(B)5(C)-9(D)9
3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴. 若斜边上的高为h,则( )
(A)h<1 (B)h=1 (C)1<h<2 (D)h>2
4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形,则至少要剪的刀数是( )
(A)2004 (B)2005 (C)2006 (D)2007
5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q,若QP=QO,则
的值为( )
(A)(B) (C)(D)
二、填空题(共5小题,每小题6分,满分30分)
6.已知a,b,c为整数,且a+b=2006,c-a=2005. 若a<b,则a+b+c的最大值为___________.
7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c是整数,且b不能被任何质数的平方整除,则的值等于________.
8.正五边形广场ABCDE的周长为2000米. 甲、乙两人分别从A,C两点同时出发,沿
A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分,那么出发后经过________分钟,甲、乙两人第一次开始行走在同一条边上.
9.已知0<a<1,且满足…([x]表示不超过x的最大整数),则[10a]的值等于__________.
10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码. 小明发现,他家两次升位后的电话号码的八位数恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是_________.
三、解答题(共4小题,每小题15分,满分60分)
11.已知,a、b为互质的正整数,且a≤8,.
(1)试写出一个满足条件x;
(2)求所有满足条件的x.
12.设a,b,c为互不相等的实数,且满足关系式:求a的取值范围.
13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B. 过点A做PB的平行线,交⊙O于点C. 连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K. 求证:
.
14.2006个都不等于119的正整数,,…,排列成一行数,其中任意连续若干项之和都不等于119,求…的最小值.
参考答案及评分标准
一、
1.解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施是在55千米处. 故选C.
2. 解:由已知可得,.又,所以
.解得.故选C.
3. 解:设点A的坐标为,点C的坐标为(|c|<|a|),则点B的坐标为,由勾股定理,得,,,所以
.由于,所以,故斜边AB上高.故选B.
4. 解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增
加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k+1)-34=k-33(个),而这些多边形的内角和不少于(k-33)×180°.所以(k +1)×360°≥34×60×180°+(k-33)×180°,解得k≥2005.
当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.于是共剪了
58+33+33×58=2005(刀).故选B.
5.解:如图,设⊙O的半径为r,,则,,.
在⊙O中,根据相交弦定理,得.
即,所以.连结DO,由勾股定理,得,
即,解得.所以,.故选D.二、
6. 解:由a+b=2006,c-a=2005,得a+b+c=a+4011.因为a+b=2006,a<b,a为整数,所以,a 的最大值为1002.于是,a+b+c的最大值为5013.
7. 解:设正方形DEFG的边长为x,正三角形ABC的边长为m,则.由△ADG ∽△ABC,
可得.解得.于是.
由题意,a=28,b=3,c=48,所以.
8. 解:设甲走完x条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x米,乙走了
米.于是,且≤400,所以,12.5≤x<13.5.
故x=13,此时.
9. 解:因为0<a<1,且满足,所以
…等于0或者1.由题设知,其中有18个等于1,所以
.
所以,1≤<2.
故18≤30a<19,于是6≤10a<,所以[10a]=6.
10.解:设原来电话号码的六位数为,则经过两次升位后电话号码的八位数为.
根据题意,有81×=.
记x=b×104+c×103+d×102+e×10+f,于是81×a×105+81x=208×105+a×106+x,
解得x=1250×(208-71a).
因为0≤x<,所以0≤<,故<a≤.
因为a为整数,所以a=2.于是.
所以,小明家原来的电话号码为282500.
三、
11.解:(1)满足条件.……………………5分
(2)因为,a,b为互质的正整数,且a≤8,所以,.当a=1时,,这样的正整数b不存在.
当a=2时,,故b=1,此时.
当a=3时,,故b=2,此时.
当a=4时,,与a互质的正整数b不存在.
当a=5时,,故b=3,此时.
当a=6时,,与a互质的正整数b不存在.
当a=7时,,故b=3,4,5,此时,,.
当a=8时,,故b=5,此时.
所以,满足条件的所有分数为.…………………15分
12.解法1:
由①-2×②,得,所以.
当时,b2+c2=2a2+16a+14=2(a+1)(a+7)>0.…………………10分
又当a=b时,由①,②得
,③
ac=a2-4a-5. ④
将④两边平方,结合③得a2(a2+16a+14)=(a2-4a-5)2,化简得24a3+8a2-40a-25=0,故
(6a+5)(4a2-2a-5)=0,解得,或.
所以,a的取值范围为且,.……………15分
解法2:因为,,所以
==,所以.又,所以b,c为一元二次方程⑤的两个不相等实
数根,故,所以.
当时,b2+c2=2a2+16a+14=2(a+1)(a+7)>0.…………………10分
另外,当a=b时,由⑤式有,
即,或,解得,或.
所以,a的取值范围为且,.……………15分
13.证明:因为AC∥PB,所以∠KPE=∠ACE.又PA是⊙O的切线,所以∠KAP=∠ACE.故∠KPE=
∠KAP,于是△KPE∽△KAP,所以,即KP2=KE·KA.……………5分
由切割线定理,得KB2=KE·KA,所以,KP=KB.…………………10分
因为AC∥PB,所以,△KPE∽△ACE,于是,故,即PE·AC=CE·KB.
…………………15分
14.解:首先证明命题:对于任意119个正整数b1,b2,…,b119,其中一定存在若干个(至少一个,也可以是全部)的和是119的倍数.
事实上,考虑如下119个正整数b1,b1+b2,…,b1+b2+…+b119,①
若①中有一个是119的倍数,则结论成立.
若①中没有一个是119的倍数,则它们除以119所得的余数只能为1,2,…,118这118种情况.所
以,其中一定有两个除以119的余数相同,不妨设为b1+…+b i和(1≤i<j≤119),于是
119|,从而此命题得证.
…………………5分对于中的任意119个数,由上述结论可知,其中一定有若干个数的和是119的倍数,又由题设知,它不等于119,所以,它大于或等于2×119,又因为,所以
≥.②
…………………10分取,其余的数都为1时,②式等号成立.
所以,的最小值为3910.…………………15分。

相关文档
最新文档