广东省2020年全国卷适应性考试理科数学试题含答案

合集下载

2020年全国卷Ⅰ理科数学(含答案)

2020年全国卷Ⅰ理科数学(含答案)

2020年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

1.若z=1+i,则|z2–2z|=A.0 B.1 C D.22.设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=A.–4 B.–2 C.2 D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D4.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p= A.2 B.3 C.6 D.95.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度x y i=得到下面的散点图:条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+ 6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+ 7.设函数()cos π()6f x x ω=+在[]π,π-的图像大致如下图,则f (x )的最小正周期为A .10π9 B .7π6 C .4π3 D .3π28.25()()x x y xy ++的展开式中x 3y 3的系数为 A .5 B .10 C .15 D .20 9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=A B .23 C .13D 10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π11.已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.若242log 42log a ba b +=+,则A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。

广东省广州市2020届高三年级调研测试理科数学(图片版,答案解析)

广东省广州市2020届高三年级调研测试理科数学(图片版,答案解析)

2
2
2

x2

y2

1


y

1

,整理得: x2
y ,因为曲线 x2
1 y 是以 P 0, 为焦点的抛物线,而
4 2
4
1
1
1
AM r y , MP y ,此时 MA MP 为定值.
2
4
4
A
O
P
B
M
x
12.已知偶函数 f (x) 满足 f (4 x) f (4 x) ,且当 x [0, 4]时, f (x) xe 2 ,若关于 x 的不等式
a2 b2
1 FD OF ( O 为坐标原点),则双曲线的离心率为( )
2
23
A.
3
B.2
C.3
10
D.
3
7.答案:A
1 解析:知识点:双曲线的焦点到渐近线的距离为 b ,所以 FD b ,又 OF c ,由 FD OF ,可知
2
1
c 2 23
b c ,不妨设 b 1,则 c 2, a 3 ,离心率 e .
切.若存在定点 P ,使得当 A 运动时, MA MP 为定值.则点 P 的坐标为( )
1
A.

0,
4

1
B.

0,
2

1
C.

0,

4

1
D.

0,

2

11.答案:C
1
1
2
2
2

2020年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)

2020年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)

2020年普通高等学校招生全国统一考试数学理试题(广东卷,含答案)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x <1},B=A={x|0<x <2},则集合A ∩B=A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1}2.若复数z 1=1+i,z 2=3-i,则z1`z1=A.4+2iB.2+iC.2+2iD.3+i3.若函数f(x)=3x +3x -与g(x)=33x x --的定义域均为R ,则A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.已知数列{n a }为等比数列,n s n 项和,若2a *3a =2a .,且4a 与27a 的等差中项为54,则5s = A .35 B .33 C .3l D .295.“14m <”是“一元二次方程20x x m ++=有实数解”的 A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件6.如图1,ABC V 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA 则多面体'''ABC A B C -的正视图(也称主视图)是7.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)=A.0.1588B.0.1587C.0.1586D.0.15858.为了迎接2020年广州亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙黄绿蓝中的一种颜色,且这个5个彩灯所闪亮的颜色各不相同,记住5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是A.1205秒B.1200秒C.1195秒D.1190秒二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分(一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是10.若向量a v =(1,1,x),b v =(1,2,1),c v =(1,1,1)满足条件(c v —a v )·2b v =-2,则x=11.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C = .12.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是 .13.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 . 选做题(14、15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,AB,CD 是半径为a 的圆O 的两条弦,他们相交于AB 的中点P ,23a PD =,∠OAP=30°则CP=15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线2sin cos 1ρθρθ==-与的极坐标为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分l4分)()()()sin 3(0,0412212sin .3125f x A x A x x f f f πϕϕππαα=+∈-∞+∞=已知函数>,,<<),在时取得最大值。

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(3) 2 2 列联表如下:
人次 400
空气质量不好
33
空气质量好
22
人次 400 37 8
K2
100 338 37 222
5.820 3.841 ,
55 45 70 30
因此,有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考
根据题意画出图形,如图
理科数学参考答案 7
| BP || BQ | , BP BQ , PMB QNB 90 ,
又 PBM QBN 90 , BQN QBN 90 ,
PBM BQN , 根据三角形全等条件“ AAS ”, 可得:△PMB △BNQ ,
x2 16 y2 1 , 25 25
【解析】 【分析】
(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、 2 、 3 、 4 的概率; (2)利用每组的中点值乘以频数,相加后除以100 可得结果;
(3)根据表格中的数据完善 2 2 列联表,计算出 K2 的观测值,再结合临界值表可得结论.
【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为 2 16 25 0.43 , 100
(2)由错位相减法求解即可.
【详解】(1)由题意可得 a2 3a1 4 9 4 5 , a3 3a2 8 15 8 7 ,
由数列an 的前三项可猜想数列an 是以 3 为首项,2 为公差的等差数列,即 an 2n 1,
证明如下:
当 n 1 时, a1 3成立;
假设 n k 时, ak 2k 1 成立.
机密★启用前
2020 年普通高等学校招生全国统一考试

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020学年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理及答案解析

2020年普通高等学校招生全国统一考试(新课标Ⅲ卷)数学理一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}解析:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},∴A∩B={x|x≥1}∩{0,1,2}={1,2}.答案:C2.(1+i)(2﹣i)=( )A.﹣3﹣iB.﹣3+iC.3﹣iD.3+i解析:(1+i)(2﹣i)=3+i.答案:D3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.B.C.D.解析:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.答案:A4.若sinα=13,则cos2α=( ) A.89 B.79C.﹣79D.﹣89解析:∵sinα=13,∴cos2α=1﹣2sin 2α=192719-⨯=. 答案:B5.(x 2+2x )5的展开式中x 4的系数为( )A.10B.20C.40D.80解析:由二项式定理得(x 2+2x )5的展开式的通项为:()()5210315522rrr rr rr xT Cx C x--+==,由10﹣3r=4,解得r=2,∴(x 2+2x )5的展开式中x 4的系数为5222C =40.答案:C6.直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A.[2,6] B.[4,8]232,D.[2232,] 解析:∵直线x+y+2=0分别与x 轴,y 轴交于A ,B 两点, ∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),4+4=22∵点P 在圆(x ﹣2)2+y 2=2上,∴设P ()2co 2s sin 2θθ+,,∴点P 到直线x+y+2=0的距离:()2sin 42cos sin 242222d πθθθ+++++==,∵()sin 4πθ+∈[﹣1,1],∴d= ()22sin 44πθ++∈[232,], ∴△ABP 面积的取值范围是:[11222223222⨯⨯⨯⨯,,6].答案:A7.函数y=﹣x 4+x 2+2的图象大致为( )A.B.C.D.解析:函数过定点(0,2),排除A ,B.函数的导数f′(x)=﹣4x 3+2x=﹣2x(2x 2﹣1),由f′(x)>0得2x(2x 2﹣1)<0,得x <﹣或0<x <,此时函数单调递增,排除C.答案:D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 解析:某群体中的每位成员使用移动支付的概率都为p ,看做是独立重复事件,满足X ~B(10,p),P(x=4)<P(X=6),可得()()644466101011C p p C p p --<,可得1﹣2p <0.即12p >. 因为DX=2.4,可得10p(1﹣p)=2.4,解得p=0.6或p=0.4(舍去). 答案:B9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.若△ABC 的面积为2224a b c +-,则C=( )A.2πB.3πC.4πD.6π解析:∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c.△ABC 的面积为2224a b c +-,∴S △ABC =222s 1in 42a b c ab C +-=,∴sinC=2222a b c bc +-=cosC ,∵0<C <π,∴C=4π.答案:C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且面积为则三棱锥D ﹣ABC 体积的最大值为( )A.B.C.D.543解析:△ABC 为等边三角形且面积为93,可得2393AB ⨯=,解得AB=6,球心为O ,三角形ABC 的外心为O′,显然D 在O′O 的延长线与球的交点如图:()222362342323O C OO '=='=-=,,则三棱锥D ﹣ABC 高的最大值为:6,则三棱锥D ﹣ABC 体积的最大值为:31361833=答案:B11.设F 1,F 2是双曲线C :22221y x a b -=(a >0.b >0)的左,右焦点,O 是坐标原点.过F 2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=6|OP|,则C 的离心率为( )A.5B.2C.3D.2解析:双曲线C :22221y x a b -=(a >0.b >0)的一条渐近线方程为b y x a =, ∴点F 2到渐近线的距离22bcd b a b ==+,即|PF 2|=b ,∴2222222cos bOP OF PF c b a PF O c =-=-=∠=,, ∵|PF 16|OP|,∴|PF 16a ,在三角形F 1PF 2中,由余弦定理可得|PF 1|2=|PF 2|2+|F 1F 2|2﹣2|PF 2|·|F 1F 2|COS ∠PF 2O ,∴6a 2=b 2+4c 2﹣2×b ×2c ×bc =4c 2﹣3b 2=4c 2﹣3(c 2﹣a 2),即3a 2=c 2, 即3a=c ,∴3c e a ==.答案:C12.设a=log 0.20.3,b=log 20.3,则( ) A.a+b <ab <0 B.ab <a+b <0 C.a+b <0<ab D.ab <0<a+b解析:∵a=log 0.20.3=lg 0.3lg 5-,b=log 20.3=lg 0.3lg 2,∴()5lg 0.3lg lg 0.3lg 5lg 2lg 0.3lg 0.32lg 2lg 5lg 2lg 5lg 2lg 5a b -+-===,10lg 0.3lg lg 0.3lg 0.33lg 2lg 5lg 2lg 5ab ⋅-⋅==,∵105lg lg 32>,lg 0.3lg 2lg 5<,∴ab <a+b <0.答案:B二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a =(1,2),b =(2,﹣2),c =(1,λ).若c ∥(2a b +),则λ=____. 解析:∵向量a =(1,2),b =(2,﹣2), ∴2a b +=(4,2),∵c =(1,λ),c ∥(2a b +),∴142λ=, 解得λ=12.答案: 1214.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=____.解析:曲线y=(ax+1)e x ,可得y′=ae x +(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2, 可得:a+1=﹣2,解得a=﹣3. 答案:﹣315.函数f(x)=cos(3x+6π)在[0,π]的零点个数为____.解析:∵f(x)=cos(3x+6π)=0, ∴362x k πππ+=+,k ∈Z ,∴x=193k ππ+,k ∈Z ,当k=0时,x=9π,当k=1时,x=49π,当k=2时,x=79π,当k=3时,x=109π,∵x ∈[0,π],∴x=9π,或x=49π,或x=79π,故零点的个数为3. 答案:316.已知点M(﹣1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k=____.解析:∵抛物线C :y 2=4x 的焦点F(1,0), ∴过A ,B 两点的直线方程为y=k(x ﹣1),联立()241y x y k x ⎪-⎧⎪⎨⎩==可得,k 2x 2﹣2(2+k 2)x+k 2=0, 设A(x 1,y 1),B(x 2,y 2),则212242k x x k ++=,x 1x 2=1, ∴y 1+y 2=k(x 1+x 2﹣2)=4k ,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵M(﹣1,1),∴MA =(x 1+1,y 1﹣1),MB =(x 2+1,y 2﹣1), ∵∠AMB=90°=0,∴0MA MB ⋅= ∴(x 1+1)(x 2+1)+(y 1﹣1)(y 2﹣1)=0,整理可得,x 1x 2+(x 1+x 2)+y 1y 2﹣(y 1+y 2)+2=0,∴24124420k k ++--+=,即k 2﹣4k+4=0,∴k=2. 答案:2三、解答题:共70分。

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)及答案解析

2020年全国统一高考数学试卷(理科)(新课标Ⅲ)及答案解析

试题第1页,总21页绝密★启用前2020年全国统一高考数学试题(理科)(新课标Ⅲ)试题副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B ⋂=-, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.若(1i)2i z +=,则z =( ) A .1i -- B .1+i - C .1i - D .1+i【答案】D 【解析】 【分析】根据复数运算法则求解即可.试题第2页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.B.C.D.【答案】C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.4.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.试题第3页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键。

2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)

2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)

绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案

2020年全国卷数学(理科)高考试题及答案2020年普通高等学校招生全国统一考试-理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若 $z=1+i$,则 $z^2-2z=$A。

0B。

1C。

2D。

22.设集合 $A=\{x|x^2-4\leq 0\}$,$B=\{x|x^2+ax\leq 0\}$,且 $AB=\{x|-2\leq x\leq 1\}$,则 $a=$A。

$-4$B。

$-2$C。

2D。

43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A。

$\frac{5-\sqrt{5}}{4}$B。

$\frac{5+\sqrt{5}}{4}$C。

$\frac{5-\sqrt{5}}{2}$D。

$\frac{5+\sqrt{5}}{2}$4.已知 $A$ 为抛物线 $C:y^2=2px(p>0)$ 上一点,点$A$ 到 $C$ 的焦点的距离为 $12$,到 $y$ 轴的距离为 $9$,则 $p=$A。

2B。

3C。

6D。

95.某校一个课外研究小组为研究某作物种子的发芽率$y$ 和温度 $x$(单位:℃)的关系,在 $20$ 个不同的温度条件下进行种子发芽实验,由实验数据 $(x_i,y_i)(i=1,2.20)$ 得到下面的散点图:由此散点图,在 $10℃$ 至 $40℃$ 之间,下面四个回归方程类型中最适宜作为发芽率 $y$ 和温度 $x$ 的回归方程类型的是A。

$y=a+bx$B。

$y=a+bx^2$C。

$y=a+be^x$D。

$y=a+b\ln x$6.函数 $f(x)=x^4-2x^3$ 的图像在点 $(1,f(1))$ 处的切线方程为A。

$y=-2x-1$B。

$y=-2x+1$C。

$y=2x-3$D。

2020年全国I卷高考考前适应性试卷理科数学(二)含答案

2020年全国I卷高考考前适应性试卷理科数学(二)含答案

2020年全国I 卷高考考前适应性试卷理 科 数 学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|280}A x x x =+-<,{|0}B y y =≥,则A B =( )A .[0,4)B .[0,2)C .(2,4)D .∅2.记复数z 的共轭复数为z ,已知复数z 满足(2i)5z -=,则||z =( ) A .3B .5C .7D .53.下列关于命题的说法正确的是( )A .命题“若0xy =,则0x =”的否命题是“若0xy =,则0x ≠”B .命题“若0x y +=,则x ,y 互为相反数”的逆命题是真命题C .命题“x ∃∈R ,2220x x -+≥”的否定是“x ∀∈R ,2220x x -+≥” D .命题“若cos cos x y =,则x y =”的逆否命题是真命题 4.已知233a =,cos22b =,12log (2sin 4)c =+,则( )A .b a c <<B .a b c <<C .b c a <<D .c b a <<5.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .16π3B .π3C .2π9D .16π96.运行如图所示的程序框图,输出的k 的值为( )A .8B .10C .12D .147.已知平面向量a ,b ,满足(1,3)=a ,||3=b ,(2)⊥-a a b ,则||-=a b ( ) A .2B .3C .4D .68.已知函数()sin()(0,0,||π)f x A x A ωϕωϕ=+>><的部分图象如图所示,则函数()cos()g x A x ϕω=+图象的一个对称中心可能为( )A .5(,0)2-B .1(,0)6C .1(,0)2-D .9(,0)6-9.如图所示,ABC △是等腰直角三角形,且AB AC =,E 为BC 边上的中点,ADE △与AEF △为等边三角形,点M 是线段AB 与线段DE 的交点,点N 是线段AC 与线段EF 的交点,若往ABC △中任意投掷一点,该点落在图中阴影区域内的概率为( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号参考数据:62sin 754+︒=,62sin154-︒=.A 33-B 523- C 33- D 523- 10.在梯形ABCD 中,AB CD ∥,1CD =,2AB BC ==,120BCD ∠=︒,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=,18DQ DC λ=,则AP BQ ⋅的最大值为( ) A .2-B .32-C .34D .9811.已知函数(1)y f x =-的图象关于点(1,0)对称,函数()y f x =对于任意的(0,π)x ∈满足()sin ()cos f x x f x x '>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ()3()36f ->-B 3ππ2()()42f <-- C ππ3()2()23f >D 5π3π2()()64f < 12.已知关于x 的不等式()xxx x me me ->有且仅有三个正整数解(其中 2.71828e =为自然对数的底数),则实数m 的取值范围是( ) A .43169(,]54e e B .3294(,]43e e C .43169[,)54e e D .3294[,)43e e第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若抛物线28x y =上的点P 到焦点的距离为12,则P 到x 轴的距离是 .14.已知实数x ,y 满足250340x y x y x y -≤⎧⎪+≥⎨⎪-≥⎩,则2z x y =-的最大值为 .15.在ABC △中,若cos 4AB BC B ⋅⋅=,||32BC BA -=ABC △面积的最大值为 . 16.已知半径为3cm 的球内有一个内接四棱锥S ABCD -,四棱锥S ABCD -的侧棱长都相等,底面是正方形,当四棱锥S ABCD -的体积最大时,它的底面边长等于 cm .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满足:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}nc 的前n 项和n S .18.(12分)如图,在斜三棱柱111ABC A B C -中,底面ABC 是边长为2的正三角形,13BB =,110AB =160CBB ∠=︒.(1)求证:平面ABC ⊥平面11BCC B ;(2)求二面角1B AB C --的正弦值.19.(12分)为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示.并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示.(1)根据图中的数据,试估计该款电视机的平均使用时间;(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关; (3)用频率估计概率,若在该电视机的生产线上随机抽取4台,记其中使用时间不低于4年的电视机的台数为X ,求X 的分布列及期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为6,且椭圆C 与圆2240:(2)9M x y -+=410. (1)求椭圆C 的方程;(2)过点(0,2)P 作斜率为k (0)k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB △为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.21.(12分)已知函数2()ln(1)1f x a x x =-+-,其中a 为正实数. (1)求()f x 的单调区间;(2)证明:当2x >时,()(1)2xf x e a x a <+--.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,直线l的方程是x =,曲线C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求直线l 和曲线C 的极坐标方程; (2)射线:OM θβ=(其中5π012β<≤)与曲线C 交于O ,P 两点,与直线l 交于点M ,求||||OP OM 的取值范围.23.(10分)【选修4-5:不等式选讲】 设a ∈R ,函数()|||23|f x x a x a =++-. (1)当1a =时,求函数()f x 的最小值;(2)若1143a <<,解关于x 的不等式()1f x ≥.2020年全国I 卷高考考前适应性试卷理 科 数 学(二)答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】依题意,2{|280}{|42}A x x x x x =+-<=-<<,故[0,2)A B =,故选B .2.【答案】B【解析】因为(2i)5z -=,所以52i 2iz ==+-,2i z =-,所以||||z z ==B . 3.【答案】B【解析】逐一分析所给命题的真假:A 命题“若0xy =,则0x =”的否命题是“若0xy ≠,则0x ≠”,题中说法错误;B 命题“若0x y +=,则x ,y 互为相反数”是真命题,则其逆命题是真命题,题中说法正确;C 命题“x ∃∈R ,2220x x -+≥”的否定是“x ∀∈R ,2220x x -+<”,题中说法错误; D 命题“若cos cos x y =,则x y =”是假命题,则其逆否命题是假命题,题中说法错误, 故选B . 4.【答案】D【解析】因为1122log (2sin 4)log 1c =+<=,203331a =>=,cos200221b <=<=,所以a b c >>,故选D . 5.【答案】D【解析】从三视图中提供的图形信息与数据信息可知: 该几何体的底面是圆心角为2π3的扇形,高是4的圆锥体,容易算得底面面积14ππ433S =⨯=,所以其体积1116ππ44339V =⨯⨯⨯=, 故答案为D . 6.【答案】C【解析】运行该程序,第一次,999S =,2k =;第二次,995S =,4k =; 第三次,979S =,6k =;第四次,915S =,8k =; 第五次,659S =,10k =,第六次365S =-,12k =, 此时0S <,故输出的k 的值为12,故选C . 7.【答案】B【解析】由题意可得||2==a ,且(2)0⋅-=a a b , 即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面向量模的计算公式可得||3-===a b ,故选B .8.【答案】C【解析】由图象最高点与最低点的纵坐标知A =又6(2)82T =--=,即2π16T ω==,所以π8ω=,则π()sin()8f x x ϕ=+,图象过点(2,-,则πsin()14ϕ+=-, 即ππ2π42k ϕ+=-+,所以3π2π4k ϕ=-+,又||πϕ<,则3π4ϕ=-,故3ππ())48g x x =-+, 令3ππππ482x k -+=+,得1423x k =--, 令0k =,可得其中一个对称中心为1(,0)2-,故本题答案选C . 9.【答案】A【解析】不妨设1AE =,在AME △中,由正弦定理得sin 75sin 60AE AM=︒︒,解得3262AM -=, 则阴影部分面积为3262331222AME ANE S S --+=⨯⨯=△△, 而1ABC S =△,故所求概率332P -=,故选A . 10.【答案】D【解析】因为AB CD ∥,1CD =,2AB BC ==,120BCD ∠=︒, 所以ABCD 是直角梯形,且3CM =,30BCM ∠=︒,以AB 所在直线为x 轴,以AD 所在直线为y 轴,建立如图所示的平面直角坐标系, 因为BP BC λ=,18DQ DC λ=,动点P 和Q 分别在线段BC 和CD 上, 则1[,1]8λ∈,(2,0)B ,(2,3)P λλ-,1(,3)8Q λ, 所以111(2,3)(2,3)54848AP BQ λλλλλ⋅=-⋅-=+--, 令11()5448f λλλ=+--且1[,1]8λ∈,由对勾函数性质可知,当1λ=时可取得最大值, 则max 119()(1)54488f f λ==+--=,所以选D .11.【答案】C【解析】由已知,()f x 为奇函数,函数()y f x =对于任意的(0,π)x ∈满足()sin ()cos f x x f x x '>, 得()sin ()cos 0f x x f x x '->,即()()0sin f x x '>,所以()sin f x y x=在(0,π)上单调递增; 又因为()sin f x y x =为偶函数,所以()sin f x y x=在(π,0)-上单调递减, 所以ππ()()32ππsin sin 32f f <,即ππ3()2()23f f >,故选C .12.【答案】C【解析】依题意,2xxx mxe me ->,故2(1)e xx m x >+,即2(1)ex x m x >+,令2()e x x f x =,故22(2)()e e xxx x x xf x --'==, 故当(,0)x ∈-∞时,()0f x '<;当(0,2)x ∈时,()0f x '>;当(2,)x ∈+∞时,()0f x '<, 作出函数()f x 的图象如下所示,可知三个正整数解为1,2,3,令2()e e xxg x x mx m =--,则33(3)93e e 0g m m =-->,44(4)164e e 0g m m =--≤,解得431695e 4e m ≤<,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】10【解析】因为抛物线28x y =,所以焦点坐标为(0,2),准线方程为2y =-,因为点P 到焦点的距离为12,根据抛物线定义,则P 到准线的距离也为12,所以点P 到x 轴的距离为10. 14.【答案】5【解析】作出不等式组所表示的平面区域如下图阴影部分所示,观察可知,当直线2z x y =-过点55(,)33A -时,2z x y =-取最大值,最大值为5.15.317【解析】设内角A ,B ,C 所对的边分别为a ,b ,c ,依题意222cos cos 42a cb AB BC B ac B +-⋅⋅===, 而||||32BC BA AC b -===2226a c +=, 而22222222111sin sin cos 222ABC S ac B a c B a c a c B ===-△ 222221131716()16222a c a c +=-≤-=,当且仅当a c =时等号成立, 故ABC △31716.【答案】4【解析】如图,设四棱锥S ABCD -的侧棱长为x ,底面正方形的边长为a ,棱锥的高为h . 由题意可得顶点S 在地面上的射影为底面正方形的中心1O ,则球心O 在高1SO 上. 在1OO B Rt △中,13OO h =-,3OB =,12O B =, ∴22223(3))2h a =-+,整理得22122a h h =-,又在1SO B Rt △中,有222222()(6)62x h a h h h h =+=+-=, ∴26x h =,∴422218x a x =-,∴422264111(2)(6)333654S ABCDx x V a h x x x -=⋅⋅=⨯-⨯=-+. 设64()6f x x x =-+,则5332()6246(24)f x x x x x '=-+=--, ∴当026x <<时,()0f x '>,()f x 单调递增; 当26x >时,()0f x '<,()f x 单调递减,∴当26x =时()f x 取得最大值,即四棱锥S ABCD -的体积取得最大值,此时422(26)2(26)1618a =⨯-=,解得4a =, ∴四棱锥S ABCD -的体积最大时,底面边长等于4cm ,故答案为4cm .三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)21n a n =+,3nn b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即23(312)(33)d d +=+,解之得2d =或0d =(舍),所以32(1)21n a n n =+-=+;因为249b a ==,所以{}n b 的公比3q =,所以3nn b =. (2)由(1)可知213n nn c +=,所以23357213333n nn S +=++++, 21572133333n n n S -+=++++, 所以121112(1)11121212433232()34133333313n n n n n nn n n S --⋅-+++=++++-=+-=--, 所以223n nn S +=-. 18.【答案】(1)证明见解析;(2)47437. 【解析】(1)取BC 的中点O ,连接OA ,1OB ,因为底面ABC 是边长为2的正三角形,所以OA BC ⊥,且3OA =,因为13BB =,160CBB ∠=︒,1OB =,所以222113213cos 607OB =+-⨯⨯⨯︒=,所以17OB =, 又因为110AB =,所以2221110OA OB AB +==,所以1OA OB ⊥, 又因为1OB BC O =,所以OA ⊥平面11BCC B ,又因为OA ⊂平面ABC ,所以平面ABC ⊥平面11BCC B .(2)如图所示,以点O 为坐标原点,OC 为x 轴,OA 为y 轴,OH 为z 轴建立空间直角坐标系,其中2BH =,则(0,3,0)A ,(1,0,0)B -,(1,0,0)C ,1133(,0,)22B , 所以1133(,3,)22AB =-,(1,3,0)AB =--,(1,3,0)AC =-, 设1111(,,)x y z =n 为平面1ABB 的法向量,则11100AB AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11111301333022x y x y z ⎧--=⎪⎨-+=⎪⎩,令11y =,得1(3,1,1)=-n ; 设2222(,,)x y z =n 为平面1AB C 的法向量,则22100AC AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即22222301333022x y x y z ⎧-=⎪⎨-+=⎪⎩,令21y =,得21(3,1,)3=n , 所以12121213153cos(,)||||373759-++⋅===-⨯n n n n n n ,所以二面角1B AB C --的正弦值为547413737-=. 19.【答案】(1)7.76;(2)有99.9%的把握认为;(3)分布列见解析,16()5E X =. 【解析】(1)依题意,所求平均数为20.260.36100.28140.12180.04⨯+⨯+⨯+⨯+⨯0.4 2.16 2.8 1.680.727.76=++++=.(2)依题意,完善表中的数据如下所示:故222000(800600200400)333.3310.828100010001200800K ⨯⨯-⨯=≈>⨯⨯⨯, 故有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关.(3)依题意,4~(4,)5X B ,故411(0)()5625P X ===,1341416(1)C ()()55625P X ===, 22241496(2)C ()()55625P X ===,33414256(3)C ()()55625P X ===,44256(4)()5625P X ===, 故X 的分布列为故416()455E X =⨯=. 20.【答案】(1)22198x y +=;(2)在x 轴上存在满足题目条件的点D ,22[,0)(0,]1212-. 【解析】由题意可得26a =,所以3a =, 由椭圆C 与圆2240:(2)9M x y -+=的公共弦长为103,恰为圆M 的直径,可得椭圆C 经过点210(2,±,所以2440199b+=,解得28b =, 所以椭圆C 的方程为22198x y +=. (2)直线l 的解析式为2y kx =+,设11(,)A x y ,22(,)B x y ,AB 的中点为00(,)E x y ,假设存在点(,0)D m ,使得ADB △为以AB 为底边的等腰三角形,则DE AB ⊥,由222198y kx x y =+⎧⎪⎨+=⎪⎩,得22(89)36360k x kx ++-=,故1223698k x x k +=-+,所以021898k x k -=+,00216298y kx k =+=+,因为DE AB ⊥,所以1DEk k =-,即221601981898k k k mk -+=---+,所以2228989k m k k k --==++, 当0k >时,89k k+≥=,所以012m -≤<; 当0k <时,89k k+≤-0m <≤综上所述,在x 轴上存在满足题目条件的点D ,且点D 的横坐标的取值范围为2[(0,]1212-. 21.【答案】(1)单调递减区间为2(1,1)a +,单调递增区间为2(1,)a++∞;(2)证明见解析. 【解析】(1)由10x ->,得1x >,所以()f x 的定义域为(1,)+∞,2222(1)2(2)()1(1)(1)(1)a a x ax a f x x x x x ---+'=-==----, 由()0f x '>,得2a x a+>, 所以当211x a <<+时,()0f x '<;当21x a>+时,()0f x '>, 所以()f x 的单调递减区间为2(1,1)a +,单调递增区间为2(1,)a++∞. (2)证明:令()ln 1g x x x =-+,则1()1g x x'=-, 所以当01x <<时,()0g x '>;当1x >时,()0g x '<, 所以()(1)0g x g ≤=,所以ln 1x x ≤-, 所以当2x >时,有ln(1)2x x -≤-成立, 又因为0a >,所以要证()(1)2xf x e a x a <+--,只需证2(2)(1)21x a x e a x a x -+<+---,即201x e x x -->-对于任意的2x >恒成立, 令2()1xh x e x x =---,2x >,则22()1(1)xh x e x '=-+-,因为2x >,所以()0h x '>恒成立,所以()h x 在(2,)+∞上单调递增, 所以2()(2)40h x h e >=->,所以当2x >时,()(1)2xf x e a x a <+--.22.【答案】(1):cos l ρθ=:4sin C ρθ=;(2). 【解析】(1)∵cos sin x y ρθρθ=⎧⎨=⎩,∴直线l的极坐标方程是cos ρθ=,由2cos 22sin x y αα=⎧⎨=+⎩,消参数得22(2)4x y +-=, ∴曲线C 的极坐标方程是4sin ρθ=.(2)将θβ=分别代入4sin ρθ=,cos ρθ= 得||4sin OP β=,||OM =||2||OP OM β=, ∵5π012β<≤,∴5π026β<≤,∴0222β<≤, ∴||||OP OM的取值范围是. 23.【答案】(1)52;(2)21(,41][,)3a a +-∞-+∞. 【解析】(1)当1a =时,332,23()|1||23|4,1232,1x x f x x x x x x x ⎧-≥⎪⎪⎪=++-=-+-<<⎨⎪-+≤-⎪⎪⎩,所以()f x 在3(,)2-∞上单调递减,在3(,)2+∞上单调递增,所以min 35()()22f x f ==. (2)①当32x a ≥时,()32f x x a =-,解321x a -≥,得213a x +≥, 因为1143a <<,21332a a +>,所以此时213a x +≥;②当32a x a -<<时,()4f x x a =-+,解41x a -+≥,得41x a ≤-, 因为1143a <<,413a a a -<-<,所以此时41a x a -<≤-; ③当x a ≤-时,()32f x x a =-+,解321x a -+≥,得213a x -≤, 因为1143a <<,213a a ->-,所以此时x a ≤-, 综上可知,()1f x ≥的解集为21(,41][,)3a a +-∞-+∞.。

广东省深圳市2020届高三适应性考试(6月)数学(理)试题及答案

广东省深圳市2020届高三适应性考试(6月)数学(理)试题及答案

2020届高三年级适应性模拟测试理科数学本试卷共6页,23小题,满分150分, 考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型和考生号填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.1.已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =I(A ){|31}x x -≤≤ (B ){|01}x x <≤ (C ){|32}x x -≤≤ (D ){|2}x x ≤2.已知3i1iz -=-(其中i 为虚数单位),则z 的虚部为 (A )i - (B )1- (C ) 1 (D )23.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于(A)122n +- (B) 3n (C) 2n (D)31n -4.若4cos5α=-,α是第三象限的角,则1tan21tan2αα+=-(A)12-(B)12(C) 2(D) 2-5.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形内的概率为(A)2π332(π3)--(B)32(π3)-(C)32(π3)+(D)2π332(π3)-+6.已知51(1)(2)axx x+-的展开式中各项系数的和为2,则该展开式中常数项为(A) 80-(B) 40-(C) 40(D) 807.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论是不.正确的是.(A)样本中的女生数量多于男生数量(B)样本中有理科意愿的学生数量多于有文科意愿的学生数量(C)样本中的男生偏爱理科(D)样本中的女生偏爱文科8.抛物线x y 42=的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,l AK ⊥,垂足为K ,则△AKF 的面积是(A) 4 (B) 33 (C) 34 (D) 89.在平行四边形ABCD 中,113,2,,,32AB AD AP AB AQ AD ====u u u r u u u r u u u r u u u v 若12,CP CQ ⋅=u u uv u u u v则ADC ∠= 5()6A π 3()4B π 2()3C π ()2D π10.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于, P Q 两点,线段AP 的中点为M ,若, , Q F M 三 点共线,则椭圆C 的离心率为 (A)13 (B) 23 (C) 83 (D) 32或8311. 设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =(A ) 1- (B )1 (C )2 (D )412. 设O 是正四面体P ABC -底面ABC 的中心,过O 的动平面与PC 交于,S 与,PA PB 的延长线分别交于,,Q R 则111||||||PQ PR PS ++ (A) 有最大值而无最小值 (B) 有最小值而无最大值 (C) 既有最大值又有最小值,且两者不相等 (D)是一个与平面QRS 无关的常数第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 14. 已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x =π对称,则cos2_____ϕ=.15.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC ∆是边长为的等边三角形,PAB ∆是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_________.16.已知函数22, 0,()e , 0,x x x f x x ⎧⎪=⎨>⎪⎩≤若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.三、解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)工程队将从A 到D 修建一条隧道,测量员测得图中的一些数据(,,,A B C D 在同一水平面内),求,A D 之间的距离.18.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN . (1)证明:MN PC ⊥;(2)当H 为PC 的中点,PA PC AB ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.HPABCDM N19. (本小题满分12分)在平面直角坐标系xOy 中,离心率为6的椭圆2222:1(0)x y C a b a b+=>>过点6(1,)M . (1)求椭圆C 的标准方程;(2)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.20. (本小题满分12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:第x 年 12345678910旅游人数y (万人)300 283 321 345 372 435 486 527 622 800该景点为了预测2021年的旅游人数,建立了y 与x 的两个回归模型: 模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bx y ae =的附近.(1)根据表中数据,求模型②的回归方程$bxy ae =.(a 精确到个位,b 精确到0.01).(2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②$bxy ae =µ1021()iii y y =-∑ 30407 14607①对于一组数据()()()1122,,,,,,n n v w v w v w L ,其回归直线µµµwv αβ=+的斜率和截距的最小二乘法估计分别为µµµ121()(),()niii nii w w v v w v v v βαβ==--==--∑∑. ②刻画回归效果的相关指数µ22121()1()niii nii y y R y y ==-=--∑∑ .③参考数据: 5.46235e≈, 1.43 4.2e ≈.表中1ln ,10i i i i u yu u ===∑.21.(本小题满分12分)已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k+∈N 上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.请考生从第(22)、(23)两题中任选一题作答.如果多做,则按所做的第一个题目计分. 22.[选修4-4:坐标系与参数方程](10分)平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l 的参数方程为2,,x t y t =--⎧⎪⎨=⎪⎩ (t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C .(1)写出曲线2C 的参数方程;(2)设点(P -,直线l 与曲线2C 的两个交点分别为,A B ,求11PA PB+的值.23.[选修4-5:不等式选讲](10分)已知实数正数x , y 满足1x y +=. (1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭高三年级适应性测试理科数学参考答案及说明题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBCABDDACCCD13.___1_________; 14.____35____; 15.__48π___; 16. ___3ln22-_____ .17.(本小题满分12分)工程队将从A 到D 修建一条隧道,测量员测得图中的一些数据(,,,A B C D 在同一水平面内),求,A D 之间的距离.AC 解:连接,在4154AC 中,ABC 22=+=∆....................................................3分414sin ,415cos =∠=∠ACB ACB .…………………………….5分.)32cos(cos ACB ACD ∠-=∠π=412534414*23415*)21(-=+-…….9分312-65412534*3*412-341AD 中,ACD 在2=-+=∆…….12分18.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN . (1)证明:MN PC ⊥;(2)当H 为PC 的中点,3PA PC AB ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.HPABCDM N【解析】(1)证明:连结AC 、BD 且AC BD O =I ,连结PO . 因为,ABCD 为菱形,所以,BD AC ⊥, 因为,PD PB =,所以,PO BD ⊥,因为,AC PO O =I 且AC 、PO ⊂平面PAC , 所以,BD ⊥平面PAC ,因为,AC ⊂平面PAC ,所以,BD PC ⊥, 因为,//BD 平面AMHN , 且平面AMHN I 平面PBD MN =, 所以,//BD MN ,MN ⊥平面PAC ,所以,MN PC ⊥. ……………………………….5分 (2)由(I )知BD AC ⊥且PO BD ⊥, 因为PA PC =,且O 为AC 的中点, 所以,PO AC ⊥,所以,PO ⊥平面ABCD ,所以PA 与平面ABCD 所成的角为PAO ∠,所以60PAO ∠=︒, 所以,12AO PA =,32PO PA =,因为,3PA AB =,所以,36BO PA =. 以OA u u u r ,OD u u u r,OP uuu r分别为x ,y ,z 轴,如图所示建立空间直角坐标系……….…..7分 记2PA =,所以,(0,0,0)O ,(1,0,0)A ,3(0,,0)3B -,(1,0,0)C -,3(0,,0)3D ,(0,0,3)P ,13(,0,)22H -,所以, 23(0,,0)BD =u u u r,33(,0,)2AH =-u u u r ,3(1,,0)AD =-u u u r .……………..8分 记平面AMHN 的法向量为(,,)n x y z =r ,所以,00n BD n AH ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即23033022y x z ⎧=⎪⎨⎪-+=⎪⎩,令2x =,解得0y =,23z =,所以,(2,0,23)n =r,.…………………….…..10分记AD 与平面AMHN 所成角为θ,所以,3sin |cos ,|||4||||n AD n AD n AD θ⋅=<>==r u u u rr u u u r r u u ur . ………………………………………………………………………………………….…..11分 所以,AD 与平面AMHN 所成角的正弦值为34.………………………………..…..12分19. (本小题满分12分)如图:在平面直角坐标系xOy 中,离心率为63的椭圆2222:1(0)x y C a b a b+=>>过点6(1,)3M .(1)求椭圆C 的标准方程;(2)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.解:(1)由题意,2226,,c a a b c ⎧=⎪⎨⎪=+⎩解得223a b =,又221213a b +=,解得223,1,a b ⎧=⎪⎨=⎪⎩ 所以椭圆C 的标准方程为2213x y +=.------------------------------------------4分(2)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得(3,1)G ±;--------------------------------------------------------------6分②当过点G 的椭圆C 的切线的斜率均存在时,设000(,), 3G x y x ≠± 切线方程为00()y k x x y =-+,代入椭圆方程得2220000(31)6()3()30k x k kx y x kx y +--+--=,2220000[6()]4(31)[3()3]0k kx y k kx y ∆=--+--=,化简得:2200()(31)0kx y k --+=,由此得2220000(3)210x k x y k y --+-=,--------------------------------------8分设过点G 的椭圆C 的切线的斜率分别为12,k k ,所以20122013y k k x -=-.因为两条切线相互垂直,所以2020113y x -=--,即220004(3)x y x +=≠±,---------9分 由①②知G 在圆22004x y +=上,又点G 在直线0x y m ++=上, 所以直线0x y m ++=与圆224x y +=有公共点,所以211m +≤,所以2222m -≤≤.-------------------------11分综上所述,m 的取值范围为[22,22]-.---------------------------12分 20. (本小题满分12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:第x 年 12345678910旅游人数y (万人)300 283 321 345 372 435 486 527 622 800 y x 模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型②的回归方程$bxy ae =.(a 精确到个位,b 精确到0.01).(2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②$bxy ae =µ1021()iii y y =-∑ 30407 14607解:(1)对bxy ae =取对数,得ln ln y bx a =+,……1分 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程。

2020年高考理科数学(全国卷Ⅱ真题)——(含答案和解析)

2020年高考理科数学(全国卷Ⅱ真题)——(含答案和解析)
A. 10名B. 18名C. 24名D. 32名
【答案】B
【解析】
【分析】
算出第二天订单数,除以志愿者每天能完成的订单配货数即可.
【详解】由题意,第二天新增订单数为 ,
故需要志愿者 名.
故选:B
【点晴】本题主要考查函数模型的简单应用,属于基础题.
4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()
A. B. C. D.
8.设 为坐标原点,直线 与双曲线 的两条渐近线分别交于 两点,若 的面积为8,则 的焦距的最小值为()
A. 4B. 8C. 16D. 32
9.设函数 ,则f(x)()
A.是偶函数,且在 单调递增B.是奇函数,且在 单调递减
C.是偶函数,且在 单调递增D.是奇函数,且在 单调递减
(一)必考题:共60分.
17. 中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求 周长的最大值.
18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得 , , , , .
10.已知△ABC是面积为 的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)
A. B. C. D.
8.下图为某几何体的三视图,则该几何体的表面积是()
A. 6+4 B. 4+4 C. 6+2 D. 4+2
9.已知2tanθ–tan(θ+ )=7,则tanห้องสมุดไป่ตู้=()
A. –2B. –1C. 1D. 2
10.若直线l与曲线y= 和x2+y2= 都相切,则l的方程为()
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【详解】根据三视图特征,在正方体中截取出符合题意的立体图形
根据立体图形可得:
根据勾股定理可得:
是边长为 的等边三角形
根据三角形面积公式可得:
该几何体的表面积是: .
故选:C.
【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则 中元素的个数为()
A.2B.3C.4D.6
2.复数 的虚部是()
A. B. C. D.
3.在一组样本数据中,1,2,3,4出现的频率分别为 ,且 ,则下面四种情形中,对应样本的标准差最大的一组是()

因此, .
故选:D.
【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
7.在△ABC中,cosC= ,AC=4,BC=3,则cosB=()
A. B. C. D.

2020年广东高考数学测试题(理科)

2020年广东高考数学测试题(理科)

2020年广东高考数学测试题(理科)本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.考试时间120分钟.(考试时间:2020年8月26日)参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B )S =4πR 2 如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率kn k k n n P P C k P --=)1()(第 I 卷 (选择题 共40分)一.选择题:本大题共8小题,每小题5分,共40分. 1.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A .[0,2]B .[1,2]C .[0,4]D .[1,4] 2.已知=+-=+ni m i n m ni im是虚数单位,则是实数,,,其中11 A .1+2i B . 1–2i C .2+i D .2–i 3.已知0<a <1,log log 0a a m n <<,则A .1<n <mB . 1<m <nC .m <n <1D .n <m <1 4.若α是第二象限的角,且2sin 3α=,则=αcosA .13 B . 13- C . D . 5.等差数列{}n a 中,12010=S ,那么29a a +的值是 A . 12 B . 24 C .16 D . 486.三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则二面角A —BC —D 的大小为A . 300B . 450C .600D .900 7. 已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是A .a=b, b=aB .a=c, b=a, c=bC .a=c, b=a, c=aD .c=a, a=b, b=c8.已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为A .221(1)8y x x -=<- B .)1(1822>=-x y x C .1822=+y x (x > 0) D .221(1)10y x x -=>第 Ⅱ 卷 (非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2020年高考试题高三数学全国卷2(理科)全解全析

2020年高考试题高三数学全国卷2(理科)全解全析

2020 年一般高等学校招生全国一致考试理科数学(全国 2 卷)全解全析一、选择题10i1、=2 i(A ) -2+4i (B) -2-4i (C) 2+4i (D)2-4i【答案】 A【分析】 运用复数基本运算化为复数代数形式、设会合A= { x | x 3}, ={ x |x12Bx 4(A ) (B ) (3,4) (C ) (-2,1)【答案】 B【分析】 解分式不等式并求交集3、已知 V ABC 中, cotA= 12 ,则 cosA=5(A )125 512( B )( C ) (D) 1313 13 13 【答案】 D0}则 A I B=(D ) (4+)【分析】 由 cotA=12A ,清除( A )、(B );若 cosA 5 12,知,213,则 sin A513则 cot Acos A 5 与题设不符,清除( C ),应选 Dsin A12或由 cotA=12 tan A5secA1 tan2 A13 ,512 12∴ cos A112secA13【易错提示】 同角三角函数基本关系并注意所在象限的符号x4、 .曲线 y=2x 1在点( 1, 1)处的切线方程为(A ) x-y-2=0 (B)x+y-2=0 (C)x+4y-5=0(D)x-4y-5=0【答案】 B【分析】 y'1( 2x 1) x 2 1 ,切线的斜率 k y' x 111( 2x ( 2 11)2( 2x 1)2 1)2∴切线方程为 y 1( x 1) x y 2 05.、已知正四棱柱 ABCD A 1 B 1C 1 D 1 中,AA 1 2AB ,E 为 AA 1 中点,则异面直线 BE 与 CD 1所成角的余弦值为(A )10(B)1(C)3 10 (D)3 105105【答案】 C【分析】如图,取DD 1的中点 F,连结 CF,则 CF ∥BE ,∴∠ D1CF为所求。

设 AB= 1,则CF 2.CD15, FD1=1由余弦定理得:cos D1CF( 2)2( 5)216310225 2 10。

2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)

2020年普通高等学校招生全国统一考试数学试题 理(全国卷1,含解析)

绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。

广东省2020年高考[理数]考试真题与答案解析

广东省2020年高考[理数]考试真题与答案解析

A .B .10π97C .D .4π338.的展开式中x 3y 3的系数为25()()x x y xy ++A .5B .10C .15三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第每个试题考生都必须作答。

第已知A 、B 分别为椭圆E :(a >1)的左、右顶点,G 为E 的上顶点,2221x y a+=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为8AG GB ⋅=D .(1)求E 的方程;(2)证明:直线CD 过定点.21.(12分)已知函数.2()e x f x ax x =+-(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围.12(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4—4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正xOy 1C cos ,sin kkx t y t⎧=⎪⎨=⎪⎩(t )x 半轴为极轴建立极坐标系,曲线的极坐标方程为.2C 4cos 16sin 30ρθρθ-+=(1)当时,是什么曲线?1k =1C (2)当时,求与的公共点的直角坐标.4k =1C 2C 23.[选修4—5:不等式选讲](10分)已知函数.()|31|2|1|f x x x =+--(1)画出的图像;()y f x =(2)求不等式的解集.()(1)f x f x >+则.25cos ,|||5⋅==n m n m n m |所以二面角的余弦值为.B PC E --25519.解:(1)甲连胜四场的概率为.116(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为;116乙连胜四场的概率为;116丙上场后连胜三场的概率为.18所以需要进行第五场比赛的概率为.11131161684---=(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为.18比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为,,.1161818因此丙最终获胜的概率为.111178168816+++=20.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则,=(a ,–1).由=8得a 2–1=8,即a =3.(,1)AG a = GB AG GB ⋅所以E 的方程为+y 2=1.29x (2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线PA 的方程为y =(x +3),所以y 1=(x 1+3).9t9t直线PB 的方程为y =(x –3),所以y 2=(x 2–3).3t 3t可得3y 1(x 2–3)=y 2(x 1+3).由于,故,可得,222219x y +=2222(3)(3)9x x y +-=-121227(3)(3)y y x x =-++即①221212(27)(3)()(3)0.m y y m n y y n ++++++=将代入得x my n =+2219x y +=222(9)290.m y mny n +++-=所以,.12229mn y y m +=-+212299n y y m -=+代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++=解得n =–3(含去),n =.32故直线CD 的方程为,即直线CD 过定点(,0).3=2x my +32若t =0,则直线CD 的方程为y =0,过点(,0).32综上,直线CD 过定点(,0).3221.解:(1)当a =1时,f (x )=e x +x 2–x ,则=e x +2x –1.()f x '故当x ∈(–∞,0)时,<0;当x ∈(0,+∞)时,>0.所以f (x )在(–∞,()f x '()f x '0)单调递减,在(0,+∞)单调递增.(2)等价于.31()12f x x ≥+321(1)e 12x x ax x --++≤设函数,则321()(1)e (0)2xg x x ax x x -=-++≥32213()(121)e 22xg x x ax x x ax -'=--++-+-21[(23)42]e 2xx x a x a -=--+++.1(21)(2)e 2x x x a x -=----(i )若2a +1≤0,即,则当x ∈(0,2)时,>0.所以g (x )在(0,2)单调递12a ≤-()g x '增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈1122a -<<(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥.27e4-所以当时,g (x )≤1.27e 142a -≤<(iii )若2a +1≥2,即,则g (x )≤.12a ≥31(1)e 2xx x -++由于,故由(ii )可得≤1.27e 10[,)42-∈31(1)e 2x x x -++故当时,g (x )≤1.12a ≥综上,a 的取值范围是.27e [,)4-+∞22.解:(1)当k =1时,消去参数t 得,故曲线是圆心为坐标原点,1cos ,:sin ,x t C y t =⎧⎨=⎩221x y +=1C 半径为1的圆.(2)当k =4时,消去参数t 得的直角坐标方程为.414cos ,:sin ,x t C y t ⎧=⎪⎨=⎪⎩1C 1x y +=的直角坐标方程为.2C 41630x y -+=由解得.1,41630x y x y ⎧+=⎪⎨-+=⎪⎩1414x y ⎧=⎪⎪⎨⎪=⎪⎩故与的公共点的直角坐标为.1C 2C 11(,)4423.解:(1)由题设知13,,31()51,1,33, 1.x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪⎪+>⎪⎩的图像如图所示.()y f x =(2)函数的图像向左平移()y f x =的图像与()y f x =(y f x =+。

广东省2020年高考理科数学模拟试题及答案资料讲解

广东省2020年高考理科数学模拟试题及答案资料讲解

广东省2020年高考理科数学模拟试题及答案广东省2020年高考理科数学模拟试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =I ð( )A. (1,2)B. (]1,2C. (1,3)D. (,2]-∞2. 已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( ) A. 0B. 1-C. 1D. 13-3.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若26c b ==,, 60B =︒,则C 等于( )A .30︒B .60︒C .150︒D .30︒或150︒4.执行如图所示的程序框图,如果输入N=4,则输出p 为( )A. 6B. 24C. 120D. 7205. 已知等差数列的前项和为,且,则( )A. B.C.D.6. 已知直线和抛物线C :,P 为C 上的一点,且P 到直线l 的距离与P 到C 的焦点距离相等,那么这样的点P 有( ) A. 0个B. 1个C. 2个D. 无数个7. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A. B. C.D.8. 从2个不同的红球,2个不同的黄球,2个不同的蓝球中任取两个,放入颜色分别为红、黄、蓝的三个袋子中,每个袋子中至多放入1个球,且球的颜色与袋子的颜色不同,那么不同的放法有( )A .46种B .36种C .72种D .42种9. 已知双曲线2222:1x y C a b-=(0,0a b >>)的左焦点为F ,第二象限的点M 在双曲线C 的渐近线上,且||OM a =,若直线MF 的斜率为ba ,则双曲线的渐近线方程为( )A .y x =±B .2y x =±C .3y x =±D .4y x =±10.已知数列的通项公式是,其前项和,则项数A. 13B. 10C. 9D. 611.已知()f x 是定义域为R 的偶函数,且在(0,+∞)单调递增,设21log 3m f ⎛⎫= ⎪⎝⎭,()0.17n f -=,()4log 25p f =,则,,m n p 的大小关系为( )A.m p n >>B.p n m >>C.p m n >>D.n p m >>12.已知函数()1x f x e ax =--在区间(-1,1)内存在极值点,且()0f x <恰好有唯一整数解,则a 的取值范围是(其中e 为自然对数的底数, 2.71828e =L )A.221,2e e e ⎡⎫-⎪⎢⎣⎭B.22211,11,22e e e e ⎡⎫⎛⎤---⎪ ⎢⎥⎣⎭⎝⎦UC.()2211,1,e 2e e e e e⎡⎫---⎪⎢⎣⎭U D.()1,e e -二、填空题(本题共4小题,每小题5分,共20分。

【精品】广东省深圳市2020届高三适应性考试(6月)数学(理)试题及答案

【精品】广东省深圳市2020届高三适应性考试(6月)数学(理)试题及答案

2020届高三年级适应性模拟测试理科数学本试卷共6页,23小题,满分150分, 考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型和考生号填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应的题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再填涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题组号的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合要求.1.已知集合{|A x y ==,2{|log 1}B x x =≤,则A B =I(A ){|31}x x -≤≤ (B ){|01}x x <≤ (C ){|32}x x -≤≤ (D ){|2}x x ≤2.已知3i1iz -=-(其中i 为虚数单位),则z 的虚部为 (A )i - (B )1- (C ) 1 (D )23.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于(A)122n +- (B) 3n (C) 2n (D)31n -4.若4cos5α=-,α是第三象限的角,则1tan21tan2αα+=-(A)12-(B)12(C) 2(D) 2-5.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形内的概率为(A)2π332(π3)--(B)32(π3)-(C)32(π3)+(D)2π332(π3)-+6.已知51(1)(2)axx x+-的展开式中各项系数的和为2,则该展开式中常数项为(A) 80-(B) 40-(C) 40(D) 807.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列统计结论是不.正确的是.(A)样本中的女生数量多于男生数量(B)样本中有理科意愿的学生数量多于有文科意愿的学生数量(C)样本中的男生偏爱理科(D)样本中的女生偏爱文科8.抛物线x y 42=的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,l AK ⊥,垂足为K ,则△AKF 的面积是(A) 4 (B) 33 (C) 34 (D) 89.在平行四边形ABCD 中,113,2,,,32AB AD AP AB AQ AD ====u u u r u u u r u u u r u u u v 若12,CP CQ ⋅=u u uv u u u v则ADC ∠= 5()6A π 3()4B π 2()3C π ()2D π10.在平面直角坐标系xOy 中,已知点, A F 分别为椭圆2222:1(0)x y C a b a b+=>>的右顶点和右焦点,过坐标原点O 的直线交椭圆C 于, P Q 两点,线段AP 的中点为M ,若, , Q F M 三 点共线,则椭圆C 的离心率为 (A)13 (B) 23 (C) 83 (D) 32或8311. 设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =(A ) 1- (B )1 (C )2 (D )412. 设O 是正四面体P ABC -底面ABC 的中心,过O 的动平面与PC 交于,S 与,PA PB 的延长线分别交于,,Q R 则111||||||PQ PR PS ++ (A) 有最大值而无最小值 (B) 有最小值而无最大值 (C) 既有最大值又有最小值,且两者不相等 (D)是一个与平面QRS 无关的常数第II 卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答,第22-23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13.在数列{}n a 中,1111,,(*)2019(1)n n a a a n N n n +==+∈+,则2019a 的值为______. 14. 已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x =π对称,则cos2_____ϕ=.15.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC ∆是边长为的等边三角形,PAB ∆是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_________.16.已知函数22, 0,()e , 0,x x x f x x ⎧⎪=⎨>⎪⎩≤若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.三、解答题:解答应写出文字说明,证明过程或演算步骤 17.(本小题满分12分)工程队将从A 到D 修建一条隧道,测量员测得图中的一些数据(,,,A B C D 在同一水平面内),求,A D 之间的距离.18.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN . (1)证明:MN PC ⊥;(2)当H 为PC 的中点,PA PC AB ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.HPABCDM N19. (本小题满分12分)在平面直角坐标系xOy 中,离心率为6的椭圆2222:1(0)x y C a b a b+=>>过点6(1,)M . (1)求椭圆C 的标准方程;(2)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.20. (本小题满分12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:第x 年 12345678910旅游人数y (万人)300 283 321 345 372 435 486 527 622 800该景点为了预测2021年的旅游人数,建立了y 与x 的两个回归模型: 模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bx y ae =的附近.(1)根据表中数据,求模型②的回归方程$bxy ae =.(a 精确到个位,b 精确到0.01).(2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②$bxy ae =µ1021()iii y y =-∑ 30407 14607①对于一组数据()()()1122,,,,,,n n v w v w v w L ,其回归直线µµµwv αβ=+的斜率和截距的最小二乘法估计分别为µµµ121()(),()niii nii w w v v w v v v βαβ==--==--∑∑. ②刻画回归效果的相关指数µ22121()1()niii nii y y R y y ==-=--∑∑ .③参考数据: 5.46235e≈, 1.43 4.2e ≈.表中1ln ,10i i i i u yu u ===∑.21.(本小题满分12分)已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k+∈N 上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.请考生从第(22)、(23)两题中任选一题作答.如果多做,则按所做的第一个题目计分. 22.[选修4-4:坐标系与参数方程](10分)平面直角坐标系xOy 中,曲线1C 的方程为224x y +=,直线l 的参数方程为2,,x t y t =--⎧⎪⎨=⎪⎩ (t 为参数),若将曲线1C 上的点的横坐标不变,纵坐标变为原来的32倍,得曲线2C .(1)写出曲线2C 的参数方程;(2)设点(P -,直线l 与曲线2C 的两个交点分别为,A B ,求11PA PB+的值.23.[选修4-5:不等式选讲](10分)已知实数正数x , y 满足1x y +=. (1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭高三年级适应性测试理科数学参考答案及说明题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBCABDDACCCD13.___1_________; 14.____35____; 15.__48π___; 16. ___3ln22-_____ .17.(本小题满分12分)工程队将从A 到D 修建一条隧道,测量员测得图中的一些数据(,,,A B C D 在同一水平面内),求,A D 之间的距离.AC 解:连接,在4154AC 中,ABC 22=+=∆....................................................3分414sin ,415cos =∠=∠ACB ACB .…………………………….5分.)32cos(cos ACB ACD ∠-=∠π=412534414*23415*)21(-=+-…….9分312-65412534*3*412-341AD 中,ACD 在2=-+=∆…….12分18.(本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为菱形,PD PB =,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∥平面AMHN . (1)证明:MN PC ⊥;(2)当H 为PC 的中点,3PA PC AB ==,PA 与平面ABCD 所成的角为60︒,求AD 与平面AMHN 所成角的正弦值.HPABCDM N【解析】(1)证明:连结AC 、BD 且AC BD O =I ,连结PO . 因为,ABCD 为菱形,所以,BD AC ⊥, 因为,PD PB =,所以,PO BD ⊥,因为,AC PO O =I 且AC 、PO ⊂平面PAC , 所以,BD ⊥平面PAC ,因为,AC ⊂平面PAC ,所以,BD PC ⊥, 因为,//BD 平面AMHN , 且平面AMHN I 平面PBD MN =, 所以,//BD MN ,MN ⊥平面PAC ,所以,MN PC ⊥. ……………………………….5分 (2)由(I )知BD AC ⊥且PO BD ⊥, 因为PA PC =,且O 为AC 的中点, 所以,PO AC ⊥,所以,PO ⊥平面ABCD ,所以PA 与平面ABCD 所成的角为PAO ∠,所以60PAO ∠=︒, 所以,12AO PA =,32PO PA =,因为,3PA AB =,所以,36BO PA =. 以OA u u u r ,OD u u u r,OP uuu r分别为x ,y ,z 轴,如图所示建立空间直角坐标系……….…..7分 记2PA =,所以,(0,0,0)O ,(1,0,0)A ,3(0,,0)3B -,(1,0,0)C -,3(0,,0)3D ,(0,0,3)P ,13(,0,)22H -,所以, 23(0,,0)BD =u u u r,33(,0,)2AH =-u u u r ,3(1,,0)AD =-u u u r .……………..8分 记平面AMHN 的法向量为(,,)n x y z =r ,所以,00n BD n AH ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即23033022y x z ⎧=⎪⎨⎪-+=⎪⎩,令2x =,解得0y =,23z =,所以,(2,0,23)n =r,.…………………….…..10分记AD 与平面AMHN 所成角为θ,所以,3sin |cos ,|||4||||n AD n AD n AD θ⋅=<>==r u u u rr u u u r r u u ur . ………………………………………………………………………………………….…..11分 所以,AD 与平面AMHN 所成角的正弦值为34.………………………………..…..12分19. (本小题满分12分)如图:在平面直角坐标系xOy 中,离心率为63的椭圆2222:1(0)x y C a b a b+=>>过点6(1,)3M .(1)求椭圆C 的标准方程;(2)若直线0x y m ++=上存在点G ,且过点G 的椭圆C 的两条切线相互垂直,求实数m 的取值范围.解:(1)由题意,2226,,c a a b c ⎧=⎪⎨⎪=+⎩解得223a b =,又221213a b +=,解得223,1,a b ⎧=⎪⎨=⎪⎩ 所以椭圆C 的标准方程为2213x y +=.------------------------------------------4分(2)①当过点G 的椭圆C 的一条切线的斜率不存在时,另一条切线必垂直于y 轴,易得(3,1)G ±;--------------------------------------------------------------6分②当过点G 的椭圆C 的切线的斜率均存在时,设000(,), 3G x y x ≠± 切线方程为00()y k x x y =-+,代入椭圆方程得2220000(31)6()3()30k x k kx y x kx y +--+--=,2220000[6()]4(31)[3()3]0k kx y k kx y ∆=--+--=,化简得:2200()(31)0kx y k --+=,由此得2220000(3)210x k x y k y --+-=,--------------------------------------8分设过点G 的椭圆C 的切线的斜率分别为12,k k ,所以20122013y k k x -=-.因为两条切线相互垂直,所以2020113y x -=--,即220004(3)x y x +=≠±,---------9分 由①②知G 在圆22004x y +=上,又点G 在直线0x y m ++=上, 所以直线0x y m ++=与圆224x y +=有公共点,所以211m +≤,所以2222m -≤≤.-------------------------11分综上所述,m 的取值范围为[22,22]-.---------------------------12分 20. (本小题满分12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:第x 年 12345678910旅游人数y (万人)300 283 321 345 372 435 486 527 622 800 y x 模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型②的回归方程$bxy ae =.(a 精确到个位,b 精确到0.01).(2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②$bxy ae =µ1021()iii y y =-∑ 30407 14607解:(1)对bxy ae =取对数,得ln ln y bx a =+,……1分 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

适应性考试理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{430}A x x x =++≥,{21}xB x =<,则A B =I ( )A .[3,1]--B .(,3][1,0)-∞--UC .(,3)(1,0]-∞--UD .(,0)-∞ 【答案】B【解析】(,3][1,)A =-∞--+∞U ,(,0)B =-∞, ∴(,3][1,0)A B =-∞--I U .2.若(z a ai =+为纯虚数,其中∈a R ,则7i 1ia a +=+( ) A .i B .1 C .i - D .1- 【答案】C【解析】∵z为纯虚数,∴a =∴7i 3i i 1i 3a a +-====-+. 3.设n S 为数列{}n a 的前n 项的和,且*3(1)()2n n S a n =-∈N ,则n a =( ) A .3(32)nn- B .32n+ C .3nD .132n -⋅【答案】C【解析】1111223(1)23(1)2a S a a a a ⎧==-⎪⎪⎨⎪+=-⎪⎩,1239a a =⎧⎨=⎩,经代入选项检验,只有C 符合.4.执行如图的程序框图,如果输入的100N =,则输出的x =( )A .0.95B .0.98C .0.99D .1.00 【答案】C 【解析】111112233499100x =+++⋅⋅⋅+⨯⨯⨯⨯ 111111199(1)()()()2233499100100=-+-+-+⋅⋅⋅+-=.5.三角函数()sin(2)cos 26f x x x π=-+的振幅和最小正周期分别是( )A2πBπC2πDπ【答案】B 【解析】()sincos 2cossin 2cos 266f x x x x ππ=-+31cos 222sin 2)22x x x x ==-)6x π=+,故选B .6.一空间几何体的三视图如图所示,则该几何体的体积为( ) A .12 B .6 C .4 D .2 【答案】D【解析】11=2(2+1)2232V ⨯⨯⨯⨯=正四棱锥.7.设p 、q 是两个命题,若()p q ⌝∨是真命题, 那么( )A .p 是真命题且q 是假命题B .p 是真命题且q 是真命题C .p 是假命题且q 是真命题D .p 是假命题且q 是假命题 【答案】D8.从一个边长为2的等边三角形的中心、各边中点及三个顶点这7个点中任取两个点,则这两点间的距离小于1的概率是( ) A .71 B .73 C .74 D .76 【答案】A【解析】两点间的距离小于1共有3种情况, 分别为中心到三个中点的情况, 故两点间的距离小于1的概率27317P C ==. 9.已知平面向量a 、b 满足||||1==a b ,(2)⊥-a a b ,则||+=a b ( )A .0B .2C .2D .3 【答案】D【解析】∵(2)⊥-a a b ,∴(2)0⋅-=a a b , ∴21122⋅==a b a ,∴||+==a b==10.62)21(xx -的展开式中,常数项是( ) A .45- B .45 C .1615- D .1615【答案】D【解析】2612316611()()()22r r r r r r r T C x C x x --+=-=-,令1230r -=,解得4r =.∴常数项为446115()216C -=. 11.( 广东适应)已知双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是( )A .122=-y xB .122=-x y C .222=-y x D .222=-x y【答案】D【解析】∵椭圆的端点为(0,,离心率为2,依题意双曲线的实半轴a =2c =,b =D .12.如果定义在R 上的函数)(x f 满足:对于任意21x x ≠,都有)()(2211x f x x f x +)()(1221x f x x f x +>,则称)(x f 为“H 函数”.给出下列函数:①13++-=x x y ;②)cos sin (23x x x y --=;③1+=xe y ;④⎩⎨⎧=≠=000||ln x x x y ,其中“H 函数”的个数是( )A .4B .3C .2D .1【答案】C【解析】∵1122()()x f x x f x +)()(1221x f x x f x +>, ∴1212()[()()]0x x f x f x -->,∴)(x f 在R 上单调递增.①231y x '=-+, (x ∈-∞,0y '<,不符合条件;②32(cos +sin )=3)04y x x x π'=--+>,符合条件;③0xy e '=>,符合条件;④()f x 在(,0)-∞单调递减,不符合条件; 综上所述,其中“H 函数”是②③.二、填空题:本大题共4小题,每小题5分,满分20分.13.已知实数x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,若目标函数ay x z +=2仅在点)4,3(取得最小值,则a的取值范围是 . 【答案】(,2)-∞-【解析】不等式组表示的平面区域的角点坐标分别为(1,0),(0,1),(3,4)A B C ,∴2A z =,B z a =,64C z a =+. ∴64264a a a +<⎧⎨+<⎩,解得2a <-.14.已知双曲线1163222=-py x 的左焦点在抛物线px y 22=的准线上,则=p .【答案】4【解析】223()162p p+=,∴4p =. 15.已知数列}{n a 的各项均为正数,n S 为其前n 项和,且对任意∈n N *,均有n a 、n S 、2n a 成等差数列,则=n a . 【答案】n【解析】∵n a ,n S ,2n a 成等差数列,∴22n n n S a a =+当1n =时,2111122a S a a ==+ 又10a > ∴11a =当2n ≥时,2211122()n n n n n n n a S S a a a a ---=-=+--,∴2211()()0n n n n a a a a ----+=,∴111()()()0n n n n n n a a a a a a ---+--+=, 又10n n a a -+>,∴11n n a a --=, ∴{}n a 是等差数列,其公差为1,∵11a =,∴*(N )n a n n =∈.16.已知函数)(x f 的定义域R ,直线1=x 和2=x 是曲线)(x f y =的对称轴,且1)0(=f ,则=+)10()4(f f .【答案】2【解析】直线1=x 和2=x 是曲线)(x f y =的对称轴, ∴(2)()f x f x -=,(4)()f x f x -=,∴(2)(4)f x f x -=-,∴)(x f y =的周期2T =. ∴(4)(10)(0)(0)2f f f f +=+=.三、解答题:解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且 C b B c A a cos cos cos 2+=. (1)A cos 的值;(2)若422=+c b ,求ABC ∆的面积. 【解析】(1)∵2cos cos cos a A c B b C =+,∴2sin cos sin cos sin cos A A C B B C ⋅=+, ∴2sin cos sin()A A B C ⋅=+,∵A B C π++=,∴sin()sin B C A +=, ∴2sin cos sin A A A ⋅=.∵0A π<<,∴sin 0A ≠, ∴2cos 1A =,∴1cos 2A =.(2)由1cos 2A =,得sin A =,由2sin aA=,得2sin a A ==. ∵2222cos a b c bc A =+-, ∴222431bc b c a =+-=-=,∴11sin 2224ABC S bc A ∆==⋅=.(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望; (3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为3万元、5.4万元、6.5万元、2.7万元,预测该员工第五年的年薪为多少?附:线性回归方程a x b yˆˆˆ+=中系数计算公式分别为: 121()()()niii nii x x y y bx x ==--=-∑∑$,x b y aˆˆ-=,其中x 、y 为样本均值. 【解析】(1)平均值为10万元,中位数为6万元. (2)年薪高于5万的有6人,低于或等于5万的有4人;ξ取值为0,1,2.152)0(21024===C C P ξ,158)1(2101614===C C C P ξ,31)2(21026===C C P ξ, ∴ξ的分布列为∴()012151535E ξ=⨯+⨯+⨯=. (3)设)4,3,2,1(,=i y x i i 分别表示工作年限及相应年薪,则5,5.2==y x ,21()2.250.250.25 2.255nii x x =-=+++=∑,41()() 1.5(2)(0.5)(0.8)0.50.6 1.5 2.27iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,121()()7 1.45()niii nii x x y y bx x ==--===-∑∑$,ˆˆ5 1.4 2.5 1.5ay b x =-=-⨯=, 由线性回归方程为 1.4 1.5y x =+.可预测该员工年后的年薪收入为8.5万元.如图,在直二面角C AB E --中,四边形ABEF 是矩形,2=AB ,32=AF ,ABC ∆是以A 为直角顶点的等腰直角三角形,点P 是线段BF 上的一点,3=PF .(1)证明:⊥FB 面PAC ;(2)求异面直线PC 与AB 所成角的余弦值.【解析】(1)证明:以A 为原点,建立空间直角坐标系,如图, 则(0,0,0)A ,(2,0,0)B ,(0,2,0)C ,(0,0,23)F . ∵224BF AB AF =+=,3PF =,∴33(,0,)2P ,(2,0,23)FB =-u u u r , (0,2,0)AC =u u u r ,33(,0,)2AP =u u u r .∵0FB AC ⋅=u u u r u u u r ,∴FB AC ⊥u u u r u u u r. ∵0FB AP ⋅=u u u r u u u r ,∴FB AP ⊥u u u r u u u r .∵FB AC ⊥,FB AP ⊥,AC AP A =I , ∴FB ⊥平面APC .(2)∵(2,0,0)AB =u u u r ,33(,2,)22PC =--u u u r , 记AB u u u r 与PC uuur 夹角为θ,则337cos =27AB PC AB PC θ⋅-==u u u r u u u r u u u r u u u r .PCABE F【方法2】(1)4FB =,3cos cos 2PFA BFA ∠=∠=, 222cos PA PF FA PF FA PFA =+-⋅⋅∠91223233/23=+-⋅⋅⋅=.∵2223912PA PF AF +=+==, ∴PA BF ⊥.∵平面ABEF ⊥平面ABC ,平面ABEF I 平面ABC AB =,AB AC ⊥,AC ⊂平面ABC , ∴AC ⊥平面ABEF .∵BF ⊂平面ABEF ,∴AC BF ⊥. ∵PA AC A =I ,∴BF ⊥平面PAC .(2)过P 作//,//PM AB PN AF ,分别交,BE BA 于,M N 点,MPC ∠的补角为PC 与AB 所成的角.连接MC ,NC .32PN MB ==,32AN =, 2252NC AN AC =+=,22BC =, 227PC PN NC =+=,2235MC MB BC =+=, 13573744cos 11427272MPC +-∠===-⋅⋅. ∴异面直线PC 与AB 所成的角的余弦值为37.已知抛物线C :x y 42=,过其焦点F 作两条相互垂直且不平行于x 轴的直线,分别交抛物线C 于点1P 、2P 和点3P 、4P ,线段21P P 、43P P 的中点分别为1M 、2M .(1)求21M FM ∆面积的最小值; (2)求线段21M M 的中点P 满足的方程. 【解析】(1)由题设条件得焦点坐标为(1,0)F ,设直线12P P 的方程为(1)y k x =-,0k ≠. 联立2(1)4y k x y x=-⎧⎨=⎩,得22222(2)0k x k x k -++=.(*)22222[2(2)]416(1)0k k k k ∆=-+-=+>.设111(,)P x y ,222(,)P x y ,则21222(2)k x x k ++=. 设111(,)M M M x y ,则1112122222(1)M M M x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩. 类似地,设222(,)M M M x y ,则2222212211221M M kx k k y k k ⎧+⎪==+⎪⎪⎨⎪==-⎪⎪-⎩.∴1||FM ==2||2||FM k == 因此121211||||2(||)2||FM M S FM FM k k ∆=⋅=+. ∵1||2||k k ≥+,∴124FM M S ∆≥, 当且仅当1||||k k =,即1k =±时,12FM M S ∆取到最小值4. (2)设线段12M M 的中点(,)P x y ,由(1)得121222221121()(22)1221121()(2)22M M M M x x x k k k k y y y k k k k ⎧=+=++=++⎪⎪⎨⎪=+=-=-+⎪⎩,消去k 后得23y x =-.∴线段12M M 的中点P 满足的方程为23y x =-.设函数mx x x x f -+=ln 21)(2(0>m ). (1)求)(x f 的单调区间; (2)求)(x f 的零点个数;(3)证明:曲线)(x f y =没有经过原点的切线.【解析】(1)()f x 的定义域为(0,)+∞,211()x mx f x x m x x-+'=+-=.令()0f x '=,得210x mx -+=.当240m ≤∆=-,即02m ≤<时,()0f x ≥',∴()f x 在(0,)+∞内单调递增.当240m ∆=->,即2m >时,由210x mx -+=解得12m x =,22m x +=,且120x x <<,在区间1(0,)x 及2(,)x +∞内,()0f x '>,在12(,)x x 内,()0f x '<,∴()f x 在区间1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减.(2)由(1)可知,当02m ≤<时,()f x 在(0,)+∞内单调递增,∴()f x 最多只有一个零点.又∵1()(2)ln 2f x x x m x =-+,∴当02x m <<且1x <时,()0f x <; 当2x m >且1x >时,()0f x >,故()f x 有且仅有一个零点.当2m >时,∵()f x 在1(0,)x 及2(,)x +∞内单调递增,在12(,)x x 内单调递减,且211(()()ln 2222m m m m f x -=+-ln =+22204m m -+-<<,4014<=<=(∵2m >),∴1()0f x <,由此知21()()0f x f x <<,又∵当2x m >且1x >时,()0f x >,故()f x 在(0,)+∞内有且仅有一个零点. 综上所述,当0m >时,()f x 有且仅有一个零点.(3)假设曲线()y f x =在点(,())x f x (0x >)处的切线经过原点,则有()()f x f x x '=,即21ln 2x x mxx +-1x m x =+-, 化简得:21ln 102x x -+=(0x >).(*)记21()ln 12g x x x =-+(0x >),则211()x g x x x x -'=-=,令()0g x '=,解得1x =.当01x <<时,()0g x '<,当1x >时,()0g x '>,∴3(1)2g =是()g x 的最小值,即当0x >时,213ln 122x x -+≥.由此说明方程(*)无解,∴曲线()y f x =没有经过原点的切线.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清楚题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图所示,BC 是半圆O 的直径,AD BC ⊥,垂足为D ,»»AB AF =,BF 与AD 、AO 分别交于点E 、G .(1)证明:DAO FBC ∠=∠; (2)证明:AE BE =.【解析】(1)连接FC ,OF ,∵»»AB AF =,OB OF =, ∴点G 是BF 的中点,OG BF ⊥. ∵BC 是O e 的直径,∴CF BF ⊥. ∴//OG CF .∴AOB FCB ∠=∠,∴90,90DAO AOB FBC FCB ∠=︒-∠∠=︒-∠, ∴DAO FBC ∠=∠.(2)在Rt OAD ∆与Rt OBG ∆中, 由(1)知DAO GBO ∠=∠, 又OA OB =,∴OAD ∆≅OBG ∆,于是OD OG =. ∴AG OA OG OB OD BD =-=-=. 在Rt AGE ∆与Rt BDE ∆中, 由于DAO FBC ∠=∠,AG BD =, ∴AGE ∆≅BDE ∆,∴AE BE =.EFG COABBDAOCG FE23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,过点(1,2)P -的直线l 的倾斜角为45o.以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=,直线l 和曲线C 的交点为,A B . (1(2【解析】(1)∵直线过点(1,2)P -,且倾斜角为45o .∴直线l 的参数方程为1cos 452sin 45x t y t ⎧=+⎪⎨=-+⎪⎩oo(t 为参数),即直线l 的参数方程为1222x y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数).(2)∵2sin 2cos ρθθ=,∴2(sin )2cos ρθρθ=, ∵cos x ρθ=,sin y ρθ=,∴曲线C 的直角坐标方程为22y x =,∵1222x y t⎧=+⎪⎪⎨⎪=-+⎪⎩,∴2(2)2(1)-=,∴240t -+=,∴124t t =24.(本小题满分10分)选修4-5设函数()5f x x a x =-+.(1)当1a =-时,求不等式()53f x x ≤+的解集; (2)若1x ≥-时有()0f x ≥,求a 的取值范围. 【解析】(1)当1a =-时,不等式()53f x x ≤+, ∴5315x x x ≤+++, ∴13x +≤,∴24x -≤≤.∴不等式()53f x x ≤+的解集为[4,2]-. (2)若1x ≥-时,有()0f x ≥, ∴50x a x -+≥,即5x a x -≥-,∴5x a x -≥-,或5x a x -≤,∴6a x ≤,或4a x ≥-,∵1x ≥-,∴66x ≥-,44x -≤,∴6a ≤-,或4a ≥. ∴a 的取值范围是(,6][4,)-∞-+∞U .。

相关文档
最新文档