六年级假设法解题(一)
六年级奥数分册第10周 假设法解题-精华版
第十周 假设法解题(一)专题简析:假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1 甲、乙两数之和是185,已知甲数的14 与乙数的15的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15 ”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15 。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱? 2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人? 3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?例题2彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19 )=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个? 3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只 例题3。
六年级假设法解题练习题
六年级假设法解题练习题一、题目描述假设你是六年级学生小明,以下是关于饮食健康的一些假设,根据提供的假设和相关信息,回答问题。
1. 假设小明每天早餐都吃面包,午餐都吃米饭,晚餐都吃面条,能保证他的膳食均衡吗?2. 假设小明每天吃很多巧克力,他会变得更高吗?3. 假设小明经常吃糖果和甜饮料,他的牙齿会更健康吗?4. 假设小明非常喜欢吃垃圾食品,这对他的身体有什么影响?二、解题过程1. 饮食的均衡是指摄入的食物中包含了充足的营养元素。
尽管小明每天吃的是不同种类的主食,但仅仅靠面包、米饭和面条是无法保证膳食的均衡。
膳食均衡应包括五大类食物,即谷物、蔬菜、水果、肉类和奶制品。
建议小明在餐食中适当增加蔬菜和水果的摄入,以确保膳食的均衡。
2. 吃巧克力并不能让人变得更高。
人的身高主要由遗传因素和生长发育水平决定。
巧克力含有糖分和脂肪,过量摄入可能会导致肥胖和牙齿问题。
因此,小明应该适量饮食,保持均衡营养,而不是指望吃巧克力来增加身高。
3. 糖果和甜饮料含有大量的糖分,过量摄入对牙齿是有害的。
糖分容易被细菌利用,形成酸性环境,导致牙齿脱矿、蛀牙等问题。
因此,频繁食用糖果和甜饮料不利于牙齿的健康。
建议小明减少对这些食物的摄入,并养成良好的口腔卫生习惯,例如刷牙、漱口等。
4. 垃圾食品通常指含有高糖、高脂肪、高盐等不健康成分的食物。
经常食用垃圾食品会引发多种健康问题,如肥胖、心脏病、高血压等。
对于小明来说,经常吃垃圾食品可能导致体重增加、营养不良,还可能影响他的身体发育和免疫力。
因此,建议小明远离垃圾食品,选择健康的食物,保持良好的饮食习惯。
三、小结通过对以上假设的分析,我们可以得出以下结论:- 小明单一主食的饮食习惯无法保证膳食均衡,应适当增加其他食物的摄入。
- 吃巧克力并不能增加身高,应均衡膳食来维持健康。
- 经常食用糖果和甜饮料会对牙齿健康产生不利影响,应减少摄入并注意口腔卫生。
- 垃圾食品会对身体健康产生负面影响,应远离这些食物,选择健康的饮食。
小学六年级奥数:假设法解题
小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。
根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。
2.设冰箱数量为x,则洗衣机数量为126-x。
根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。
3.设上学期男同学数量为x,则女同学数量为750-x。
本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。
根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。
4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。
根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。
5.设甲队挖了x米,则乙队挖了300-x米。
根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。
6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。
根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。
最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。
7.设去年初中招生人数为x,则高中招生人数为4752-x。
今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。
根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。
六年级奥数 第9讲 假设法解题(一)
第9讲设数法解题讲义专题简析在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解。
但仔细分析就会发现,题目中缺少的条件,对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,假设一个数代入(当然假设的这个数要尽量方便计算),然后进行解答。
例1、如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
练习:1、已知△=○○,△○=□□,☆=□□□,问△□☆=()个○。
2、五个人比身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米。
甲与戊相比谁高?高几厘米?3、甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多,哪个最少,最多的比最少的多多少吨?例2、足球赛门票原来15元一张,降价后观众増加了一倍,收入增加了15,每张门票降价多少元?练习:1、某班一次考试,平均分为70分,其中34的同学及格,及格的同学平均分为80分。
那么不及格的同学平均分是多少?2、参加游泳比赛的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%。
小学生增加了百分之几?3、五年级三个班的人数相等。
一班的男生人数和二班的女生人数相等,三班的男生人数是全部男生人数的25。
全部女生人数占全年级人数的几分之几?例3、小王在一个小山坡上往返跑。
先从山下往山上跑,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是3千米/时,下山的速度是6千米/时,求小华上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A,B两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米。
张师傅往返途中的平均速度是多少?3、小王骑摩托车往返A,B两地。
平均速度为48千米/时,如果他去时每小时行42千米。
六年级奥数假设法解决问题及盈亏问题
消去法解决问题(一)1.买3千克茶叶和5千克果冻一共用去420元,买同样的3千克茶叶和3千克果冻,一共用去384元,每千克茶叶和每千克果冻各多少元?练:商店第一次运来6筐苹果和4筐橘子共重400千克,第二次运来9筐苹果和4筐橘子共重550千克,每筐苹果和每筐橘子各重多少千克?2.3筐苹果和5筐梨共重138千克,同样的9筐苹果和4筐梨共重216千克,每筐苹果和每筐梨各重多少千克?练:8只玻璃杯与3只热水瓶共值32元,4只玻璃杯与9只热水瓶共值76元,每只玻璃杯与每只热水瓶各值多少元?3.学校第一次买6张课桌6把椅子共付240元,第二次买5张课桌4把椅子共付185元,一张课桌和一把椅子的价格各是多少元?练:5盒钢笔和5盒铅笔共90支,同样的9盒钢笔和4盒铅笔共112只,每盒钢笔盒、每盒铅笔各多少只?4.甲、乙两种货物,买6件甲种货物4件乙种货物共用54元,买3件甲种货物6件乙种货物共用51元,买甲、乙两种货物各一件各需多少钱?练:粮店第一次运来8袋花生和6袋黄豆,共重1440千克,第二次运来4袋花生和5袋黄豆,共重880千克,求一袋花生和一袋黄豆各重多少千克?5.小明买5本书和3支铅笔共花18元,若买3本书和5支铅笔需花14元,每本书和每支铅笔各多少元?练:3个足球和2个篮球共140元,同样的2个足球和3个篮球共135元,一个足球和一个篮球各多少元?6.买9张桌子和3把椅子共780元,5张桌子的价格比3把椅子的价格多340元,每张桌子多少元?每把椅子多少元?练:3包味精和6包糖共重3300克,7包糖比3包味精重3200克,每包味精和每包糖各多少克?提升:1.小明计划买3本语文书和4本数学书,算好了,价钱是88元,到了商店他突然想起来,应该买3本数学书和4本语文书,结果多出了几元钱,正好能多买一本语文书,求数学书和语文书的单价各是多少元?2.妈妈到菜场买菜,他所带的钱可以买6千克鱼和8千克肉,或者3千克鱼和12千克肉,如果妈妈只想买其中一种,那他能买多少千克鱼?多少钱千克肉?3.甲有5盒糖,乙有4盒糕,共值22元,如果甲、乙兑换一盒,则每人所有物的价值相等,求如果甲、乙兑换两盒甲乙两人所有物品的价值是否还相等的?若不等哪个多多多少?消去法解决问题(二)1.食堂第一次运进大米5袋,面粉7袋,共重1350千克,第二次运进大米3袋,面粉5袋,共重850千克,一袋大米和一袋面粉各重多少千克?练:2台电视机和5台收录机总价5500元,3台电视机和9台收录机总价9000元,一台电视机和一台收录机各多少元?2.有篮球、足球、排球三种球,篮球1个、足球1个、排球2个共值60元,篮球1个、足球2个、排球1个共值75元,篮球两个、足球一个、排球一个共值65元,每种球的单价是多少?练:买1支钢笔,2支圆珠笔和1个文具盒,共31元,买2支钢笔,1支圆珠笔和1个文具盒,共38元,买1支钢笔,1支圆珠笔和2个文具盒,共43元,求钢笔、圆珠笔和文具盒的单价。
小学奥数举一反三(六年级)A版
小学奥数举一反三(六年级)A版小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
(完整word版)六年级奥数假设法解题答案
第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。
解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。
练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。
如果彩色电视机卖出19 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。
(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。
小学六年级奥数-假设法解题练习题(含解析)(1)
假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的41与乙数的51的和是42,求两数各是多少?练习1:1、甲、乙两人共有钱150元,甲的21与乙的101的钱数和是35元,求甲、乙两人各有多少元钱?2、甲、乙两个消防队共有338人。
抽调甲队人数的71,乙队人数的31,共抽调78人,甲、乙两个消防队原来各有多少人?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出91,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习2:1、姐妹俩养兔120只,如果姐姐卖掉71,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2、学校有篮球和足球共21个,篮球借出31后,比足球少1个,原来篮球和足球各有多少个?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的83与徒弟加工零件个数的74的和为49个,师、徒各加工零件多少个?练习3:1、某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的52和黑白电视机的73,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?【例题4】甲、乙两数的和是300,甲数的52比乙数的41多55,甲、乙两数各是多少?解析:本题主要考查一元一次方程的应用。
根据题意设甲数是,则乙数是,根据题意可得方程,解得。
练习4:1、畜牧场有绵羊、山羊共800只,山羊的2/5比绵羊的21多50只,这个畜牧场有山羊、绵羊各多少只?2、师傅和徒弟共加工零件840个,师傅加工零件的个数的85比徒弟加工零件个数的32多60个,师傅和徒弟各加工零件多少个?【例题5】育红小学上学期共有学生750人,本学期男学生增加61,女学生减少51,共有710人,本学期男、女学生各有多少人?练习5:1、金放在水里称,重量减轻191,银放在水里称,重量减少101,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2、某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?三、课后作业1、海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的31多50吨,五月份完成总数的52少70吨,还有420吨没完成,第二季度原计划生产多少吨?2、小明甲养的鸡和鸭共有100只,如果将鸡卖掉201,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?3、学校买来足球和排球共64个,从中借出排球个数的41和足球个数的31后,还剩下46个,买来排球和足球各是多少个?4、某校六年级甲、乙两个班共种100棵树,乙班种的101比甲班种的31少16棵,两个班各种多少棵?5、袋子里原有红球和黄球共119个。
假设法解题(6年级)
假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例1 甲、乙两数之和是185,已知甲数的与乙数的的和是42,求两数各是多少?练习:1.甲、乙两人共有钱150元,甲的与乙的的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的,乙队人数的,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的多50吨,五月份完成总数的少70吨,还有420吨没完成,第二季度原计划生产多少吨?例2 彩色电视机和黑白电视机共250台。
如果彩色电视机卖出,则比黑白电视机多5台。
问:两种电视机原来各有多少台?练习:1.姐妹俩养兔120只,如果姐姐卖掉,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?例3 师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的与徒弟加工零件个数的的和为49个,师、徒各加工零件多少个?练习:1.某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的和黑白电视机的,共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?2.甲、乙两个消防队共有336人,抽调甲队人数的、乙队人数的,共抽调188人参加灭火。
问:甲、乙两个消防队原来各有多少人?3.学校买来足球和排球共64个,从中借出排球个数的和足球个数的后,还剩下46个,买来排球和足球各是多少个?例4 甲、乙两数的和是300,甲数的比乙数的多55,甲、乙两数各是多少?练习:1.畜牧场有绵羊、山羊共800只,山羊的比绵羊的多50只,这个畜牧场有山羊、绵羊各多少只?2.师傅和徒弟共加工零件840个,师傅加工零件的个数的比徒弟加工零件个数的多60个,师傅和徒弟各加工零件多少个?3.某校六年级甲、乙两个班共种100棵树,乙班种的比甲班种的少16棵,两个班各种多少棵?例5 育红小学上学期共有学生750人,本学期男学生增加,女学生减少,共有710人,本学期男、女学生各有多少人?练习:1.金放在水里称,重量减轻,银放在水里称,重量减少,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2.某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?3.袋子里原有红球和黄球共119个。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
假设法解题一附答案
假设法解题(一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。
思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。
例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。
求AB两地距离例3:小王骑车从甲地到乙地往返一次。
去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。
例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只思路导航:实际上,鸡兔脚的数量是不同的。
我们假设鸡兔脚的数量相同,一只鸡2只脚,一只兔也2只脚。
我们能够得出一个新数量,鸡兔共100只,有100×2=200只脚。
问题出来了,实际上多出了320-200=120只脚,为什么其实,这些多出来的脚是兔子的脚。
从假设看,一只兔子我们要补充给它2条腿,才符合实际。
实际上多出的脚,一共有多少个“2条腿”呢有120÷2=60个。
这就是兔子的只数。
列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)鸡100-60=40(只)答:鸡有40只,兔有60只。
例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。
求AB两地距离思路导航:假设甲到B地后,继续往前走,那么当乙到达A地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,看60千米里面有几个4千米,就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB两地的距离。
关键词:速度差、行走距离差(假设时间相同后有行走距离差)假设提示:题目没有多少个数量,一个是速度,一个是时间。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
假设法解题六年级练习题
假设法解题六年级练习题假设法(也称为猜想法)是一种常用的数学解题方法,在解决复杂问题时,通过假设或猜测问题的一些条件来寻找解答的思路。
在六年级数学练习题中,假设法也是一个经常被使用的解题技巧。
本文将通过几个案例来展示如何运用假设法解决六年级练习题。
案例一:小明的饮料小明一天能喝下10瓶矿泉水,如果小明每天都喝矿泉水,那么30天后他喝了多少瓶矿泉水?解题思路:假设小明每天都喝矿泉水,且每天喝10瓶。
那么30天后,他总共喝了10 * 30 = 300瓶矿泉水。
案例二:鸡兔同笼一个笼子里有鸡和兔子,一共有35个头,94只脚。
问鸡和兔子各有多少只?解题思路:假设笼子里只有鸡,没有兔子。
由于鸡只有一只头,所以35只鸡就有35个头。
但是,94只脚明显超过了只有鸡的情况(假设每只鸡有两只脚)。
所以我们需要调整假设。
因为兔子有一只头和四只脚,所以鸡和兔子的总脚数为:2 * 鸡的数量 + 4 * 兔子的数量 = 94由此可知,鸡的数量和兔子的数量必然是整数。
通过尝试不同的鸡的数量,我们可以找到满足条件的解答:当假设有20只鸡时,我们发现35 - 20 = 15,15只兔子的脚数为60。
而20只鸡的脚数为40,加在一起正好是94只脚。
所以鸡有20只,兔子有15只。
案例三:书包中的苹果与梨小明的书包里有苹果和梨,一共有12个。
如果我们无法看见书包里的水果,而只能摸得到,问小明最少需要摸几次才能保证摸到两个梨或两个苹果?解题思路:假设小明一开始摸到的是苹果。
从简单的情况出发,我们假设书包里只有苹果。
那么,小明最多需要摸11次才能保证他摸到两个苹果。
同理,如果书包里只有梨,最多也只需要摸11次就能摸到两个梨。
但是,由于题目中说书包里既有苹果又有梨,所以我们需要调整假设。
通过尝试不同的情况,我们发现若小明摸到的是10个苹果和2个梨,他只需要摸3次就能摸到两个梨或者两个苹果。
所以小明最少需要摸3次。
通过以上案例,我们可以看到假设法在解决六年级数学练习题中的重要作用。
六年级奥数假设法解题
专题一:假设法解题(一)一、假设法是解应用题时常用的一种思维方法。
在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设要求的两种量是同一种量。
用假设法解题时要找准与假设的内容相对应的关系,善于把假定的内容和数据加以调整,从而得到正确的答案。
例1.有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?【思路导航】假设一:5元和10元的张数相等,此时5元和10元各有7张,总面值为105元,与实际值相差5元,此时将1张10元换为1张5元即可,5÷(10-5)=1(次)。
假设二:全是5元币,此时总面值为5×14=70(元),与实际值相差:100-70=30(元),将1张5元换为1张10元面值将增加5元,需要调换次数为:30÷(10-5)=6(次)。
假设三:全是10元币。
随堂练习:有1元、2元、5元的汽车票50张,总面值为116元。
已知1元的比2元的多2张,问三种面值的汽车票各有几张?【思路导航】条件处理:先取出2张1元,此时2元与1元票数相等。
假设一:假设三种票值票数相等为:(50-2)÷3=16(张)。
此时总票值为:16×(1+2+5)=128(元),为保证每次换票后1元票与2元票张数相等,需要用两张5元票与1元票、2元票各一张进行对换。
由于假设值大于实际值:116-2=114(元)。
其中相差:128-114=14(元),每次对换改变票值为:5+5-1-2=7(元)。
需要对换次数为:14÷7=2(次)。
假设二:假设全是5元票以此展开。
例2.甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。
两人各投10次,共得152分。
其中甲比乙多得16分,问两人各中多少次?【思路导航】条件处理:先利用数量关系求解甲乙各自分数,然后参照例1确定假设思路求解问题。
随堂练习:甲组工人生产一种零件,每天生产250个。
小学奥数举一反三(六年级)A版
小学奥数举一反三A版第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学数学六年级用假设法解应用题(一)
用假设法解应用题(一)有些应用题按照一般的解题思路不易找到正确的解答方法。
题中要求两个或两个以上的未知数量,解题时可以先假设要求的两个或两个以上的未知量相等或先假设要求的一个未知量与题目中的某一已知数量相等,使题意明朗化、简单化。
再按照题里的已知条件进行推算,把假定的加以纠正和调整,从而得到正确答案。
(一)例题指导:例1. 小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚? 分析与解:9元5角=95角假设这35枚都是1角的,那么总钱数就应该是()135⨯=35角,比实际95角少了()9535-=60角,这是因为把其中5角的硬币都当成1角了,有一枚5角硬币,少算了()51-=4角,少算的60角中有几个这样的4角,就有几个5角硬币。
953560-=(角)605115÷-=()(枚)351520-=(枚)答:5角硬币有15枚,1角硬币有20枚。
如果假设都是5角硬币,该怎样解呢?同学们试一试。
例2. 某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?分析与解:假设1000个玻璃杯全部运到并完好无损,应得运费:110001000⨯=(元)实际上少得运费:1000895105-=(元)这说明在运输过程中打碎了玻璃杯,每打碎1个,不但不给1元的运费,还要赔偿4元,即打碎一个玻璃杯要从总钱数1000元中扣除()14+=5元,一共扣除105元,所以打碎的玻璃杯数为:105521÷=(个)综合算式:()()110008954121⨯-÷+=(个)答:打碎了21个玻璃杯。
例3. 小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?分析与解:两人共得208分,其中小张比小李多得64分。
6年级数学解决问题的策略-倍数关系(假设法)含答案详解
6年级数学解决问题的策略——倍数关系(假设法)例题详解例1:学校体育室买来球4个,排球8个,一共花了320元。
已知1个篮球的价钱与2个排球的价钱相等,每个篮球和每个排球各多少元?例2:妈妈买了9袋薯片和4盒巧克力,一共用去210元。
已知3袋薯片和2盒巧克力的价钱一样多,每袋薯片和每盒巧克力各多少元?例3:张叔叔买了1张餐桌和6把椅子,一共用去1035 元。
已知每把椅子的价钱是每张餐桌的13,每张桌和每把椅子各多少元?热身训练1.妈妈买了4千克水果糖和1千克奶糖,一共用去24元。
已知1千克奶糖的价钱与2千克水果糖的价钱相等,每千克水果糖和每千克奶糖各多少元?2.学校买了8个篮球和10个排球,一共用去960 元。
已知买7个排球的钱正好可以买4个篮球,每个篮球和每个排球各多少元?3.王老师和张老师带领52名学生去游乐场,买门票共花了280 元。
已知每张学生票的价钱是每张成人票的12,每张成人票和每张学生票各多少元?巩固练习1.钢笔的单价是铅笔的5倍,李老师买了3支钢笔和4支铅笔一共用去22.8元。
每支钢笔()元。
2.甲数与乙数的和是73,甲数的4倍与乙数的6倍的和是388。
甲数是()。
3.古时候,12只羊可换4头猪,10头猪可换2头牛,16只兔可换2只羊。
1头牛换()只羊,3头猪可换()只兔。
4.8块饼干的含钙量相当于1杯牛奶的含钙量。
小明早餐吃了12块饼干,还喝了1杯牛奶,含钙量共计500 毫克。
每块饼干和每杯牛奶的含钙量各是多少毫克?5.粮店有大米20袋、面粉 50袋,一共重2250千克。
已知1袋大米与2袋面粉一样重,每袋大米和每袋面粉各重多少千克?6.王老师买了2支钢笔和15支圆珠笔,一共花了92元。
已知1支钢笔的价钱与4支圆珠笔的价钱相等每支钢笔和每支圆殊笔各多少元?7.6头小猪和5只小狗共重112千克。
已知2头小猪与3只小狗一样重,每头小猪和每只小狗各重多少千克?8.王老师买了3个篮球和8副乒乓球拍,一共花了400 元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十周 假设法解题(一)
专题简析:
假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
例题1
1. 乙两数之和是185,已知甲数的14 与乙数的1
5 的和是42,求两数各是多少?
【思路导航】假设将题中“甲数的14 ”、“乙数的1
5
”与“和为42”同时扩大4倍,则变成
了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的1
5。
解: 乙:(185-42×4)÷(1-1
5 ×4)=85
答:甲数是100,乙数是85。
练习1
1、 甲、乙两人共有钱150元,甲的12 与乙的1
10
的钱数和是35元,求甲、乙两人各有多少
元钱?
2、 甲、乙两个消防队共有338人。
抽调甲队人数的17 ,乙队人数的1
3
,共抽调78人,甲、
乙两个消防队原来各有多少人?
3、 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1
3
多50吨,五月份完
成总数的2
5 少70吨,还有420吨没完成,第二季度原计划生产多少吨?
练1 1、 乙:(150-35×2)÷(1-1
10 ×2)=100(元)
甲:150-100=50(元)
2、 甲:(338-78×3)÷(1-1
7 ×3)=182(人)
乙:338-182=156(人)
3、 (420-70+50)÷(1―13 -2
5 )=1500(吨)
例题2
彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1
9 ,则比黑白电视机多5台。
问:两种电视机原来各有多少台?
【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1
9
后剩下的
一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-19 )=8
9。
(250+5)÷(1+1-1
9
)=135(台)
250-125=115(台)
答:彩色电视机原有135台,黑白电视机原有115台。
练习2
1. 姐妹俩养兔120只,如果姐姐卖掉1
7 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?
2. 学校有篮球和足球共21个,篮球借出1
3
后,比足球少1个,原来篮球和足球各有多少
个?
3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉1
20
,还比鸭多17只,小明家原来养的鸡
和鸭各有多少只
练2 1、姐:(120+10)÷(1+1-1
7 )=70(只)
妹:120-70=50(只)
2、篮球:(21-1)÷(1+1-1
3 )=12(个0
足球:21-12=9(个)
3、鸡:(100+17)÷(1+1-1
20 )=60(只)
鸭:100-60=40(只)
例题3。
师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3
8 与徒弟加工零件个数
的4
7
的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×4
7 )=60个,和实际相差(60
-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的4
7 相差的个数。
这样就
可以求出师傅加工了【11÷(47 -3
8
)】=56个。
即:
师傅:(105×47 -49)÷(47 -3
8
)=56(个)
徒弟:105-56=49(个)
答:师傅加工了56个,徒弟加工了49个。
练习3
1. 某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的25 和黑白电视机的3
7
,
共卖出57台。
问:原来彩色电视机和黑白电视机各有多少台?】
2. 甲、乙两个消防队共有336人,抽调甲队人数的57 、乙队人数的3
7
,共抽调188人参加
灭火。
问:甲、乙两个消防队原来各有多少人?
3. 学校买来足球和排球共64个,从中借出排球个数的14 和足球个数的1
3
后,还剩下46个,
买来排球和足球各是多少个?
练3 1、彩色:(136×37 -57)÷(37 -2
5 )=45(台)
黑白:136-45=91(台)
2、甲:(188-336×37 )÷(57 -3
7 )=154(人)
乙:336-154=182(人)
3、足球:(64-46-64×14 )÷(13 -1
4 )=24(个)
排球:64-24=40(个)
例题4。
甲、乙两数的和是300,甲数的25 比乙数的1
4
多55,甲、乙两数各是多少?
【思路导航】甲数的25 与乙数的25 的和就是甲、乙两数的25 ,是300×2
5 =120,因为甲数
的25 比乙数的14 多55,所以从120中减去55所得的差就可以看成是乙数的14 与乙数的2
5 的和。
乙:(300×25 -55)÷(25 +14 )=100
甲:300-100=200
答:甲数是200,乙数是100。
练习4
1、 畜牧场有绵羊、山羊共800只,山羊的25 比绵羊的1
2
多50只,这个畜牧场有山羊、绵
羊各多少只?
2、 师傅和徒弟共加工零件840个,师傅加工零件的个数的58 比徒弟加工零件个数的2
3
多
60个,师傅和徒弟各加工零件多少个?
3、 某校六年级甲、乙两个班共种100棵树,乙班种的110 比甲班种的1
3
少16棵,两个班
各种多少棵?
练4 1、绵羊:(800×25 -50)÷(25 +1
2 )=300(只)
山羊:800-300=500(只)
2、徒弟:(840×58 -60)÷(58 +2
3 )=360(个)
师傅:840-360=480(个)
3、甲:(100×110 +16)÷(110 +1
3 )=60(棵)
乙:100-60=40(棵)
例题5。
育红小学上学期共有学生750人,本学期男学生增加16 ,女学生减少1
5 ,共有710人,
本学期男、女学生各有多少人?
【思路导航】假设本学期女学生不是减少15 ,而是增加16 ,半学期应该有750×(1+1
6
)=
875人,比实际多875-710=165人,这165人是假设女学生也增加1
6 多出的
人数,而实际女学生减少15 ,所以,这165人对应着女学生的(15 +16 )=11
30 。
上学期女生:【750×(1+16 )-710】÷(15 +1
6 )=450(人)
本学期女生:450×(1-1
5
)=360(人)
本学期男生:710-360=350(人)
答:本学期男学生有350人,女学生有360人。
练习5
1. 袋子里原有红球和黄球共119个。
将红球增加38 ,黄球减少2
5
后,红球与黄球的总数变
为121个。
原来袋子里有红球和黄球各多少个?
2. 金放在水里称,重量减轻119 ,银放在水里称,重量减少1
10 ,一块重770克的金银合金,
放在水里称是720克,这块合金含金、银各多少克?
3. 某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,
高中招的新生比去年增加20%,今年初、高中各招收新生多少人?
答案:
练5 1、红:【121-119×(1-25 )】÷(25 +3
8 )=64(个)
黄:119-64=55(个)
2、金:【720-770×(1-110 )】÷(110 -1
19
)=570(克)
银:770-570=200(克)
3、去年初中:【640-475×(1+20%)】÷(48%-20%)=250(人) 今年初中:250×(1+48%)=370(人) 今年高中:640-370=270(人)。