第7节 函数的零点练习
(江苏专用)高三数学一轮总复习 第二章 函数与基本初等函数Ⅰ 第七节 对数与对数函数课时跟踪检测 理
课时跟踪检测(十) 对数与对数函数一抓基础,多练小题做到眼疾手快 1.(2015·某某调研)函数y =log 232x -1的定义域是________.解析:由log 23(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.答案:⎝ ⎛⎦⎥⎤12,1 2.函数f (x )=log 12(x 2-4)的单调递增区间为________.解析:函数y =f (x )的定义域为(-∞,-2)∪(2,+∞),因为函数y =f (x )是由y =log 12t 与t =g (x )=x 2-4复合而成,又y =log 12t 在(0,+∞)上单调递减,g (x )在(-∞,-2)上单调递减,所以函数y =f (x )在(-∞,-2)上单调递增.答案:(-∞,-2)3.(2016·某某模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是________.解析:因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1.答案:a =b >c4.(2015·某某高考)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.解析:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1. 答案:-15.函数y =log 2|x +1|的单调递减区间为______,单调递增区间为______. 解析:作出函数y =log 2x 的图象,将其关于y 轴对称得到函数y =log 2|x |的图象,再将图象向左平移1个单位长度就得到函数y =log 2|x +1|的图象(如图所示).由图知,函数y =log 2|x +1|的单调递减区间为(-∞,-1),单调递增区间为(-1,+∞).答案:(-∞,-1) (-1,+∞)二保高考,全练题型做到高考达标1.函数f (x )=|x -2|-ln x 在定义域内零点的个数为________. 解析:在同一坐标系中分别作函数y =|x -2|与y =ln x 的图象如图所示.由图可知y =|x -2|与y =ln x 有2个交点,所以函数f (x )零点的个数为2.答案:22.(2016·某某五校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝⎛⎭⎪⎫log 312的值是________.解析:由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,f ⎝⎛⎭⎪⎫log 312=331-log 2+1=33log 2+1=2+1=3,所以f (f (1))+f ⎝ ⎛⎭⎪⎫log 312=5.答案:53.设a =log 323,b =log 525,c =log 727,则a ,b ,c 的大小关系为________.解析:因为log 323=log 32-1,log 525=log 52-1,log 727=log 72-1,log 32>log 52>log 72,故a >b >c .答案:a >b >c4.计算:log 2.56.25+lg 0.001+ln e +2-1+log 23=______. 解析:原式=log 2.5(2.5)2+lg 10-3+ln e 12+2log 232 =2-3+12+32=1.答案:15.若函数f (x )=log a ⎝ ⎛⎭⎪⎫x 2+32x (a >0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.解析:令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1.所以函数y =log a M 为增函数,又M =⎝⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎪⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32.所以函数f (x )的单调递增区间为(0,+∞).答案:(0,+∞)6.如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log22x ,y =x 12,y =⎝⎛⎭⎪⎫22x的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.解析:由条件得,点A 在函数y =log22x 的图象上,从而由2=2,得x A =12.而点B 在函数y =x 12上,从而2=x 12,解得x B =4.于是点C 的横坐标为4.又点C 在函数y =⎝⎛⎭⎪⎫22x上,从而y C =14,所以点D 的坐标为⎝ ⎛⎭⎪⎫12,14. 答案:⎝ ⎛⎭⎪⎫12,14 7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值X 围是______.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)8.(2016·某某四市调研)函数f (x )=log 2x ·log 2(2x )的最小值为______.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-149.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).10.已知函数f (x )=log a (x +1)-log a (1-x ),(a >0且a ≠1). (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集. 解:(1)要使函数f (x )有意义.则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求函数f (x )的定义域为(-1,1). (2)证明:由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x ) =-[log a (x +1)-log a (1-x )]=-f (x ), 故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1.所以使f (x )>0的x 的解集是(0,1). 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值X 围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a ⎝ ⎛⎭⎪⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值X 围是⎝ ⎛⎭⎪⎫13,1. 答案:⎝ ⎛⎭⎪⎫13,1 2.(2016·某某中学月考)已知函数f (x )=log a 1-xb +x (0<a <1)为奇函数,当x ∈(-1,a ]时,函数f (x )的值域是(-∞,1],则a +b 的值为________.解析:由1-xb +x >0,解得-b <x <1(b >0).又奇函数定义域关于原点对称,故b =1.所以f (x )=log a 1-x 1+x (0<a <1).又g (x )=1-x x +1=-1+2x +1在(-1,a ]上单调递减,0<a <1,所以f (x )在(-1,a ]上单调递增.又因为函数f (x )的值域是(-∞,1],故f (a )=1,此时g (a )=a ,即1-a a +1=a ,解得a =2-1(负根舍去),所以a +b = 2. 答案: 23.已知函数f (x )=3-2log 2x ,g (x )=log 2x .(1)当x ∈[1,4]时,求函数h (x )=[f (x )+1]·g (x )的值域;(2)如果对任意的x ∈[1,4],不等式f (x 2)·f (x )>k ·g (x )恒成立,某某数k 的取值X 围.解:(1)h (x )=(4-2log 2x )·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h (x )的值域为[0,2]. (2)由f (x 2)·f (x )>k ·g (x ), 得(3-4log 2x )(3-log 2x )>k ·log 2x ,令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t )(3-t )>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <3-4t 3-tt恒成立,即k <4t +9t-15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值X 围为(-∞,-3).。
函数应用零点二分法知识点和练习
一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
2、函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.3、函数零点的求法:○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数(0)y kx k =≠仅有一个零点。
②反比例函数(0)k y k x=≠没有零点。
③一次函数(0)y kx b k =+≠仅有一个零点。
④二次函数)0(2≠++=a c bx ax y .(1)△>0,方程20(0)ax bx c a ++=≠有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程20(0)ax bx c a ++=≠有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程20(0)ax bx c a ++=≠无实根,二次函数的图象与x 轴无交点,二次函数无零点. ⑤指数函数(0,1)x y a a a =>≠且没有零点。
⑥对数函数log (0,1)a y x a a =>≠且仅有一个零点1.⑦幂函数y x α=,当0n >时,仅有一个零点0,当0n ≤时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把()f x 转化成()0f x =,再把复杂的函数拆分成两个我们常见的函数12,y y (基本初等函数),这另个函数图像的交点个数就是函数()f x 零点的个数。
《函数的零点与方程的解》教案、导学案与同步练习
《第四章 指数函数与对数函数》 《4.5.1函数的零点与方程的解》教案【教材分析】本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。
【教学目标与核心素养】 课程目标1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数. 数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念. 【教学重难点】 【教学反思】重点:零点的概念,及零点与方程根的联系; 难点:零点的概念的形成.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】 一、情景导入①方程的解为,函数的图象与x 轴有个交点,坐标为.②方程的解为,函数的图象与x 轴有个交点,坐标为.2230x x --=223y x x =--2210x x -+=221y x x =-+③方程的解为,函数的图象与x 轴有个交点,坐标为.根据以上结论,可以得到:一元二次方程的根就是相应二次函数的图象与x 轴交点的.你能将结论进一步推广到吗?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本142-143页,思考并完成以下问题 1.函数零点的定义是什么?2.函数零点存在性定理要具备哪两个条件?3.方程的根、函数的图象与x 轴的交点、函数的零点三者之间的联系是什么? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究 1.函数的零点对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. [点睛] 函数的零点不是一个点,而是一个实数,当自变量取该值时,其函数值等于零.2.方程、函数、图象之间的关系方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点.3.函数零点的存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0.那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[点睛] 定理要求具备两条:①函数在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0.四、典例分析、举一反三 题型一求函数的零点2230x x -+=223y x x =-+20(0)ax bx c a ++=≠20(0)y ax bx c a =++=≠()y f x =例1 判断下列函数是否存在零点,如果存在,请求出. (1)f (x )=x +3x;(2)f (x )=x 2+2x +4; (3)f (x )=2x -3;(4)f (x )=1-log 3x .【答案】(1)-3(2)不存在(3)log 23(4)3.【解析】(1)令x +3x =0,解得x =-3,所以函数f (x )=x +3x 的零点是-3.(2)令x 2+2x +4=0,由于Δ=22-4×1×4=-12<0, 所以方程x 2+2x +4=0无实数根,所以函数f (x )=x 2+2x +4不存在零点. (3)令2x -3=0,解得x =log 23. 所以函数f (x )=2x -3的零点是log 23. (4)令1-log 3x =0,解得x =3, 所以函数f (x )=1-log 3x 的零点是3. 解题技巧:(函数零点的求法)求函数的零点通常有两种方法:一是代数法,令f(x)=0,通过求方程f(x)=0的根求得函数的零点;二是几何法,画出函数y=f(x)的图象,图象与x 轴交点的横坐标即为函数的零点.跟踪训练一1.已知函数f (x )=⎩⎨⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12 D .0 【答案】D【解析】当x ≤1时,令2x -1=0,得x =0.当x >1时,令1+log 2x =0,得x =12,此时无解.综上所述,函数零点为0.题型二判断函数零点所在区间例2函数f (x )=ln x -2x的零点所在的大致区间是A.(1,2) B.(2,3) C.(3,4) D.(e,+∞)【答案】B【解析】∵f(1)=-2<0,f(2)=ln2-1<0,∴在(1,2)内f(x)无零点,A错;又f(3)=ln3-23>0,∴f(2)·f(3)<0,∴f(x)在(2,3)内有零点.解题技巧:(判断函数零点所在区间的3个步骤)(1)代入:将区间端点值代入函数求出函数的值.(2)判断:把所得的函数值相乘,并进行符号判断.(3)结论:若符号为正且函数在该区间内是单调函数,则在该区间内无零点,若符号为负且函数连续,则在该区间内至少有一个零点.跟踪训练二1.若函数f(x)=x+ax(a∈R)在区间(1,2)上有零点,则a的值可能是( )A.-2 B.0 C.1 D.3 【答案】A【解析】f(x)=x+ax(a∈R)的图象在(1,2)上是连续不断的,逐个选项代入验证,当a=-2时,f(1)=1-2=-1<0,f(2)=2-1=1>0.故f(x)在区间(1,2)上有零点,同理,其他选项不符合,选A.题型三判断函数零点的个数例3判断函数f(x)=ln x+x2-3的零点的个数.【答案】有一个零点【解析】[法一图象法]函数对应的方程为ln x+x2-3=0,所以原函数零点的个数即为函数y=ln x与y=3-x2的图象交点个数.在同一坐标系下,作出两函数的图象(如图).由图象知,函数y=3-x2与y=ln x的图象只有一个交点,从而ln x+x2-3=0有一个根,即函数y=ln x+x2-3有一个零点.[法二 判定定理法]由于f (1)=ln1+12-3=-2<0,f (2)=ln2+22-3=ln2+1>0,∴f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的,所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个. 解题技巧:(判断函数存在零点的3种方法)(1)方程法:若方程f (x )=0的解可求或能判断解的个数,可通过方程的解来判断函数是否存在零点或判断零点的个数.(2)图象法:由f (x )=g (x )-h (x )=0,得g (x )=h (x ),在同一坐标系内作出y 1=g (x )和y 2=h (x )的图象,根据两个图象交点的个数来判定函数零点的个数.(3)定理法:函数y =f (x )的图象在区间[a ,b ]上是一条连续不断的曲线,由f (a )·f (b )<0即可判断函数y =f (x )在区间(a ,b )内至少有一个零点.若函数y =f (x )在区间(a ,b )上是单调函数,则函数f (x )在区间(a ,b )内只有一个零点.跟踪训练三1.函数f (x )=⎩⎨⎧4x -4,x ≤1,x 2-4x +3,x >1的图象和函数g (x )=log 2x 的图象的交点个数是________.【答案】3【解析】作出g (x )与f (x )的图象如图,由图知f (x )与g (x )有3个交点.四、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本155页2、3、7、11.【教学反思】本节课结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;通过图像进一步掌握零点存在的判定定理.从而解决本节课的三种题型.《4.5.1 函数的零点与方程的解》导学案【学习目标】知识目标1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.核心素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.【重点与难点】重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.【学习过程】一、预习导入阅读课本142-143页,填写。
《高等数学》 详细上册答案(一--七)
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
第7节 函数的图象(经典练习及答案详解)
第7节函数的图象知识梳理1.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象y=-f(x)的图象;y=f(x)的图象y=f(-x)的图象;y=f(x)的图象y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象y=log a x(a>0,且a≠1)的图象.(3)伸缩变换(4)翻折变换1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.而言,如果x的系数不是1,常需把系数提出2.图象的左右平移仅仅是相对于...x.来,再进行变换.而言的,利用“上加下减”进行.3.图象的上下平移仅仅是相对于...y.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案(1)×(2)×(3)×(4)√解析(1)令f(x)=-x,当x∈(0,+∞)时,y=|f(x)|=x,y=f(|x|)=-x,两者图象不同,(1)错误.(2)中两函数当a≠1时,y=af(x)与y=f(ax)是由y=f(x)分别进行横坐标与纵坐标伸缩变换得到,两图象不同,(2)错误.(3)y=f(x)与y=-f(x)的图象关于x轴对称,(3)错误.2.(多选题)若函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,则下列选项中正确的有()A.a>1B.0<a<1C.b>0D.b<0答案AD解析因为函数y=a x+b-1(a>0,且a≠1)的图象经过第一、三、四象限,所以其大致图象如图所示.由图象可知函数为增函数,所以a>1,当x=0时,y=1+b-1=b<0,故选AD.3.在2 h内将某种药物注射进患者的血液中,在注射期间,血液中的药物含量呈线性增加;停止注射后,血液中的药物含量呈指数衰减,能反映血液中药物含量Q随时间t变化的图象是()答案B解析依题意知,在2 h内血液中药物含量Q持续增加,停止注射后,Q呈指数衰减,图象B适合.4.(2019·全国Ⅰ卷)函数f(x)=sin x+xcos x+x2在[-π,π]的图象大致为()答案D解析 ∵f (-x )=sin (-x )-x cos (-x )+(-x )2=-f (x ),且x ∈[-π,π],∴f (x )为奇函数,排除A.当x =π时,f (π)=π-1+π2>0,排除B ,C ,只有D 满足. 5.(2021·长沙检测)已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数为( )A.y =f (|x |)B.y =f (-|x |)C.y =|f (x )|D.y =-|f (x )|答案 B解析 观察函数图象可得,②是由①保留y 轴左侧及y 轴上的图象,然后将y 轴左侧图象翻折到右侧所得,结合函数图象的对称变换可得变换后的函数的解析式为y =f (-|x |).6.(2020·重庆联考)已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8]解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].考点一 作函数的图象【例1】作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|;(3)y =x 2-2|x |-1.解 (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图③.感悟升华 1.描点法作图:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.2.图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.【训练1】分别作出下列函数的图象: (1)y =sin |x |;(2)y =2x -1x -1. 解 (1)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图①.(2)y =2x -1x -1=2+1x -1,故函数的图象可由y =1x 的图象向右平移1个单位,再向上平移2个单位得到,如图②所示. 考点二 函数图象的辨识1.(2020·浙江卷)函数y =x cos x +sin x 在区间[-π,π]的图象大致为( )答案 A解析 因为f (x )=x cos x +sin x ,则f (-x )=-x cos x -sin x =-f (x ),又x ∈[-π,π],所以f (x )为奇函数,其图象关于坐标原点对称,则C ,D 错误.且x =π时,y =πcos π+sin π=-π<0,知B 错误;只有A 满足. 2.(2021·重庆诊断)函数f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2的图象大致为( )答案 A解析 根据题意,f (x )=x cos ⎝ ⎛⎭⎪⎫x -π2=x sin x ,定义域为R ,关于原点对称.有f (-x )=(-x )sin(-x )=x sin x =f (x ),即函数y =f (x )为偶函数,排除B ,D.当x ∈(0,π)时,x >0,sin x >0,有f (x )>0,排除C.只有A 适合. 3.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,log 13x ,x >1,则函数y =f (1-x )的大致图象是( )答案 D解析 法一先画出函数f (x )=⎩⎨⎧3x ,x ≤1,log 13x ,x >1的草图,令函数f (x )的图象关于y 轴对称,得函数f (-x )的图象,再把所得的函数f (-x )的图象,向右平移1个单位,得到函数y =f (1-x )的图象(图略),故选D.法二 由已知函数f (x )的解析式,得y =f (1-x )=⎩⎨⎧31-x,x ≥0,log 13(1-x ),x <0,故该函数过点(0,3),排除A ;过点(1,1),排除B ;在(-∞,0)上单调递增,排除C.选D.4.函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A.f (x )=x +sin xB.f (x )=cos xxC.f (x )=x ⎝ ⎛⎭⎪⎫x -π2⎝ ⎛⎭⎪⎫x -3π2D.f (x )=x cos x 答案 D解析 从图象看,y =f (x )应为奇函数,排除C ; 又f ⎝ ⎛⎭⎪⎫π2=0,知f (x )=x +sin x 不正确;对于B,f(x)=cos xx ,得f′(x)=-x sin x-cos xx2,当0<x<π2时,f′(x)<0,所以f(x)=cos xx 在⎝⎛⎭⎪⎫0,π2上递减,B不正确;只有f(x)=x cos x满足图象的特征.感悟升华 1.抓住函数的性质,定性分析:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从周期性,判断图象的循环往复;(4)从函数的奇偶性,判断图象的对称性.2.抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题.考点三函数图象的应用角度1研究函数的性质【例2】(多选题)(2021·滨州一模)在平面直角坐标系xOy中,如图放置的边长为2的正方形ABCD沿x轴滚动(无滑动滚动),点D恰好经过坐标原点.设顶点B(x,y)的轨迹方程是y=f(x),则对函数y=f(x)的判断正确的是()A.函数y=f(x)是奇函数B.对任意的x∈R,都有f(x+4)=f(x-4)C.函数y=f(x)的值域为[0,22]D.函数y=f(x)在区间[6,8]上单调递增答案BCD解析由题意得,当-4≤x<-2时,点B的轨迹为以(-2,0)为圆心,2为半径的14圆;当-2≤x <2时,点B 的轨迹为以原点为圆心,22为半径的14圆; 当2≤x <4时,点B 的轨迹为以(2,0)为圆心,2为半径的14圆,如图所示; 以后依次重复,所以函数f (x )是以8为周期的周期函数.由图象可知,函数f (x )为偶函数,故A 错误;因为f (x )的周期为8,所以f (x +8)=f (x ),即f (x +4)=f (x -4),故B 正确; 由图象可知,f (x )的值域为[0,22],故C 正确;由图象可知,f (x )在[-2,0]上单调递增,因为f (x )在[6,8]的图象和在[-2,0]的图象相同,故D 正确.故选BCD.角度2 函数图象在不等式中的应用【例3】 (1)若函数f (x )=log 2(x +1),且a >b >c >0,则f (a )a ,f (b )b ,f (c )c 的大小关系是( ) A.f (a )a >f (b )b >f (c )c B.f (c )c >f (b )b >f (a )a C.f (b )b >f (a )a >f (c )cD.f (a )a >f (c )c >f (b )b(2)(2020·北京卷)已知函数f (x )=2x -x -1,则不等式f (x )>0的解集是( ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(0,1)D.(-∞,0)∪(1,+∞)答案 (1)B (2)D解析 (1)由题意可得,f (a )a ,f (b )b ,f (c )c 分别看作函数f (x )=log 2(x +1)图象上的点(a ,f (a )),(b ,f (b )),(c ,f (c ))与原点连线的斜率.结合图象可知,当a >b >c >0时,f (a )a <f (b )b <f (c )c .(2)在同一平面直角坐标系中画出h (x )=2x ,g (x )=x +1的图象如图.由图象得交点坐标为(0,1)和(1,2). 又f (x )>0等价于2x >x +1, 结合图象,可得x <0或x >1.故f (x )>0的解集为(-∞,0)∪(1,+∞).故选D.角度3 求参数的取值范围【例4】 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.(2)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (1)(0,1) (2)(0,1)∪(9,+∞)解析 (1)画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,k 的取值范围为(0,1). (2)设y 1=f (x )=|x 2+3x |,y 2=a |x -1|.在同一直角坐标系中作出y 1=|x 2+3x |, y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点,且4个交点的横坐标都小于1,所以①⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )(-3<x <0)有两组不同解.消去y 得x 2+(3-a )x +a =0,该方程有两个不等实根x 1,x 2,∴⎩⎪⎨⎪⎧Δ=(3-a )2-4a >0,-3<a -32<0,(-3)2+(3-a )×(-3)+a >0,02+(3-a )×0+a >0,∴0<a <1.②⎩⎪⎨⎪⎧y =x 2+3x ,y =a (x -1)(x >1)有两组不同解. 消去y 得x 2+(3-a )x +a =0有两不等实根x 3、x 4, ∴Δ=a 2-10a +9>0,又∵x 3+x 4=a -3>2,x 3x 4=a >1, ∴a >9.综上可知,0<a <1或a >9.感悟升华 1.利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象可解决某些方程和不等式的求解问题,方程f(x)=g(x)的根就是函数f(x)与g(x)图象交点的横坐标;不等式f(x)<g(x)的解集是函数f(x)的图象位于g(x)图象下方的点的横坐标的集合,体现了数形结合思想.【训练2】(1)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.(2)(2020·徽州一中期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集为________.(3)(多选题)(2021·淄博模拟)关于函数f(x)=|ln|2-x||,下列描述正确的有()A.函数f(x)在区间(1,2)上单调递增B.函数y=f(x)的图象关于直线x=2对称C.若x1≠x2,但f(x1)=f(x2),则x1+x2=4D.函数f(x)有且仅有两个零点答案(1)[-1,+∞)(2)(-2,-1)∪(1,2)(3)ABD解析(1)如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知,当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a的取值范围是[-1,+∞).(2)∵xf(x)<0,∴x和f(x)异号,由于f(x)为奇函数,补齐函数的图象如图.当x∈(-2,-1)∪(0,1)∪(2,+∞)时,f(x)>0,当x∈(-∞,-2)∪(-1,0)∪(1,2)时,f(x)<0,∴不等式xf(x)<0的解集为(-2,-1)∪(1,2).(3)函数f(x)=|ln|2-x||的图象如图所示,由图可得,函数f(x)在区间(1,2)上单调递增,A正确;函数y=f(x)的图象关于直线x=2对称,B正确;若x1≠x2,但f(x1)=f(x2),则x1+x2的值不一定等于4,C错误;函数f(x)有且仅有两个零点,D正确.函数图象的活用直观想象是发现和提出问题,分析和解决问题的重要手段,在数学研究的探索中,通过直观手段的运用以及借助直观展开想象,从而发现问题、解决问题的例子比比皆是,并贯穿于数学研究过程的始终,而数形结合思想是典型的直观想象范例.一、根据函数图象确定函数解析式【例1】(2021·长沙检测)已知某函数的图象如图所示,则下列函数中,与图象最契合的是()A.y =sin(e x +e -x )B.y =sin(e x -e -x )C.y =cos(e x -e -x )D.y =cos(e x +e -x )答案 D解析 由函数图象知,函数图象关于y 轴对称,∵y =sin(e x -e -x )为奇函数,图象关于原点对称,B 不正确; 又-1<f (0)<0,但sin 2>0,cos 0=1,故A ,C 不正确; 只有y =cos(e x +e -x )满足图象特征.故选D.素养升华 函数解析式与函数图象是函数的两种重要表示法,图象形象直观,解析式易于研究函数性质,可根据需要,相互转化.二、由图象特征研究函数性质求参数【例2】设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( ) A.(-∞,1] B.[1,4]C.[4,+∞)D.(-∞,1]∪[4,+∞) 答案 D解析 作出函数f (x )的图象如图所示,由图象可知,要使f (x )在(a ,a +1)上单调递增, 需满足a ≥4或a +1≤2. 因此a ≥4或a ≤1.素养升华 1.运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.2.图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.A级基础巩固一、选择题1.(2020·天津卷)函数y=4xx2+1的图象大致为()答案A解析令f(x)=4xx2+1,则f(x)的定义域为R,且f(-x)=-4xx2+1=-f(x),因此,函数为奇函数,排除C,D.当x=1时,f(1)=42=2>0,排除B.故选A.2.(2021·江南十校模拟)函数f(x)=x cos x2x+2-x在⎣⎢⎡⎦⎥⎤-π2,π2上的图象大致为()答案C解析根据题意,有f(-x)=-x cos x2x+2-x=-f(x),且定义域关于原点对称,则在⎣⎢⎡⎦⎥⎤-π2,π2上,f (x )为奇函数,其图象关于原点对称,排除A ,B ; 又在区间⎝ ⎛⎭⎪⎫0,π2上,x >0,cos x >0,2x >0,2-x >0,则f (x )>0,排除D ,只有C 适合.3.若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可能是( )答案 D解析 由f (x )在R 上是减函数,知0<a <1.又y =log a (|x |-1)是偶函数,定义域是(-∞,-1)∪(1,+∞).∴当x >1时,y =log a (x -1)的图象由y =log a x 的图象向右平移一个单位得到.因此D 正确.4.下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A.y =ln(1-x ) B.y =ln(2-x ) C.y =ln(1+x ) D.y =ln(2+x )答案 B解析 法一 设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).法二 由题意知,对称轴上的点(1,0)在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.5.(2021·豫北名校联考)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,则不等式f (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-32,32B.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32 D.⎝ ⎛⎭⎪⎫-32,0∪⎝ ⎛⎭⎪⎫32,+∞ 答案 C解析 根据题意,f (x )是定义在R 上的奇函数,当x >0时,f (x )=3-2x ,可得其图象如图,且f (0)=0,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32=0,则不等式f (x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫0,32.6.若函数f (x )=⎩⎨⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)=( ) A.-12 B.-54 C.-1D.-2答案 C解析 由图象知⎩⎪⎨⎪⎧ln (a -1)=0,b -a =3,得⎩⎪⎨⎪⎧a =2,b =5.∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1.故f (-3)=5-6=-1.7.(多选题)(2021·山东新高考模拟)对于函数f (x )=lg(|x -2|+1),下列说法正确的是( )A.f (x +2)是偶函数B.f (x +2)是奇函数C.f (x )在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f (x )没有最小值 答案 AC解析 f (x +2)=lg(|x |+1)为偶函数,A 正确,B 错误.作出f (x )的图象如图所示,可知f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;由图象可知函数存在最小值0,C 正确,D 错误.8.若函数y =f (x )的图象的一部分如图(1)所示,则图(2)中的图象所对应的函数解析式可以是( )A.y =f ⎝ ⎛⎭⎪⎫2x -12B.y =f (2x -1)C.y =f ⎝ ⎛⎭⎪⎫12x -12D.y =f ⎝ ⎛⎭⎪⎫12x -1答案 B解析 函数f (x )的图象先整体往右平移1个单位,得到y =f (x -1)的图象,再将所有点的横坐标变为原来的12,得到y =f (2x -1)的图象. 二、填空题9.若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________. 答案 (3,1)解析 由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度为(3,1).所以函数y =f (4-x )的图象过定点(3,1).10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________. 答案 -12解析 函数y =|x -a |-1的大致图象如图所示,∴若直线y =2a 与函数y =|x -a |-1的图象只有一个交点, 只需2a =-1,可得a =-12.11.使log 2(-x )<x +1成立的x 的取值范围是________. 答案 (-1,0)解析 在同一直角坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).12.已知函数f (x )在R 上单调且其部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________. 答案 1解析 由图象可知不等式-2<f (x +t )<4, 即f (3)<f (x +t )<f (0).又y =f (x )在R 上单调递减,∴0<x +t <3,不等式解集为(-t ,3-t ). 依题意,得t =1.B 级 能力提升13.若直角坐标系内A ,B 两点满足:(1)点A ,B 都在f (x )的图象上;(2)点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x (x <0),2e x (x ≥0),则f (x )的“和谐点对”有( ) A.1个 B.2个C.3个D.4个答案 B解析 作出函数y =x 2+2x (x <0)的图象关于原点对称的图象(如图中的虚线部分),看它与函数y =2e x (x ≥0)的图象的交点个数即可,观察图象可得交点个数为2,即f (x )的“和谐点对”有2个.14.(2020·潍坊质检)已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,f (x +2)=f (x ),当0≤x ≤1时,f (x )=x 2.若直线y =x +a 与函数f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A.0 B.0或-12 C.-14或12D.0或-14答案 D解析 因为f (x +2)=f (x ),所以函数f (x )的周期为2,如图所示:由图知,直线y =x +a 与函数f (x )的图象在区间[0,2]内恰有两个不同的公共点时,直线y =x +a 经过点(1,1)或与曲线f (x )=x 2(0≤x ≤1)相切于点A ,则1=1+a ,或方程x 2=x +a 只有一个实数根.所以a =0或Δ=1+4a =0,即a =0或a =-14.15.(多选题)(2021·日照模拟)设f (x )是定义在R 上的函数,若存在两个不相等的实数x 1,x 2,使得f ⎝ ⎛⎭⎪⎫x 1+x 22=f (x 1)+f (x 2)2,则称函数f (x )具有性质P .那么下列函数中,具有性质P 的函数为( ) A.f (x )=⎩⎪⎨⎪⎧1x ,x ≠0,0,x =0B.f (x )=|x 2-1|C.f (x )=x 3+xD.f (x )=2|x |答案 ABC解析 对于A ,在函数f (x )的图象上取A (-1,-1),B (0,0),C (1,1),有f (0)=f (-1)+f (1)2成立,故A 正确; 对于B ,在函数f (x )的图象上取A (-2,1),B (0,1),C (2,1),有f (0)=f (-2)+f (2)2成立,故B 正确; 对于C ,在函数f (x )的图象上取A (1,2),B (0,0),C (-1,-2),有f (0)=f (-1)+f (1)2成立,故C 正确; 对于D ,因为f (x )=2|x |,f (x 1)+f (x 2)2=2|x 1|+2|x 2|2≥2|x 1|·2|x 2|=2|x 1|+|x 2|2≥2|x 1+x 22|=f ⎝ ⎛⎭⎪⎫x 1+x 22,又x 1≠x 2,所以f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2恒成立,故D 错误.故选ABC.16.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m =________.答案 9解析 如图,作出函数f (x )=|log 3x |的图象,观察可知0<m <1<n且mn =1.若f (x )在[m 2,n ]上的最大值为2,从图象分析应有f (m 2)=2,∴log 3m 2=-2,∴m 2=19.从而m =13,n =3,故n m =9.。
函数的零点与方程的解课件-高一数学人教A版(2019)必修第一册
且 f(a)·f(b)<0,则 f(x)在(a,b)内只有一个零点.(×)
目录
小结
1.(1)函数的零点是方程的实根,是函数 y=f(x)图象与 x 轴交点的横坐标,零 点不是一个“点”,是“实数”. (2)利用函数零点存在性定理:首先看函数 y=f(x)在区间[a,b]上的图象是 否连续,再看是否有 f(a)·f(b)<0.两者缺一不可,这是函数 y=f(x)在(a,b)存 在零点的充分不必要条件.
目录
定理理解 函数f(x)存在零点定理的一个推论: 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条 曲线,在区间[a,b]上具有单调性,且有
f(a)·f(b)<0, 那么函数y= f(x)在区间(a , b)内有唯一零点.
目录
巩固与练习 例1求方程lnx+2x-6=0的实数解的个数.
目录
定理理解
1.若函数 y=f(x)在区间[a , b]上连续,且 f(a) f(b)<0, 则 y=f(x)在区间(a , b)内只有一个零点吗? 2.若函数 y=f(x)在区间[a , b]上连续,且 f(a) f(b)>0, 则 y=f(x)在区间(a , b)内一定没有零点吗? 3.函数 y=f(x)在区间(a , b)内有零点,一定能得出 f(a) f(b)<0 的结论吗? 4.函数零点存在定理的条件, 是函数存在零点的充分不必要条件。
9
y -4 -1.3069 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972
O –1
x 1234
由表 4.5-1 和图 4.5-2 可知,f(2)<0,f(3)>0,则 f(2) f(3)<0. 由函数零点存在定理可知,
(浙江专版)高考数学一轮复习 第2章 函数、导数及其应用 第7节 函数的图象教师用书-人教版高三全册
第七节 函数的图象1.利用描点法作函数的图象方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、最值等);(4)描点连线.2.利用图象变换法作函数的图象(1)平移变换(2)对称变换①y =f (x )的图象――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――→关于y 轴对称y =f (-x )的图象;③y =f (x )的图象――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象.(3)伸缩变换①y =f (x )的图象y =f (ax )的图象;②y =f (x )的图象――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a ,横坐标不变y =af (x )的图象. (4)翻转变换①y =f (x )的图象―――――――――――――→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象; ②y =f (x )的图象―――――――――――――――→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.( )(2)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.( )(3)当x ∈(0,+∞)时,函数y =f (|x |)的图象与y =|f (x )|的图象相同.( )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)甲、乙二人同时从A 地赶往B 地,甲先骑自行车到两地的中点再改为跑步,乙先跑步到中点再改为骑自行车,最后两人同时到达B 地.已知甲骑车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离s 与所用时间t 的函数关系用图象表示,则下列给出的四个函数图象中,甲、乙的图象应该是( )①②③④图271A .甲是图①,乙是图②B .甲是图①,乙是图④C .甲是图③,乙是图②D .甲是图③,乙是图④ B [设甲骑车速度为V 甲骑,甲跑步速度为V 甲跑,乙骑车速度为V 乙骑,乙跑步速度为V 乙跑,依题意V 甲骑>V 乙骑>V 乙跑>V 甲跑,故选B.]3.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .ex +1 B .e x -1 C .e -x +1D .e -x -1 D [依题意,与曲线y =e x 关于y 轴对称的曲线是y =e -x ,于是f (x )相当于y =e -x 向左平移1个单位的结果,∴f (x )=e -(x +1)=e-x -1.] 4.(2016·某某高考)函数y =sin x 2的图象是( )D [∵y =sin(-x )2=sin x 2,∴函数为偶函数,可排除A 项和C 项;当x =π2时,sin x 2=sin π24≠1,排除B 项,故选D.]5.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值X 围是________.【导学号:51062049】(0,+∞) [在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知当a >0时,方程|x |=a -x 只有一个解.]作函数的图象作出下列函数的图象: (1)y =⎝ ⎛⎭⎪⎫12|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1. [解] (1)先作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,再作出y =⎝ ⎛⎭⎪⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象,如图①实线部分.3分①②(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.7分(3)∵y =2+1x -1,故函数图象可由y =1x图象向右平移1个单位,再向上平移2个单位得到,如图③.11分③④(4)∵y =⎩⎪⎨⎪⎧ x 2-2x -1,x ≥0,x 2+2x -1,x <0,且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,得图象如图④.15分[规律方法] 画函数图象的一般方法(1)直接法.当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出;(2)图象变换法.若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出.易错警示:注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.[变式训练1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =sin|x |.[解] (1)∵y =|lg x |=⎩⎪⎨⎪⎧ lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象,如图①.8分(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,图象关于y 轴对称,其图象如图②.15分识图与辨图(1)函数y =2x 2-e |x |在[-2,2]的图象大致为( )(2)如图272,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )图272A B C D(1)D (2)B [(1)∵f (x )=2x 2-e |x |,x ∈[-2,2]是偶函数,又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=2x 2-e x ,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=2x 2-e |x |在(0,2)内至少存在一个极值点,排除C.故选D.(2)当点P 沿着边BC 运动,即0≤x ≤π4时, 在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.][规律方法] 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.[变式训练2] (1)已知函数f (x )的图象如图273所示,则f (x )的解析式可以是( )图273A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1 D .f (x )=x -1x(2)(2017·某某二模)函数y =a +sin bx (b >0且b ≠1)的图象如图274所示,那么函数y =log b (x -a )的图象可能是( )图274(1)A (2)C [(1)由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A. (2)由题图可得a >1,且最小正周期T =2πb<π,所以b >2,则y =log b (x -a )是增函数,排除A 和B ;当x =2时,y =log b (2-a )<0,排除D ,故选C.]函数图象的应用☞角度1 研究函数的性质 已知函数f (x )=x |x |-2x ,则下列结论正确的是( )A .f (x )是偶函数,递增区间是(0,+∞)B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)C [将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.]☞角度2 确定函数零点的个数已知f (x )=⎩⎪⎨⎪⎧ |lg x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________. 【导学号:51062050】5 [方程2f 2(x )-3f (x )+1=0的解为f (x )=12或1.作出y =f (x )的图象,由图象知零点的个数为5.]☞角度3 求参数的值或取值X 围(2017·某某某某五校联盟一诊)若直角坐标平面内两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )看作同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧ kx -1,x >0,-ln -x ,x <0有两个“伙伴点组”,则实数k 的取值X 围是( )A .(-∞,0)B .(0,1)C.⎝ ⎛⎭⎪⎫0,12 D .(0,+∞)B [根据题意可知,“伙伴点组”的点满足:都在函数图象上,且关于坐标原点对称.可作出函数y =-ln(-x )(x <0)关于原点对称的函数y =ln x (x >0)的图象,使它与直线y =kx -1(x >0)的交点个数为2即可.当直线y =kx -1与y =ln x 的图象相切时,设切点为(m ,ln m ),又y =ln x 的导数为y ′=1x, 即km -1=ln m ,k =1m,解得m =1,k =1, 可得函数y =ln x (x >0)的图象过(0,-1)点的切线的斜率为1,结合图象可知k ∈(0,1)时两函数图象有两个交点.故选B.]☞角度4 求不等式的解集函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图275所示,那么不等式f xcos x <0的解集为________.图275 ⎝ ⎛⎭⎪⎫-π2,-1∪⎝ ⎛⎭⎪⎫1,π2 [在⎝ ⎛⎭⎪⎫0,π2上,y =cos x >0,在⎝ ⎛⎭⎪⎫π2,4上,y =cos x <0. 由f (x )的图象知在⎝⎛⎭⎪⎫1,π2上f x cos x <0, 因为f (x )为偶函数,y =cos x 也是偶函数,所以y =f x cos x 为偶函数, 所以f x cos x <0的解集为⎝ ⎛⎭⎪⎫-π2,-1∪⎝⎛⎭⎪⎫1,π2.] [规律方法] 函数图象应用的常见题型与求解方法(1)研究函数性质:①根据已知或作出的函数图象,从最高点、最低点,分析函数的最值、极值. ②从图象的对称性,分析函数的奇偶性.③从图象的走向趋势,分析函数的单调性、周期性.④从图象与x 轴的交点情况,分析函数的零点等.(2)研究方程根的个数或由方程根的个数确定参数的值(X 围):构造函数,转化为两函数图象的交点个数问题,在同一坐标系中分别作出两函数的图象,数形结合求解.(3)研究不等式的解:当不等式问题不能用代数法求解,但其对应函数的图象可作出时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.[思想与方法]1.识图:对于给定函数的图象,要从图象的左右、上下分布X 围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图:借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f (x )=g (x )的解的个数,求不等式的解集等.[易错与防X]1.图象变换是针对自变量x 而言的,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位,先作如下变形f (-2x +1)=f ⎝ ⎛⎭⎪⎫-2⎝ ⎛⎭⎪⎫x -12,可避免出错. 2.明确一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称的不同,前者是自身对称,且为偶函数,后者是两个不同函数的对称关系.3.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.课时分层训练(九) 函数的图象A 组 基础达标(建议用时:30分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 的图象上所有的点( ) 【导学号:51062051】A .向右平行移动2个单位长度B .向右平行移动1个单位长度C .向左平行移动2个单位长度D .向左平行移动1个单位长度B [因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度,即可得到y =2(x -1)=2x -2的图象,故B 正确.]2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A B C DC [出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B.]3.(2017·某某某某第一中学能力测试)若函数y =a x-b 的图象如图276所示,则( )图276A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1D [由题图易知0<a <1,b >0,而函数y =a x-b 的图象是由函数y =a x的图象向下平移b 个单位得到的,且函数y =a x的图象恒过点(0,1),所以由题图可知0<b <1,故选D.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值X 围是( )A .(0,+∞) .(-∞,1) C .(1,+∞)D .(0,1]D [作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1],故选D.]5.(2017·某某市镇海中学模拟)若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是( )A .(-1,0)B .(-∞,0)∪(1,2)C .(1,2)D .(0,2)D [由{ x ≥0,f x <0,得0≤x <1.由f (x )为偶函数.结合图象(略)知f (x )<0的解集为-1<x <1.所以f (x -1)<0⇔-1<x -1<1,即0<x <2.] 二、填空题6.已知函数f (x )的图象如图277所示,则函数g (x )=log 2f (x )的定义域是________. 【导学号:51062052】图277(2,8] [当f (x )>0时,函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0时,x ∈(2,8].]7.如图278,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.图278f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0[当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎪⎨⎪⎧-k +b =0,=1,得⎩⎪⎨⎪⎧k =1,=1,∴y =x +1.当x >0时,设解析式为y =a (x -2)2-1. ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14,即y =14(x -2)2-1.综上,f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,f(1,4)x -22-1,x >0.]8.已知定义在R 上的函数y =f (x )对任意的x 都满足f (x +1)=-f (x ),当-1≤x <1时,f (x )=x 3,若函数g (x )=f (x )-log a |x |至少有6个零点,则a 的取值X 围是________.⎝ ⎛⎦⎥⎤0,15∪(5,+∞) [由f (x +1)=-f (x )得f (x +1)=-f (x +2),因此f (x )=f (x +2),函数f (x )是周期为2的周期函数.函数g (x )=f (x )-log a |x |至少有6个零点可转化成y =f (x )与h (x )=log a |x |两函数图象交点至少有6个,需对底数a 进行分类讨论.若a >1,则h (5)=log a 5<1,即a >5.若0<a <1,则h (-5)=log a 5≥-1,即0<a ≤15.所以a 的取值X 围是⎝ ⎛⎦⎥⎤0,15∪(5,+∞).] 三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],-3,x ∈2,5].(1)在如图279所示给定的直角坐标系内画出f (x )的图象;图279(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. [解] (1)函数f (x )的图象如图所示.6分(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].10分 (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.15分 10.已知f (x )=|x 2-4x +3|. (1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.【导学号:51062053】[解] (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3],(1,2],(3,+∞),其中(-∞,1],(2,3]是减区间;[1,2],[3,+∞)是增区间.10分(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.15分B 组 能力提升 (建议用时:15分钟)1.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4mB [∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称.又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称,∴两函数图象的交点关于直线x =1对称.当m 为偶数时,∑i =1mx i =2×m2=m ;当m 为奇数时,∑i =1mx i =2×m -12+1=m .故选B.]2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值X 围为________.⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ [对任意的x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|. 因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,og 13x ,x >1的图象可知,当x =12时,函数f (x )max =14,所以|k -1|≥14,解得k ≤34或k ≥54.]3.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x,g (x )在区间(0,2]上的值不小于6,某某数a 的取值X 围.【导学号:51062054】[解] (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2,4分∴y =x +1x ,即f (x )=x +1x.7分(2)由题意g (x )=x +a +1x, 且g (x )=x +a +1x≥6,x ∈(0,2].10分 ∵x ∈(0,2],∴a +1≥x (6-x ), 即a ≥-x 2+6x -1.12分令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7, 故a 的取值X 围为[7,+∞).15分。
高中数学试卷 代数——基本初等函数列练习题
高中数学试卷代数——基本初等函数列练习题一、单选题1.已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y 轴上,那么f(x1)·f(x2)等于()A.1B.a C.2D.a22.已知函数f(x)={log a x,x>0a x,x≤0(a>0,且a≠1),则f(f(−1))=()A.1B.0C.-1D.a3.已知函数f(x)=(3m2−2m)x m是幂函数,若f(x)为增函数,则m等于()A.−13B.-1C.1D.−13或14.函数f(x)=(13)x−√x的零点所在的区间为()A.(0,13)B.(13,12)C.(12,1)D.(1,2)5.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与M N最接近的是().(参考数据:lg3≈0.48)A.B.C.D.6.若y=x2,y=(12)x,y=4x2,y=x5+1,y=(x−1)2,y=x,y=a x(a>1)上述函数是幂函数的个数是()A.0个B.1个C.2个D.3个7.已知函数f(x)=|log3(x−1)|−(13)x有两个零点x1,x2,则()A.x1x2<1B.x1x2>x1+x2C.x1x2<x1+x2D.x1x2=x1+x2 8.化简(1+2 −132)(1+2 −116)(1+2 −18)(1+2 −14)(1+2 −12)的结果是()A.(1−2−132)−1B.12(1−2−1 32)−1C.1−2 −132D.12(1-2 −132)9.a=log20.7,b=(15)23,c=(12)﹣3,则a,b,c的大小关系是()A.c>b>a B.b>c>a C.c>a>b D.a>b>c 10.函数f(x)=x2−2|x|−m的零点有两个,求实数m的取值范围()A .−1<m <0B .m >0 或 m =−1C .m >0 或 −1≤m <0D .0<m <111.函数f (x )=2x +x 3﹣2在区间(0,1)内的零点个数是( )A .0B .1C .2D .312.已知函数 f(x)={x ,x ≤0x 2−x ,x >0 ,若函数g (x )=f (x )﹣m 有三个不同的零点,则实数m的取值范围为( ) A .[−12,1]B .[−12,1)C .(−14,0)D .(−14,0]13.设函数f(x)={21−x ,x ≤11−log 2x ,x >1则满足f(x)≤2的x 取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)14.若直线y=a 与函数y=|lnx+1x3|的图象恰有3个不同的交点,则实数a 的取值范围为( )A .{e 23}B .(0,e 23)C .(e 23,e )D .(1e ,1)∪{e 23}15.已知曲线f(x)=−1x在点(−1,f(−1))处的切线l 与曲线g(x)=alnx 相切,则实数a 所在的区间为(ln2≈0.69,ln5≈1.61)( ) A .(2,3)B .(3,4)C .(4,5)D .(5,6)16.方程2x •x 2=1的实数解的个数为( )A .0B .1C .2D .317.已知函数 f(x)=lnxx −a , g(x)=3(lnx−ax)lnx,若方程 f(x)=g(x) 有2不同的实数解,则实数a 的取值范围是( ) A .(−∞,e)B .(0,1e )C .(−∞,0)∪(e,+∞)D .(e,+∞)二、填空题18.计算:lg2+lg 10012−lg √2 = .19.函数 f(x)=(13)x 在 (−1,+∞) 上的值域为 .20.设 2a =5b =m ,若 1a +1b=2 ,则 m = .21.设函数f (x )的图象关于原点对称,且存在反函数f ﹣1(x ).若已知f (4)=2,则f ﹣1(﹣2)= .22.已知函f(x)={lnx ,x >0x 2+1,x ≤0,f(a)=2,则a = .23.已知幂函数 f(x)=(m 2−5m +7)x m 2−6在区间 (0,+∞) 上单调递增,则实数 m 的值为 .24.测量地震级别的里氏震级M 的计算公式为: M =lgA −lgA 0 ,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的 倍.25.函数 f(x)={tx 2+x +1,x ≤t x +78,x >t , f(x) 在定义域上是单调函数,则 t 的取值范围为 .26.若方程2x +x=4的解所在区间为[m ,m+1](m∪Z ),则m= .27.如图,煤场的煤堆形如圆锥,设圆锥母线与底面所成角为 α=π4,传输带以0.9 m 3min ⁄ 的速度送煤,则r 关于时间t 的函数是 ,当半径为 3m 时,r 对时间t 的变化率为 .28.若 f(x) 是定义在 R 上的偶函数,在 (−∞,0] 上是减函数,且 f(2)=0 ,则使得f(log 2x)<0 的 x 的取值范围是 .29.已知函数 f(x)={x 2+18x ,2≤x ≤12ax −12a +152,12<x ≤18,若对于任意的实数 x 1,x 2,x 3∈[2,18] ,均存在以 f(x 1),f(x 2),f(x 3) 为三边边长的三角形,则 a 的取值范围是 .30.函数f (x )=log 3(x 2﹣2x+10)的值域为31.已知函数f (x )= {x 2+1,x ≥0−1x ,x <0,若f (a )=1,则实数a= . 32.已知函数 f(x)=lnx −x 3 与 g(x)=x 3−ax ,若函数 f(x) 图象上存在点 P ,且点 P 关于x 轴对称点 Q 在函数 g(x) 图象上,则实数 a 的取值范围为 .33.已知函数 y =cosωx −a , x ∈[−π,π] (其中 a , ω 为常数,且 ω>0 )有且仅有5个零点,则a 的值为 , ω 的取值范围是 . 34.已知函数 f(x)={2x 2−2,x ≥0−43x ,x <0, ,函数 g(x)=f(x)+√1−x 2+|f(x)−√1−x 2|−2ax +4a 有三个零点,则实数 a 的取值范围为 .三、解答题35.计算下列各式的值:(1)823−(12)−2+(1681)34−(π)0 ;(2)(log 43+log 83)×log 32+2log 21 .36.计算求值:(1)(a 23⋅b −1)−12⋅a −12⋅b 13√a⋅b 56;(2)lg2−lg 14+3lg5−log 32⋅log 4937.已知指数函数 y =(1a)x , x ∈(0,+∞) 时,有 y >1 .(1)求 a 的取值范围;(2)解关于 x 的不等式 log a (x −1)≤log a (x 2+x −6) .38.某工厂需要建一个面积为512m 2的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用材料最省,则堆料场的长和宽分别为多少?39.已知函数 f(x)=log a (2+x) , g(x)=log a (2−x) ( a >0 且 a ≠1 ),设 ℎ(x)=f(x)−g(x) .(1)求函数 ℎ(x) 的定义域;(2)当 f(x)>g(x) 时,求 x 的取值范围.40.计算: |−7|+(−2)3+tan45°−√4 . 41.(1)化简: (3a 13b −12)2⋅√a 43÷(ab)−1(a >0,b >0) .(2)计算: log 53×(log 325+log 135)−lg4−lg250 .42.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为 y =12x 2−200x +45000 ,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?43.已知函数f (x )=e x ﹣ax ﹣a ,g (x )= 13 x 3﹣2x 2+3x+ 163.(1)讨论f (x )零点的个数;(2)若∪x 1∪[﹣1,2],∪x 2∪[﹣1,2],使得f (x 1)≥g (x 2),求a 的取值范围. 44.已知函数 f(x)={x 2−2mx,x ≥0−x 2−2mx,x <0,其中 m ∈R .(1)当 m =1 时,画出函数 f(x) 的图像,并写出 f(x) 的单调区间; (2)若 f(f(1))=1 ,求满足条件所有的 m 的值.45.已知函数 f(x)=log 3(3a x)⋅log 3x9(常数 a ∈R ).(∪)当 a =0 时,求不等式 f(x)≤0 的解集;(∪)当 x ∈[19,27] 时,求 f(x) 的最小值.46.已知函数 f(x)=2sinxsin(x +π6)+√32cos2x .(1)求函数 f(x) 的最小值及此时 x 的取值集合;(2)若函数 g(x)=f(x +π12)−√32−a 在 x ∈[0,3π4] 时有2个零点,求实数 a 的取值范围.47.某地为了鼓励节约用电,采用分段计费的方法计算用户的电费:每月用电量不超过100kw ⋅ℎ ,按0.58元/ (kw ⋅ℎ) 计费;每月用电量超过 100kw ⋅ℎ ,其中 100kw ⋅ℎ 仍按原标准收费,超过部分按0.98元/ (kw ⋅ℎ) 计费.(1)设月用电xkw ⋅ℎ ,应交电费y 元,写出y 关于x 的函数关系式;(2)小王家第四季度用电325kw ⋅ℎ ,共交电费206.5元,其中10月份电费49.3元,若已知12月份用电超过 100kw ⋅ℎ ,问小王家10月,11月和12月各用电多少 kw ⋅ℎ ?48.计算(x ﹣4y 5)﹣2•(﹣2x ﹣3y ﹣2)3•(4x ﹣1y ﹣20)﹣1. 49.已知函数f(x)=(x 2−ax)lnx +x(a ∈R ,a >0).(1)若0<a ≤1,试问f(x)是否存在零点.若存在,请求出该零点;若不存在,请说明理由.(2)若f(x)有两个零点,求满足题意的a的最小整数值.(参考数据:ln2≈0.693,√e≈1.649)50.已知函数f(x)=lg(1−x)−lg(1+x).(1)解方程:f(x)=0;(2)求证:当x1∈(−1,1),x2∈(−1,1)时,f(x1)+f(x2)=f(x1+x21+x1x2).答案解析部分1.【答案】A【知识点】有理数指数幂的运算性质【解析】【解答】因为以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,所以 x 1+x 2=0 .因为f (x )=a x ,所以f (x 1)·f (x 2)= a x 1⋅a x 2=a x 1+x 2=a 0=1 . 故答案为:A【分析】结合题目条件,运用中点坐标计算公式,得到一个等式,运用指数运算,即可得出答案。
第7节 函数的图象
象在 x 轴下方的部分翻折上来,即得到 f(x)=|lg(2-x)|的图象.由图象知,在 选项中的区间上 f(x)是增函数的显然只有 D. 答案: D
返回
数形结 合 的数
2.已知函数 f(x)=log12x,x>0,
若关于 x 的方程 f(x)=k
学方法
2x,x≤0,
有两个不相等的实数根,则实数 k 的取值范围是________.
返回
2.会用两种数学思想 (1)数形结合思想 借助函数图象, 可以研究函数的定义域、值域、单调性、奇偶 性、对称性等性质;利用函数的图象,还可以判断方程f(x)=g(x) 的解的个数、求不等式的解集等. (2)分类讨论思想 画函数图象时,如果解析式中含参数, 还要对参数进行讨论, 分别画出其图象.
解析: 作出函数 y=f(x)与 y=k 的图象,如图所示:
由图可知,若关于 x 的方程 f(x)=k 有两个不相等的
实数根,则 k∈(0,1].答案: (0,1]
返回
[变式练] 根据已知条件可画出大致图像,再求解
3.设奇函数 f(x)在(0,+∞)上为增函数,且 f(1)=0,则不等式fx-xf-x
易知此时两函数图象在 x∈[0,1]上有且只有一个交点;
②当 m>1 时,在同一平面直角坐标系中作出函数 y=(mx-1)2 与 y= x+m 的图象,如图.要满足题意,则(m-1)2≥1+m,解得 m≥3 或 m≤0(舍去),∴m≥3. 综上,正实数 m 的取值范围为(0,1]∪[3,+∞).答案: (1)C (2)B
[拓展练]
5.若关于 x 的不等式 4ax-1<3x-4(a>0,且 a≠1)对于任意的 x>2 恒
成立,则 a 的取值范围为( )
函数零点练习题
函数零点练习题一、选择题1. 函数f(x)=x²-1在区间[-1,1]上有几个零点?A. 0个B. 1个C. 2个D. 3个2. 若函数f(x)=2x³-x在(-∞,+∞)上恰有一个零点,则f'(x)=0的解有几个?A. 0个B. 1个C. 2个D. 3个3. 函数g(x)=x³-3x²+2在区间[1,2]上零点的个数是?A. 0个B. 1个C. 2个D. 3个4. 函数h(x)=x³+2x²-4x-8的零点个数为?A. 0个B. 1个C. 2个D. 4个5. 函数y=x³-6x²+11x-6的零点一定在哪个区间内?A. (1,2)B. (2,3)C. (3,4)D. (4,5)二、填空题6. 若函数f(x)=x³-6x²+11x-6的零点在区间[1,2]内,求f'(x)=______。
7. 函数y=x³-8x+4的导数为y'=______。
8. 函数f(x)=x³-3x²+2在区间[1,2]上有一个零点,求f(x)在x=1处的导数值为______。
9. 若函数g(x)=x³-3x²+2在区间[1,2]上的零点为x₀,则g'(x₀)=______。
10. 若函数h(x)=x³+2x²-4x-8在区间[-2,2]上恰有两个零点,求h'(x)=______。
三、解答题11. 已知函数f(x)=x³-6x²+11x-6,求证其在区间[1,2]内恰有一个零点。
12. 函数y=x³-8x+4在区间[-1,1]上有几个零点?请给出证明。
13. 设函数g(x)=x³-3x²+2,求其在区间[1,2]上的零点,并证明其唯一性。
14. 函数h(x)=x³+2x²-4x-8的导数为h'(x),求h(x)在区间[-2,2]上的零点个数,并给出证明。
集合经典题型总结练习题与答案
必修一集合集合与第函数概一念章函数及其定义函数的.概念表示方法:列举法、描述法基本关系:交集、并集、补集、全集、属于基本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表增函数单调性基本性质最大、最小值定义义奇偶性;判断方法减函数第二章基本初等函指数函数互为反函数对数函数.a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r整数指数幂指数幂有理数指数幂无理数指数幂定义定义域 R指数函数性性质值域( 0,+∞)质图像过定点( 0,1)单调性对数底数对数真数定义log a ( M N ) log a M log a N与对log a M log a M log a N数运运算N算log a MnMn log a定义定义域对数函数及性值域图象质过点( 1, 0)性质幂函数定义单调性性质过( 1,1)奇偶性单调性第三章函数与程函数的应用函数模型及应用.定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型.集合学习过程一、复习预习考纲要求:1.理解集合的概念。
2.能在具体的数学环境中,应用集合知识。
3.特别是集合间的运算。
4.灵活应用集合知识与其它知识间的联系,集合是一种方法。
二、知识讲解1.集合的相关概念基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.常见的数集:自然数集、整数集、有理数集、实数集2集合间的关系任何一个集合是它本身的子集,记为A A;空集是任何集合的子集,记为 A ;空集是任何非空集合的真子集;n 元集的子集个数共有2n个;真子集有2n1个;非空子集有2n1个;非空的真子集有2n 2 个.3.集合间的运算交:AI B{ x | x A,且 x B}并:AUB{ x | x A或 x B}补: C U A{ x U ,且x A}( 1)A A,A,A U,C U A U,包含关系:B,B C A C;AI B A,AI B B;AUB A,AUB B.A( 2)等价关系: A B A I B A A U B B C U AUB U ( 3)集合的运算律:交换律: A B B A; A B B A.新课标第一网结合律 : (A B)C A( B C); (A B)C A(B C)分配律 :.A(BC)( A B)( A C); A( B C )( A B)(A C)三、例题精析考点一子集、真子集【例题 1】:集合{ 1,0,1}共有个子集【答案】: 8【解析】: n 元集的子集个数共有2n个,所以是8个。
(复习指导)第2章第7节对数与对数函数Word版含解析
对数与对数函数[考试要求]1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.1.对数的概念如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.提醒:指数式与对数式的关系2.对数的性质、换底公式与运算性质(1)对数的性质:①log a1=0;②a log a N=N;③log a a b=b(a>0,且a≠1).(2)换底公式:log a b=log c blog c a(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:①log a(M·N)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R).3.对数函数的定义、图象与性质定义函数y =log a x(a>0且a≠1)叫做对数函数图象a>10<a<1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.[常用结论]1.换底公式的三个重要结论(1)log a b=1log b a;(2)log am b n=nm log a b;(3)log a b·log b c·log c d=log a d.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x.()(3)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象不在第二、三象限.( )[答案] (1)× (2)× (3)√ (4)√ 二、教材习题衍生1.(多选)(2020·山东临沂期末)若10a =4,10b =25,则下列结论正确的是( )A .a +b =2B .b -a =1C .ab >8(lg 2)2D .b -a >lg 6ACD [由10a =4,10b =25,得a =lg 4,b =lg 25,则a +b =lg 4+lg 25=lg 100=2,b -a =lg 25-lg 4=lg 254,又lg 254>lg 6,∴b -a >lg 6,∴ab =4lg 2lg 5>4lg 2lg 4=8(lg 2)2,故选ACD.]2.已知a =2,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [因为0<a <1,b <0,c =log 1213=log 23>1.所以c >a >b .故选D.]3.函数y =log 23(2x -1)的定义域是________.⎝ ⎛⎦⎥⎤12,1 [由log 23 (2x -1)≥0,得0<2x -1≤1. ∴12<x ≤1. ∴函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.]4.函数y =log a (4-x )+1(a >0,且a ≠1)的图象恒过点________. (3,1) [当4-x =1,即x =3时,y =log a 1+1=1.所以函数的图象恒过点(3,1).] 考点一对数式的化简与求值对数运算的一般思路[典例1](1)设2a=5b=m,且1a+1b=2,则m等于()A.10 B.10 C.20 D.100 (2)(多选)下列各式或说法中正确的有() A.lg(lg 10)=0B.lg(ln e)=0C.若10=lg x,则x=100D.若log25x=12,则x=±5(3)(2020·全国卷Ⅲ)Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=K1+e-0.23(t-53),其中K为最大确诊病例数,当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3)() A.60 B.63C.66 D.69(1)A(2)AB(3)C[(1)由已知,得a=log2m,b=log5m,则1 a +1b=1log2m+1log5m=log m2+log m5=log m10=2.解得m=10.故选A.(2)对于A,因为lg 10=1,lg 1=0,所以lg(lg 10)=lg 1=0,故A正确;对于B,因为ln e=1,lg 1=0,所以lg(ln e)=lg 1=0,故B正确;对于C,因为10=lg x,所以x=1010,故C错误;对于D,因为log25x=12,所以25=x,所以x=5,故D错误.故选AB.(3)由题意可得,当I (t *)=0.95K 时,K 1+e -0.23(t *-53)=0.95K ,∴119=e -0.23(t *-53),∴ln 19=0.23(t *-53),∴t *-53≈13,∴t *≈66,故选C.]点评:对数运算中log a b =1log b a 是常用的性质之一.[跟进训练]1.(2020·全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B .19 C.18D .16B [法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a = 3-2=132=19,故选B.法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.]2.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1A [由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1,故选A.]考点二 对数函数的图象及其应用利用对数函数的图象解决的两类问题及技巧(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.[典例2] (1)(多选)若函数f (x )=a x -2,g (x )=log a |x |,其中a >0,且a ≠1,则函数f (x ),g (x )在同一坐标系中的大致图象可能是( )A B C D(2)当0<x ≤12时,4x <log a x ,则a 的取值范围是( ) A .⎝ ⎛⎭⎪⎫0,22B .⎝ ⎛⎭⎪⎫22,1C .(1,2)D .(2,2)(1)AD (2)B [(1)易知g (x )=log a |x |为偶函数.当0<a <1时,f (x )=a x -2单调递减,g (x )=log a |x |在(0,+∞)上单调递减,此时A 选项符合题意.当a >1时,f (x )=a x -2单调递增,g (x )=log a |x |在(0,+∞)上单调递增,此时D 选项符合题意.故选AD.(2)构造函数f (x )=4x 和g (x )=log a x ,当a >1时不满足条件,当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.] [母题变迁]1.将本例(2)中“4x <log a x ”变为“4x =log a x 有解”,a 的取值范围是________.⎝⎛⎦⎥⎤0,22 [若方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则函数y =4x 与函数y =log a x 的图象在⎝ ⎛⎦⎥⎤0,12上有交点.由图象可知⎩⎨⎧0<a <1,log a 12≤2,解得0<a ≤22,即a 的取值范围为⎝⎛⎦⎥⎤0,22.]2.若将本例(2)变为:当0<x ≤14时,x <log a x ,则实数a 的取值范围为________.⎝ ⎛⎭⎪⎫116,1 [若x <log a x 在x ∈⎝ ⎛⎦⎥⎤0,14上恒成立,则0<a <1,且y =x 的图象在y =log a x 图象的下方,如图所示,由图象知14<log a 14, 所以⎩⎨⎧0<a <1,a >14,解得116<a <1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫116,1.][跟进训练]1.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由对数函数的图象和性质及函数图象的平移变换知0<a <1,0<c <1.] 2.已知不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,则实数a 的取值范围为________.⎣⎢⎡⎭⎪⎫116,1 [由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈⎝ ⎛⎭⎪⎫0,12时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立;当0<a <1时,如图所示.要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116, 所以116≤a <1.即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.]考点三 对数函数的性质及其应用比较对数值的大小比较对数值大小的常见类型及解题方法 常见类型 解题方法底数为同一常数 可由对数函数的单调性直接进行判断 底数为同一字母需对底数进行分类讨论底数不同,真数相同 可以先用换底公式化为同底后,再进行比较 底数与真数都不同常借助1,0等中间量进行比较[典例3-1] (1)已知a =log 372,b =⎝ ⎛⎭⎪⎫14,c =log 13 15,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b(3)(2020·全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b(1)D (2)A (3)A [(1)∵c =log 1315=log 35,log 35>log 372>log 33=1,即c >a >1,又⎝ ⎛⎭⎪⎫14<⎝ ⎛⎭⎪⎫140=1.∴c >a >b ,故选D.(2)∵a =log 52<log 55=12,b =log 0.50.2>log 0.50.5=1,c =0.50.2=⎝ ⎛⎭⎪⎫12>12,0.50.2<1,∴a <c <b ,故选A.(3)∵23<32,∴2<3,∴log 32<log 33=23,∴a <c .∵33>52,∴3>5,∴log 53>log 55=23,∴b >c ,∴a <c <b ,故选A.]点评:本例T (1)和T (3)主要使用了化为同底和中间量比较大小,其中常数化为同底,利用了性质m =log a a m ,本例T (2)主要使用中间量比较大小.解简单对数不等式求解对数不等式的两种类型及方法类型方法log a x >log a b借助y =log a x 的单调性求解,如果a 的取值不确定,需分a>1与0<a <1两种情况讨论log a x >b需先将b 化为以a 为底的对数式的形式,再借助y =log a x 的单调性求解[典例3-2] (1)若log a 34<1(a >0且a ≠1),则实数a 的取值范围是________.(2)若log a (a 2+1)<log a 2a <0,则a 的取值范围是________.(1)⎝ ⎛⎭⎪⎫0,34∪(1,+∞) (2)⎝ ⎛⎭⎪⎫12,1 [(1)当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1. ∴实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞). (2)由题意得a >0且a ≠1,故必有a 2+1>2a , 又log a (a 2+1)<log a 2a <0,所以0<a <1, 同时2a >1,所以a >12.综上,a ∈⎝ ⎛⎭⎪⎫12,1.]点评:在对数不等式中,真数大于0是隐含条件,不能忘记!与对数函数有关的复合函数的单调性求解与对数函数有关的复合函数单调性的步骤 一求求出函数的定义域,所有问题都必须在定义域内讨论二判判断对数函数的底数与1的关系,分a >1与0<a <1两种情况判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性2 +∞)单调递增,则a 的取值范围是( )A .(-∞,-1]B .(-∞,2]C .[2,+∞)D .[5,+∞)(2)设函数f (x )=log 13(4x 2-4ax +3a )在(0,1)上是增函数,则a 的取值范围是________.(1)D (2)[2,4] [(1)由x 2-4x -5>0,得x <-1或x >5,即函数f (x )的定义域为(-∞,-1)∪(5,+∞).令t =x 2-4x -5,则t =(x -2)2-9,所以函数t 在(-∞,-1)上单调递减,在(5,+∞)上单调递增,又函数y =lg t 在(0,+∞)上单调递增,从而函数f (x )的单调递增区间为(5,+∞),由题意知(a ,+∞)⊆ (5,+∞),∴a ≥5,故选D.(2)令t =4x 2-4ax +3a ,由y =log 13t 在(0,+∞)是减函数可得t =4x 2-4ax +3a 在(0,1)上是减函数,且t >0在(0,1)上恒成立,又t =4x 2-4ax +3a =4⎝ ⎛⎭⎪⎫x -a 22-a 2+3a , ∴⎩⎨⎧ a 2≥1,4-4a +3a ≥0,解得2≤a ≤4.]点评:已知f (x )=log a [g (x )]在区间[m ,n ]上是增函数,对于这类问题,应从两个方面考虑:一是根据a 与1的关系确定g (x )在[m ,n ]上的单调性,二是g (x )>0在x ∈[m ,n ]时恒成立,此时只需g (x )min >0即可.[跟进训练]1.已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <bA [∵a =log 27>log 24=2,1<b =log 38<log 39=2,c =0.30.2<1,∴c <b <a ,故选A.]2.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是 ( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)C [由题意得⎩⎨⎧ a >0,log 2a >log 12 a 或⎩⎨⎧ a <0,log 12 (-a )>log 2(-a ), 即⎩⎪⎨⎪⎧ a >0,log 2a >-log 2a ,或⎩⎪⎨⎪⎧ a <0,log 2(-a )<-log 2(-a ), 即⎩⎪⎨⎪⎧ a >0,log 2a >0或⎩⎪⎨⎪⎧a <0,log 2(-a )<0, 解得a >1或-1<a <0,故选C.]3.函数y =log 13 (x 2-3x +2)的单调递增区间为________,值域为________.(-∞,1) R [由x 2-3x +2>0得x >2或x <1,即函数的定义域为{x |x >2或x <1},当x 在定义域内变化时,x 2-3x +2取遍(0,+∞)内的每一个值, ∴值域为R .令t =x 2-3x +2(t >0),t 在(2,+∞)上单调递增,在(-∞,1)上单调递减,而函数y =log 13t 在其定义域内是单调递减函数,∴y =log 13(x 2-3x +2)在(-∞,1)上单调递增,在(2,+∞)上单调递减,即函数y =log 13(x 2-3x +2)的单调递增区间为(-∞,1),单调递减区间为(2,+∞).]4.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.⎝ ⎛⎭⎪⎫13,+∞ [要使f (x )=log 3(ax 2-x )在[3,4]上单调递增, 则y =ax 2-x 在[3,4]上单调递增, 且在[3,4]上y =ax 2-x >0恒成立,即⎩⎨⎧ 12a ≤3,9a -3>0,解得a >13.]。
函数零点练习题
函数零点练习题函数零点是指函数图像与x轴交点的横坐标之值,也就是函数f(x)= 0的解。
在数学中,寻找函数的零点是一个常见的问题,因为理解和求解函数的零点有助于我们对函数的性质和行为有更深入的了解。
本文将介绍一些函数零点练习题,帮助读者提高对函数零点的求解能力。
练习一:线性函数的零点首先我们来看一个简单的例子,求解线性函数的零点。
线性函数的一般形式为f(x) = ax + b,其中a和b为常数。
要求解线性函数的零点,我们需要找到一个横坐标x,使得f(x) = 0。
由于线性函数的图像是一条直线,所以零点即为直线与x轴的交点。
例如,考虑函数f(x) = 2x - 3,我们将f(x)置为零得到方程2x - 3 = 0。
解这个方程我们得到x = 3/2,即函数f(x) = 2x - 3与x轴交于点(3/2, 0)。
因此,线性函数f(x) = 2x - 3的零点为x = 3/2。
练习二:二次函数的零点接下来我们来看一个二次函数的例子,求解二次函数的零点。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
同样地,要求解二次函数的零点,我们需要找到一个横坐标x,使得f(x) = 0。
而求解二次函数的零点,可以通过配方法、因式分解或者求根公式等方式进行。
例如,考虑函数f(x) = x^2 - 4x + 3,我们将f(x)置为零得到方程x^2 - 4x + 3 = 0。
通过因式分解得到(x - 1)(x - 3) = 0,解这个方程我们得到x = 1和x = 3,即函数f(x) = x^2 - 4x + 3与x轴交于点(1, 0)和(3, 0)。
因此,二次函数f(x) = x^2 - 4x + 3的零点为x = 1和x = 3。
练习三:三角函数的零点除了线性函数和二次函数,我们还可以考虑求解三角函数的零点。
三角函数包括正弦函数、余弦函数和正切函数等,它们的零点是三角函数图像与x轴的交点。
函数零点问题典例(含答案)
3、已知函数f(x)=2x+ln(1-x),讨论函数f(x)在定义域内的零点个数.
4、已知函数f(x)=x2+2mx+2m+1.
(1)若函数f(x)的两个零点x1,x2满足x1∈(-1,0),x2∈(1,2),求实数m 的取值范围;
(2)若关于x的方程f(x)=0的两根均在区间(0,1)内,求实数m的取值范围.
【点评】含指数式和对数式的方程常用换元法向常规方程转化,解二次方程的常用方法是因式分解和求根公式.注意导数的零点的意义.
2、分析
(1)直接解方程f(x)=0有困难,可以作出函数y=2-x及y=lg(x+1)的图象,还可以用判定定理.
(2)画出函数图象,结合最值与交点情况求解.
【解析】
(1)方法一:令f(x)=0,得2-x=lg(x+1),作出函数y=2-x及y=lg(x+1)的图象(如图2-16-1),可知有一个交点.∴函数f(x)的零点有且只有一个.
方法二:
首先x>-1,在区间(-1,+∞)上2-x是减函数,-lg(x+1)也是减函数,∴函数f(x)在区间(-1,+∞)上为减函数且连续.
3、【解析】函数
f′(x)=2+-1 1-x
令f′(x)=0, 得
-
精品文档考试教学资料施工组织设计方案--。
函数的零点练习题
函数的零点(一)练习1、函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是A.4B.3C.2D.12、函数12log )(2-+=x x x f 的零点必落在区间( ) A.⎪⎭⎫ ⎝⎛41,81 B.⎪⎭⎫ ⎝⎛21,41 C.⎪⎭⎫ ⎝⎛1,21 D.(1,2)3、数()f x 的零点与()422x g x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是()A. ()41f x x =-B. ()2(1)f x x =-C. ()1x f x e =-D.)21ln()(-=x x f 4.若0x 是方程31)21(x x =的解,则0x 属于区间( )A .⎪⎭⎫ ⎝⎛1,32 .B .⎪⎭⎫ ⎝⎛32,21 .C .⎪⎭⎫ ⎝⎛21,31D .⎪⎭⎫ ⎝⎛31,0 5.若0x 是方程式lg 2x x +=的解,则0x 属于区间( )A .(0,1).B .(1,1.25).C .(1.25,1.75)D .(1.75,2)6.函数()x x f x 32+=的零点所在的一个区间是( ) A .()1,2--B .()0,1-C .()1,0D .()2,17.函数()2-+=x e x f x 的零点所在的一个区间是( ) A .()1,2--B .()0,1-C .()1,0D .()2,18.设函数,)12sin(4)(x x x f -+=则在下列区间中函数)(x f 不存在零点的是A .[]2,4--B .[]0,2-C .[]2,0D .[]4,29.已知0x 是函数()x x f x -+=112的一个零点,若()01,1x x ∈,()+∞∈,02x x ,则A .()01<x f ,()02<x fB .()01<x f ,()02>x fC .()01>x f ,()02<x fD .()01>x f ,()02>x f10.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .111.函数()⎩⎨⎧>+-≤-+=0,ln 20,322x x x x x x f 的零点个数为( ) A .0 B .1 C .2 D .312、函数f(x)=x —cosx 在[0,+∞)内 ( )(A )没有零点 (B )有且仅有一个零点(C )有且仅有两个零点 (D )有无穷多个零点13.设m ,k 为整数,方程220mx kx -+=在区间(0,1)内有两个不同的根,则m+k 的最小值为(A )-8 (B )8 (C)12 (D) 1314、若函数a x a x f x --=)( (0>a 且1≠a )有两个零点,则实数a 的取值范围 是15、方程 96370x x -•-=的解是..16、已知函数)(x f y =和)(x g y =在]2,2[-的图象如下所示:给出下列四个命题:①方程0)]([=x g f 有且仅有6个根 ②方程0)]([=x f g 有且仅有3个根③方程0)]([=x f f 有且仅有5个根 ④方程0)]([=x g g 有且仅有4个根 其中正确的命题是.(将所有正确的命题序号填在横线上).17、已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程)0()(>=m m x f 在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=18.已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是_______19.方程223x x -+=的实数解的个数为.20.若函数()a x a x f x --=()1.0≠>a a 有两个零点,则实数a 的取值范围是。
高中数学求函数的值域基础知识与专项练习题(含答案解析)
高中数学求函数的值域基础知识与专项练习题(含答案解析)作为函数三要素之一,函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。
所以掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决。
一、基础知识: 1、求值域的步骤: (1)确定函数的定义域(2)分析解析式的特点,并寻找相对应的方法(此为关键步骤) (3)计算出函数的值域2、求值域的常用工具:尽管在有些时候,求值域就像神仙施法念口诀一样,一种解析式特点对应一个求值域的方法,只要掌握每种方法并将所求函数归好类即可操作,但也要掌握一些常用的思路与工具。
(1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。
若()f x 为单调函数,则在边界处取得最值(临界值)。
(2)函数的图像(数形结合):如果能作出函数的图像,那么值域便一目了然(3)换元法:()f x 的解析式中可将关于x 的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。
(4)最值法:如果函数()f x 在[],a b 连续,且可求出()f x 的最大最小值,M m ,则()f x 的值域为[],m M注:一定在()f x 连续的前提下,才可用最值来解得值域3、常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归。
(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域(2)二次函数(2y ax bx c =++):二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解。
(关键点:①抛物线开口方向,②顶点是否在区间内) 例:()[]223,1,4f x x x x =−−∈−解:()()214f x x =−−∴对称轴为:1x = ()[]4,5f x ∴∈−(3)反比例函数:1y x=(1)图像关于原点中心对称 (2)当,0x y →+∞→ 当,0x y →−∞→(4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a > 注:因为此类函数的值域与a 相关,求a 的值时要先保证x的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a = ② 极值点:,x a x a ==− ③ 极值点坐标:()(),2,,2a a a a −−④ 定义域:()(),00,−∞+∞⑤ 自然定义域下的值域:(),22,a a ⎤⎡−∞−+∞⎦⎣(5)函数:()0ay x a x=−> 注意与对勾函数进行对比 ① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =± ③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)分式函数:分式函数的形式较多,所以在本节最后会对分式函数值域的求法进行详细说明(见附)二、典型例题:将介绍求值域的几种方法,并通过例题进行体现1、换元法:将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出值域(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围(2)换元的作用有两个:① 通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的② 化归:可将不熟悉的函数转化为会求值域的函数进行处理(3)换元的过程本质上是对研究对象进行重新选择的过程,在有些函数解析式中明显每一项都是与x 的某个表达式有关,那么自然将这个表达式视为研究对象。
零点定理 讲义
函数与方程知识要点梳理知识点一、函数的零点1.函数的零点一般地,如果函数在实数处的值等于零,即,则叫做这个函数的零点.要点诠释:函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.归纳:方程有实数根函数的图象与轴有交点函数有零点.2.二次函数零点的判定二次函数的零点个数,方程的实根个数见下表.判别式方程的根函数的零点两个不相等的实根两个零点两个相等的实根一个二重零点无实根无零点3.二次函数零点的性质①二次函数的图象是连续的,当它通过零点时(不是二重零点),函数值变号.②相邻两个零点之间的所有的函数值保持同号.引伸:对任意函数,只要它的图象是连续不间断的,上述性质同样成立.4.二次函数的零点的应用①利用二次函数的零点研究函数的性质,作出函数的简图.②根据函数的零点判断相邻两个零点间函数值的符号,观察函数的一些性质.引伸:二次函数的零点的应用可推广到一般函数.5.变号零点与不变号零点如果函数在一个区间上的图象不间断,并且在它的两个端点处的函数值异号,即,则这个函数在这个区间上,至少有一个零点,即存在一点,使.如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点,如果没有穿过x轴,则称这样的零点为不变号零点.知识点二、二分法1.二分法所谓二分法就是通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法.2.用二分法求函数零点的一般步骤:已知函数定义在区间D上,求它在D上的一个零点x0的近似值x,使它满足给定的精确度.第一步:在D内取一个闭区间,使与异号,即,零点位于区间中.第二步:取区间的中点,则此中点对应的坐标为.计算和,并判断:①如果,则就是的零点,计算终止;②如果,则零点位于区间中,令;③如果,则零点位于区间中,令第三步:取区间的中点,则此中点对应的坐标为.计算和,并判断:①如果,则就是的零点,计算终止;②如果,则零点位于区间中,令;③如果,则零点位于区间中,令;……继续实施上述步骤,直到区间,函数的零点总位于区间上,当和按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数的近似零点,计算终止.这时函数的近似零点满足给定的精确度.三、规律方法指导1.如何求函数的零点?3北洋教育答:求函数的零点即为求出相应方程的解或函数图象与轴交点的横坐标. 2.如果函数在其定义域内为单调函数,则函数在其定义域内最多有几个零点?答:单调函数在其定义域内最多有一个零点.经典例题透析类型一、求函数的零点1.求下列函数的零点.(1); (2).(3)12)(-=xx f举一反三:【变式1】求函数:(1); (2)的零点.练习 1求函数)1lg()(-=x x f 的零点.2.设函数f (x )=222[1,),2(,1)x x x x x -∈+∞⎧⎨-∈-∞⎩则函数F (x )=f (x )-14的零点是________.类型二、确定函数零点的个数2.二次函数中,,则函数的零点的个数是( )A .1B .2C .0D .无法确定练习1.函数f (x )=(x -1)ln xx -3的零点有 ( )A .0个B .1个C .2个D .3个2 函数f (x )=⎩⎨⎧0>,ln +2-0,3-2+2x x x x x ≤的零点个数为( ).A .0B .1C .2D .3零点定理的探究:(1)观察二次函数32)(2--=x x x f 的图象:○1 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>). ○2 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>). (2)观察下面函数)(x f y =的图象○1 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>). ○2 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>). ○3 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>).练习1.若函数f (x )在区间[-2,2]上的图象是连续不断的曲线,且函数f (x )在(-2,2)内有一个零点,则f (-2)·f (2)5北洋教育的值 ( ) A .大于0 B .小于0 C .等于0 D .不能确定2.设函数f (x )=x 3+bx +c 是[-1,1]上的增函数,且f (-12)·f (12)<0,则方程f (x )=0在[-1,1]内( )A .可能有3个实数根B .可能有2个实数根C .有唯一的实数根D .没有实数根类型三 通过零点定理判定零点区间设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈(1,2)内近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间 ( ) A .(1.25,1.5) B .(1,1.25) C .(1.5,2) D .不能确定练习:1 .用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:f (1.600 0)=0.200 f (1.587 5)=0.133 f (1.575 0)=0.067 f (1.562 5)=0.003f (1.556 2)=-0.029f (1.550 0)=-0.060据此数据,可得f (x )=3x -x -4的一个零点的近似值(精确到0.01)为____________.2.设f (x )=3x -x 2,则在下列区间中,使函数f (x )有零点的区间是 ( )A .[0,1]B .[1,2]C .[-2,-1]D .[-1,0]3.下列方程在(0,1)内存在实数解的是( ). A .x 2+x -3=0 B .x1+1=0 C .21x +ln x =0D .x 2-lg x =04.若函数f (x )的图象是连续不断的,且f (0)>0,f (1)f (2)f (4)<0,则下列命题正确的是( ). A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点5.(2009·天津高考)设函数f (x )=13x -ln x (x >0),则y =f (x ) ( )A .在区间(1e ,1),(1,e)内均有零点B .在区间(1e,1),(1,e)内均无零点C .在区间(1e ,1)内有零点,在区间(1,e)内无零点D .在区间(1e ,1)内无零点,在区间(1,e)内有零点类型四、用二分法求函数的零点的近似值1.如图所示,以下每个函数都有零点,但不能..用二分法求图中函数零点的是3.求函数的一个正数零点(精确到0.1).举一反三:【变式1】用二分法求函数的一个正零点(精确到)类型四、用二分法解决实际问题4.中央电视台有一档娱乐节目“幸运52”,主持人李咏给选手在限定时间内猜某一物品的售价的机会,7北洋教育如果猜中,就把物品奖给选手,同时获得一枚商标.某次猜一种品牌的手机,手机价格在500~1000元之间,选手开始报价:1000元,主持人说:高了,紧接着报价900元,高了;700元,低了;880元,高了;850元,低了;851元,恭喜你,猜中了.表面上看猜价格具有很大的碰运气的成分,实际上,游戏报价过程体现了“逼近”的数学思想,你能设计出可行的猜价方案来帮助选手猜价吗?学习成果测评基础达标一、选择题1.(2011 东北四市 6)已知函数有唯一零点,则下列区间必存在零点的是()A. B. C. D.2.有两个互为相反数的零点的函数( )A.只能是偶函数B.可以是奇函数C.可以是增函数D.可以是减函数3.(2011 广东广州3月6)若函数没有零点,则实数的取值范围是()A. B. C. D.4.设函数是[-1,1]上的增函数,且,则方程在[-1,1]内( )A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根5.若已知,则下列说法中正确的是( )A.在上必有且只有一个零点B.在上必有正奇数个零点C.在上必有正偶数个零点D.在上可能有正偶数个零点,也可能有正奇数个零点,还可能没有零点6.函数在区间内的函数值( )A.大于等于0B.小于等于0C.大于0D.小于07.如图,下列函数图象与x轴均有交点,但不宜用二分法求交点横坐标的是( )二、填空题1.三次方程在下列连续整数____________之间有根.①-2与-1 ②-1与0 ③0与1 ④1与2 ⑤2与32.函数的零点是__________.三、解答题1.用二分法求在区间的一个实根(精确到0.01).高考真题【变式2】(2011 山东理16)已知函数,当时,函数的零点,则___________. .。
函数的零点(例、练及答案)
高三小专题二:函数的零点(例、练及答案)1.零点的判断与证明例1:已知定义在()1,+∞上的函数()ln 2f x x x =--, 求证:()f x 存在唯一的零点,且零点属于()3,4. 2.零点的个数问题例2:已知函数()f x 满足()()3f x f x =,当[)1,3x ∈,()ln f x x =,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是() A .ln 31,3e ⎛⎫ ⎪⎝⎭B .ln 31,93e ⎛⎫⎪⎝⎭C .ln 31,92e ⎛⎫⎪⎝⎭D .ln 3ln 3,93⎛⎫⎪⎝⎭3.零点的性质例3:已知定义在R 上的函数()f x 满足:()[)[)2220,121,0x x f x xx ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,()252x g x x +=+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为() A .5-B .6-C .7-D .8-4.复合函数的零点例4:已知函数()243f x x x =-+,若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根,则实数b 的取值范围是() A .()2,0- B .()2,1--C .()0,1D .()0,2专项练习一、选择题1.设()ln 2f x x x +-=,则函数()f x 的零点所在的区间为( ) A .()0,1B .()1,2C .()2,3D .()3,42.已知a 是函数()12log 2x x f x =-的零点,若00x a <<,则()0f x 的值满足( )A .()00f x =B .()00f x >C .()00f x <D .()0f x 的符号不确定3.函数2()2f x x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,24.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a -----+-=+的两个零点分别位于区间( ) A .(),a b 和(),b c 内B .(,)a -∞和(),a b 内C .(),b c 和(),c +∞内D .(,)a -∞和(),c +∞内5.设函数()f x 是定义在R 上的奇函数,当0x >时,()e 3x f x x =+-,则()f x 的零点个数为( ) A .1B .2C .3D .46.函数()221ln 0x x x xx f x ⎧+-≤=⎨-+>⎩的零点个数为() A .3B .2C .7D .07.已知函数()101x x xf x ≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .()1,2B .(],2-∞-C .()(),12,-∞+∞D .(][),12,-∞+∞8.若函数()312f x ax a +-=在区间()1,1-内存在一个零点,则a 的取值范围是( )A .1,5⎛⎫+∞ ⎪⎝⎭B .()1,1,5⎛⎫-∞-+∞ ⎪⎝⎭C .11,5⎛⎫- ⎪⎝⎭D .(),1-∞-9.已知函数()00exx x f x ≤⎧=⎨>⎩,则使函数()()g x f x x m =+-有零点的实数m 的取值范围是( ) A .[)0,1B .(1),-∞C .(](),12,-∞+∞D .(](),01,-∞+∞10.已知()f x 是奇函数且是R 上的单调函数,若函数221()()y f x f x λ++=-只有一个零点,则实数λ 的值是( )A .14 B .18C .78-D .38-11.已知当[]0,1x ∈时,函数21()y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1][23,+)∞ B .(]0,13[),+∞C .[23,+)∞D .[3,+)∞12.已知函数()y f x =和()y g x =在[]2,2-的图像如下,给出下列四个命题: (1)方程()0f g x =⎡⎤⎣⎦有且只有6个根 (2)方程()0g f x =⎡⎤⎣⎦有且只有3个根 (3)方程()0f f x =⎡⎤⎣⎦有且只有5个根 (4)方程()0g g x =⎡⎤⎣⎦有且只有4个根则正确命题的个数是( ) A .1 B .2 C .3 D .4二、填空题13.函数()052log ||x f x x -=-.的零点个数为________.14.设函数31y x =与2212x y -⎛⎫= ⎪⎝⎭的图象的交点为00(,)x y ,若0,1()x n n ∈+,n ∈N ,则0x 所在的区间是______.15.函数()22026ln 0f x x x x x x ⎧-≤=⎨-+>⎩的零点个数是________.16.已知函数()23||f x x x =+,R x ∈,若方程()1|0|f x a x --=恰有4个互异的实数根,则实数a 的取值范围是________________.三、解答题17.关于x 的二次方程21()10x m x ++-=在区间[]0,2上有解,求实数m 的取值范围.18.设函数()1()10f x x x=->.(1)作出函数()f x 的图象; (2)当0a b <<且()()f a f b =时,求11a b+的值; (3)若方程()f x m =有两个不相等的正根,求m 的取值范围.参考答案1.【答案】见解析 【解析】()111x f x x x-'=-=,()1,x ∈+∞,()0f x '∴>,()f x ∴在()1,+∞单调递增,()31ln30f =-<,()42ln 20f =->,()()340f f ∴<,()03,4x ∴∃∈,使得()00f x =因为()f x 单调,所以()f x 的零点唯一. 2.【答案】B 【解析】()()()33x f x f x f x f ⎛⎫=⇒= ⎪⎝⎭,当[)3,9x ∈时,()ln 33x x f x f ⎛⎫== ⎪⎝⎭,所以()ln 13ln 393xx f x xx ≤<⎧⎪=⎨≤<⎪⎩,而()()g x f x a x =-有三个不同零点⇔()y f x =与y ax =有三个不同交点,如图所示,可得直线y ax =应在图中两条虚线之间,所以可解得:ln3193ea <<3.【答案】C【解析】先做图观察实根的特点,在[)1,1-中,通过作图可发现()f x 在()1,1-关于()0,2中心对称,由()()2f x f x +=可得()f x 是周期为2的周期函数,则在下一个周期()3,1--中,()f x 关于()2,2-中心对称,以此类推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)函数与方程的关系:函数f(x)有零点⇔方程f(x)=0有根⇔函数f(x)的图象与x轴有交点⇔f(x)与g(x)有交点⇔f(x)=g(x).
(2)函数f(x)的零点存在性定理:如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)<0,那么,函数f(x)在区间(a,b)内有零点,即存在c∈(a,b),使f(c)=0.注:①如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且函数f(x)在区间[a,b]上是一个单调函数,那么当f(a)·f(b)<0时,函数f(x)在区间(a,b)内有唯一的零点,即存在唯一的c∈(a,b),使f(c)=0.
②如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,并且有f(a)·f(b)>0,那么,函数f(x)在区间(a,b)内不一定没有零点.
③如果函数f(x)在区间[a,b]上的图象是连续不断的曲线,那么当函数f(x)在区间(a,b)内有零点时不一定有f(a)·f(b)<0,也可能有f(a)·f(b)>0.
判定函数零点的方法:①解方程法;②利用零点存在性定理判定;③数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解
1.(2013·重庆)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()
A.(a,b)和(b,c)内B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内D.(-∞,a)和(c,+∞)内
答案:A
解析(1)由于a<b<c,所以f(a)=0+(a-b)(a-c)+0>0,f(b)=(b-c)(b-a)<0,f(c)=(c -a)(c-b)>0.因此有f(a)·f(b)<0,f(b)·f(c)<0,又因f(x)是关于x的二次函数,函数的图象是连续不断的曲线,因此函数f(x)的两零点分别位于区间(a,b)和(b,c)内,故选A.
2.函数f(x)=
⎩⎪
⎨
⎪⎧ln x-x2+2x(x>0),
2x+1(x≤0),
的零点个数是() A.0 B.1 C.2 D.3
数学练习
作业
练习7:函数的零点
第二部分函数、导数及其应用
答案 D
解析 (2)依题意,
当x >0时,在同一个直角坐标系中分别作出y =ln x 和y =x 2-2x =(x -1)2-1的图象,可知它们有两个交点;当x ≤0时,作出y =2x +1的图象,可知它和x 轴有一个交点.综合知,函数y =f (x )有三个零点.
3. (2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )
A .0
B .1
C .2
D .3
答案 B
解析 (1)先判断函数的单调性,再确定零点.因为f ′(x )=2x ln 2+3x 2>0,
所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点.
4.函数f (x )=2x -2x
-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .(1,3) B .(1,2) C .(0,3) D .(0,2) 解析:∵函数f (x )有一个零点在(1,2)内,∴f (1)·f (2)<0,即-a (3-a )<0,∴0<a <3. 答案:C
5.若函数f (x )=⎩⎪⎨⎪⎧
kx +1,x ≤0,ln x , x >0,则当k >0时,函数y =f [f (x )]+1的零点个数为( ) A .1 B .2 C .3 D .4
解析:结合图像分析,当k >0时, f [f (x )]=-1,则f (x )=t 1∈⎝
⎛⎭⎫-∞,-1k 或f (x )=t 2∈(0,1).对于f (x )=t 1,存在两个零点x 1,x 2;对于f (x )=t 2,存在两个零点x 3,x 4,共存在4个零点.
6.设方程3x =|lg(-x )|的两个根为x 1,x 2(x 1<x 2),则( )
A .x 1x 2<0
B .x 1x 2=0
C .x 1x 2>1
D .0<x 1x 2<2
解析:在同一平面直角坐标系中画出函数y =3x 和y =|lg(-x )|的图
像,可知-2<x 1<-1,-1<x 2<0,所以0<x 1x 2<2. 答案 D
7. (2013·天津调研)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ).
A .0
B .1
C .2
D .3
[思路点拨]先根据零点存在性定理证明有零点,再根据函数的单调性判断零点的个数. 解析 因为f ′(x)=2xln 2+3x2>0,
所以函数f(x)=2x +x3-2在(0,1)上递增.
又f(0)=1+0-2=-1<0,f(1)=2+1-2=1>0,所以有1个零点.
8.若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是________.
解析 由⎩⎪⎨⎪⎧ 22-2a -b =032-3a -b =0,得⎩⎪⎨⎪⎧
a =5
b =-6.∴g (x )=-6x 2-5x -1的零点为-12,-13. 答案 -12,-13
9.设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧
|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为________.
答案 7
解析 由y =2f 2(x )-3f (x )+1=0得,f (x )=12
或f (x )=1, 如图画出f (x )的图象,
由f (x )=12
知有4个根,由f (x )=1知有3个根,故共有7个零点.
10.已知函数f (x )=⎩⎪⎨⎪⎧
log 2x ,x >0,3x ,x ≤0,且关于x 的方程f (x )+x -a =0,有且只有一个实根,则实数a 的取值范围是________.
解析 画出函数y =f (x )与y =a -x 的图象,如图所示,所以a >1.
答案 (1,+∞)。