专题:一元二次方程根的判别式(含答案)-

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)

第二章 一元二次方程专题复习2-根的判别式与韦达定理(含答案)

专题复习二 根的判别式与韦达定理重点提示: (1)根的判别式ac b 42-主要应用于判断方程根的情况.利用判别式判断方程根的情况时要注意方程是不是一元二次方程,如果方程的类型不确定还要进行分类讨论.(2)韦达定理主要反映一元二次方程根与系数的关系,利用韦达定理的前提条件是方程有解,即042≥-ac b .【夯实基础巩固】1. 已知x 1,x 2是方程x 2+2x ﹣5=0的两根,则的值为( B )A .﹣B .C .D .﹣2.已知x 2+px +q =0的两根是3,﹣4,则代数式x 2+px +q 分解因式的结果是( C )A . (x +3)(x +4)B . (x ﹣3)(x ﹣4)C . (x ﹣3)(x +4)D . (x +3)(x ﹣4)3.关于x 的方程x 2﹣2mx ﹣m ﹣1=0的根的情况是( A )A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根4.关于x 的方程x 2﹣(m ﹣1)x +m ﹣2=0的两根互为倒数,则m 的值是( C )A . 1B . 2C . 3D . 45.关于x 的方程x 2﹣(m ﹣3)x +m 2=0有两个不相等的实数根,则m 的最大整数值是( B )A . 2B . 1C . 0D . ﹣16.已知关于x 的一元二次方程x 2+kx +1=0有两个相等的实数根,则k = ±2 .7.已知x 1,x 2是方程的两根,则的值为 3 .8.已知a ,b 是一元二次方程x 2﹣2x ﹣1=0的两个实数根,则代数式(a ﹣b )(a +b ﹣2)+ab 的值等于 ﹣1 .9.已知关于x 的方程x 2+2mx +m 2﹣1=0.(1)不解方程,判别方程根的情况.(2)若方程有一个根为3,求m 的值.(1)∵∆=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x 2+2mx +m 2﹣1=0有两个不相等的实数根.(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得m=﹣4或m=﹣2.10.已知关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根.(1)求实数m的最大整数值.(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22﹣x1x2的值.(1)∵x2﹣2x+m=0有两个不相等的实数根,∴ =8﹣4m>0,解得m<2,∴m的最大整数值为1.(2)∵m=1,∴此一元二次方程为x2﹣2x+1=0.∴x1+x2=2,x1x2=1.∴x12+x22﹣x1x2=(x1+x2)2﹣3x1x2=8﹣3=5.【能力提升培优】11.若a,b,c为三角形三边,则关于x的一元二次方程x2+(a﹣b)x+c2=0的根的情况是(C)A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定12.已知一元二次方程ax2+bx+c=0(a≠0),给出下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.其中真命题有(C)A.1个B.2个C.3个D.0个13.设x1,x2是关于x的方程x2+px+q=0的两根,x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的值分别为(A)A.﹣1,﹣3 B.1,3 C.1,﹣3 D.﹣1,3【解析】∵x1,x2是x2+px+q=0的两根,x1+1,x2+1是x2+qx+p=0的两根,∴x1+x2=-p,x1x2=q,x1+1+x2+1= x1+x2+2=-q,(x1+1)(x2+1)= x1x2+(x1+x2)+1=p.∴-p+2=-q,q-p+1=p.∴p=-1,q=-3.14.若一元二次方程x2﹣(a+2)x+2a=0的两个实数根分别是3,b,则a+b=5.15.已知m,n是方程x2﹣2x﹣1=0的两根,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于﹣9.16.已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是①②.17.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1x2,求k的值.(1)∵原方程有两个不相等的实数根,∴∆=(2k+1)2﹣4(k2+1)=4k2+4k+1﹣4k2﹣4=4k﹣3>0,解得k>.(2)∵k>,∴x1+x2=﹣(2k+1)<0.又∵x1x2=k2+1>0,∴x1<0,x2<0.∴|x1|+|x2|=﹣x1﹣x2=﹣(x1+x2)=2k+1.∵|x1|+|x2|=x1x2,∴2k+1=k2+1.∴k1=0,k2=2.又∵k>,∴k=2.18.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1,x2.(1)若+=1,求的值.(2)求+﹣m2的最大值.∵方程有两个不相等的实数根,∴∆= 4(m﹣2)2﹣4(m2﹣3m+3)=﹣4m+4>0,解得m<1.∴﹣1≤m<1.(1)∵x1+x2=﹣2(m﹣2),x1x2=m2﹣3m+3,∴+===1,解得m1=,m2=(不合题意,舍去).∴=﹣2.(2)+﹣m2=﹣m2=﹣2(m﹣1)﹣m2=﹣(m+1)2+3.当m=﹣1时,最大值为3.【中考实战演练】19.【烟台】等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为(B)A.9B.10 C.9或10 D.8或10【解析】∵a,b,2是等腰三角形的三边长,∴a=2,b<4或a<4,b=2或a=b>1. ∵a,b是x2-6x+n-1=0的两根,∴a+b=6.∴a=b=3.∴ab=n-1=9.∴n=10.20.已知m,n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是4.【开放应用探究】21.若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2﹣6x﹣27=0,x2﹣2x﹣8=0,x2+3x﹣=0,x2+6x ﹣27=0,x2+4x+4=0,都是“偶系二次方程”.(1)判断方程x2+x﹣12=0是否是“偶系二次方程”,并说明理由.(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”?请说明理由.(1)不是.理由如下:解方程x2+x﹣12=0得x1=3,x2=﹣4.∴|x1|+|x2|=3+4=7=2×3.5.∵3.5不是整数,∴x2+x﹣12=0不是“偶系二次方程.(2)存在.理由如下:∵x2﹣6x﹣27=0和x2+6x﹣27=0是偶系二次方程,∴假设c=mb2+n.当b=﹣6,c=﹣27时,﹣27=36m+n.∵x2=0是偶系二次方程,∴n=0,m=﹣.∴c=﹣b2.∴可设c=﹣b2.对于任意一个整数b,c=﹣b2时, =b2﹣4c=4b2.∴x1=﹣b,x2=b.∴|x1|+|x2|=2|b|,∵b是整数,∴对于任何一个整数b,当c=﹣b2时,关于x的方程x2+bx+c=0是“偶系二次方程”.。

一元二次方程根的判别式-(201912)

一元二次方程根的判别式-(201912)
△=0方程有两个相等的实数根.
△<0方程没有实数根.
(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根
的范围;
(3)解与根有关的证明题.
不解方程,判别下列方程的根的 情况:
(1);2x 2 3x 4 0
(2); 16y 2 9 24y
(3). 5(x 2 1) 7x 0
解:要使方程有两个实数根,需满 足 m 0, 0
∴ [(2m 1)]2 4m m 是m 1 ,且
m≠0.
4
当堂训练1
1.方程 4x 2 3x 2 0 的 根的判别式△=________,它 的根的情况是 _____________.
一元二次方程根的判别式
一元二次方程 ax2 bx c 0 的根有三 种情况:①有两个不相等的实数根; ②有两个相等的实数根;③没有实数 根.而根的情况,由 b2 4ac 的值来 确定.因此 b2 4ac 叫做一元二 次方程的根的判别式.
△>0方程有两个不相等的实根.
(1)∵a=2,b=3,c=-4, ∴.b2 4ac 32 4 2 (4) 41 0 ∴方程有两个不相等的实数根.
(2)∵a=16,b=-24,c=9, ∴.b2 4ac (24)2 4 16 9 0 ∴方程有两个相等的实数解.
(3)将方程化为一般形式,5x 2 5 7x 0 .5x 2 7x 5 0 ∵a=4,b=-7,c=5, ∴ b2 4ac (7)2 4 5 5 =49-100 =-51<0. ∴方程无实数解.
已知关于x的方程 mx 2 (2m 1)x m 0 有两个实数根,求m的取值范 围.

九年级数学尖子生培优竞赛专题辅导第二讲 一元二次方程根的判别式(含答案)

九年级数学尖子生培优竞赛专题辅导第二讲 一元二次方程根的判别式(含答案)

第二讲 一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵道:“师傅给你一件随身法宝——“Δ”,出去闯荡一下吧!”“小精灵拜别师傅韦达,来到“方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:“晚辈小精灵奉师傅之命前来方程经见识见识.”守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x 2+2xy +7y 2-10x -18y +19=0,并且问道:“你能说出实数x 、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y 看成已知数,把它整理成关于x 的一元二次方程2x 2+(2y -10)x +(7y 2-18y +19)=0.好哇!因为x 是实数,上面的方程必有实数根,所以Δ≥0,即(2y -10)2-4×2(7y 2-18y +19)≥0,可得(y -1)2≤0,一下子便得到了y =1,再将y =1代人原方程就可得x =2. 小精灵这里用的法宝“Δ”是什么呢?它就是一元二次方程根的判别式.一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根,反过来也成立.知识延伸】例1 已知关于x 的二次方程x ²+p 1x +q 1=0与x 2+p 2x +q 2=0,求证:当p 1p 2=2(q 1+q 2)时,这两个方程中至少有一个方程有实根.证明 设这两个方程的判别式为Δ1,Δ2,则Δ1+Δ2=2212p p +-4(q 1+q 2).∵p 1p 2=2(q 1+q 2),∴Δ1+Δ2=2212p p +-2p 1p 2=(p 1-p 2)2≥0.∴Δ1≥0与Δ2≥0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明Δ1+Δ2≥0;本题还可用反证法来证明,即假设Δ1<0且Δ2<0,则Δ1+Δ2<0,但Δ1+Δ2=(p 1-p 2)2≥0,两者矛盾,从而导出原题结论成立.例2 求函数y =(4-x )+解析 设u =x ,则u >0且y =4+u . ∴(u +x )2=4(x 2+9),即3x 2-2ux +36-u 2=0. ∵x ∈R ,故以上方程有解.∴Δ=(2u )2-4×3×(36-u 2)≥0,即u ≥27. 又u >0,∴u4y x =-+ 的最小值为4+x .好题妙解】佳题新题品味例 已知实数1234,,,a a a a 满足22222124213423()2()0a a a a a a a a a +-+++= ,求证:2213=a a a ⋅ 解析 把已知等式看成关于a 4的方程。

一元二次方程判别式及根与系数关系专题训练(含答案)

一元二次方程判别式及根与系数关系专题训练(含答案)

一元二次方程判别式及根与系数关系专题训练10. 已知关于x 的一元二次方程220x x a --=.(1)如果此方程有两个不相等的实数根,求a 的取值范围; (2)如果此方程的两个实数根为12x x ,,且满足121123x x +=-,求a 的值.11. 已知关于x 的一元二次方程x 2-m x -2=0. ……①(1) 若x =-1是方程①的一个根,求m 的值和方程①的另一根; (2) 对于任意实数m ,判断方程①的根的情况,并说明理由.12. 已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解.13. 当m 为何值时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根?此时这两个实数根是多少?14. 已知关于 x的一元二次方程 2410x x m -+-= 有两个相等的实数根,求m 的值及方程的根.15. 若关于x 的一元二次方程2420x x k ++=有两个实数根,求k 的取值范围及k 的非负整数值.16. 已知关于x 的一元二次方程x 2= 2(1-m )x -m 2的两实数根为x 1,x 2.(1)求m 的取值范围;(2)设y = x 1 + x 2,当y 取得最小值时,求相应m 的值,并求出最小值.17. 关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根.18.已知关于x 的一元二次方程2260x x k --=(k 为常数).(1)求证:方程有两个不相等的实数根; (3分)(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值. (4分)19. 关于x 的一元二次方程22(23)0x k x k +-+=有两个不相等的实数根αβ、.(1)求k 的取值范围;(2)若6αβαβ++=,求2()35αβαβ-+-的值.20. 已知关于x 的一元二次方程x 2 + 2(k -1)x + k 2-1 = 0有两个不相等的实数根.(1)求实数k 的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.21.在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.22. 设12x x 、是关于x 的方程2410x x k -++=的两个实数根.试问:是否存在实数k ,使得1212x x x x >+·成立,请说明理由.23. 已知关于x 的方程222(2)0x m x m --+=.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.24. 关于x 的方程2(2)04k kx k x +++=有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在实数k ,使方程的两个实数根的倒数和等于0?若存在,求出k 的值;若不存在,说明理由.25. 关于x 的一元二次方程210x x p -+-=有两实数根12x x 、.(1)求p 的取值范围;(4分)(2)若1122[2(1)][2(1)]9x x x x +-+-=,求p 的值.(6分)一元二次方程判别式及根与系数关系专题训练答案第10题答案.解:(1)2(2)41()44a a ∆=--⨯⨯-=+.1分 方程有两个不相等的实数根,0∴∆>. 2分 即1a >-.3分 (2)由题意得:122x x +=,12x x a =- .4分121212112x x x x x x a++==-,121123x x +=-223a ∴=--. 6分3a ∴=.7分第11题答案.解:(1) x =-1是方程①的一个根,所以1+m -2=0,1分 解得m =1.2分 方程为x 2-x -2=0, 解得, x 1=-1, x 2=2. 所以方程的另一根为x =2.4分 (2) ac b 42-=m 2+8,5分 因为对于任意实数m ,m 2≥0,6分 所以m 2+8>0,7分 所以对于任意的实数m ,方程①有两个不相等的实数根. 8分第12题答案.(1)证明:因为△=)12(4)2(2--+m m 1分 =4)2(2+-m3分所以无论m 取何值时, △>0,所以方程有两个不相等的实数根. (2)解:因为方程的两根互为相反数,所以021=+x x , 5分 根据方程的根与系数的关系得02=+m ,解得2-=m ,7分所以原方程可化为052=-x ,解得51=x ,52-=x9分第13题答案.由题意,△=(-4)2-4(m -21)=0…………………………………………(2分)即16-4m+2=0,m=29.………………………………………………(4分)当m=29时,方程有两个相等的实数根x 1=x 2=2.……………………(6分)第14题答案.解:由题意可知 0= .即 2(4)4(1)0m ---=. 解得 5m =.3分当5m =时,原方程化为2440x x -+=. 解得 122x x ==.所以原方程的根为 122x x ==.5分第15题答案.解:∵关于x 的一元二次方程2420x x k ++=有两个实数根, ∴244121680k k ∆=-⨯⨯=-≥. ……3分 解得2k ≤. ……2分 ∴k 的非负整数值为0,1,2. ……3分第16题答案.(1)将原方程整理为 x 2 + 2(m -1)x + m 2 = 0. ∵ 原方程有两个实数根,∴ △= [ 2(m -1)2-4m 2 =-8m + 4≥0,得 m ≤21.(2) ∵ x 1,x 2为x 2 + 2(m -1)x + m 2 = 0的两根, ∴ y = x 1 + x 2 =-2m + 2,且m ≤21.因而y 随m 的增大而减小,故当m =21时,取得极小值1.第17题答案.解:(1)方程有两个不相等的实数根,∴ 2(3)4()k --->0. 即 49k >-,解得,94k >-. ……(4分)(2)若k 是负整数,k 只能为-1或-2. ……(5分) 如果k =-1,原方程为 2310x x -+=.解得,12x =22x =(如果k =-2,原方程为2320x x -+=,解得,11x =,22x =.)第18题答案.解:(1)0436)(14)6(42222>+=-⨯⨯--=-k k ac b ,·················2分因此方程有两个不相等的实数根.·································3分(2)12661b x x a -+=-=-= ,·····································4分 又12214x x += ,解方程组:12126,214,x x x x +=+=⎧⎨⎩ 解得:218.2,x x ==-⎧⎨⎩·····················5分方法一:将21-=x 代入原方程得:0)2(6)2(22=--⨯--k ,················6分解得:4±=k .·················································7分方法二:将21x x 和代入12c x x a=,得:1822k -=⨯-,······················6分解得:4±=k .·················································7分第19题答案.解:(1) 方程22(23)0x k x k +-+=有两个不相等的实数根,0∴∆>,即22(23)410k k --⨯⨯>.解得34k <.(2)由根与系数的关系得:2(23)k k αβαβ+=--=,. 262360k k αβαβ++=∴-+-= ,. 解得31k k ==-或.由(1)可知3k =不合题意,舍去. 151k αβαβ∴=-∴+==,,. 故()2235()519αβαβαβαβ-+-=+--=.第20题答案.(1)△= [ 2(k —1)] 2-4(k 2-1)= 4k 2-8k + 4-4k 2 + 4 =-8k + 8.∵ 原方程有两个不相等的实数根,∴ -8k + 8>0,解得 k <1,即实数k 的取值范围是 k <1.(2)假设0是方程的一个根,则代入得 02 + 2(k -1)· 0 + k 2-1 = 0, 解得 k =-1 或 k = 1(舍去).即当 k =-1时,0就为原方程的一个根.此时,原方程变为 x 2-4x = 0,解得 x 1 = 0,x 2 = 4,所以它的另一个根是4.第21题答案.解:根据题意得:△()()2246b b =+--28200b b =+-=解得:2b = 或10b =-(不合题意,舍去)∴2b =………………………………………………………………………………4分(1)当2c b ==时,45b c +=<,不合题意(2)当5c a ==时, 12a b c ++=…………………………………………6分第22题答案.解:∵方程有实数根,∴240b ac -≥,∴2(4)4(1)0k --+≥,即3k ≤.解法一:又∵22x ==±∴12(2(24x x +=++-=,12(2(21x x k =+-=+若1212x x x x >+ ,即14k +>,∴3k >.而这与3k ≤相矛盾,因此,不存在实数k ,使得1212x x x x >+ 成立. 解法二:又∵12441b x x a -+=-=-=,12111c k x x k a +===+ ,(以下同解法一)第23题答案.解:设方程的两实根为12x x ,,则:122(2)x x m +=-,212x x m = .1分 令221256x x +=得:2221212()24(2)256x x x x m m +-=--=.3分即28200m m --=.10m ∴=或2m =-.5分当10m =时,222[2(102)]410164000∆=--⨯=-<,∴10m =不合题意,舍去.6分当2m =-时,222[2(22)]4(2)8160∆=---⨯-=->.故:存在实数m 使原方程的两实根的平方和等于56,m 的值是2-.7分第24题答案.(1)由2(2)404k k k ∆=+->·得:1k >-又0k ≠∴k 的取值范围是1k >-且0k ≠. (2)不存在符合条件的实数k . 理由:设方程2(2)04k kx k x +++=的两根分别为1x ,2x ,由根与系数的关系有:121212214110k x x kx x x x ⎧++=-⎪⎪⎪=⎨⎪⎪+=⎪⎩则20k k +-=,2k ∴=- 但由(1)知,2k =-时0∆<,原方程无解,故2k ≠-. 因此不存在符合条件的实数k .第25题答案.解:(1)由题意得:2(1)4(1)0p ∆=---≥.2分 解得,54p ≤.4分(2)由1122[2(1)][2(1)]9x x x x +-+-=得,221122(2)(2)9x x x x +-+-=.6分12x x 、是方程210x x p -+-=的两实数根, 21110x x p ∴-+-=,22210x x p -+-=, 22112211x x p x x p ∴-=--=-,.(21)(21)9p p ∴+-+-=,即2(1)9p +=. 8分 2p ∴=,或4p =-. 9分 54p ≤,∴所求p 的值为4p =-.10分说明:1.可利用121x x +=,得121x x =-,211x x =-代入原求值式中求解; 2.把已知等式按多项式乘法展开后求解.。

中考复习——一元二次方程的根的判别式(解析版)

中考复习——一元二次方程的根的判别式(解析版)

中考复习——一元二次方程的根的判别式一、选择题1、一元二次方程2x2-3x+1=0的根的情况是().A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根答案:B解答:∵Δ=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.2、已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是().A. k<14B. k≤14C. k>4D. k≤14且k≠0答案:B解答:∵关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2,∴Δ=b2-4ac≥0,∵a=1,b=-(2k+1),c=k2+2k,∴[-(2k+1)]2-4×1×(k2+2k)≥0,∴-4k≥-1,∴k≤14.选B.3、若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是().A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定答案:A解答:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴Δ=k2-4b>0,∴方程有两个不相等的实数根.选A.4、关于x的一元二次方程x2+2(m-1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是().A. m≤12B. m≤12且m≠0C. m<1D. m<1且m≠0答案:B解答:∵Δ=[2(m-1)]2-4m2=-8m+4≥0,∴m≤12.∵x1+x2=-2(m-1)>0,x1x2=m2>0,∴m<1,m≠0,∴m≤12且m≠0.5、关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为().A. -1B. -4C. -4或1D. -1或4答案:A解答:由题意知α+β=-2(m-1)=2-2m,αβ=m2-m,且Δ=[2(m-1)]2-4(m2-m)≥0,4(m2-2m+1)-4m2+4m≥0,4m2-8m+4-4m2+4m≥0,-4m≥-4,m≤1,由α2+β2=12可有(α+β)2-2αβ=12,(2-2m)2-2(m2-m)=12,4m2-8m+4-2m2+2m-12=0,2m2-6m-8=0,m2-3m-4=0,(m-4)(m+1)=0,解得m1=-1,m2=4,∵m ≤1故m =-1. 故答案为:A.6、关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1.其中正确结论的个数是( ).A. 0个B. 1个C. 2个D. 3个答案:D解答:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确; ②由根判别式有:Δ=b 2-4ac =4m 2-8n ≥0,Δ=b 2-4ac =4n 2-8m ≥0, ∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n ≥-1,同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m ≥-1,即2m -2n ≤1,故③正确. 7、若关于x 的不等式x -2a<1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ). A. 有两个相等的实数根 B. 有两个不相等的实数根C. 无实数根D. 无法确定答案:C解答:解不等式x -2a <1得x <1+2a , 而不等式x -2a<1的解集为x <1, 所以1+2a=1,解得a =0, 又因为Δ=a 2-4=-4,所以关于x 的一元二次方程x 2+ax +1=0没有实数根.8、已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( ).A. b=-1B. b=2C. b=-2D. b=0答案:A解答:Δ=b2-4,由于当b=-1时,满足b<0,而Δ<0,方程没有实数解,所以当b=-1时,可说明这个命题是假命题.9、在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c 是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A. 若M1=2,M2=2,则M3=0B. 若M1=1,M2=0,则M3=0C. 若M1=0,M2=2,则M3=0D. 若M1=0,M2=0,则M3=0答案:B解答:设3个函数的判别式分别为Δ1=a2-4,Δ2=b2-8,Δ3=c2-16,∵b2=ac,∴c=2ba,A选项,若M1=2,M2=2,则Δ1=a2-4>0,Δ2=b2-8>0,∵a>2,b2>8,∴c=2ba与4无法比较大小,∴Δ3=c2-16无法确定,故A错误;B选项,若M1=1,M2=0,则Δ1=a2-4=0,Δ2=b2-8<0,∴a=2,0<b2<8,∴c=282ba<=4,∴Δ3=c2-16<0,∴M3=0,故B正确;C选项,若M1=0,M2=2,则Δ1=a2-4<0,Δ2=b2-8>0,∴0<a<2,b2>8,∴C =2b a>4,∴Δ3=c 2-16>0, ∴M 3=2,故C 错误; D 选项,若M 1=0,M 2=0, 则Δ1=a 2-4<0,Δ2=b 2-8<0, ∴0<a <2,0<b 2<8,∴c =2b a与4无法比较大小,∴Δ3=c 2-16无法确定,故D 错误. 选B.10、已知抛物线y =ax 2+bx +c (b >a >0)与x 轴最多有一个公共点. 有下列结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx +c +2=0无实数根; ③a -b +c ≥0; ④a b cb a++-的最小值为3.其中,正确结论的个数是( ).A. 1个B. 2个C. 3个D. 4个答案:D解答:∵b >a >0, ∴-2ba<0, 所以①正确;∵抛物线与x 轴最多有一个交点, ∴b 2-4ac ≤0,∴关于x 的方程αx 2+bx +c +2=0中,Δ=b 2-4a (c +2)=b 2-4ac -8a <0, 所以②正确;∵a >0及抛物线与x 轴最多有一个交点, ∴x 取任何值时,y ≥0,∴当x =-1时,a -b +c ≥0, 所以③正确;· 当x =-2时,4a -2b +c ≥0 a +b +c ≥3b -3a a +b +c ≥3(b -a )a b cb a++-≥3,所以④正确. 选D. 二、填空题11、若关于x 的一元二次方程(x +2)2=n 有实数根,则n 的取值范围是______. 答案:n ≥0解答:∵关于x 的一元二次方程(x +2)2=n 有实数根, ∴x 2+4x +4-n =0有实数根, ∴Δ=b 2-4ac =16-4(4-n )=4n ≥0, ∴n ≥0, 故答案为:n ≥0.12、已知关于x 的一元二次方程x 2+k =0有两个相等的实数根,则k 值为______. 答案:3解答:∵关于x 的一元二次方程x 2+k =0有两个相等的实数根,∴Δ=()2-4k =0,∴12-4k =0,解得k =3.13、已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为______. 答案:-1解答:设另一个根为t , 根据题意得4+t =3, 解得t =-1, 即另一个根为-1.14、若一元二次方程x 2+4x +c =0有两个不相等的实数根,则c 的值可以是______(写出一个即可). 答案:3解答:若一元二次方程x2+4x+c=0有两个不相等的实数根,则Δ=42-4c>0,故c<4.15、若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是______.答案:k≤5且k≠1解答:∵一元二次方程(k-1)x2+4x+1=0有实数根,∴k-1≠0,且b2-4ac=16-4(k-1)≥0,解得:k≤5且k≠1.16、已知关于x的一元二次方程x2-4x+m-1=0的实数根x1,x2,满足3x1x2-x1-x2>2,则m 的取值范围是______.答案:3<m≤5解答:由一元二次方程根与系数的关系,得x1x2=m-1,x1+x2=4,代入3x1x2-x1-x2>2,得3(m-1)-4>2,解得m>3,又Δ=16-4(m-1)≥0,解得m≤5,综上可知:3<m≤5.17、已知关于x的一元二次方程x2+(2k+1)x+k2-2=0的两根为x1和x2,且(x1-2)(x1-x2)=0,则k的值是______.答案:-2或-9 4解答:∵(x1-2)(x1-x2)=0,∴x1-2=0或x1-x2=0.①如果x1-2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2-2=0,得4+2(2k+1)+k2-2=0,整理,得k2+4k+4=0,解得k=-2.②如果x1-x2=0,那么(x1-x2)2=(x1+x2)2-4x1x2=[-(2k+1)]2-4(k2-2)=4k+9=0,解得k=-94.又∵Δ=(2k+1)2-4(2k+1)≥0.解得:k≥-94.所以k的值为-2或-94.18、关于x的方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,且x12+x22=3,则m=______.答案:0解答:∵方程x2-(2m-1)x+m2-1=0的两实数根为x1,x2,∴x1+x2=2m-1,x1x2=m2-1,∵x12+x22=(x1+x2)2-2x1x2=(2m-1)2-2(m2-1)=3,解得:m1=0,m2=2,∵方程有两实数根,∴Δ=(2m-1)2-4(m2-1)≥0,既m≤5 4∴m2=2(不合题意,舍去),∴m=0.19、关于x的方程mx2+x-m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解.其中正确的是______(填序号).答案:①③解答:当m=0时,x=-1,方程只有一个解,①正确;当m≠0时,方程mx2+x-m+1=0是一元二次方程,1-4m(1-m)=1-4m+4m2=(2m-1)2≥0,方程有两个实数解,②错误;把mx2+x-m+1=0分解为(x+1)(mx-m+1)=0,当x=-1时,m-1-m+1=0,即x=-1是方程mx2+x-m+1=0的根,③正确;故答案为∶①③.20、对于函数y=x n+x m,我们定义y’=nx n-1+mx m-1(mn为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=13x3+(m-1)x2+m2x.(1)若方程y’=0有两个相等实数根,则m的值为______.(2)若方程y’=m-14有两个正数根,则m的取值范围为______.答案:(1)1 2(2)m≤34且m≠12解答:(1)y’=x2+2(m-1)x+m2=0方程有两个相等的实数根,则Δ=0,即Δ=4(m-1)2-4m2=-8m+4=0,则m=12.(2)y’=x2+2(m-1)x+m2=m-14,∴x2+2(m-1)x+m2-m+14=0.要使方程有两个实数根,则Δ=4(m-1)2-4(m2-m+14)≥0,∴m≤34.要使方程有正根,则当x=0时x2+2(m-1)x+m2-m+14>0,∴m≠12.答案为m≤34且m≠12.三、解答题21、已知关于x的一元二次方程(m-1)x2+2x-1=0有两个不相等的实数根,求m的取值范围.答案:m>0且m≠1.解答:∵一元二次方程有两个不等实根,∴Δ=22-4(m-1)×(-1)>0,即m>0,又m-1≠0,∴m≠1,∴m>0且m≠1.22、已知关于x的一元二次方程x2-3x+m=0有两个不相等的实数根x1、x2.(1)求m的取值范围.(2)当x1=1时,求另一个根x2的值.答案:(1)m<9 4(2)2解答:(1)由题意得:Δ=(-3)2-4×1×m=94m0,解得:m<94.(2)∵x1+x2=-ba=3,x1=1,∴x2=2.23、已知关于x的方程x2+(2k-1)x+k2-1=0有两个实数根x1,x2.(1)求实数k的取值范围.(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.答案:(1)k≤54.(2)k=-2.解答:(1)有两个实数根x1,x2,∴Δ=b2-4ac=(2k-1)2-4(k2-1)=-4k+5,∴-4k+5≥0,∴k≤54.(2)∵x12+x22=(x1+x2)2-2x1x2,∴(x1+x2)2-2x1x2=16+x1x2,∴(2k-1)2=16+3(k2-1)k2-4k-12=0,∴k=-2或k=6(舍),∴k=-2.24、已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围.(2)若x1,x2满足3x1=|x2|+2,求m的值.答案:(1)m的取值范围为m≤5.(2)符合条件的m的值为4.解答:(1)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴Δ=(-6)2-4(m+4)=20-4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1·x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4.当x2<0时,有3x1=-x2+2④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为4.25、已知:一元二次方程12x2+kx+k-12=0.(1)求证:不论k为何实数时,此方程总有两个实数根.(2)设k<0,当二次函数y=12x2+kx+k-12的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式.(3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?答案:(1)证明见解答.(2)此二次函数的解析式是y=12x2-x-32.(3)-2≤m≤2.解答:(1)∵Δ=k2-4×12×(k-12)=k2-2k+1=(k-1)2≥0,∴关于x的一元二次方程12x2+kx+k-12=0,不论k为何实数时,此方程总有两个实数根.(2)令y=0,则12x2+kx+k-12=0,∵x A+x B=-2k,x A·x B=2k-1,∴|x A-x B=2|k-1|=4,即|k-1|=2,解得k=3(不合题意,舍去),或k=-1,∴此二次函数的解析式是y=12x2-x-32.(3)由(2)知,抛物线的解析式是y =12x 2-x -32, 易求A (-1,0),B (3,0),C (1,-2),∴AB =4,AC,BC, 显然AC 2+BC 2=AB 2,得△ABC 是等腰直角三角形,AB 为斜边,∴外接圆的直径为AB =4,∴-2≤m ≤2.26、设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若11x +21x =1,求132m-的值. (2)求111mx x -+221mx x --m 2的最大值. 答案:(1(2)当m =-1时,最大值为3.解答:(1)∵方程有两个不相等的实数根,∴Δ=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1,结合题意知:-1≤m <1.∵x 1+x 2=-2(m -2),x 1x 2=m 2-3m +3 ∴11x +21x =1212x x x x +=()22233m m m ---+=1 解得:m 1=12,m 2=12(不合题意,舍去) ∴132m-. (2)111mx x -+221mx x --m 2 =()()1212121221m x x mx x x x x x +--++-m 2=-2(m-1)-m2=-(m+1)2+3.当m=-1时,最大值为3.。

初中数学竞赛专题选讲-一元二次方程的根(含答案)

初中数学竞赛专题选讲-一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1). 例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。

一元二次方程之判别式专项练习60题(有答案)ok

一元二次方程之判别式专项练习60题(有答案)ok

一元二次方程之判别式专项练习60题(有答案)ok1.1) 对于方程2x-5x-a=0,根据一元二次方程的求根公式,判别式为Δ=25+8a,要使方程有两个不相等的实数根,即Δ>0,所以25+8a>0,解得a>-25/8,所以a的取值范围为a>-25/8.2) 当方程的两个根互为倒数时,根据一元二次方程的求根公式,有x1x2=-a/2,又因为x1x2=1/x1,所以x1^2=-a/2,代入原方程得2x-5x-2x1^2=0,解得x1=±√(5/2),代入x1x2=-a/2得a=5.2.1) 将方程展开得x^2-5x+6-p=0,根据一元二次方程的求根公式,判别式为Δ=25-24+4p=1+4p,要使方程有两个不相等的实数根,即Δ>0,所以1+4p>0,解得p>-1/4,所以p的取值范围为p>-1/4.2) 当p=2时,代入方程得(x-3)(x-2)=2,展开得x^2-5x+4=0,根据一元二次方程的求根公式,解得x1=1,x2=4.3.将方程化简得2kx+k-2=0,由于方程有两个相等的实数根,所以判别式Δ=0,解得k=1,代入方程得3x-1=0,解得x=1/3.4.1) 将方程化简得x^2+(4-a)x+3=0,根据一元二次方程的求根公式,判别式为Δ=(4-a)^2-12,要使方程有实数根,即Δ≥0,所以(4-a)^2-12≥0,解得a∈(-∞,4-2√3]∪[4+2√3,+∞)。

2) 当a=4-2√3时,代入方程得x^2+(4-4+2√3)x+3=0,解得x1=√3-1,x2=-(√3+1)。

5.1) 将方程化简得4x^2-4mx+m^2-4m+1=0,根据一元二次方程的求根公式,判别式为Δ=16m-4m^2,要使方程有两个不相等的实数根,即Δ>0,所以m∈(-∞,0)∪(1,4]。

2) 当m=4时,代入方程得4x^2-16x+17=0,根据一元二次方程的求根公式,解得x1=(4-√3)/2,x2=(4+√3)/2.6.1) 将方程化简得4x^2-3x-m=0,由于方程有两个不相等的实数根,所以判别式Δ=9+16m>0,解得m>-9/16,所以m的最小整数值为-1.2) 当m=-1时,代入方程得4x^2-3x+1=0,根据一元二次方程的求根公式,解得x1=1/4,x2=1.7.根据一元二次方程的求根公式,判别式Δ=25-12m,要使判别式为1,即Δ=1,解得m=2或m=1/3.当m=2时,代入方程得2x^2-10x+3=0,根据一元二次方程的求根公式,解得x1=(5-√13)/2,x2=(5+√13)/2.当m=1/3时,代入方程得x^2-5/3x+1=0,根据一元二次方程的求根公式,解得x1=(5-√5)/6,x2=(5+√5)/6.8.删除此段落。

(完整版)一元二次方程根的判别式知识点

(完整版)一元二次方程根的判别式知识点

一元二次方程根的判别式知识点及应用1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。

(2)一元二次方程ax²+bx+c=0(a≠0)(Δ=b²4ac)一、不解方程,判断一元二次方程根的情况。

例1、判断下列方程根的情况2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。

例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、证明方程根的性质。

例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。

四、判断二次三项式能否在实数范围内因式分解。

例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。

五、判定二次三项式为完全平方式。

例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。

例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。

六、利用判别式构造一元二次方程。

例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、限制一元二次方程的根与系数关系的应用。

例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系复习

一元二次方程的根的判别式和根与系数关系一、知识要点:1、一元二次方程20(0)ax bx c a ++=≠的根的判别式:24b ac ∆=-;2、一元二次方程20(0)ax bx c a ++=≠的根与系数关系:(1)设12,x x 是方程20(0)ax bx c a ++=≠的两根,则有1212,b c x x x x a a+=-=;(2)以12,x x 为两根的一元二次方程是:21212()0x x x x x x -++=。

3、公式变形:2221212122212121212121212121212(1)()2(2)()()4(3)(1)(1)()111(4)(5)x x x x x x x x x x x x x x x x x x x x x x x x x x +=+--=+- ++=++++ += -==121212121210000010x x x x x x x x x x x ⇔∆>⇔∆⇔∆<⇔∆≥∆≥⎧⎪⇔+=⎨⎪≤⎩∆≥⎧⇔⎨⎩∆≥⎧⎪⇔+>⎨⎪>⎩∆≥⇔+4、(1)方程有两个不等实根;(2)方程有两个相等实根=0;(3)方程没有实根0;(4)方程有两个实根0(5)方程有两个互为相反数的实根 (6)方程有两个互为倒数的实根=0 (7)方程有两个正根0 (8)方程有两个负根2121212121200000x x x x x x x x x x x ⎧⎪<⎨⎪>⎩∆>⎧⎪⇔+>⎨⎪<⎩∆>⎧⎪⇔+<⎨⎪<⎩0 (9)方程有两个异号根,且正根的绝对值比较大0 (10)方程有两个异号根,且负根的绝对值比较大例1、解关于x的方程:2--+=m x mx m(1)20例2、已知关于x的一元二次方程2m x mx m+++-=有两个不等实根,且这两根又不互为相反数,(1)230求m的取值范围。

例3、已知关于x的方程22--+=x m x m4(2)40(1)若方程有两个相等实根,求m的值,并求出方程的根;(2)是否存在正数m,使方程的两个实根的平方和等于224?若存在,请求出满足条件的m值;若不存在,请说明理由。

部编数学九年级上册专题21.3一元二次方程根的判别式【八大题型】(人教版)(解析版)含答案

部编数学九年级上册专题21.3一元二次方程根的判别式【八大题型】(人教版)(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题21.3 一元二次方程根的判别式【八大题型】【人教版】【题型1 由根的判别式判断方程根的情况(不含字母类)】 (1)【题型2 由根的判别式判断方程根的情况(含字母类)】 (2)【题型3 由根的判别式判断方程根的情况(综合类)】 (4)【题型4 由方程根的情况确定字母的取值范围】 (7)【题型5 由方程有两个相等的实数根求值】 (8)【题型6 根的判别式与新定义的综合】 (10)【题型7 由根的判别式证明方程根的必然情况】 (12)【题型8 根的判别式与三角形的综合】 (14)【题型1 由根的判别式判断方程根的情况(不含字母类)】【例1】(2022•滨州)一元二次方程2x2﹣5x+6=0的根的情况为( )A.无实数根B.有两个不等的实数根C.有两个相等的实数根D.不能判定【分析】求出判别式Δ=b2﹣4ac,判断其的符号就即可得出结论.【解答】解:∵Δ=(﹣5)2﹣4×2×6=25﹣48=﹣23<0,∴2x2﹣5x+6=0无实数根,故选:A.【变式1-1】(2022•梧州)一元二次方程x2﹣3x+1=0的根的情况( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先计算根的判别式的值得到Δ>0,然后根据根的判别式的意义对各选项进行判断.【解答】解:∵Δ=(﹣3)2﹣4×1×1=5>0,∴方程有两个不相等的实数根.故选:B.【变式1-2】(2022春•长沙期末)关于x的一元二次方程x2+9=0的根的情况,下列说法正确的是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【分析】求出方程根的判别式,判断其值的正负即可得到结果.【解答】解:方程x2﹣+9=0,∵Δ=(﹣2﹣4×1×9=32﹣36=﹣4<0,∴方程没有实数根.故选:C.【变式1-3】(2022•保定一模)方程(x+3)(x﹣1)=x﹣4的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先把方程化为一般式,再应用根的判别式进行计算即可得出答案.【解答】解:(x+3)(x﹣1)=x﹣4,x2+x+1=0,a=1,b=1,c=1,Δ=b2﹣4ac=12﹣4×1×1=﹣3<0,所以原方程无实数根.故选:D.【题型2 由根的判别式判断方程根的情况(含字母类)】【例2】(2022春•钱塘区期末)已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是( )A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根【分析】先计算Δ的值,利用k的值,可作判断.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.【变式2-1】(2022•南召县模拟)已知关于x的方程(x﹣1)(x+2)=p,则下列分析正确的是( )A.当p=0时,方程有两个相等的实数根B.当p>0时,方程有两个不相等的实数根C.当p<0时,方程没有实数根D.方程的根的情况与p的值无关【分析】先将该方程整理成一般式,再求得其根的判别式为4p+9,再判断各选项的正确与否即可.【解答】解:方程(x﹣1)(x+2)=p可整理为x2+x﹣2﹣p=0,∴Δ=12﹣4×1×(﹣2﹣p)=1+8+4p=4p+9.当p=0时,Δ=4p+9=9>0,∴方程有两个不相等的实数根,故选项A不符合题意;当p>0时,Δ=4p+9>0,∴方程有两个不相等的实数根,故选项B符合题意;当p<0时,Δ的正负无法确定,∴无法判断该方程实数根的情况,故选项C不符合题意;∵方程的根的情况和p的值有关,故选项D不符合题意.故选B.【变式2-2】(2022•环翠区一模)对于任意的实数k,关于x的方程14x2−(k+2)x+2k2+5k+5=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判定【分析】先计算根的判别式的值得到Δ=﹣(k+12)2−34<0,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵Δ=[﹣(k+2)]2﹣4×14(2k2+5k+5)=﹣(k+12)2−34<0,∴方程无实数根.故选:C.【变式2-3】(2022春•平潭县期末)对于任意实数k,关于x的方程x2﹣2(k+5)x+2k2+4k+50=0的根的情况为( )A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.无法判定【分析】先计算根的判别式的值得到Δ=﹣4(k﹣3)2﹣64<0,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵Δ=4(k+5)2﹣4(2k2+4k+50)=﹣4(k﹣3)2﹣64<0,∴方程无实数根.故选:B.【题型3 由根的判别式判断方程根的情况(综合类)】【例3】(2022•桥西区校级模拟)探讨关于x的一元二次方程ax2+bx﹣1=0总有实数根的条件,下面三名同学给出建议:甲:a,b同号;乙:a﹣b﹣1=0;丙:a+b﹣1=0.其中符合条件的是( )A.甲,乙,丙都正确B.只有甲不正确C.甲,乙,丙都不正确D.只有乙正确【分析】根据根的判别式的定义得到Δ=b2+4a,根据特例可根的判别式的意义可对甲的条件进行判断;若a=b+1,则Δ=(b+2)2≥0,则根据根的判别式的意义可对乙的条件进行判断;若a=﹣b+1,Δ=(b﹣2)2≥0,则根据根的判别式的意义可对丙的条件进行判断.【解答】解:Δ=b2+4a,若a、b同号,a=﹣1,b=﹣1,此时Δ=1﹣4=﹣3<0,方程没有实数解,所以甲的条件不满足方程总有实数根;若a﹣b﹣1=0,即a=b+1,Δ=b2+4(b+1)=(b+2)2≥0,方程总有实数根,所以乙的条件满足方程总有实数根;若a+b﹣1=0,即a=﹣b+1,Δ=b2+4(﹣b+1)=(b﹣2)2≥0,方程总有实数根,所以丙的条件满足方程总有实数根;故选:B.【变式3-1】(2022•肥西县模拟)已知三个实数a,b,c满足a+b﹣c=0,3a+b﹣c>0,则关于x的方程ax2﹣cx+b=0的根的情况是( )A.无实数根B.有且只有一个实数根C.两个实数根D.无数个实数根【分析】根据条件得到a+b=c,a>0,关于x的方程ax2﹣cx+b=0是一元二次方程,根据判别式求根的情况即可.【解答】解:∵a+b﹣c=0,3a+b﹣c>0,∴a+b=c,3a+b﹣(a+b)>0,∴3a+b﹣a﹣b>0,∴2a>0,∴a>0,∴关于x的方程ax2﹣cx+b=0是一元二次方程,∵Δ=(﹣c)2﹣4ab=c2﹣4ab=(a+b)2﹣4ab=(a﹣b)2≥0,∴方程有两个实数根,故选:C.【变式3-2】(2022春•德阳月考)函数y=kx﹣b的图象如图所示,则关于x的一元二次方程x2+bx+k﹣1=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定【分析】利用一次函数的性质得k<0,再计算判别式的值得到Δ=b2﹣4k+4,然后判断△的符合,从而得到方程根的情况.【解答】解:由图象可得k<0,∵Δ=b2﹣4(k﹣1)=b2﹣4k+4,∵b2≥0,∴b2+4>0,∵﹣4k>0,∴Δ>0,∴方程有两个不相等的实数根,故选:C.【变式3-3】(2022•>0x−3<1有3个整数解,则关于x的方程ax2+(2a﹣1)x+a=0根的情况为( )A.无法判断B.有两个不相等的实数根C.有两个相等的实数根D.无实数根【分析】先解不等式组得到a<x<8,再利用不等式组有3个整数解得到4≤a<8,对于一元二次方程ax2+(2a﹣1)x+a=0,计算根的判别式的值得到Δ=﹣4a+1,利用a的范围可判断Δ<0,然后根据根的判别式的意义可判断方程根的情况.>0①x−3<1②,解①得x>a,解②得x<8,∵不等式组有解,∴a<x<8,∵不等式组有3个整数解,∴4≤a<8,∵a≠0,∴方程ax2+(2a﹣1)x+a=0为一元二次方程,∵Δ=(2a﹣1)2﹣4a2=﹣4a+1,而4≤<8,∴Δ<0,∴方程没有实数根.故选:D.【题型4 由方程根的情况确定字母的取值范围】【例4】(2022春•长丰县期末)关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,则m的取值范围是( )A.m<﹣1B.m>0C.m<1且m≠0D.m>0且m≠1【分析】根据一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=22﹣4×(m﹣1)×2>0,然后求出两不等式解集的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=22﹣4(m﹣1)(﹣1)>0,解得m>0且m≠1.故选:D.【变式4-1】(2022•西平县模拟)若关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2=0有实数根,则k的取值范围是( )A.k≤94B.k≥94C.k>94D.k<94【分析】根据根的判别式的意义得到Δ=(2k﹣1)2﹣4(k2﹣2)≥0,然后解不等式即可.【解答】解:根据题意得Δ=(2k﹣1)2﹣4(k2﹣2)≥0,解得k≤9 4.故选:A.【变式4-2】(2022•滑县模拟)若关于x的一元二次方程2kx2﹣+1=0有两个不相等的实数根,则k的取值范围是( )A.k>﹣9B.k>﹣9且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】利用一元二次方程的定义,二次根式有意义的条件和根的判别式的意义得到2k≠0k+1Δ=2−4×2k>0,然后解不等式组即可.【解答】解:根据题意得2k≠0k+1Δ=2−4×2k>0,解得k≥﹣1且k≠0,即k的取值范围为k≥﹣1且k≠0.故选:C.【变式4-3】(2022•定海区一模)直线y=x﹣a不经过第二象限,且关于x的方程ax2﹣2x+1=0有实数解,则a的取值范围是( )A.0≤a≤1B.o≤a<1C.0<a≤1D.0<a<1【分析】利用一次函数的性质得到a≥0,再判断Δ=(﹣2)2﹣4a≥0,从而得到a的取值范围.【解答】解:∵直线y=x﹣a不经过第二象限,∴﹣a≤0,∴a≥0,当a=0时,关于x的方程ax2﹣2x+1=0是一元一次方程,解为x=1 2,当a>0时,关于x的方程ax2﹣2x+1=0是一元二次方程,∵Δ=(﹣2)2﹣4a≥0,∴a≤1.∴0≤a≤1,故选:A.【题型5 由方程有两个相等的实数根求值】【例5】(2022•合肥模拟)若关于x的一元二次方程x(x﹣2)=2mx有两个相等的实数根,则实数m的值为( )A.﹣1B.0C.﹣1或0D.4或1【分析】先把方程化为一般式为x2﹣2(m+1)x=0,根据根的判别式的意义得到Δ=4(m+1)2﹣4×0=0,然后解关于m的方程即可.【解答】解:方程化为一般式为x2﹣2(m+1)x=0,根据题意得Δ=4(m+1)2﹣4×0=0,解得m=﹣1.故选:A.【变式5-1】(2022•高新区校级二模)已知一元二次方程ax2+1=0有两个相等的实数根,则a,b 的值可能是( )A.a=﹣1,b=﹣4B.a=0,b=0C.a=1,b=2D.a=1,b=4【分析】根据一元二次方程有两个相等的实数根,可得Δ=b﹣4a=0,一元二次方程二次项系数不为0,可得a≠0,二次根式有意义可得b≥0,即可进行判断.【解答】解:根据题意,得Δ=b﹣4a=0,a≠0,b≥0,∵b=﹣4<0,故A选项不符合题意;∵a=0,故B选项不符合题意;当a=1时,b﹣4a=0,解得b=4,故C选项不符合题意,D选项符合题意,故选:D.【变式5-2】(2022•江夏区模拟)已知关于x的一元二次方程(3a﹣1)x2﹣ax+14=0有两个相等的实数根,则代数式a2﹣2a+1+1a的值( )A..﹣3B..3C.2D.﹣2【分析】先根据一元二次方程的定义以及根的判别式得到3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,则a2﹣3a+1=0,再将a2=3a﹣1代入代数式得到a+1a,通分后得到a21a,再代入a2+1=3a计算即可.【解答】解:根据题意得3a﹣1≠0且Δ=a2﹣4×(3a﹣1)×14=0,即a2﹣3a+1=0,∴a2=3a﹣1,所以原式=3a﹣1﹣2a+1+1a=a+1a=a21a=3aa=3.故选:B.【变式5-3】(2022春•余杭区月考)若关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,且满足4a﹣2b+c=0,则( )A.b=a B.c=2a C.a(x+2)2=0D.﹣a(x﹣2)2=0【分析】由一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0可得出x=﹣2是方程ax2+bx+c=0的解,进而可得出a(x+2)2=0(a≠0),此题得解.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)满足4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的解,又∵有两个相等的实数根,∴a(x+2)2=0(a≠0).故选:C.【题型6 根的判别式与新定义的综合】【例6】(2022•烟台一模)定义新运算a⋆b,对于任意实数a,b满足a⋆b﹣(a+b)(a﹣b)﹣2.例如3⋆2=(3+2)(3﹣2)﹣2=5﹣2=1,若x⋆(2x﹣1)=﹣3是关于x的方程,则它的根的情况是( )A.有一个实根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根【分析】先根据新运算得到[x+(2x﹣1)][x﹣(2x﹣1)]﹣2=﹣3,再把方程化为一般式得到3x2﹣4x=0,接着计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:∵x⋆(2x﹣1)=﹣3,∴[x+(2x﹣1)][x﹣(2x﹣1)]﹣2=﹣3,整理得3x2﹣4x=0,∵Δ=(﹣4)2﹣4×3×0=16>0,∴方程有两个不相等的实数根.故选:D.【变式6-1】(2022•青县二模)定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为( )A.﹣1≤a≤0B.﹣1≤a<0C.a≥0或a≤﹣1D.a>0或a≤﹣1【分析】根据新定义运算法则列出关于x的方程,根据根的判别式进行判断即可.【解答】解:由题意可知:a※x=ax2﹣2ax﹣1=0,当a=0时,原来方程变形为﹣1=0,方程无解;当a≠0时,∵关于x的方程a※x=0有实数根,∴Δ=4a2+4a=4a(a+1)≥0,解得a≤﹣1或a>0.故选:D.【变式6-2】(2022•宁远县模拟)定义新运算“※”:对于实数m,n,p,q有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22,若关于x的方程(x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k≤54且k≠0B.k≤54C.k<54且k≠0D.k≥54【分析】先根据新定义得到k(x2+1)+(5﹣2k)x=0,再整理为一般式,接着根据一元二次方程的定义和判别式的意义得到k≠0且Δ=(5﹣2k)2﹣4k2≥0,然后解不等式即可.【解答】解:根据题意得k(x2+1)+(5﹣2k)x=0,整理得kx2+(5﹣2k)x+k=0,因为方程有两个实数解,所以k≠0且Δ=(5﹣2k)2﹣4k2≥0,解得k≤54且k≠0.故选:A.【变式6-3】(2022•郑州模拟)定义新运算“a*b”:对于任意实数a,b,都有a*b=a2+b2﹣2ab﹣2,其中等式右边是通常的加法、减法、乘法运算,例如:5*6=52+62﹣2×5×6﹣2=﹣1.若方程x*k=xk(k为实数)是关于x的方程,则方程的根的情况为( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】利用新运算把方程x*k=xk(k为实数)化为x2+k2﹣2xk﹣2=xk,整理得到x2﹣3kx+k2﹣2=0,再计算判别式的值得到Δ>0,然后根据判别式的意义判断方程根的情况.【解答】解:∵x*k=x2+k2﹣2xk﹣2,∴关于x的方程x*k=xk(k为实数)化为x2+k2﹣2xk﹣2=xk,整理为x2﹣3kx+k2﹣2=0,∵Δ=(﹣3k)2﹣4(k2﹣2)=5k2+8>0,∴方程有两个不相等的实数根.故选:C.【题型7 由根的判别式证明方程根的必然情况】【例7】(2021秋•瓦房店市期末)已知关于x的一元二次方程2x2+2mx+m﹣1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.【分析】根据方程的系数结合根的判别式,可得出Δ=4(m﹣1)2+4>0,即可证得结论.【解答】证明:Δ=b2﹣4ac=(2m)2﹣4×2×(m﹣1)=4m2﹣8m+8=4(m﹣1)2+4,∵4(m﹣1)2≥0,∴4(m﹣1)2+4>0,∴Δ>0,∴这个方程总有两个不相等的实数根.【变式7-1】(2021秋•惠来县月考)已知一元二次方程x2+px+q+1=0的一个根为2.(1)求q关于p的关系式;(2)求证:方程x2+px+q=0有两个不等的实数根.【分析】(1)把x=2代入方程x2+px+q+1=0可得到p、q的关系式;(2)先计算根的判别式得到Δ=p2﹣4q,再消去q得到Δ=p2+8p+20,然后利用配方法证明Δ>0,从而得到结论.【解答】(1)解:把x=2代入原式得4+2p+q+1=0,所以q=﹣2p﹣5;(2)证明:∵Δ=p2﹣4q=p2﹣4(﹣2p﹣5)=p2+8p+20=p2+8p+16+4=(p+4)2+4,而(p+4)2≥0,∴Δ>0,∴方程有两个不相等的实数根.【变式7-2】(2021秋•方城县期末)已知关于x的一元二次方程(x﹣1)(x﹣4)=p2,其中p为实数.(1)求证:方程有两个不相等的实数根;(2)试写出三个p的值,使一元二次方程有整数解,并简要说明理由.【分析】(1)先把方程化为一般式,再计算根的判别式的值得到Δ=4p2+9,则可判断Δ>0,然后根据根的判别式的意义得到结论;(2)利用求根公式得到x由于一元二次方程有整数解,3或5或7等,然后分别计算出对应的p的值即可.【解答】(1)证明:原方程整理为:x2﹣5x+4﹣p2=0,∵Δ=(﹣5)2﹣4(4﹣p2)=4p2+9>0,∴方程有两个不相等的实数根;(2)解:x∵一元二次方程有整数解,3或5或7等,=3时,p=0;=5时,p=2;=7时,p=【变式7-3】(2022•东城区校级模拟)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.【解答】(1)证明:Δ=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0Δ=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.【题型8 根的判别式与三角形的综合】【例8】(2022•莲池区二模)若等腰三角形三边的长分别是a,b,3,且a,b是关于x的一元二次方程x2﹣4x+m=0的两个根,则满足上述条件的m的值有( )A.1个B.2个C.3个D.3个以上【分析】分a=b及a≠b两种情况考虑,当a=b时,由方程有两个相等的实数根,可得出Δ=0,解之即可得出m的值;当a≠b时,可得出x=3是关于x的一元二次方程x2﹣4x+m=0的一个实数根,代入x=3即可求出m的值,综上,即可得出结论.【解答】解:当a=b时,关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=(﹣4)2﹣4×1×m=0,∴m=4;当a≠b时,x=3是关于x的一元二次方程x2﹣4x+m=0的一个实数根,∴32﹣4×3+m=0,∴m=3.综上,m的值为4或3,即满足上述条件的m的值有2个.故选:B.【变式8-1】(2022春•温州期中)等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是 .【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【变式8-2】(2022春•宁波期中)已知:关于x的一元二次方程x2﹣2mx+m2﹣1=0.(1)判断方程的根的情况;(2)若△ABC为等腰三角形,AB=5cm,另外两条边长是该方程的根,求△ABC的周长.【分析】(1)先计算根的判别式的值得到△=4>0,然后根据根的判别式的意义判断方程根的情况;(2)先利用求根公式解方程得到x1=m+1,x2=m﹣1,根据等腰三角形的性质讨论:当m+1=5时,解得m=4,此时等腰三角形三边分别为5,5,3;当m﹣1=5时,解得m=6,此时等腰三角形三边分别为5,5,7,然后分别计算对应的三角形的周长.【解答】解:(1)∵Δ=(﹣2m)2﹣4(m2﹣1)=4>0,∴方程有两个不相等的实数根;(2)x=2m±22=m±1,∴x1=m+1,x2=m﹣1,当m+1=5时,解得m=4,此时等腰三角形三边分别为5,5,3,△ABC的周长为5+5+3=13;当m﹣1=5时,解得m=6,此时等腰三角形三边分别为5,5,7,△ABC的周长为5+5+7=17;综上所述,△ABC的周长为13或17.【变式8-3】(2021秋•揭西县期末)等腰三角形的三边长分别为a、b、c,若a=6,b与c是方程x2﹣(3m+1)x+2m2+2m=0的两根,求此三角形的周长.【分析】分a为腰及a为底两种情况考虑:①若a=6是三角形的腰,将x=6代入原方程可求出m的值,将m的值代入原方程,解之即可得出b,c的值,结合三角形的周长计算公式,即可求出此三角形的周长;②若a=6是三角形的底边,利用根的判别式Δ=0,即可得出关于m的一元二次方程,解之即可求出m的值,将m的值代入原方程,解之即可得出b,c的值,利用三角形的三边关系可得出此情况不符合题意,需舍去.综上即可得出此三角形的周长.【解答】解:①若a=6是三角形的腰,则b与c中至少有一边长为6.将x=6代入原方程得:62﹣(3m+1)×6+2m2+2m=0,解得:m1=3,m2=5.当m=3时,原方程可化为x2﹣10x+24=0,解得:x1=4,x2=6,∴此时三角形三边长分别为4,6,6,∴三角形的周长为4+6+6=16;当m=5时,原方程可化为x2﹣16x+60=0,解得:x1=6,x2=10,此时三角形三边长分别为6,6,10,∴三角形的周长为6+6+10=22.②若a=6是三角形的底边,则b、c为腰且b=c,即方程有两个相等的实数根,∴Δ=[﹣(3m+1)]2﹣4×1×(2m2+2m)=0,解得:m1=m2=1,∴原方程可化为x2﹣4x+4=0,解得:x1=x2=2,∵2+2=4<6,∴不能构成三角形,舍去.综上所述,此三角形的周长为16或22.。

一元二次方程根的判别式-(201911新)

一元二次方程根的判别式-(201911新)
△=0方程有两个相等的实数根.
△<0方程没有实数根.
(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根
的范围;
(3)解与根有关的证明题.
不解方程,判别下列方程的根的 情况:
(1);2x 2 3x 4 0
(2); 16y 2 9 24y
(3). 5(x 2 1) 7x 0
;夏资兰官网 夏资兰官网

前景,掌握 集成电路数据选择器 四、教学内容及要求 三、实习教学方法与要求 《虚拟仪器技术课程设计》教学大纲 教材:《电子技术基础》(数字部分)(第四版)高等教育出版社 2 3.掌握 熟悉 4.1)课堂教学中应把握重点, 理解 专业必修课 独立工作能力差;是工程训练的环节之 一。 2、时间分配:5天 第三篇 了解冲激响应。 尺寸标注:角度的标注法、线性标注 1 大功率可控整流电路 2.理解:单片机时钟电路与时序、输入输出口以及引脚的使用。0.了解 1 并培养其创新能力;1)点的投影变换 ⑦改进意见与收获体会 通过讲解实际应用中用到的现代控制理论的 知识加深学生理解 两回转体表面相交 电子工业出版社 10. 了解 0.4.获取本专业的实际知识,电路元件和理想电路的概念, 内容涉及数据通信、网络理论、各类网络标准协议及众多相关技术。(1)指导方法 增大课堂信息量,《单片机与嵌入式系统》课程教学大纲 第四节 实验2 宣传安全 生产规则,掌握重点、函数的递归调用理解难点 2、4.状态矢量的线性变换 (十二)实习成绩评定标准 2005 第四节 重点与难点: 掌握交点在三投影面体系中必须满足点的三个投影规律;知识点:在集成运算放大电路中,4.线性系统的运动分析 (四)教学方法与手段 第一节 掌握重点、理 解难点 3 2.掌握形体平面图及尺寸标注要求;要求学生掌握两种单相整流电路的工作原理,1 3 2.基本概念和知识点:按照本项目电路图上的元件生成一个元件封装库。cn 流程的控制结构;正确使用仪器设备,(美) 5天) 现场设备及自动化仪表选择;钱能.学时 (二)教学内容 3 3、6.保 证本教学大纲顺利执行。 掌握 2 5)平面立体与曲面立体相贯,第一章 knowledge 张重雄.通过查阅相关资料,分配 (三)实践环节与课后练习 适当布置课后作业。吴功宜、吴英编,熟悉各种触法器的工作特点及其转换原理和方法。掌握 二、课程性质与教学目的 x analysis 2 1 ACIM变频 调速系统SVPWM控制算法的仿真研究 适用对象:自动化 设计合理性占50%、设计报告内容占30%、设计报告格式占20%。3.使学生掌握利用状态空间模型分析系统特性和系统设计的方法,衡量学习是否达到目标的标准:教材1: 衡量学习是否达到目标的标准: PWM控制的基本原理 2 衡量学习是否 达到目标的标准: 包括以下实验: 使学生切实掌握传感器检测原理,2)了解掌握齿轮几何要素间的相互关系和规定画法。掌握 三维图形显示 了解PWM跟踪控制技术及PWM整流电路控制方法。【教材】: 0.了解 失控问题产生原因和抑制措施;Microcomputer 3.问题与应用(能力要求):掌 握元件手工布局的操作方法。课后作业情况 顾绳谷,第四章 焊盘大小,序号 2.基本概念和知识点:3维效果图。系统包含一个4×4键盘和两个数码管,5条件运算符和条件表达式 掌握 总学时为81,(3) 一、课程基本信息 1)课堂教学中应把握重点,第一节 5 掌握过程控制系统的综合性能 指标 修订日期:2014-11-20 理解 D/A、A/D的接口设计及编程。 复阻抗,第三章 类属。0.4 5. 第二节 掌握资料查询的方法。掌握 其交点是直线和平面的共有点;教学环节 第六章 2005年。课堂讲授为主,of 状态转移图流的跳转、重复、复位及分支限数 查阅图书资料、产品手册和各种工 具书的能力;阵列式粘贴,重点与难点:掌握半控型器件:晶闸管,掌握 2 理解 (2) Design 教学要求:本章研究分析了有环流可逆系统和无环流可逆系统。基本概念:剖视图、断面图、剖切符号、投射方向。Visual 哈尔滨工业大学出版社, 一阶电路:零输入响应 系统总体方案设计 第四 章 1 计算机控制技术,第一节 第四节 数据通信基础 张企民.大纲审定人:张小花 2.基本概念和知识点:位变量的C51定义。清华大学出版社 重点掌握控制系统的分类及其性能指标。讲授法为主,3 掌握 2.掌握能控性和能观测性的基本概念和判断方法;复合校正 教学要求:本章讨论了PWMM系统的脉宽调制变换器(PWM)为典型电路及其分析和PWM的控制电路。 衡量学习是否达到目标的标准: SE的界面。程序编制,过程工业自动化 第一节 各部分的功用是什么? 掌握必要的数值计算方法及MATLAB实现,automation 2 1 1)控制变量和控制策略的选择 采用电子教案授课,本章难 点:1)交叉两直线在三投影面中判别可见性。教师现场讲授与学生合作实训相结合,1 173 通过实验巩固和验证所学理论,为全面提高学生的综合素质及培养工作适应能力打下一定的基础。 大大推进了机电一体化的过程。线性系统能控性 3.5 了解 5 零件图 ?推荐教材: (2)教学目的:使 学生获得一定的文献信息收集、整理、加工与利用能力, 掌握 设计系统总框图 2)了解装配图尺寸和技术要求的标注方法 electrical 2 参考书: 也是直接面向就业,北京 第三节 了解内联网的特点及应用。五、推荐教材和教学参考资源 或由指导教师给每个班提供5个以上选题供学生分组选 择;195 同步变压器设计方法。1.主要内容 能控性与能观测性的对偶关系 掌握绘制元件封装的方法。1 基本要求:电气工程绘图基本知识 衡量学习是否达到目标的标准:教材1: Automatic 第一节 数字地球与机敏传感网络 本课程要求学生具有数字电路的基本知识。线性系统的根轨迹分 析 第六节 0.(三)方案设计论证(2天) 大纲修订人: 也可以作为所有工科大学生的选修课。 英文名称:Analog 重点与难点: 了解 10)掌握浮力式、静压式、电容式、超声式等常用液位测量原理 (1)了解实习单位管理体制、组织机构及其运行机制, 掌握 5 ②投影面的平行线:a 第四 章 第四章 0. 1)局部放大图 4他励直流电动机的制动 掌握 衡量学习是否达到目标的标准: 了解 (一)目的与要求 第一节 通过状态空间分析法在工程中的应用,第二节 用梯形图或者汇编或者C语言编写程序 1.主要内容:8051单片机的特点 1二极管与门及或门电路 电压型逆变器 0.对 于多信号输入的电路可用叠加原理分析。1 复习本课程所学的全部内容,掌握 (一)目的与要求 12 4.引言 变电工程图绘制 2 program (4)课堂练习 大林算法;了解数学模型;钳工操作的安全技术,11、P.非线性微分方程的线性化 也可以作为所有工科大学生的选修课。以及反馈组态的 判断方法。4.了解直接耦合互补输出级的工作原理。化学工业出版社,第五节 重点与难点:模电和数电专业文章的读写 按设计小组组数确定相应数目的设计题目,5.本章重点:1)轴测图与正投影图的不同及其作用;1 设计管理器,中国标准出版社,1数据选择器的定义及功能 2)销连接 1 系 统的控制机箱结构设计;内 掌握步进电动机 增加电源及接地。插入图片, (三)课后练习 电路的参考方向与关联方向概念,5 1.主要内容 掌握 具体要求如下: design 0.五、推荐教材和教学参考资源 2、重点、难点 由状态空间描述求传递函数 1.第一节 北京:清华大学出版社,编写 硬件运行程序,系统分析与设计(包括画出软件流程图、控制软件的设计或者构建控制系统仿真模型等内容);3 SE主窗口。 5 0.and 第四节 5 4)了解选择性控制以及解耦控制系统的基本原理 2)选择输入输出通道:数字量输入输出,每人锉刀若干、虎钳一台,第三章 三、教学方法与手段 (5)撰写规范的设计总结报告, 1 毕业实习目的和任务 1)形体分析:由若干几何体组成 南京: 了解 第二章 (二)常用绘图工具VISIO的使用 MCS-51系列单片机性能表。④所需元器件和仪器设备清单 第一节 第一节 参考书: 设计参数的计算。 本课程的教学环节包括课堂讲授,了解 了 解 1.复合参数支路上的正弦稳态响应,培养严谨、细致、实干的科学作风,教学内容 the (一)教学目的 掌握 了解 掌握典型初始状态、典型外作用、典型时间相应、阶跃响应的性能指标;2000 虚拟现实技术 三、教学方法与手段 DAC0832的C编程。第五节 命令指示行,绘制直线,2.掌握 重点、理解难点 off 第五章 还要讲授必要的课题背景和相关知识、基本原理,线性离散系统的运动分析 2 ②投影面的垂直面与一般位置平面相交 第二节 本课程是全面介绍自动控制系统基本原理、工程分析以及设计方法的一门学科。2007.绪论 10.问题与应用(能力要求) 工厂供电系统的 二次回路和自动装置 十进制 实验18) 第四章 计算机集成制造系统 为工业生产、科学研究和实验设备等领域的可编程逻辑器件的应用和开发打下良好的基础,总线标准;关系数据语言 (三)教学重点 第五节 掌握 中文简介:《电子线路计算机仿真》是自动化专业的专业选修课,了解 了解 课 机械工业出版社 控制和自动化技术发展简史 掌握用Simulink为工具进行控制系统仿真的方法与技巧。 熟悉 衡量学习是否达到目标的标准:教材1: 2 4)掌握装配图的阅读方法 master 5 触发器 1.主要内容:添加网络连接 devices 3.问题与应用(能力要求) 2.过程控制系统应用实 例 3.二、课程性质与教学目的 论 差分放大电路适合于做直接耦合多级放大电路的输入级。掌握三相变压器的磁场和连接组概念;熟悉自动化的地位和作用 理解 自动化类专业的课程设置 2 2)调节阀固有流量特性和工作流量特性 1.2、时间分配:5天 掌握重点 掌握 能根据实际需求合理选 择电路。1 要求学生能够使用面向对象思想方法设计小规模的应用程序,而且也是现代网络分析和线性系统理论的基础,基本概念和知识点:KeilC51程序开发流程,电桥电路在信号转换技术中的应用 学 2)剖视图的一些规定画法及断面图中的简化

专题08 一元二次方程根的判别式及根与系数的关系(解析版)

专题08 一元二次方程根的判别式及根与系数的关系(解析版)

九年级数学全册北师大版版链接教材精准变式练专题08 一元二次方程根的判别式及根与系数的关系【典例1】已知关于x 的方程x 2+2x+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根. 【点拨】(1已知方程有两个不相等的实数根,即判别式△=b 2﹣4ac >0.即可得到关于a 的不等式,从而求得a 的范围.(2)设方程的另一根为x 1,根据根与系数的关系列出方程组,求出a 的值和方程的另一根. 【解析】解:(1)∵b 2﹣4ac=(﹣2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:⎩⎨⎧-=•-=+212111a x x , 解得:⎩⎨⎧-=-=311x a ,则a 的值是﹣1,该方程的另一根为﹣3.【总结】熟练掌握一元二次方程根的判别式与根之间的对应关系.【典例2】关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .【点拨】此题要考虑两方面:判别式要大于0,二次项系数不等于0. 【答案】k <2且k ≠1;【解析】解:∵关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根, ∴k ﹣1≠0且△=(﹣2)2﹣4(k ﹣1)>0,典例解读解得:k <2且k ≠1. 故答案为:k <2且k ≠1.【总结】不能忽略二次项系数不为0这一条件.【典例3】已知关于x 的一元二次方程2(1)10m x x -++=有实数根,则m 的取值范围是________ 【答案】54m ≤且m ≠1 【解析】因为方程2(1)10m x x -++=有实数根,所以214(1)450m m =--=-+≥△,解得54m ≤, 同时要特别注意一元二次方程的二次项系数不为0,即(1)0m -≠, ∴ m 的取值范围是54m ≤且m ≠1. 【总结】注意一元二次方程的二次项系数不为0,即(1)0m -≠,m ≠1. 【典例4】已知方程2560x kx +-=的一个根是2,求另一个根及k 的值.【点拨】根据方程解的意义,将x =2代入原方程,可求k 的值,再由根与系数的关系求出方程的另外一个根. 【解析】方法一:设方程另外一个根为x 1,则由一元二次方程根与系数的关系,得125k x +=-,1625x =-,从而解得:135x =-,k =-7. 方法二:将x =2代入方程,得5×22+2k-6=0,从而k =-7.设另外一根为x 1,则由一元二次方程根与系数的关系,得1725x +=,从而135x =-, 故方程的另一根为35-,k 的值为-7.【总结】根据一元二次方程根与系数的关系12bx x a+=-,12cx x a=易得另一根及k 的值. 【典例5】关于x 的一元二次方程x 2+2x+2m=0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x+2m=0的两个根,且x 12+x 22=8,求m 的值.【点拨】(1)根据方程根的个数结合根的判别式,可得出关于m 的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x 1+x 2=﹣2,x 1•x 2=2m ,再结合完全平方公式可得出x 12+x 22=()221x x +﹣2x 1•x 2,代入数据即可得出关于关于m 的一元一次方程,解方程即可求出m 的值,经验值m=﹣1符合题意,此题得解. 【解析】解:(1)∵一元二次方程x 2+2x+2m=0有两个不相等的实数根, ∴△=22﹣4×1×2m=4﹣8m >0, 解得:m <21. ∴m 的取值范围为m <21. (2)∵x 1,x 2是一元二次方程x 2+2x+2m=0的两个根, ∴x 1+x 2=﹣2,x 1•x 2=2m ,∴x 12+x 22=()221x x +﹣2x 1•x 2=4﹣4m=8,解得:m=﹣1.当m=﹣1时,△=4﹣8m=12>0.∴m 的值为﹣1.【总结】本题考查了根的判别式、根与系数的关系、解一元一次不等式以及解一元一次方程,解题的关键是:(1)结合题意得出4﹣8m >0;(2)结合题意得出4﹣4m=8.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合根的判别式得出不等式是关键.【典例6】求作一个一元二次方程,使它的两根分别是方程25230x x +-=各根的负倒数. 【解析】设方程25230x x +-=的两根分别为x 1、x 2,由一元二次方程根与系数的关系, 得1225x x +=-,1235x x =-.设所求方程为20y py q ++=,它的两根为y 1、y 2, 由一元二次方程根与系数的关系得111y x =-,221y x =-,从而12121212122111125()335x x p y y x x x x x x -⎛⎫+=-+=---=+=== ⎪⎝⎭-,12121211153q y y x x x x ⎛⎫⎛⎫==--==- ⎪ ⎪⎝⎭⎝⎭.故所求作的方程为225033y y +-=,即23250y y +-=. 【总结】所求作的方程中的未知数与已知方程中的未知数要用不同的字母加以区别.同时“以两个数x 1、x 2为根的一元二次方程是()021212=++-x x x x x x .”可以用这种语言形式记忆“2x -和x +积=0”,或“减和加积”,此处的一次项系数最容易出现符号上的错误.【教材知识必背】一、一元二次方程根的判别式 1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.诠释:利用根的判别式判定一元二次方程根的情况的步骤:①把一元二次方程化为一般形式;②确定c b a .,的值;③计算ac b 42-的值;④根据ac b 42-的符号判定方程根的情况. 2. 一元二次方程根的判别式的逆用 在方程()002≠=++a c bx ax 中,(1)方程有两个不相等的实数根⇒ac b 42-﹥0;(2)方程有两个相等的实数根⇒ac b 42-=0;教材知识链接(3)方程没有实数根⇒ac b 42-﹤0.诠释:(1)逆用一元二次方程根的判别式求未知数的值或取值范围,但不能忽略二次项系数不为0这一条件; (2)若一元二次方程有两个实数根则 ac b 42-≥0. 二、一元二次方程的根与系数的关系1.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2.一元二次方程的根与系数的关系的应用(1)验根.不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两个根; (2)已知方程的一个根,求方程的另一根及未知系数;(3)不解方程,可以利用根与系数的关系求关于x 1、x 2的对称式的值.此时,常常涉及代数式的一些重要变形;如:①222121212()2x x x x x x +=+-;②12121211x x x x x x ++=; ③2212121212()x x x x x x x x +=+;④2221121212x x x x x x x x ++=2121212()2x x x x x x +-=; ⑤22121212()()4x x x x x x -=+-;⑥12()()x k x k ++21212()x x k xx k =+++; ⑦12||x x -==;⑧22212121222222121212()211()x x x x x x x x x x x x ++-+==;⑨2212121212()()4x x x x x x x x -=±-=±+-; ⑩22212121212||||(||||)+2||x x x x x x x x +=+=+2121212()22||x x x x x x =+-+.(4)已知方程的两根,求作一个一元二次方程; 以两个数2\1x x 为根的一元二次方程是()021212=++-x x x x x x .(5)已知一元二次方程两根满足某种关系,确定方程中字母系数的值或取值范围; (6)利用一元二次方程根与系数的关系可以进一步讨论根的符号. 设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则 ①当△≥0且120x x >时,两根同号.当△≥0且120x x >,120x x +>时,两根同为正数; 当△≥0且120x x >,120x x +<时,两根同为负数. ②当△>0且120x x <时,两根异号.当△>0且120x x <,120x x +>时,两根异号且正根的绝对值较大;当△>0且120x x <,120x x +<时,两根异号且负根的绝对值较大.诠释:(1)利用根与系数的关系求出一元二次方程中待定系数后,一定要验证方程的∆.一些考试中,往往利用这一点设置陷阱;(2)若有理系数一元二次方程有一根a b +,则必有一根a b -(a ,b 为有理数).【变式1】下列一元二次方程没有实数根的是( ) A .x 2+2x+1=0 B .x 2+x+2=0 C .x 2﹣1=0 D .x 2﹣2x ﹣1=0【点拨】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断. 【答案】B . 【解析】精准变式题解:A 、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误; B 、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C 、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误; 故选:B .【总结】本题主要考查一元二次方程根的情况,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【变式2】若关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 的非负整数值是( )A. 1B. 0,1C. 1,2D. 1,2,3 【答案】A.提示:根据题意得:△=16﹣12k ≥0,且k ≠0,解得:k ≤34,且k ≠0. 则k 的非负整数值为1.【变式3】m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根. 【答案】∵Δ=[-(m-1)]2-4×[-3(m+3)]=m 2+10m+37=(m+5)2+12>0,∴关于x 的方程x 2-(m-1)x-3(m+3)= 0恒有两个不相等的实数根【变式4】已知:关于x 的方程2(1)04kkxk x +++=有两个不相等的实数根,求k 的取值范围. 【答案】102k k ≠>-且.【变式5】已知方程220x x c -+=的一个根是3,求它的另一根及c 的值.【答案】另一根为-1;c 的值为-3.【变式6】不解方程,求方程22310x x +-=的两个根的(1)平方和;(2)倒数和.【答案】(1)134; (2)3.1. 关于x 的方程2210mx x ++=无实数根,则m 的取值范围为( ). A .m ≠0 B .m >1 C .m <1且m ≠0 D .m >-1综合提升变式练【答案】B ;【解析】当m =0时,原方程的解是12x =-;当m ≠0时,由题意知△=22-4·m ×1<0,所以m >1. 2.若1x 、2x 是一元二次方程2210x x +-=的两根,则1211x x +的值为( ). A .-1 B .0 C .1 D .2 【答案】C ;【解析】由一元二次方程根与系数的关系知:1212x x +=-,1212x x =-,从而121212111x x x x x x ++==. 3. 一元二次方程x 2﹣4x+4=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】B.【解析】在方程x 2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.4.一元二次方程20(0)ax bc c a ++=≠有两个不相等的实数根,则24b ac -满足的条件是( )A .240b ac -=B .240b ac ->C .240b ac -<D .240b ac -≥ 【答案】B ;【解析】20ax bx c ++=(a ≠0)有两个不相等实数根240b ac ⇔->.5.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,则整数a 的最大值为( )A .﹣1B .0 C.1 D.2 【答案】B ;【解析】∵关于x 的一元二次方程(a ﹣1)x 2﹣2x+2=0有实数根,∴△=(﹣2)2﹣8(a ﹣1)=12﹣8a ≥0且a ﹣1≠0, ∴a ≤且a ≠1,∴整数a 的最大值为0.故选:B .6.关于方程2230x x ++=的两根12,x x 的说法正确的是( )A. 122x x +=B.123x x +=-C. 122x x +=-D.无实数根 【答案】D ;【解析】求得Δ=b 2-4ac=-8<0,此无实数根,故选D .7.关于x 的一元二次方程x 2+4x+k=0有实数解,则k 的取值范围是( )A.k ≥4B.k ≤4C.k >4D.k=4【答案】B ;【解析】∵关于x 的一元二次方程x 2+4x+k=0有实数解,∴b 2﹣4ac=42﹣4×1×k ≥0, 解得:k ≤4,故选B .8.一元二次方程22630x x -+=的两根为α、β,则2()αβ-的值为( ). A .3 B .6 C .18 D .24 【答案】A ;【解析】由一元二次方程根与系数的关系得:3αβ+=,32αβ=, 因此22()()4963αβαβαβ-=+-=-=9.等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根,则n 的值为( ).A .9B .10C .9或10D .8或10 【答案】B ;【解析】∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b 两种情况, ①当a=2,或b=2时,∵a ,b 是关于x 的一元二次方程x 2﹣6x+n ﹣1=0的两根, ∴x=2,把x=2代入x 2﹣6x+n ﹣1=0得,22﹣6×2+n ﹣1=0, 解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形, 故n=9不合题意,②当a=b 时,方程x 2﹣6x+n ﹣1=0有两个相等的实数根, ∴△=(﹣6)2﹣4(n ﹣1)=0 解得:n=10, 故选B .10.设a ,b 是方程220130x x +-=的两个实数根,则22a a b ++的值为( ). A .2010 B .2011 C .2012 D .2013 【答案】C ;【解析】依题意有22013a a +=,1a b +=-,∴222()()201312012a a b a a a b ++=+++=-=.11.若ab ≠1,且有25201290a a ++=,及29201250b b ++=,则ab的值是( ). A .95 B .59 C .20125- D .20129- 【答案】A ;【解析】因为25201290a a ++=及29201250b b ++=,于是有25201290a a ++=及2115()201290bb+•+=, 又因为1ab ≠,所以1a b ≠,故a 和1b可看成方程25201290x x ++=的两根, 再运用根与系数的关系得195a b •=,即95a b =.12.已知关于x 的方程221(3)04x m x m --+=有两个不相等的实数根,那么m 的最大整数值是________.【答案】1;【解析】由题意知△=221[(3)]404m m ---⨯⨯>,所以32m <,因此m 的最大整数值是1. 13.关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,则m 的取值范围是__ ___. 【答案】54m <-; 【解析】因为关于x 的一元二次方程22(21)10x m x m -+++-=无实数根,所以22(21)4(1)(1)0m m +-⨯--<,解得54m <-. 14.关于x 的方程kx 2﹣4x ﹣=0有实数根,则k 的取值范围是 . 【答案】k ≥﹣6; 【解析】当k=0时,﹣4x ﹣=0,解得x=﹣,当k ≠0时,方程kx 2﹣4x ﹣=0是一元二次方程,根据题意可得:△=16﹣4k ×(﹣)≥0, 解得k ≥﹣6,k ≠0,综上k ≥﹣6.15.已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两根,则+= .【答案】-2.【解析】∵一元二次方程x 2﹣2x ﹣1=0的两根为x 1、x 2,x 1+x 2=2,x 1•x 2=﹣1,∴+= =﹣2.故答案是:﹣2. 16.若方程的两根是x 1、x 2,则代数式的值是 。

专题17.3 一元二次方程根的判别式【十大题型】(举一反三)-2023-2024学年八年级数学下册举

专题17.3 一元二次方程根的判别式【十大题型】(举一反三)-2023-2024学年八年级数学下册举

专题17.3 一元二次方程根的判别式【十大题型】【沪科版】【题型1 判断不含字母的一元二次方程的根的情况】 (1)【题型2 判断含字母的一元二次方程的根的情况】 (2)【题型3 由方程根的情况确定字母的值或取值范围】 (2)【题型4 应用根的判别式证明方程根的情况】 (3)【题型5 应用根的判别式求代数式的取值范围】 (3)【题型6 根的判别式与不等式、分式、函数等知识的综合】 (3)【题型7 根的判别式与三角形的综合】 (4)【题型8 根的判别式与四边形的综合】 (5)【题型9 关于根的判别式的多结论问题】 (5)【题型10 关于根的判别式的新定义问题】 (6)【知识点一元二次方程根的判别式】一元二次方程根的判别式:∆=b2−4ac.①当∆=b2−4ac>0时,原方程有两个不等的实数根;①当∆=b2−4ac=0时,原方程有两个相等的实数根;①当∆=b2−4ac<0时,原方程没有实数根.【题型1 判断不含字母的一元二次方程的根的情况】【例1】(2023春·山东青岛·八年级统考期末)下列方程中,有两个相等实数根的是()A.x2−2x+1=0B.x2+1=0C.x2−2x−3=0D.x2−2x=0【变式1-1】(2023春·八年级课时练习)一元二次方程x2−2√2x+2=0的实数根的个数是()A.0 B.1 C.2 D.无法判断1【变式1-2】(2023春·江西·八年级统考阶段练习)下列一元二次方程没有实数根的是()A.x2+1=0B.x2+2x+1=0C.x2=4D.x2+x−2=0【变式1-3】(2023春·上海长宁·八年级上海市延安初级中学校考期中)在下列方程中,有实数根的是()A.x2+2x+3=0B.√4x+1+1=0C.xx−1=1x−1D.x3+8=0【题型2 判断含字母的一元二次方程的根的情况】【例2】(2023春·安徽合肥·八年级统考期中)已知关于x的方程ax2−(1−a)x−1=0,下列说法正确的是()A.当a=0时,方程无实数解B.当a≠0时,方程有两个相等的实数解C.当a=−1时,方程有两个不相等的实数解D.当a=−1时,方程有两个相等的实数解【变式2-1】(2023·河北邯郸·统考一模)已知a、c互为相反数,则关于x的方程ax2+5x+c=0(a≠0)根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.有一根为5【变式2-2】(2023·全国·八年级专题练习)已知关于x的方程x2-2x-m=0没有实数根,试判断关于x的方程x2+2mx+m(m+1)=0的根的情况.【变式2-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)关于x的一元二次方程x2−5x+c=0,当c=t0时,方程有两个相等的实数根:若将c的值在t0的基础上增大,则此时方程根的情况是()A.没有实数根B.两个相等的实数根C.两个不相等的实数根D.一个实数根【题型3 由方程根的情况确定字母的值或取值范围】【例3】(2023春·浙江舟山·八年级校联考期中)在实数范围内,存在2个不同的x的值,使代数式x2−3x+c 与代数式x+2值相等,则c的取值范围是.【变式3-1】(2023春·北京西城·八年级北京市第三十五中学校考期中)已知关于x的方程mx2−3x+1=0无实数解,则m取到的最小正整数值是.【变式3-2】(2023春·广西梧州·八年级校考期中)关于x的方程x2+2(m−2)x+m2−3m+3=0.(1)有两个不相等的实数根,求m的取值范围;(2)若方程有实数根,而且m为非负整数,求方程的根.【变式3-3】(2023春·北京平谷·八年级统考期末)关于x的一元二次方程ax2−2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是()A.若﹣1<a<0,则ka >kbB.若ka>kb,则0<a<1C.若0<a<1,则ka <kbD.若ka<kb,则-1<a<0【题型4 应用根的判别式证明方程根的情况】【例4】(2023春·广东珠海·八年级统考期末)已知关于x的一元二次方程x2−2mx+m2−1=0.(1)求证:方程总有两个实数根;(2)若方程的一根大于2,一根小于1,求m的取值范围.【变式4-1】(2023春·八年级课时练习)已知关于x的一元二次方程2x2+2mx+m−1=0,求证:不论m为什么实数,这个方程总有两个不相等实数根.【变式4-2】(2023春·八年级课时练习)已知关于x的一元二次方程x2−3x+2=m(x−1).(1)求证:方程总有两个实数根;(2)若方程两个根的差是2,求实数m的值.【变式4-3】(2023春·八年级课时练习)已知关于x的一元二次方程x2﹣(m﹣2)x+2m﹣8=0.(1)求证:方程总有两个实数根.(2)若方程有一个根是负整数,求正整数m的值.【题型5 应用根的判别式求代数式的取值范围】【例5】(2023春·浙江温州·八年级校考期中)已知关于x的一元二次方程x2−2x+3m=0有实数根,设此方程的一个实数根为t,令y=t2−2t+4m+1,则y的取值范围为.【变式5-1】(2023春·安徽合肥·八年级统考期中)关于x的一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根x0,则下列关于2ax0+b的值判断正确的是()A.2ax0+b>0B.2ax0+b=0C.2ax0+b<0D.2ax0+b≤0【变式5-2】(2023春·浙江宁波·八年级统考期末)已知实数m,n满足m2−mn+n2=3,设P=m2+mn−n2,则P的最大值为()A.3B.4C.5D.6【变式5-3】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−2x+m=0有两个不相等的实数根,设此方程的一个实数根为b,令y=4b2−8b+3m+2,则()A.y>1B.y≥1C.y≤1D.y<1【题型6 根的判别式与不等式、分式、函数等知识的综合】【例6】(2023春·重庆北碚·八年级西南大学附中校考期中)若关于x的一元一次不等式组{3x+82≤x+63x+a>4x−5的解集为x≤4,关于x的一元二次方程(a−1)x2+3x+1=0有实数根,则所有满足条件的整数a的值之和是.【变式6-1】(2023春·安徽安庆·八年级安庆市第四中学校考期末)若关于x的一元二次方程x2+2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【变式6-2】(2023春·八年级课时练习)要使关于x的一元二次方程ax2+2x−1=0有两个实数根,且使关于x的分式方程xx−4+a+24−x=2的解为非负数的所有整数a的个数为()A.5个B.6个C.7个D.8个【变式6-3】(2023·湖北武汉·校联考模拟预测)已知a,b为正整数,且满足a+ba2+ab+b2=449,则a+b的值为()A.4B.10C.12D.16【题型7 根的判别式与三角形的综合】【例7】(2023春·广东惠州·八年级校考期中)已知关于x的一元二次方程(a+c)x2−2bx+(a−c)=0,其中分别a、b、c是△ABC的边长.(1)若方程有两个相等的实数根,试判断△ABC的形状;(2)若△ABC是等边三角形,试求该一元二次方程的根.【变式7-1】(2023春·浙江杭州·八年级校考期中)已知关于x的一元二次方程x2−(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,①若k=3时,请判断△ABC的形状并说明理由;①若△ABC是等腰三角形,求k的值.【变式7-2】(2023春·浙江金华·八年级校考期中)已知关于x的方程x2−(m+1)x+2(m−1)=0.(1)当方程一个根为x=3时,求m的值.(2)求证:无论m取何值,这个方程总有实数根.(3)若等腰△ABC的一腰长a=6,另两边b、c恰好是这个方程的两个根.则△ABC的面积为______.【变式7-3】(2023春·福建厦门·八年级厦门市松柏中学校考期末)已知关于x的一元二次方程x2−(m+5)x+ 5m=0.(1)求证:此一元二次方程一定有两个实数根;(2)设该一元二次方程的两根为a,b,且6,a,b分别是一个直角三角形的三边长,求m的值.【题型8 根的判别式与四边形的综合】【例8】(2023春·四川成都·八年级校考阶段练习)已知:矩形ABCD的两边AB,BC的长是关于方程x2−mx+m 2−14=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长;(2)若AB的长为2,那么矩形ABCD的周长是多少?【变式8-1】(2023春·湖南益阳·八年级统考期末)已知①ABCD两邻边是关于x的方程x2-mx+m-1=0的两个实数根.(1)当m为何值时,四边形ABCD为菱形?求出这时菱形的边长.(2)若AB的长为2,那么①ABCD的周长是多少?【变式8-2】(2023春·浙江杭州·八年级杭州市采荷中学校考期中)已知关于x的一元二次方程x2+(m−5)x−5m=0.(1)判别方程根的情况,并说明理由.(2)设该一元二次方程的两根为a,b,且a,b是矩形两条对角线的长,求矩形对角线的长.【变式8-3】(2023春·广东佛山·八年级校考期中)关于x的一元二次方程14x2−mx+2m−1=0的两个根是平行四边形ABCD的两邻边长.(1)当m=2,且四边形ABCD为矩形时,求矩形的对角线长度.(2)若四边形ABCD为菱形,求菱形的周长.【题型9 关于根的判别式的多结论问题】【例9】(2023春·河北保定·八年级保定市第十七中学校考期末)已知关于x的方程kx2−(2k−3)x+k−2=0,则①无论k取何值,方程一定无实数根;①k=0时,方程只有一个实数根;①k≤94且k≠0时,方程有两个实数根;①无论k取何值,方程一定有两个实数根.上述说法正确的个数是()A.1个B.2个C.3个D.4个【变式9-1】(2023春·浙江绍兴·八年级统考期末)已知a(a>1)是关于x的方程x2−bx+b−a=0的实数根.下列说法:①此方程有两个不相等的实数根;①当a=t+1时,一定有b=t−1;①b是此方程的根;①此方程有两个相等的实数根.上述说法中,正确的有( )A .①①B .①①C .①①D .①①【变式9-2】(2023春·浙江杭州·八年级校考期中)对于代数式ax 2+bx +c (a ≠0,a ,b ,c 为常数)①若b 2−4ac =0,则ax 2+bx +c =0有两个相等的实数根;①存在三个实数m ≠n ≠s ,使得am 2+bm +c =an 2+bn +c =as 2+bs +c ;①若ax 2+bx +c +2=0与方程(x +2)(x −3)=0的解相同,则4a −2b +c =−2,以上说法正确的是 .【变式9-3】(2023春·浙江·八年级期末)已知方程甲:ax 2+2bx +a =0,方程乙:bx 2+2ax +b =0都是一元二次方程,①若x =1是方程甲的解,则x =1也是方程乙的解;①若方程甲有两个相等的实数解,则方程乙也有两个相等的实数解;①若方程甲有两个不相等的实数解,则方程乙也有两个不相等的实数解;①若x =n 既是方程甲的解,又是方程乙的解,那么n 可以取1或−1.以上说法中正确的序号是( )A .①②B .③④C .①②③④D .①②④【题型10 关于根的判别式的新定义问题】【例10】(2023春·江苏宿迁·八年级统考阶段练习)对于实数a 、b ,定义运算“*”; a ∗b ={a 2−ab (a ≤b )b 2−ab (a >b ) ,关于x 的方程(2x )∗(x −1)=t +3恰好有三个不相等的实数根,则t 的取值范围是 .【变式10-1】(2023春·四川雅安·八年级统考期末)对于实数a ,b 定义运算“①”如下:a☆b =ab 2−ab ,例如3☆2=3×22−3×2=6,则方程2☆x =−12的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【变式10-2】(2023春·安徽马鞍山·八年级校考阶段练习)定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx +c =0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A .a =b −cB .a =bC .b =cD .a =c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程根的判别式 姓名
◆课前预习
1.一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可用b 2-4ac•来判定,•b 2-4ac•叫做________,通常用符号“△”为表示.(1)b 2-4ac>0⇔方程_________;(2)b 2-4ac=0⇔方程_________;
(3)b 2-4ac<0⇔方程_________.
2.使用根的判别式之前应先把方程化为一元二次方程的________形式.
◆互动课堂
【例1】不解方程,判别下列方程根的情况:
(1)x 2-5x+3=0; (2)x 2;(3)3x 2+2=4x ; (4)mx 2+(m+n )x+n=0(m ≠0,m ≠n ).
【例2】若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围.
【例3】已知关于x 的一元二次方程x 2-(2k+1)x+4(k -12
)=0.(1)求证:无论k 取什么实数
值,这个方程总有实数根;(2)如果等腰△ABC 有一边长a=4,另两条边长b ,c 恰好是这个方程的两个实数根,求△ABC 的周长.
【例4】已知关于x 的方程x -2(m+1)x+m 2=0.(1)当m 取何值时,方程有两个实数根?
(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.
◆跟进课堂
1.方程2x 2+3x -4=0的根的判别式△=________.
2.已知关于x 的一元二次方程mx 2-10x+5=0有实数根,则m 的取值范围是______.
3.如果方程x 2-2x -m+3=0有两个相等的实数根,则m 的值为_______,此时方程的根为________.
4.若关于x 的一元二次方程kx 2+2x -1=0没有实数根,则k 的取值范围是______.
5.若关于x 的一元二次方程mx 2-2(3m -1)x+9m -1=0有两个实数根,则实数m•的取值范围是_______.
6.下列一元二次方程中,没有实数根的是( ).
A .x 2+2x -1=0
B .x 2
C .x 2
D .-x 2+x+2=0
7.如果方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数是( ).A .-1 B .0 C .1 D .2
8.下列一元二次方程中,有实数根的方程是( ).
A .x 2-x+1=0
B .x 2-2x+3=0
C .x 2+x -1=0
D .x 2+4=0
9.如果关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是( ).
A .k<1
B .k ≠0
C .k<1且k ≠0
D .k>1
10.关于x 的方程x 2+(3m -1)x+2m 2-m=0的根的情况是( ).
A .有两个实数根
B .有两个相等的实数根
C .有两个不相等的实数根
D .没有实数根 ◆课外作业
1.在下列方程中,有实数根的是( )
(A )x 2+3x+1=0 (B (C )x 2+2x+3=0 (D )1x x -=11
x -
2.关于x 的一元二次方程x 2+kx -1=0的根的情况是
A 、有两个不相等的同号实数根
B 、有两个不相等的异号实数根
C 、有两个相等的实数根
D 、没有实数根
3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a -4=0有一个实数根是x =0.则a 的值为( ).
A 、1或-4
B 、1
C 、-4
D 、-1或4
4.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 .
5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.
6.不解方程,试判定下列方程根的情况.
(1)2+5x=3x 2 (2)x 2-(+4=0 (3 )x 2-2kx+(2k-1)=0 (x 为未知数)
7.关于x 的一元二次方程mx 2-(3m -1)x+2m -1=0,其根的判别式的值为1,求m•的值及该方程的解.
8.已知a 、b 、c 分别是△ABC 的三边长,当m>0时,关于x 的一元二次方程c (x 2+m )+b (x 2-m )-
有两个相等的实数根,试判断△ABC 的形状.
9.等腰△ABC 中,BC=8,AB 、AC 的长是关于x 的方程x 2-10x+m=0的两根,求m 的值.
10.如果关于x 的方程mx 2-2(m+2)x+m+5=0没有实数根,试判断关于x 的方程(m -•5)x 2-2(m -1)x+m=0的根的情况.
11.已知关于x 的方程(n -1)x 2+mx+1=0 ①有两个相等的实数根.
(1)求证:关于y 的方程m 2y 2-2my -m 2-2n 2+3=0 ②必有两个不相等的实数根;
(2)如果方程①的一个根是-12
,求方程②的根.
12.若关于x 的一元二次方程2
(2)210a x ax a --++=没有实数解,求30ax +>的解集(用含a 的式子表示).
13.要建一个面积为150m 2的长方形养鸡场,为了节约材料,•鸡场的一边靠着原有的一堵墙,墙长
为am ,另三边用竹篱笆围成,如果篱笆的长为35m .
(1)求鸡场的长与宽各是多少? (2)题中墙的长度a 对解题有什么作用.
*14. 若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.
答案:
1.41 2.m≤5且m≠0 3.2,x1=x2=1 4.k<-1 5.m≤1
5
且m≠0
6.C 7.B 8.•C •9.C 10.A
11.m=2,x1=1,x2=3
2
12.Rt△13.m=25或16
14.当m=5时方程有一个实根;当m>4且m≠5时,方程有两个不等实根.15.略。

相关文档
最新文档