第六章 样本及抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

统计学第6章统计量及其抽样分布

统计学第6章统计量及其抽样分布

整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布

X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:

第六章样本及样本函数的分布

第六章样本及样本函数的分布

∼ t(n −1). .
Sn
177
概率论与数理统计全程学习指导
∑ = ∑ 【评注】 10
1 统计量 σ 2
n
(X i

μ)2

i =1
(n −1)S2 σ2
1 σ2
n
(X i

X )2
的分布在自由度上是
i =1
∑ ∑ 1
有差别的,这是因为在 σ2
n
(X i

X )2
中有一个约束条件
X
i =1
=1 n
x(1) ≤ x(2) ≤
≤x (k)
,并假设
x( i )
出现的频数为
ni
,那么
x( i )
出现的频率为
i = 1, 2, , k, k ≤ n . 函数
fi
=
ni n

⎧ 0,

∑ Fn (x)
=
⎪ ⎨
i
fj,
⎪ j=1
⎪⎩ 1,
x < x(1),
x(i) ≤ x < x(i+1), i = 1, 2, , k −1, x ≥ x(k).
③ χ2 分布的性质
10 若 χ2 ∼ χ2 (n) ,则 E(χ2 ) = n , D(χ2 ) = 2n ;
20
(可加性)若
χ
2
1

χ2 (n1) ,
χ
2
2

χ2 (n2 )
,且
χ
2
1

χ
2
2
相互独立,则
χ
2
1
+
χ
2

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

概率论6-1,2,3

概率论6-1,2,3

例如,考察某工厂10月份生产的灯泡的寿命所组 例如,考察某工厂 月份生产的灯泡的寿命所组 成的总体。 成的总体。灯泡寿命落在各个时间区间内有一定的 百分比,如灯泡寿命落在1000小时 小时~1300小时的占灯 百分比,如灯泡寿命落在 小时 小时的占灯 泡总数的85%,落在1300小时 %,落在 小时~1800小时的占灯泡总 泡总数的 %,落在 小时 小时的占灯泡总 数的5%, %,…。 即灯泡寿命的取值有一定的分布。 数的 %, 。 即灯泡寿命的取值有一定的分布。
就取位于 [ 是整数, x([ np ]+1) , 不是整数, 当np不是整数, x 综上, 综上, p = 1 [ x( np ) + x( np+1) ], 当np是整数 . 2
0 当 特别, 特别, p = 0.5时,.5分位数 x0 .5也记为Q2或
数据集的箱线图是由箱子和直线组成的图形, 数据集的箱线图是由箱子和直线组成的图形, 它是基于以下五个数的图形概括: 它是基于以下五个数的图形概括: 最小值 Min, 第一四分位数 Q1,中位数M,第三四分位数 Q3和 中位数 最大值 Max. 作法如下: 作法如下: (1) 画一水平数轴, 在轴上标上 Min,Q1, M, 画一水平数轴, Q3,Max. 在数轴上方画一个上、 下侧平行于数 在数轴上方画一个上、 Q 箱子的左右两侧分别位 于 Q1, 3 的上方. 轴的矩形箱子, 轴的矩形箱子, 在 M点的上方画一条垂直线 段 .线段位于箱子内部. ( 2)自箱子左侧引一条水平 线至 Min; 在同一水平 高度自箱子右侧引一条水平线直至最大值. 高度自箱子右侧引一条水平线直至最大值. 如图所示. 如图所示.
1.总体与个体 总体与个体
§1 随机样本
总体 试验的全部可能的观察值称为总体. 试验的全部可能的观察值称为总体. 个体 总体中的每个可能观察值称为个体. 总体中的每个可能观察值称为个体.

样本及抽样分布

样本及抽样分布

样本及抽样分布§6.1 基本概念一、总体:在统计学中, 我们把所研究的全部元素组成的集合称作母体或总体, 总体中的每一个元素称为个体。

我们只研究感兴趣的某个或者几个指标(记为X),因此把这些指标的分布称为总体的分布,记为X~F(x)。

二、样本:设总体X具有分布函数F(x),若X1, X2,…,Xn是具有分布函数F(x)的相互独立的随机向量,则称其为总体F(或总体X )的简单随机样本, 简称样本,它们的观察值x1,x2, …, xn称为样本观察值, 又称为X 的n 个独立的观察值。

三、统计量:设X 1, X 2, …, X n 是来自总体X 的一个样本, g (X 1, X 2, …, X n )是一个与总体分布中未知参数无关的样本的连续函数,则称g (X 1,X 2,…,X n )为统计量。

统计量是样本的函数,它是一个随机变量,如果x 1, x 2, …, x n 是样本观察值, 则g (x 1, x 2, …, x n )是统计量g (X 1, X 2, …, X n )的一个观察值.四、 常用的统计量:, ,)(x 11s ,,x 1x 1. n12i2n1i 称为样本方差均值仍称为样本它们的观察值为∑∑==--==i i x n n .B ,,1,2,X A ,1k 2.22221S S nn B k ≈-====当样本容量很大时时当时当3.kkkk若总体X 的k 阶矩E(X )存在,则当n时, A .P注:ni i 111. X X ;n ==∑样本均值2n 2i i 112. S (X );n-1X ==-∑样本方差n kk i 113. k A X , k 1, 2,;n i ===∑样本阶原点矩nk i i 114. k B (X ) , k 2, 3,.n k X ==-=∑样本阶中心矩4.样本的联合分布:2) 若总体X 是离散型随机变量,其分布律为 p x =P (X=x ) , x=x 1,x 2,… 则样本X 1, X 2, …, X n 的联合分布:11112(,,)(),,;(1,2,,)nn n i i i i P X y X y P X y y x x i n =======∏其中12n *12i 13)(), ,X , (, ,)()n n i X f x X X f x x x f x ==∏若具有概率密度则的联合概率密度为12121211)(),,,,, ,,,:()()n n n*n i i X ~F x X X X F X X X F x , x ,x F x ==∏若为的一个样本则的联合分布函数为例1:X~U (0,θ),X 1, X 2, …, X n 是来自X 的样本,求(X 1, X 2, …, X n )的联合密度函数。

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

第六章样本及抽样分布

第六章样本及抽样分布

n
(
Xi
)2
,
i 1
max{ X i }
1i n
为什么要求统计量不含任何未知参数
试验前 g(X1, X2 ,是, 随Xn机) 变量 试验后 g(X1, X2 ,是, 具Xn体) 的数值
与均值和方差 有什么不同?
X
1
n
n
i 1
Xi
为什么不是
1 n
(下章说明)
S2
1
n1
n
(Xi
i 1
X
)2
S
S2
6, 故Q0.75
Q3
1 2
(123
132)
127.5
Min 102, Max 150,作出箱线图如图所示
102 113.5 120
120 150
分布的形状与箱线图
QL 中位数 QU
QL 中位数 QU
QL 中位数 QU
左偏分布
对称分布
不同分布的箱线图
右偏分布
箱线图适合比较两个或两个以上数据集的性质
一 直方图
为了研究总体分布的性质,人们通过实验得到许 多观测值,一般来说这些数据实杂乱无章的,为了利 用它们进行统计分析,将这些数据加以整理,还借助 于表格或图形对它们加以描述。
例1:下面列出了84个伊特拉斯坎(Etruscan)人男子的 头颅的最大宽度(mm),现在来画这些数据的“频率直 方图”
1 2 3 4 5 6 7 8 9 10 11
76 90 97 71 70 93 86 83 78 85 81 65 95 51 74 78 63 91 82 75 71 55 93 81 76 88 66 79 83 92 78 86 78 74 87 85 69 90 80 77 84 91 74 70 68 75 70 84 73 60 76 81 88 68 75 70 73 92 65 78 87 90 70 66 79 68 55 91 68 73 84 81 70 69 94 62 71 85 78 81 95 70 67 82 72 80 81 77

概率论第六章样本及抽样分布

概率论第六章样本及抽样分布
2 1 2 2
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12

2 1

2 (n2 1) S2

2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2

2
~ (n 1)
2
X n1 X n
故 Y

(n 1) S 2
n n 1 ~ t (n 1) /(n 1)

2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1

样本及抽样分布习题

样本及抽样分布习题

2 分布的性质
性质1 ( 2分布的可加性)


2 1
~

2(n1 ),

2 2
~

2(n2 ),
并且

2 1
,

2 2

立, 则

2 1


2 2
~
2(n1

n2 ).
性质2 ( 2分布的数学期望和方差)
若 2 ~ 2(n), 则 E( 2 ) n, D( 2 ) 2n.
第六章 样本及抽样分布 习题课
一、重点与难点 二、主要内容 三、典型例题
一、重点与难点
1.重点
(1) 正态总体某些常用统计量的分布. (2) 临界值的查表计算.
2.难点
(1) 几个常用统计量的构造. (2) 标准正态分布和F分布临界值的查表计算.
二、主要内容
总体
个体 常 用

样本
统计量
计 量

常用统计量

X3
2
~

2 (1),

X4

X5 3

X6
2
~

2 (1),
因为 X1, X2, , X6相互独立及 2 分布的可加性,

X1

X2 3

X3
2


X4

X5 3

X6
2

1 3
[(
X1

X2

X3 )2

(X4

X5

X6 )2]
~
2 (2),

管理统计学第06章 抽样与抽样分布

管理统计学第06章 抽样与抽样分布

抽样的基础概念
样本(sample)从总体中抽取的一部分元素的集合,构成样本的元素数目称为
样本容量,用n表示。
=<30
小样本
>30
大样本
抽样的基础概念
例:某党派想支持某一候选人参选美国某州议员,为了决定是否支持该候选人,该党派领导需要估 计支持该候选人的民众占全部登记投票人总数的比例。由于时间及财力的限制
当总体服从正态分布N ~ (μ,σ2 )时,来自该总体的所有容量为n的样本的均值X也服从 正态分布,X 的数学期望为μ,方差为σ2/n。即X~N(μ,σ2/n)
σ2 =10
n=2 σ2 =5
n =4 σ2 =2.5
= 50
X
总体分布
x 50
X
抽样分布
中心极限定理
中心极限定理(central limit theorem)设从均值为,方差为 2的一个任意总体中
均值和方差
N
Xi
i1 2.5
Nቤተ መጻሕፍቲ ባይዱ
N
(Xi )2
2 i1
1.25
N
.3
.2
.1 0
1
总体分布
2
3
4
样本均值的分布
例:现从总体中抽取n=2的简单随机样本,在重复抽样条件下,共有42=16个样 本。所有样本的结果如下表
所有可能的n = 2 的样本(共16个)
第二个观察值
中心极限定理
样本均值的分布趋于正态分布的过程
正态分布 总体分布
样本均值分布
(n=2)
样本均值分布
(n=10)
样本均值分布
(n=30)
指数分布
均匀分布

第6章-样本及抽样分布

第6章-样本及抽样分布

X
k i
样本 k 阶中心矩
Bk
1 n
n i 1
(Xi
X )k,
§2 抽样分布
统计量旳分布称为抽样分布。数理统计中 常用到如下三个分布:
2分布、 t 分布和F分布。
一、 2分布
iid
n
1. 构造 设 X1,, X n ~ N (0,1), 则 2
X
2 i
~
2 (n).
i 1
称为自由度为n的 2 分布.
h(
y)
(
n1
2
n
2
)(n1
/
(
n1 2
)(
n2 2
)(1
0,
n2
n1 n2
) y n1 / 2
n1 1 2
,
y)(n1 n2 ) / 2
y0
y0
2. F分布旳分位点
对于:0<<1,
若存在F(n1, n2)>0 ,满足
P{FF(n1, n2)}=,
则称F(n1, n2)为
F(n1, n2)旳上侧分
位点;
P447附表5
F (n1, n2 )
注:
F1
(n1, n2 )
F
1 (n2 , n1)
证明:
设F~F(n1,n2), 则
1 F
~
F (n2 , n1)
P{F F1 (n1, n2 )} 1
P{ 1 1 } 1
F F1 (n1, n2 )
P{ 1 1 }
F F1 (n1, n2 )
4.性质:
(1)分布可加性 若X ~ 2(n1),Y~ 2(n2 ),X,Y 独立,则X + Y ~ 2(n1+n2 ) (2)期望与方差 若X~ 2(n),则

统计学简答题总结

统计学简答题总结

统计学简答题总结第六章抽样与抽样分布6、1 解释总体分布、样本分布与抽样分布得含义(或三种不同性质得分布)总体分布:总体中各元素得观测值所形成得相对频数分布,称为总体分布。

样本分布:从总体中抽取一个容量为n得样本,由这n个观测值形成得相对频数分布,称为样本分布。

抽样分布:在重复选取样本量为n得样本时,由该样本统计量得所有可能取值形成得相对频数分布。

6、2 解释中心极限定理得含义从均值为μ、方差为σ 2 得总体中,抽取容量为n得随机样本,当n充分大时(通常要求n ≧30),样本均值得抽样分布近似服从均值为μ、方差为σ 2 /n 得正态分布。

6.3重复抽样与不重复抽样相比,抽样均值抽样分布得标准差有何不同?重复抽样:从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取个元素为止。

不重复抽样:一个元素被抽中后不再放回总体,而就是从所剩元素中抽取第二个元素,直到抽取个元素为止。

样本均值得方差:重复抽样不重复抽样6.4样本均值得分布与总体分布得关系就是什么?样本均值与总体分布得关系:a无论就是重复还就是不重复抽样,样本均值得数学期望始终等于总体均值;b在重复抽样条件下,样本均值得方差为总体方差得1/n;在不重复抽样条件下,样本均值得方差为6.5样本方差与两个样本得方差比各服从什么分布?对于来自正态总体得简单随机样本,则比值得抽样分布服从自由度为得分布,即两个样本方差比得抽样分布,服从分子自由度为(),分母自由度为() 得F分布,即6、6 分布与F分布得图形各有什么特点?分布得性质特点:1.分布得变量值始终为正2.分布得形状取决于其自由度n得大小,通常为不对称得正偏分布,但随着自由度得增大逐渐趋于对称3.期望为E()=n,方差为D()=2n(n为自由度)4.可加性:若U与V为两个独立得服从χ2分布得随机变量,U~ (),V~ (),则U+V这一随机变量服从自由度为+得分布F分布图形得特点:1、它就是一种非对称分布;2、它有两个自由度,即n -1与m-1,相应得分布记为F( n –1, m-1), n –1通常称为分子自由度, m-1通常称为分母自由度;3、F分布就是一个以自由度n –1与m-1为参数得分布族,不同得自由度决定了F 分布得形状。

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出

浙江大学《概率论与数理统计》(第4版)【名校笔记+课后习题+考研真题】第6章 样本及抽样分布【圣才出
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 6 章 样本及抽样分布
6.1 复习笔记
一、抽样分布 1.样本统计量 (1)常用的统计量(见表 6-1-1)
表 6-1-1 常用统计量
2.经验分布函数 设 x1,x2,…, xn 是总体 F 的一个容量为 n 的样本值,将 x1,x2,…,xn 按从小到大的
1
4 / 5 4 / 5
0.2628
(2)记 M=max{X1,X2,X3,X4,X5},因 Xi X i 的分布函数为Φ((x-12)/2),则
M 的分布函数为
FM(m)=[Φ((m-12)/2)]5
因而
P{max{X1,X2,X3,X4,X5}>15}=P{M>15}=1-P{M≤15}=1-FM(15)=1-[Φ ((15-12)/2)]5=0.2923
①定理一
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本,其样本均值和样本方差为
X
1 n
n i 1
Xi,S2
1 n 1
n i 1
Xi X
2
a.
(n 1)S 2 2
~
2 (n 1)
b. X ~ N (, 2 ) n
c. X 与 S2 相互独立。
③定理二
设 X1,X2,…,Xn 是来自正态总体 N (, 2 ) 的样本, X ,S2 分别是该样本的均值和
且两者是相互独立,因此
X1 X 2 X3 ~ N 0,1 , X 4 X5 X 6 ~ N 0,1
3
3
又两者相互独立,按χ2 分布的定义
(X1+X2+X3)2/3+(X4+X5+X6)2/3~χ2(2)
即 1/3Y~χ2(2),因此所求常数 C=1/3。

概率论与数理统计6.第六章:样本及抽样分布

概率论与数理统计6.第六章:样本及抽样分布

),
,
,
,
是来
Z=
(

证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章样本及抽样分布【授课对象】理工类本科二年级【授课时数】4学时【授课方法】课堂讲授与提问相结合【基本要求】1、理解总体、个体和样本的概念;2、了解经验分布函数和直方图的作法,知道格林汶科定理;3、理解样本均值、样本方差和样本矩的概念并会计算;4、理解统计量的概念,掌握几种常用统计量的分布及其结论;5、理解分位数的概念,会计算几种重要分布的分位数。

【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。

【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。

【授课内容及学时分配】§6.0 前言5分钟前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象的统计规律性的一门数学分支。

它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。

所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。

对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。

数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。

§6.1 随机样本25分钟一、总体与样本1.总体、个体在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。

例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究华北工学院男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。

但在数理统计里,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X (可以是向量)和该数量指标X 在总体的分布情况。

在上述例子中X 是表示灯泡的寿命或男大学生的身高和体重。

在实验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。

由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X 可能取值的全体组成的集合等同起来。

我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指标X 的分布,因此,X 的分布函数和数字特征分别称为总体的分布函数和数字特征。

定义1:把研究对象的某项或几项数量指标的值的全体称为总体;总体中的每个元素称为个体。

根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。

Ex 1:考察一块试验田中小麦穗的重量:X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x对应的分布:+∞<<=≤=≤=⎰∞---x N dt e x x P x F xt 0),(~21}{)(22)(22σμσπξσμ总麦穗数的麦穗数重量Ex 2:考察一位射手的射击情况:X =此射手反复地无限次射下去所有射击结果全体;每次射击结果都是一个个体(对应于靶上的一点)个体数量化⎩⎨⎧=未中射中01x 1在总体中的比例p 为命中率0在总体中的比例p -1为非命中率总体X 由无数个0,1构成,其分布为两点分布),1(p Bp X P p X P -====1}0{,}1{2.样本与样本空间。

为了对总体的分布进行各种研究,就必需对总体进行抽样观察。

抽样——从总体中按照一定的规则抽出一部分个体的行动。

一般地,我们都是从总体中抽取一部分个体进行观察,然后根据观察所得数据来推断总体的性质。

按照一定规则从总体X 中抽取的一组个体),,,(21n X X X 称为总体的一个样本,显然,样本为一随机向量。

为了能更多更好的得到总体的信息,需要进行多次重复、独立的抽样观察(一般进行n 次),若对抽样要求①代表性:每个个体被抽到的机会一样,保证了n X X X ,,,21 的分布相同,与总体一样。

②独立性:n X X X ,,,21 相互独立。

那么,符合“代表性”和“独立性”要求的样本),,,(21n X X X 称为简单随机样本。

易知,对有限总体而言,有放回的随机样本为简单随机样本,无放回的抽样不能保证n X X X ,,,21 的独立性;但对无限总体而言,无放回随机抽样也得到简单随机样本,我们本书则主要研究简单随机样本。

对每一次观察都得到一组数据(n x x x ,,,21 ),由于抽样是随机的,所以观察值(n x x x ,,,21 )也是随机的。

为此,给出如下定义:定义2:设总体X 的分布函数为)(x F ,若n X X X ,,,21 是具有同一分布函数)(x F 的相互独立的随机变量,则称(n X X X ,,,21 )为从总体X (从分布函数)(x F )中得到的容量为n 的简单随机样本,简称样本。

把它们的观察值(n x x x ,,,21 )称为样本值。

定义3:把样本(n X X X ,,,21 )的所有可能取值构成的集合称为样本空间,显然一个样本值(n x x x ,,,21 )是样本空间的一个点。

二、样本的分布:设总体X 的分布函数为)(x F ,密度函数为)(x f ,(n X X X ,,,21 )是X 的一个样本,则其分布函数(联合分布)、概率密度函数(联合概率密度函数)分别为:),,,(21n x x x F =∏=n i 1)(i x F ; ),,,(21n x x x f =∏=ni 1f (i x )Ex3:设总体),,(,),1(~21n X X X p B X 为其一个简单随机样本,则样本空间},,2,1;1,0),,,{(21n i x x x x X i n ===样本联合分布}{}{}{},,,{22112211n n n n x X P x X P x X P x X x X x X P =======n i x p p p p p p i x x x x x x n n ,,2,11,0)1()1(.)1(1112211 ==---=---§6.2 分布函数与概率密度函数的近似解 20分钟在概率论中,我们介绍了几种常用的分布函数与密度函数以及它们的性质,当时我们总假定它们都是先给定的,而在实际中,所遇到的用于描述随机现象的随机变量,事先并不知道其分布函数与概率密度函数,甚至连其分布类型也一无所知,那么,怎么样才能确定它的分布函数)(x F 与密度函数)(x f 呢?一般地,利用样本及样本值,建立一定的概率模型,用由此获得的概率统计信息来对总体X 的)(x F 和)(x f 进行估计和推断,这就是:一、 经验分布函数。

设(n X X X ,,,21 )是来自总体X 的样本,(n x x x ,,,21 )是样本的一个观察值,设这n 个数值由小到大的顺序排列后为:*1x ≤*2x ≤*3x ≤……≤*n x ,对∀x ∈R 定义:=)(x F n ⎪⎩⎪⎨⎧10n k **1**1n k k x x x x x x x ≥≤≤<+ 1,,2,1-=n k称)(x F n 是总体X 的经验分布函数。

显然,)(x F n 是单调非降右连续的跳跃函数(阶梯函数),在点*k x x =处有间断,在每个间断点的跃度为n1,(k =1,2,3,…,n )且1)(0≤≤x F n ,)(lim x F n x -∞→=0,)(lim x F n x +∞→=1,它满足分布函数的三个性质,所以必是一个分布函数。

一般地,随着n 的增大,)(x F n 越来越接近X 的分布函数)(x F ,关于这一点,格列汶科(Gilvenko )在1953年给了理论上的论证,即:定理1.(Gilvenko-Th ):若总体X 的分布函数为)(x F ,经验分布函数为)(x F n ,则对∀x ∈R ,有:⎩⎨⎧=⎭⎬⎫=-+∞<<∞-∞→10|)()(|sup lim x F x F p n x n 定理表明,)(x F n 以概率1致收敛于)(x F ,即:可以用)(x F n 来近似)(x F ,这也是利用样本来估计和判断总体的基本理论和依据。

Eg4:某厂从一批荧光灯中抽出10个,测其寿命的数据(单位千时)如下:95.5, 18.1, 13.1, 26.5, 31.7, 33.8, 8.7, 15.0, 48.8, 48.3解:将数据由小到大排列得:8.7,13.1,15.0,18.1,26.5,31.7,33.8,48.8,49.3,95.5则经验分布函数为:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=19.08.07.06.05.04.03.02.01.00)(x F n 5.955.953.493.498.488.488.338.337.317.315.265.261.181.180.150.151.131.137.87.8≥<≤<≤<≤<≤<≤<≤<≤<≤<≤<x x x x x x x x x x x 二、利用直方图求密度函数的近似解:设(n X X X ,,,21 )为来自总体X 的一个样本,其样本观察值为(n x x x ,,,21 ),将该组数值n x x x ,,,21 分成l 组,可作分点:l a a a a ,,,,210 (各组距可以不相等),则各组为:(0a ,1a ],(1a ,2a ],……,(1-l a ,l a ],若样本观察值中每个数值落在各组中的频数分别为1m ,2m ,3m ,…,l m ,则频率分别为:n m 1,nm 2……n m l ;以各组为底边,以相应组的频率除以组距为高,建立l 个小矩形,即得总体X 的直方图。

由上分析可知:直方图中每一矩形的面积等于相应组的频率设总体X 的密度函数为)(x f ,则:总体X (真实值)落在第k 组(1-k a ,k a ]的概率为:⎰-kk a a dx x f 1)(。

由Bernoulli 大数定理可知:当n 很大时,样本观察值(单个)落在该区间的频率趋近于此概率;即:(1-k a ,k a ]上矩形的面积接近于)(x f 在此区间上曲边梯形的面积,当n 无限增大时,分组组距越来越小,直方图就越接近总体X 的密度函数)(x f 的图象。

(这与定积分的意义具有同样的道理)。

§6.3 样本的数字特征 40分钟0、引言由第三章节知:随机变量的数字特征,能够反映随机事件的某些重要的概率特征,从第一节可知,样本也是一组随机变量(随机向量),为了详细刻划样本观察值中所包含总体X 的信息及样本值的分布情况,下面我们研究样本的数字特征。

相关文档
最新文档